

Minnesota Pollution Control Agency

Office of the Commissioner

February 26. 2004

The Honorable John Marty, Chair Environment and Natural Resources Committee Minnesota Senate 323 Capitol

The Honorable Dallas Sams, Chair Environment, Agriculture and Economic Development Budget Division Minnesota Senate 328 Capitol

The Honorable Linda Scheid, Chair Commerce Committee Minnesota Senate 303 State Capitol

Dear Committee Chairs:

The Honorable Tom Hackbarth, Chair Environment and Natural Resources Policy Committee Minnesota House of Representatives 409 State Office Building

The Honorable Dennis Ozment, Chair Environment and Natural Resources Finance Committee Minnesota House of Representatives 479 State Office Building

The Honorable Gregory Davids, Chair Commerce, Jobs and Economic Development Committee Minnesota House of Representatives 379 State Office Building

I am pleased to submit to you the enclosed report entitled, "Detailed Assessment of Phosphorus Sources to Minnesota Watersheds" produced by Barr Engineering Company (Barr) under contract to the State of Minnesota. This letter and report are submitted to you to fulfill the requirements of Minn. Laws 2003, Ch. 128, Art. 1, Sections 122 and 166 which asked MPCA to report to the 2004 Legislature on the levels of non-ingested phosphorus discharged to wastewater treatment systems, the effect of lowering phosphorus on water quality, and a review of the MPCA's rules on nutrients in cleaning agents. As noted in a letter to you dated January 20, 2004, although this report was required to be submitted by February 2, it was necessary to extend the submittal date to March 1, 2004.

As nutrients in fertilizer cause crops and lawns to grow, nutrients, which get into surface water, cause excessive growth of algae and other aquatic plants. Phosphorus is the primary nutrient causing the pollution of Minnesota's surface waters. The presence of phosphorus in automatic dishwasher detergent (ADWD) was discussed by the Legislature during the 2003 Session and legislation to eliminate virtually all phosphorus in ADWD was introduced. The various perspectives of interested parties and a lack of solid data led the Legislature to charge the MPCA to research a series of questions and develop a study of the sources of phosphorus statewide. The MPCA contracted with a local consultant, Barr, to conduct the study and assist the MPCA in answering the questions posed by the Legislature. Barr has performed in an outstanding manner in this very large and complicated effort and was able to deliver a final report to the agency on February 19, 2004. Their report is enclosed with this letter.

The questions posed by the Legislature were:

1. What is a reasonable estimate for the amount of phosphorus entering municipal wastewater systems (Publicly Owned Treatment Works – (POTW's) from non-ingested sources?

Non-ingested sources of phosphorus are commercial/industrial process water, residential and commercial ADWD, food soils (dishwashing and garbage disposals food wastes), dentifrices (oral hygiene products), noncontact cooling water, drinking water treatment agents and groundwater inflow/infiltration. Non-ingested sources of phosphorus make up 57.6 percent (2,573,000 kg/yr.) of the total amount (4,468,000 kg/yr.) of phosphorus entering POTW's. Commercial and industrial process water is 46 percent of the non-ingested phosphorus entering POTW's and food soils are about 28 percent of the non-ingested phosphorus. The phosphorus from residential and commercial use of ADWD, combined, is almost 19 percent of the non-ingested phosphorus entering POTWs. The remainder of the sources totals less than 8 percent.

2. What is a reasonable timeline for achieving a 50 percent reduction of phosphorus from non-ingested sources to municipal wastewater systems?

Each individual POTW receives phosphorus from varying non-ingested sources. The source, or combination of sources, of non-ingested phosphorus that enters a POTW and the practicality of removing non-ingested phosphorus from specific individual sources will determine the feasibility of reaching a 50 percent removal goal in any reasonable timeframe.

According to the Barr report, the achievement of a 50 percent reduction of non-ingested phosphorus appears to be an ambitious goal. It is theoretically possible to achieve a 50 percent reduction in non-ingested phosphorus entering a POTW, but the practicality and timeline for doing so is reliant upon a thorough examination of the data in the Barr report and ultimately, is a public policy decision. The report outlines several options that could lead to a significant reduction in non-ingested phosphorus entering POTW's. One example of the type of approach that would be necessary to achieve a significant reduction in non-ingested phosphorus entering a POTW would require a reduction to zero phosphorus in residential and commercial ADWD and a 50 percent reduction in phosphorus from commercial and industrial process water. These reductions combined would result in a reduction of 42 percent of phosphorus entering a POTW.

3. What is the effect on water quality of receiving waters as a result of lowering phosphorus in the wastewater stream?

One method of estimating the effect of lowering the phosphorus content of the wastewater stream is to determine the relative amount of phosphorus contribution from a specific source when compared to other sources in a major basin or statewide. While this was the general approach used in this study, it is important to note that this statewide/basin method has limitations because the effect of a phosphorus reduction on water quality is related to many factors, such as type of water body (river, wetland, or lake), size of water body, geographical location, types of phosphorus sources and many others. The Barr report includes detailed estimates of the relative

phosphorus contributions to surface water of the ten major basins and statewide, however an evaluation of all such individual conditions was not conducted.

There is a vast amount of information in the Barr report. Although the full content of the report has yet to be thoroughly analyzed, preliminarily we find the following information to be, in our view, significant:

- a) For average flow conditions, nonpoint sources of phosphorus account for 69 percent of the phosphorus entering Minnesota surface waters and point sources account for 31 percent.
- b) Of the nonpoint sources, cropland runoff (26 percent) is the single largest source followed by atmospheric deposition (13 percent) and streambank erosion (11 percent).
- c) For point sources, human waste (34 percent) accounts for the single largest contribution, although the combination of the amount of phosphorus from commercial and industrial stand-alone facilities and commercial and industrial discharges treated at POTWs equals 38 percent of all point source phosphorus discharged.
- d) As the water flow in rivers increases, the percentage contribution of phosphorus from point sources decreases and nonpoint source increases. Streambank erosion is the source most impacted under high flow conditions and ranges from 62,300 kg/yr. at low flow to 3,605,900 kg/yr. at high flow conditions.
- e) For non-ingested phosphorus entering POTWs, commercial and industrial process water is the largest source (46 percent), residential ADWD phosphorus is 12.6 percent and commercial ADWD phosphorus is 5.9 percent.
- f) The bioavailability of phosphorus was highly variable for some sources and fairly consistent for others. Bioavailability of ADWD phosphorus was 100 percent, while POTW effluent was 86 percent and cropland runoff was 58 percent.
- g) Minor sources of phosphorus at the basin scale may be significant sources at the local level.
- 4. What is the best way to assist local units of government in removing phosphorus at public wastewater treatment plants?

The Barr report provides a review of select facilities with phosphorus removal. Treatment type, removal efficiencies and influent reduction activities are generally considered. Two Portland, Oregon facilities are noted as achieving effluent phosphorus concentrations of 0.07 mg/L. These are some of the lowest effluent concentrations in the United States. Generally, phosphorus effluent limitations are 1.0 mg/L in Minnesota, with two facilities having effluent limitations of 0.3 mg/L.

In addition, Minn. Laws Ch. 128, Art. 1, Sec. 9, Subd. 7e appropriated \$296,000 to the MPCA in cooperation with the Minnesota Environmental Science and Economic Review Board (MESERB), to conduct an independent examination of selected wastewater treatment facilities by nationally recognized experts in phosphorus removal. These experts will prepare a report on influent reduction strategies and on effective phosphorus removal technologies and disseminate this information. MESERB will use the findings from data review and facility examinations to develop recommendations on low-cost, high-benefit strategies that will be most effective for facilities of various sizes and types, in various regions of the state. This information will be compiled into a report, designed to assist wastewater operators in identifying and implementing

effective phosphorus removal techniques. The project is scheduled for completion June 30, 2005. At that time, MESERB and MPCA should have valuable information to report to the Legislature on this question.

5. What are the results of the Agency's review of rules on nutrients in cleaning agents under Minn. Stat. § § 116.23 and 116.24?

The MPCA has the authority to adopt rules limiting the amount of nutrients in cleaning agents and water conditioners. Sufficient technical information and resources would be necessary to revise or promulgate rules. In Minn. Stat. § § 116.23 and 116.24, the Legislature found that nutrients contained in many cleaning agents and water conditioning agents served a valuable purpose in increasing their overall effectiveness, but the Legislature also found that they can lead to an acceleration of the natural eutrophication process of our state waters. The Legislature listed three factors that should be considered when rules imposing nutrient limitations were developed in accordance with Minn. Stat. § § 116.23 and 116.24:

a. The availability of safe, nonpolluting and effective substitutes.

1. Com

- b. The differences in the mineral content of water in various parts of the state.
- c. The differing needs of industrial, commercial and household users of cleaning agents and chemical water conditioners.

Minn. R. 7100.015 through 7100.024 relate to the limitation of phosphorus in cleaning agents and water conditioners. No new nutrient rules or modifications of the original rules have been adopted since the mid-1970s. The MPCA has no plans to conduct rulemaking to remove phosphorus from additional cleaning agents and water conditioners without a legislative public policy decision and further legislative direction.

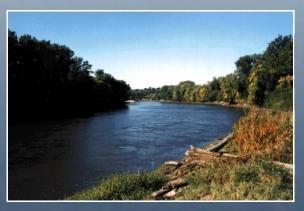
If you have any questions regarding this report, please contact Nelson French, of my staff at (651) 296-7352.

Sincerely.

Sheryl A. Corrigan Commissioner

SAC:cmbg

Enclosure


Detailed Assessment

of

Phosphorus Sources to Minnesota Watersheds

Volume 1: Executive Summary and Report

Prepared by Barr Engineering Company
February 2004

Detailed Assessment of Phosphorus Sources to Minnesota Watersheds

Under TMDL Master Contract

Prepared for

Minnesota Pollution Control Agency

Submitted by

Barr Engineering Company

February 2004

Project Funding/Costs

Funding for this project was recommended by the Legislative Commission on Minnesota Resources (LCMR) from the Environmental Trust Fund. The total cost of this report was \$400,700, of which \$244,000 was provided by the Environmental Trust Fund.

Acknowledgements

The Detailed Assessment of Phosphorus Sources to Minnesota Watersheds was prepared by Barr Engineering Company, with its partners Limno-Tech, Inc., Dr. David Mulla, and Dr. Prasanna Gowda, under the Total Maximum Daily Load (TMDL) Master Contract for the Minnesota Pollution Control Agency. This project was made possible by funding from the Minnesota State Legislature. Barr Engineering received valuable comments and suggestions from Minnesota Pollution Control Agency staff and the stakeholder organizations listed below.

Minnesota Pollution Control Agency

Project Manager: Marvin Hora

Project Contact/Reviewer: Douglas Hall Technical Coordinator: Mark Tomasek Contract Administration: Hafiz Munir

Contributors: Jim Klang, Dave Wall, Greg Pratt, Ed Swain, Bill Priebe, Joe Magner, Mark

Westpetal, Bruce Wilson, Wayne Anderson, Greg Johnson, Ron Jacobson, Tim Larson, Randy Dunnette, Don Kriens, Gene Soderbeck, Scott Knowles, Jim Strudell, Deb Schumann, Reid Gagle, Joan deMeurisse, Linda Nelson, Carol Sinden, Dennis Wasley, Paul Trapp, Joe Schimmel, George Schwint, Rick Strassman, Keith

Wasley, Paul Trapp, Joe Schimmel, George Schwint, Rick Strassman, Keith Cherryholmes, Gretchen Sabel, Wendy Turri, Brian Gove, Lou Flynn, Steve

Heiskary, Bruce Monson, Howard Markus, Beth Endersbe, Sandy Bissonnette, Nancy

Ellefson, Jan Eckart, Andrea Ebner, Jennifer Holstad, Pat Baskfield

Minnesota Environmental Partnership

Soap and Detergent Association

Metropolitan Council Environmental Services

Minnesota Department of Agriculture

Minnesota Department of Natural Resources

St. Croix Watershed Research Station of the Science Museum of Minnesota

Minnesota State Climatology

Minnesota Department of Transportation

Minnesota Department of Health

Board of Water and Soil Resources

Minnesota Environmental Science and Economic Review Board

Barr Engineering Team

Project Principal: Henry M. (Hal) Runke, Ph.D.

Project Manager: Greg Wilson, P.E.

Technical Writers: Barr Engineering Company—Teresa Perry, Nick Nelson, Jeff Lee, Tim

Anderson, Cliff Twaroski, Pat Hirl, Jamie Bankston, Ron Reding, Keith Pilgrim, Greg Wilson; Limno-Tech, Inc.—Hans Holmberg, Joe DePinto, Jagjit Kaur, Dave Dilks; University of Minnesota, Department of Soil, Water, and Climate—

David Mulla, Prasanna Gowda

Data Collection/Analysis: Dan Nesler, Scott Sobiech, Sheryl Filby, Christy Hendrikson, Janna

Kieffer, Mary Finch, Dave Melmer, Michael Perry

Project Administration: Charles Hathaway, Ruth Lovsted

Design, Editing, Report Production: Yvonne Huffman, Karen Kaul, Suzanne Johnson, Anita

Dickson, Tanya Roberts

Detailed Assessment of Phosphorus Sources to Minnesota Watersheds

Volume I—Table of Contents

Ack	cnowled	gements	i
Exe		Summary	
		ground—The Problem with Phosphorus	
	Purpo	se of Assessment	
		Methods Used	vi
	Categ	ories of Findings	viii
		Phosphorus Source Category Loadings Statewide	viii
		Phosphorus Source Category Loadings by Major Basin	x
		Statewide Phosphorus Source Category Loadings by Flow Condition	xiii
		Low Flow Conditions	xiii
		Average Flow Conditions	xvii
		High Flow Conditions	xvii
		Major Basin Phosphorus Source Category Loadings by Flow Condition	xvii
	Conc	epts for Lowering Phosphorus Export from Point Sources	xxi
		Lowering Phosphorus Loading Discharged to POTWs	xxi
		Overall Recommendation for Lowering Phosphorus Loads to POTWs	xxiii
		Lowering Phosphorus Loads to Surface Waters	xxiv
		Current Effluent Phosphorus Reduction Efforts by Wastewater Treatment Plants	xxv
	Conc	epts for Lowering Phosphorus Export from Nonpoint Sources	xxvii
		Agricultural Runoff	xxvii
		Atmospheric Deposition	xxviii
		Deicers	xxviii
		Streambank Erosion	xxviii
		ISTS/Unsewered Communities	xxix
		Non-Agricultural Rural Runoff	xxix
		Urban Runoff	
	Relat	ive Phosphorus Source Loading Uncertainty/Recommended Refinements	
		all Conclusions	
1.0		action	
1.0	1.1	Background	
	1.2	Legislative Mandate to Conduct this Study	
	1.3	Organization of this Report	
	1.4	Frame of Reference for Quantifying Phosphorus Source Contributions to Surface Waters	
		1.4.1 Surface Waters Defined	
		1.4.2 Context for Quantifying Phosphorus Source Contributions	
2.0	Math -	ds	
∠ . U	2.1	as	
		2.1.1 Minnesota Basins	

		2.1.2	Calculati	on of Basin I	Runoff Volumes	8
			2.1.2.1	River Discl	narge Data	10
			2.1.2.2	Precipitation	n Data	10
			2.1.2.3	Runoff Fre	quency Curves	11
			2.1.2.4	Precipitation	n Frequency Curves	12
			2.1.2.5	Runoff Ma	ps	12
	2.2	Phosph	orus Sourc	es to POTWs	s and Minnesota Surface Waters	12
		2.2.1	Point Sou	urces of Phos	phorus	13
			2.2.1.1	Data Sourc	es for Wastewater Treatment Facilities	14
			2.2.1.2	Approach f	or Determining Phosphorus Discharged to POTWs	17
			2.2.1.3	Approach f	or Determining Phosphorus Loading to Surface Waters	21
		2.2.2	Nonpoint	t Sources of I	Phosphorus	23
			2.2.2.1	Agricultura	l Runoff	24
				2.2.2.1.1	Cropland and Pasture	24
				2.2.2.1.2	Feedlot Runoff	36
			2.2.2.2	Atmospher	ic Deposition	37
				2.2.2.2.1	Dry Deposition	38
				2.2.2.2.2	Wet Deposition	41
			2.2.2.3	Deicing Ag	ents	42
			2.2.2.4	Streambanl	c Erosion	45
			2.2.2.5	Individual	Sewage Treatment Systems/Unsewered Communities	47
			2.2.2.6	Non-Agric	ultural Rural Runoff	51
			2.2.2.7	Urban Run	off	57
		2.2.3	Bioavaila	ability of Pho	sphorus by Source	61
			2.2.3.1	Forms of P	hosphorus in the Aquatic Environment	62
			2.2.3.2	Bioavailab	e Phosphorus in POTW Effluent	63
			2.2.3.3	Bioavailab	e Phosphorus in Runoff	65
			2.2.3.4	Bioavailab	e Phosphorus in Agricultural Runoff	66
			2.2.3.5	Bioavailab	e Phosphorus in Atmospheric Deposition	68
			2.2.3.6	Compariso	n of Phosphorus Bioavailability from Different Sources	69
			2.2.3.7	Summary of	f Literature Review	70
		2.2.4	Assessme	ent of Effluer	nt Total Phosphorus Reduction Efforts by POTWs	74
3.0	Result	s and Dis	cussion			76
	3.1					
		3.1.1	Frequenc	cy Curves		76
		3.1.2	Runoff M	/Iaps		76
	3.2	Estimat	ed Basin T	Total Phospho	orus Amounts Contributed to POTWs and Surface Waters (by	Source) .81
		3.2.1	Point Sou	urces		81
			3.2.1.1	Sources and	d Amounts of Phosphorus Discharged to POTWs	81
			3.2.1.2		s Loading to Surface Waters	
		3.2.2				
			3.2.2.1		nd Pasture Runoff	
			3.2.2.2	-	noff	
		3.2.3			on	

	3.2.4	Deicing	Agents	107
	3.2.5	Streamba	ank Erosion	108
	3.2.6	Individua	al Sewage Treatment Systems/Unsewered Communities	110
	3.2.7	Non-Agr	ricultural Rural Runoff	113
	3.2.8	Urban R	unoff	115
3.3	Summa	ary of Phos	sphorus Loadings by Basin	117
	3.3.1	•	rus Loadings by Source Category	
	3.3.2		rus Source Category Loadings by Flow Condition	
3.4		orus Sourc	ces and Estimated Amounts Contributed to Surface Waters (by Basin, Total and	
	3.4.1	Statewid	e Inventory	125
		3.4.1.1	Dry Conditions (Low Flow)	125
		3.4.1.2	Average Condition	128
		3.4.1.3	Wet Condition (High Flow)	131
	3.4.2	St. Croix	River Basin	134
		3.4.2.1	Dry Conditions (Low Flow)	134
		3.4.2.2	Average Condition	137
		3.4.2.3	Wet Condition (High Flow)	137
	3.4.3	Upper M	Iississippi River Basin	141
		3.4.3.1	Dry Conditions (Low Flow)	141
		3.4.3.2	Average Condition	145
		3.4.3.3	Wet Condition (High Flow)	148
	3.4.4	Lower M	Iississippi River Basin	151
		3.4.4.1	Dry Conditions (Low Flow)	151
		3.4.4.2	Average Condition	151
		3.4.4.3	Wet Condition (High Flow)	155
	3.4.5	Red Rive	er Basin	159
		3.4.5.1	Dry Conditions (Low Flow)	159
		3.4.5.2	Average Condition	159
		3.4.5.3	Wet Condition (High Flow)	
	3.4.6	Rainy Ri	iver Basin	167
		3.4.6.1	Dry Conditions (Low Flow)	167
		3.4.6.2	Average Condition	167
		3.4.6.3	Wet Condition (High Flow)	171
	3.4.7	Lake Sup	perior Basin	175
		3.4.7.1	Dry Conditions (Low Flow)	175
		3.4.7.2	Average Condition	175
		3.4.7.3	Wet Condition (High Flow)	179
	3.4.8	Missouri	River Basin	183
		3.4.8.1	Dry Conditions (Low Flow)	183
		3.4.8.2	Average Condition	183
		3.4.8.3	Wet Condition (High Flow)	187
	349	Minneso	ta River Basin	191

	3.4.9.1 Dry Conditions (Low Flow)	191
	3.4.9.2 Average Condition	191
	3.4.9.3 Wet Condition (High Flow)	195
3.4.10	Cedar River Basin	199
	3.4.10.1 Dry Conditions (Low Flow)	199
	3.4.10.2 Average Condition	199
	3.4.10.3 Wet Condition (High Flow)	203
3.4.11	Des Moines River Basin	207
	3.4.11.1 Dry Conditions (Low Flow)	207
	3.4.11.2 Average Condition	207
	3.4.11.3 Wet Condition (High Flow)	
Effluen	tt Total Phosphorus Reduction Efforts by Wastewater Treatment Plants	217
nmendati	ons	224
Recom	mendations for Lowering Phosphorus and Associated Water Quality Benefits	224
4.1.1	Point Sources	224
	4.1.1.1 Phosphorus Loading to POTWs	224
	4.1.1.2 Phosphorus Loading to Surface Waters	227
4.1.2	Cropland and Pasture Runoff	227
4.1.3	Atmospheric Deposition	229
4.1.4	Deicing Agents	229
4.1.5	Streambank Erosion	229
4.1.6	Individual Sewage Treatment Systems/Unsewered Communities	230
4.1.7	Non-Agricultural Rural Runoff	231
4.1.8	Urban Runoff	231
Recom	mendations for Reducing Uncertainty and Error Terms in Future Refinements	232
4.2.1	Point Sources	233
4.2.2	Agricultural Runoff	236
	4.2.2.1 Cropland and Pasture Runoff	236
	4.2.2.2 Feedlot Runoff	238
4.2.3	Atmospheric Deposition	241
4.2.4	Deicing Agents	241
4.2.5	Streambank Erosion	242
4.2.6	Individual Sewage Treatment Systems/Unsewered Communities	244
4.2.7	Non-Agricultural Rural Runoff	
4.2.8	Urban Runoff	
Conciu		251
	3.4.11 Compa and Up Effluer mendati Recom 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8 Recom 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8	3.4.9.2 Average Condition

List of Tables

List of Figures I Major Basins and Surface Waters	
Reduction Potential for Phosphorus Loads to POTW	226
Wastewater Treatment Plant Phosphorus Removal Summary	
State, by Flow Condition	124
Summary of Estimated Total Phosphorus Yield (kg/km²/yr) from Streambank Erosion for Flow Conditions	
Summary of Total Phosphorus Loading Estimates (kg/yr) for Streambank Erosion	109
Major Basin and Statewide Total Phosphorus Loadings from Deicers for Each Snowfall	Scenario107
Estimated Total Phosphorus Deposition to Minnesota Basins	106
Estimated Annual Phosphorus Loadings for Outdoor Open Lot Feedlot Runoff to Surface	e Waters104
Phosphorus Loadings (kg/yr) to Minnesota Surface Waters from Agricultural Cropland b Drainage Basin Based on an Analysis of Phosphorus Index Values in Major Watersheds	
Phosphorus Removal in POTWs and Privately Owned Treatment Facilities	
Total Point Source Phosphorus Loads to Surface Waters for Each Basin and the State	
Non-Ingested Phosphorus Loadings to POTWs	88
Total Phosphorus Load Discharged to POTWs	
Basinwide Runoff and Precipitation	80
Estimates of Bioavailable Phosphorus Fractions for Specific Source Categories	72
Proportion of Bioavailable Phosphorus in Total Phosphorus by Different sources	70
Lakes	
Estimated Bioavailable Phosphorus (BAP) Fractions of Samples Collected from the Fina	
Basin Characteristics	10
Minnesota River Point and Nonpoint Source Load Contributions at Various Flow Durati Intervals	
State, by Flow Condition	XX
• •	
	Reduction Potential for Phosphorus Loads to POTW

Figure EX-3	Total Phosphorus Loads to Major Basin Surface Water for Average Flow Conditionsix
Figure EX-4	aTotal Phosphorus Loads to Minnesota Surface Waters by Major Basin for Average Flow Conditionsxi
Figure EX-4	bWatershed Total Phosphorus Yields to Minnesota Surface Waters by Major Basin for Average Flow Conditionsxii
Figure EX-5	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Statewide: Dry-Low Flow Water Yearxv
Figure EX-6	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Statewide: Dry-Low Flow Water Yearxvi
Figure EX-7	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Statewide: Average Flow Water Yearxviii
Figure EX-8	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Statewide: Wet, High Flow Water Yearxix
Figure 1-1	Schematic for Phosphorus Source Contributions to Surface Waters
Figure 1-2	Major basins w/NLCD surface waters
Figure 2-1	Major Basins with USGS Flow Gaging Stations
Figure 3-1	Annual Runoff, Low Flow Conditions
Figure 3-2	Annual Runoff, Average Flow Conditions
Figure 3-3	Annual Runoff, High Flow Conditions
Figure 3-4A	Average Influent Phosphorus Loading to POTWs & Privately Owned Treatment Facilities by Basin; less than 250,000 kg/yr
Figure 3-4B	Average Influent Phosphorus Loading to POTWs & Privately Owned Treatment Facilities by Basin; greater than 250,000 kg/yr
Figure 3-5	Cropland and pasture runoff P export coefficients (kg/ha) for major drainage basins in dry, average, and wet climatic years
Figure 3-6	Cropland and pasture runoff phosphorus loads (kg/yr) exported to surface waters in major drainage basins of Minnesota under dry, average and wet climatic conditions
Figure 3-7	Total Phosphorus Loads to Major Basin Surface Water for Average Flow Conditions
Figure 3-8a	Total Phosphorus Loads to Major Basin Surface Waters for Average Flow Conditions
Figure 3-8b	Total Phosphorus Loads to Major Basin (Except Upper Mississippi River) Surface Waters for Average Flow Conditions
Figure 3-9	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Statewide: Dry, Low Flow Water Year
Figure 3-10	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Statewide: Dry, Low Flow Water Year
Figure 3-11	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Statewide: Average Flow Water Year
Figure 3-12	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Statewide: Average Flow Water Year
Figure 3-13	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Statewide: Wet, High Flow Water Year
Figure 3-14	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Statewide: Wet, High Flow Water Year
Figure 3-15	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—St. Croix River Basin: Dry, Low Flow Water Year
Figure 3-16	Estimated Bioavailable P Contributions to Minnesota Surface Waters—St. Croix River Basin: Dry, Low Flow Water Year
Figure 3-17	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—St. Croix River Basin:

Figure 3-18	Estimated Bioavailable P Contributions to Minnesota Surface Waters—St. Croix River Basin: Average Flow Water Year
Figure 3-19	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—St. Croix River Basin: Wet, High Flow Water Year
Figure 3-20	Estimated Bioavailable P Contributions to Minnesota Surface Waters—St. Croix River Basin: Wet, High Flow Water Year
Figure 3-21	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Upper Mississippi River Basin: Dry, Low Flow Water Year
Figure 3-22	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Upper Mississippi River Basin: Dry, Low Flow Water Year
Figure 3-23	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Upper Mississippi River Basin: Average Flow Water Year
Figure 3-24	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Upper Mississippi River Basin: Average Flow Water Year
Figure 3-25	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Upper Mississippi River Basin: Wet, High Flow Water Year
Figure 3-26	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Upper Mississippi River Basin: Wet, High Flow Water Year
Figure 3-27	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Lower Mississippi River Basin: Dry, Low Flow Water Year
Figure 3-28	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Lower Mississippi River Basin: Dry, Low Flow Water Year
Figure 3-29	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Lower Mississippi River Basin: Average Flow Water Year
Figure 3-30	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Lower Mississippi River Basin: Average Flow Water Year
Figure 3-31	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Lower Mississippi River Basin: Wet, High Flow Water Year
Figure 3-32	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Lower Mississippi River Basin: Wet, High Flow Water Year
Figure 3-33	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Red River Basin: Dry, Low Flow Water Year
Figure 3-34	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Red River Basin: Dry, Low Flow Water Year
Figure 3-35	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Red River Basin: Average Flow Water Year
Figure 3-36	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Red River Basin: Average Flow Water Year
Figure 3-37	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Red River Basin: Wet, High Flow Water Year
Figure 3-38	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Red River Basin: Wet, High Flow Water Year
Figure 3-39	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Rainy River Basin: Dry, Low Flow Water Year
Figure 3-40	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Rainy River Basin: Dry, Low Flow Water Year
Figure 3-41	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Rainy River Basin: Average Flow Water Year
Figure 3-42	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Rainy River Basin: Average Flow Water Year

Figure 3-43	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Rainy River Basin: Wet, High Flow Water Year
Figure 3-44	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Rainy River Basin: Wet, High Flow Water Year
Figure 3-45	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Lake Superior Basin: Dry, Low Flow Water Year
Figure 3-46	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Lake Superior Basin: Dry, Low Flow Water Year
Figure 3-47	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Lake Superior Basin: Average Flow Water Year
Figure 3-48	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Lake Superior Basin: Average Flow Water Year
Figure 3-49	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Lake Superior Basin: Wet, High Flow Water Year
Figure 3-50	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Lake Superior Basin: Wet, High Flow Water Year
Figure 3-51	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Missouri River Basin: Dry, Low Flow Water Year
Figure 3-52	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Missouri River Basin: Dry, Low Flow Water Year
Figure 3-53	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Missouri River Basin: Average Flow Water Year
Figure 3-54	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Missouri River Basin: Average Flow Water Year
Figure 3-55	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Missouri River Basin: Wet, High Flow Water Year
Figure 3-56	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Missouri River Basin: Wet, High Flow Water Year
Figure 3-57	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Minnesota River Basin: Dry, Low Flow Water Year
Figure 3-58	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Minnesota River Basin: Dry, Low Flow Water Year
Figure 3-59	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Minnesota River Basin: Average Flow Water Year
Figure 3-60	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Minnesota River Basin: Average Flow Water Year
Figure 3-61	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Minnesota River Basin: Wet, High Flow Water Year
Figure 3-62	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Minnesota River Basin: Wet, High Flow Water Year
Figure 3-63	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Cedar River Basin: Dry, Low Flow Water Year
Figure 3-64	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Cedar River Basin: Dry, Low Flow Water Year
Figure 3-65	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Cedar River Basin: Average Flow Water Year
Figure 3-66	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Cedar River Basin: Average Flow Water Year
Figure 3-67	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Cedar River Basin: Wet, High Flow Water Year

Figure 3-68	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Cedar River Basin: Wet, High Flow Water Year
Figure 3-69	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Des Moines River Basin: Dry, Low Flow Water Year
Figure 3-70	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Des Moines River Basin: Dry, Low Flow Water Year
Figure 3-71	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Des Moines River Basin: Average Flow Water Year
Figure 3-72	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Des Moines River Basin: Average Flow Water Year
Figure 3-73	Estimated Total Phosphorus Contributions to Minnesota Surface Waters—Des Moines River Basin: Wet, High Flow Water Year
Figure 3-74	Estimated Bioavailable P Contributions to Minnesota Surface Waters—Des Moines River Basin: Wet, High Flow Water Year

Volume II—List of Appendices

Appendix A	Basin Hydrology Technical Memorandum
Appendix B	Point Sources Technical Memorandum
Appendix C	Cropland and Pasture Runoff Technical Paper
Appendix D	Feedlot Runoff Technical Memorandum
Appendix E	Atmospheric Deposition Technical Memorandum
Appendix F	Deicing Agents Technical Memorandum
Appendix G	Streambank Erosion Technical Memorandum
Appendix H	Individual Sewage Treatment Systems (ISTS)/Unsewered Communities Technical Memorandum
Appendix I	Non-Agricultural Rural Runoff Technical Memorandum
Appendix J	Urban Runoff Technical Memorandum
Appendix K	Bioavailable Phosphorus Technical Memorandum
Appendix L	Effluent Total Phosphorus Reduction Efforts by WWTPs Technical Memorandum

Background—The Problem with Phosphorus

Concerns about the phosphorus content of automatic dishwashing detergents, from the Minnesota State Legislature and other interested stakeholders, resulted in legislation requiring a study of all of the sources and amounts of phosphorus entering publicly-owned treatment works (POTWs) and Minnesota surface waters.

Phosphorus is the nutrient primarily responsible for the eutrophication (nutrient enrichment of waterbodies) of Minnesota's surface waters. An overabundance of phosphorus—specifically usable (bioavailable) phosphorus—results in excessive algal production in Minnesota waters. Phosphorus from point sources may be more bioavailable, impacting surface water quality more than a similar amount of nonpoint source phosphorus that enters the same surface water. Phosphorus contributions to Minnesota surface waters by point and nonpoint sources are known to vary, both geographically and over time, in response to annual variations in weather and climate. Nonpoint sources of phosphorus tend to comprise a larger fraction of the aggregate phosphorus load to Minnesota surface waters during relatively wet periods, while point sources become increasingly important during dry conditions.

Purpose of Assessment

This Detailed Assessment of Phosphorus Sources to Minnesota Watersheds was conducted to provide the Minnesota Pollution Control Agency (MPCA) with the information necessary to comply with newly enacted legislation surrounding phosphorus sources. The assessment inventories the following:

1. Sources and amounts of phosphorus entering three different sizes and categories of publicly-owned treatment works (POTWs; i.e., wastewater treatment plants).

Sizes: (average daily flow rate)

- Less than 0.2 million gallons per day (mgd)
- 0.2 to 1.0 mgd
- Greater than 1.0 mgd

Categories:

- Primarily domestic
- Domestic with some commercial/industrial
- Predominately commercial/industrial

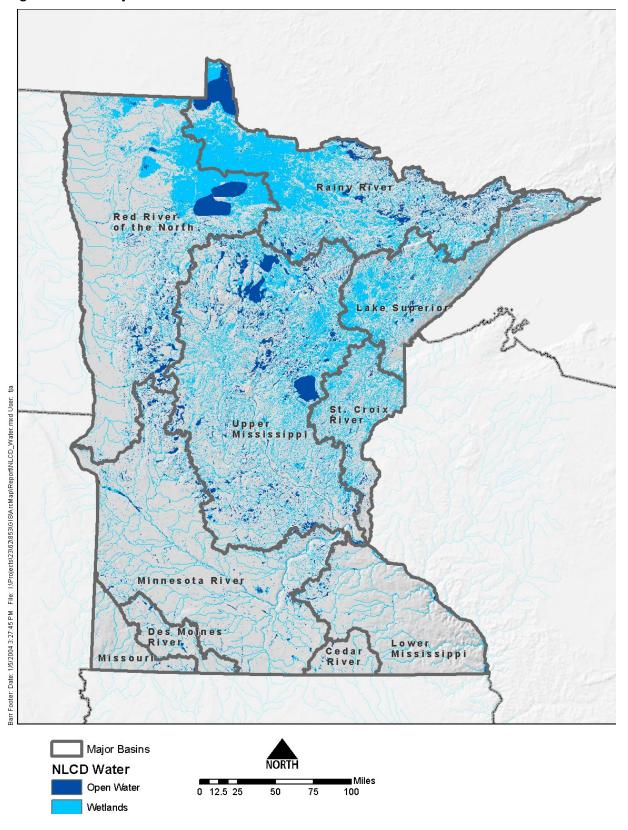
Sources: (individual and/or categorical)

- Automatic dishwasher detergents (ADWD)
- Other household cleaners or household non-ingested sources
- Commercial/industrial, including:
 - Process wastewater

- Noncontact cooling water
- Other additives
- Water supply, including water treatment chemicals
- Human waste products (ingested sources)
- Groundwater intrusion to sanitary sewers

Information developed in this portion of the phosphorus inventory is intended to assist the MPCA in complying with MN Laws 2003, Chap. 128 Art. 1, Sec. 122:

The state goal for reducing phosphorus for non-ingested sources entering municipal wastewater treatment systems is at least 50 percent reduction based on the timeline for reduction developed by the commissioner under section 166, and a reasonable estimate of the amount of phosphorus from non-ingested sources entering municipal wastewater treatment system in calendar year 2003.


2. Sources and amounts of phosphorus entering Minnesota surface waters for each of the ten major basins (see Figure EX-1) and for the entire state of Minnesota from point- and nonpoint-sources during low (dry), average, and high (wet) flow conditions; and the effect of various phosphorus source reduction options on water quality.

Information developed in this portion of the phosphorus inventory is intended to assist the MPCA in complying with MN Laws 2003, Chap. 128, Art. 1, Sec. 166:

The commissioner of the pollution control agency must study the concept of lowering phosphorus in the wastewater stream and the effect on water quality in the receiving waters and how to best assist local units of government in removing phosphorus at public wastewater treatment plants, including the establishment of a timeline for meeting the goal in Minnesota Statutes, section 115.42.

Estimating the phosphorus source contributions to Minnesota surface waters for each of the ten major basins required a clear definition of surface waters, as well as knowledge about the amount of phosphorus produced and the mechanisms of delivery for each point and nonpoint source category, to establish a "frame of reference," or a basis for comparison by source category and by basin. For the purposes of this analysis, Minnesota surface waters were defined by mapping all of the various types of water bodies contained in the Minnesota Department of Natural Resources 24K Stream Layer (all records, including ditches and intermittent streams) and all land cover types identified as wetlands or lakes in the U.S. Geological Survey (USGS) National Land Cover Database. Figure EX-1 shows the areas of all of the Minnesota surface waters, within each of the ten major basins.

Figure EX-1 Major Basins and Surface Waters

General Project Approach

This assessment estimates the annual phosphorus loading, or amounts of phosphorus (total and bioavailable), entering all of the various types of surface waters from each of the source categories under low (dry), average and high (wet) flow conditions. The general nature and scale of this analysis allows for summarizing the estimated loadings for each major basin, and on a statewide basis. The characteristics of smaller watershed units, or subwatersheds, were not utilized to estimate the

phosphorus loadings from each source category. Since each subwatershed typically drains to wetlands, lakes, ditches or streams that possess their own unique processes for transformation or phosphorus uptake, no further breakdown of phosphorus inflow or outflow loadings

...the phosphorus loadings discussed in this report represent the total amount of phosphorus entering all of the surface water areas that are present within each major basin for each flow condition.

by subwatershed or surface water type is possible within the scope of this analysis. As a result, the phosphorus loadings discussed in this report represent the total amount of phosphorus entering all of the surface water areas that are present within each major basin for each flow condition.

Because of the general nature of this analysis, it can be true that sources of phosphorus which are deemed minor at the basin scale, may actually contribute the majority of phosphorus to specific surface water bodies, at a localized scale. For example, point sources typically contribute little or no phosphorus to Twin Cities Metropolitan and most outstate lakes, but can represent a significant portion of the total phosphorus load to rivers under low flow conditions. Likewise, nonpoint source amounts or categories will vary at a localized scale. Because of this, there is still a need to complete individual assessments of specific watersheds to evaluate specific loading conditions. The phosphorus loading estimates from this assessment are only intended to quantify the phosphorus source contributions originating in Minnesota for Minnesota surface waters. No attempt has been made to estimate the phosphorus loadings to the St. Croix River basin that originate from Wisconsin, to the Minnesota River basin from South Dakota, to the Rainy River basin from Canada, or to the Red River basin from North Dakota.

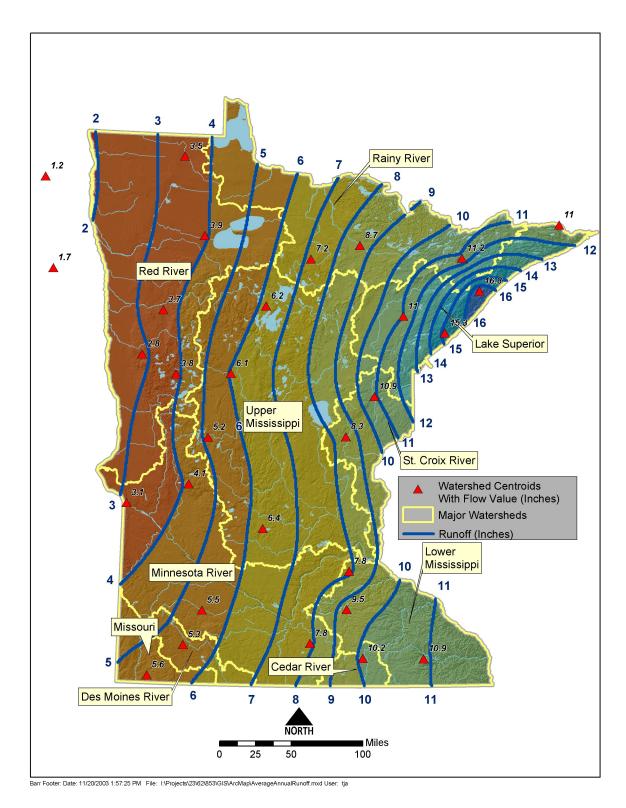
While the context for this analysis does not allow for direct assessments to be made about the observed water quality at the mouth of each major river basin, it does allow for a direct "apples-to-apples" comparison of the amounts of phosphorus originating from various source categories under various flow conditions. This analysis also facilitates comparison between each major basin so that

the relative magnitude of each source category can be compared throughout the state. The results of this assessment should be used to make broader policy and management planning decisions and are not intended to be used in the place of Total Maximum Daily Load (TMDL) studies or detailed

The results of this assessment should be used to make broader policy and management planning decisions and are not intended to be used in the place of TMDL studies or detailed assessments based on site-specific water quality monitoring and modeling data.

assessments based on site-specific water quality monitoring and modeling data. The results of this study should also be used to focus continuing monitoring efforts and prioritize additional water quality, biological and/or physical assessments.

Methods Used


In general, relatively simple methods were employed in this assessment to provide a

rapid means of evaluating the relative significance of different sources and identifying critical source areas with minimal effort and data requirements. Each portion of this assessment typically involved the following stepwise approach:

- 1. Obtain data on source and watershed characteristics (such as per capita use/land cover/land use/soils), conduct published literature review and obtain site-specific data, where available
- Use available site-specific data to develop and apply a basin-specific, regional, ecoregional
 or statewide phosphorus load estimation methodology that utilizes source and watershed
 characteristics
- 3. Use data from nearby study areas or other established empirical relationships applied to watershed characteristics
- 4. Apply best professional judgment when any data or published literature information are absent

This assessment began with an evaluation of the historical runoff and precipitation data for each basin in the state. This analysis resulted in runoff and precipitation datasets that defined what constituted low (dry), average, and high (wet) flow conditions in each of the ten major basins. The data, throughout the state, indicated that there is a general trend of decreasing runoff from east to west (see Figure EX-2). This is significant because nonpoint sources are strongly influenced by precipitation and runoff amounts.

Figure EX-2 Annual Runoff Volumes, Average Flow Conditions (Period of Record, 1979-2002)

The Lake Superior basin has the highest runoff rate in the state, with the Baptism River watershed having the highest values within that basin (an average annual runoff of 15.3 inches). The Red River basin had the least runoff, with the Buffalo River watershed experiencing only 2.8 inches of runoff in an average year. Decreasing runoff from east to west also occurs in southern Minnesota, but the trend is less dramatic than in the north. Increases in runoff are more dramatic moving south in the state, as flows approach high flow conditions. Statewide, the gradient in runoff volumes increases significantly from low to average flow, and from average to high flow, conditions.

Categories of Findings

This assessment resulted in a number of findings, broken down into the following categories:

- Phosphorus source category loadings statewide
- Phosphorus source category loadings by major basins
- Statewide phosphorus source category loadings by flow condition
- Major basin phosphorus source category loadings by flow condition

Phosphorus Source Category Loadings Statewide

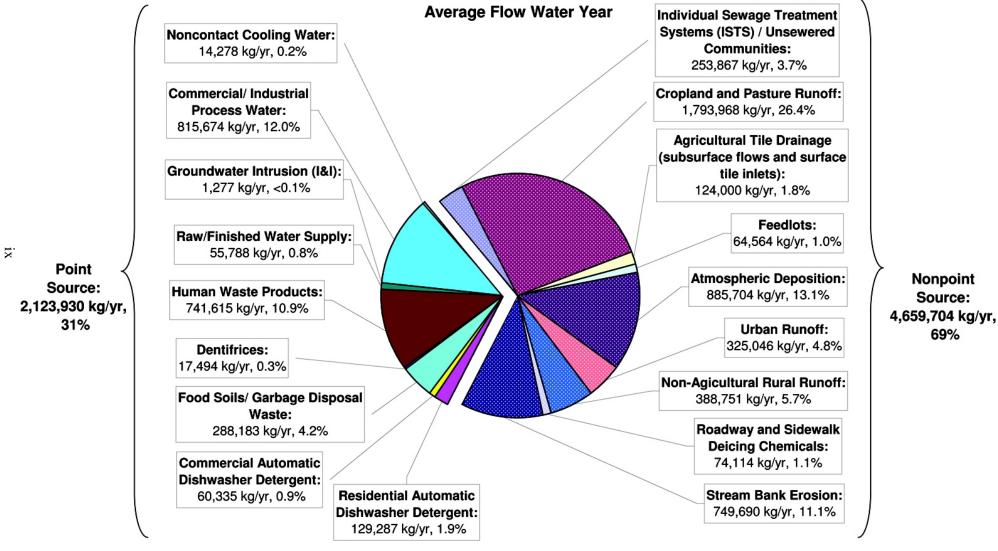

This assessment found that, <u>under average flow conditions</u>, the point source total phosphorus contribution represents 31 percent, while nonpoint sources of total phosphorus represent 69 percent of the loadings to surface waters, statewide (see Figure EX-3). The point source phosphorus loadings to surface waters are broken down in proportion to the influent phosphorus loadings (inflows) to wastewater treatment plants (WWTPs) in the state from each wastewater source category. This assumes that the proportion of the phosphorus load from each source category in the wastewater influent remains the same in the wastewater effluent (or treated discharge) from each treatment facility.

Figure EX-3 shows for average flow conditions the major phosphorus sources to surface waters are as follows:

- cropland and pasture runoff (26%)
- atmospheric deposition (13%)
- commercial/industrial process water (12%)

It should be noted that the Metropolitan Council **Environmental Services** (MCES) Metro WWTP which discharges to the Upper Mississippi River basin—was required to implement phosphorus removal to 1 mg/L from 2.97 mg/L (average phosphorus effluent concentration) by the end of 2005, but is already achieving the 1 mg/L limit. A reduction in the phosphorus concentration to 1 mg/L will result in a reduction of an estimated 581,000 kg of phosphorus per year, shifting the point source contribution to approximately 25 percent and raising the nonpoint source contribution to 75 percent of the total load statewide.

Figure EX-3
Estimated Total Phosphorus Contributions to Minnesota Surface Waters
Statewide

- streambank erosion (11%)
- human waste products (11%)

All of the remaining source category contributions are below 6 percent. The combination of residential and commercial automatic dishwasher detergent (ADWD) represents approximately 3 percent of the total phosphorus contributions to surface waters in the state, during an average year.

Phosphorus Source Category Loadings by Major Basin

This assessment found that, <u>under average flow conditions</u>, the relative magnitude of the total phosphorus loadings from the sum of all source categories in the Upper Mississippi River basin is significantly higher than the remaining basins, with the second highest phosphorus loadings occurring in the Minnesota River basin (see Figure EX-4a). The Lower Mississippi and Red River basin total phosphorus loadings are approximately one-third less than the Minnesota River basin loadings.

Figure EX-4a illustrates the relative magnitudes of each of the phosphorus source category loadings estimated for each basin under average flow conditions, while Figure EX-4b shows the same information normalized to the basin area, as another way to compare the phosphorus loadings from basin to basin. Figures EX-4a and EX-4b show that, relative to the other phosphorus source categories in each basin, agricultural runoff is a significant source of phosphorus in all but the Lake Superior and Rainy River basins. Human waste products are a significant source of phosphorus in the Upper Mississippi River basin, along with commercial/industrial process water and food soils.

It should be noted that the data used for this study to assess point source loadings is from the years 2001, 2002 and the first half of 2003. Since that time period, phosphorus removal was implemented at the MCES' Metro WWTP (see blue sidebar on page viii). Because this one facility accounted for approximately 74 percent of the point source phosphorus load to the Upper Mississippi River basin and an estimated 40 percent statewide, continued phosphorus removal at this one facility will have a significant impact on the future relative phosphorus loads in this basin and the state.

Figures EX-4a and EX-4b also show that atmospheric deposition comprises significant percentages of the annual phosphorus loads as follows:

- Upper Mississippi River basin (11%)
- Red River basin (29%)

- St. Croix River basin (20%)
- Rainy River basin (34%)

Figure EX-4a Total Phosphorus Loads to Minnesota Surface Waters - By Major Drainage Basin: Average Flow Conditions

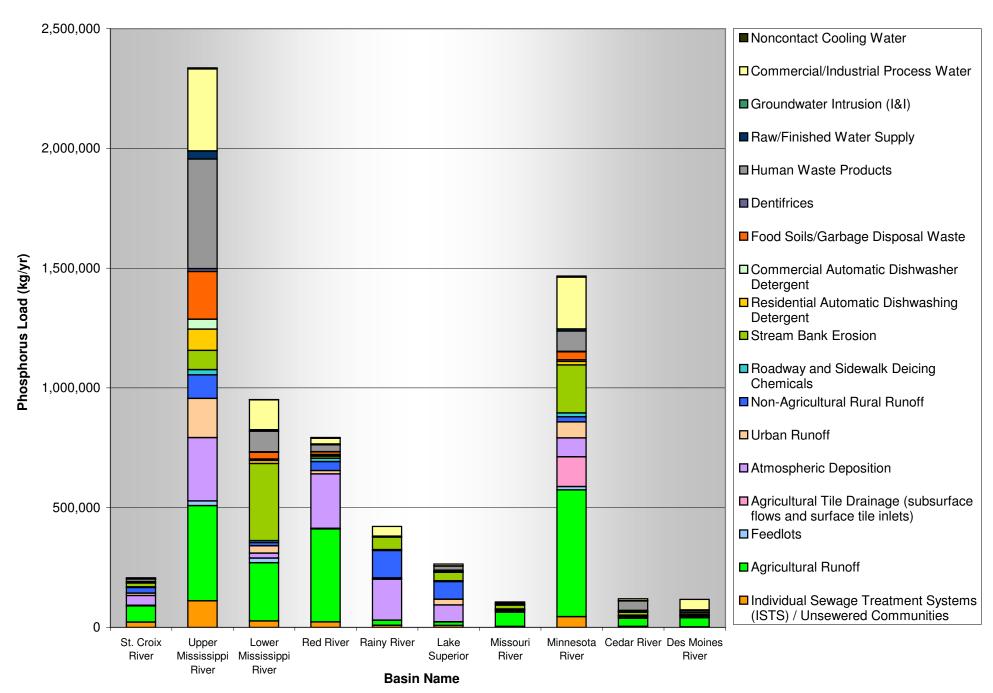
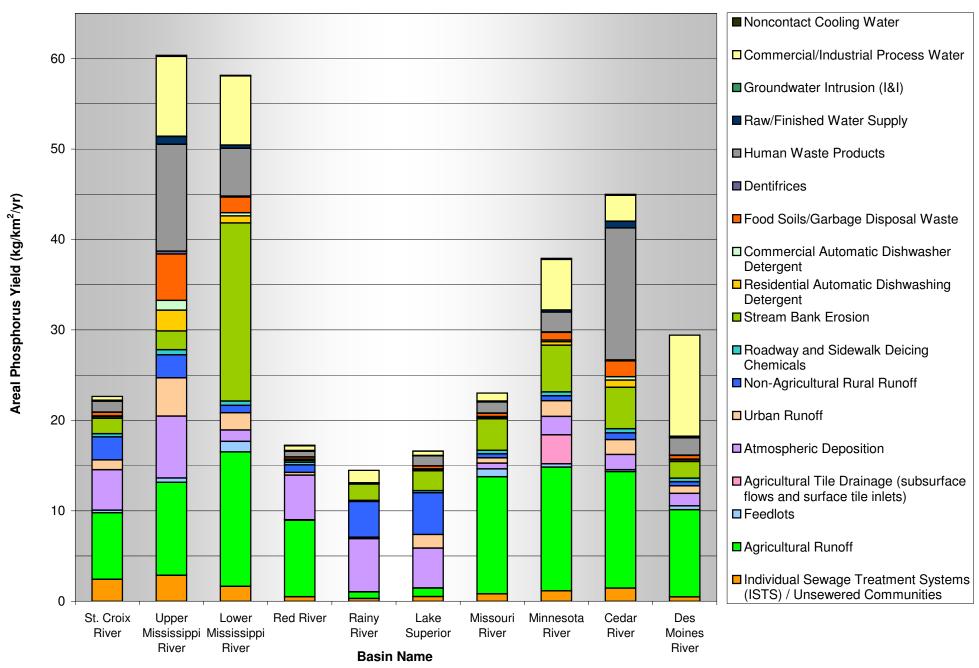



Figure EX-4b Watershed Total Phosphorus Yields to Minnesota Surface Waters - By Major Drainage Basin: Average Flow Conditions

This reflects the large amount of surface water and the relatively low amounts of other sources in these basins.

Streambank erosion is a significant source of phosphorus in the Lower Mississippi River basin (34%) and, to a lesser degree, in the Minnesota River basin (14%). Commercial/industrial process water is an important source of phosphorus in the Lower Mississippi (13%), Minnesota (15%), Des Moines (38%), and the Rainy River (10%) basins. Non-agricultural rural runoff sources of phosphorus are important in the Rainy River (27%) and Lake Superior (28%) basins. Finally, human waste products are a significant source of phosphorus in the Upper Mississippi (20%) and Cedar River (32%) basins.

Statewide Phosphorus Source Category Loadings by Flow Condition

Both total and bioavailable phosphorus source estimates vary significantly under each flow condition. This is the result of changes in the nonpoint source loading from different flow conditions. Point source loads remain constant for the three flow conditions. Total amount and relative source contributions are summarized in Table EX-1 and Figures EX-5 through EX-9.

Low Flow Conditions

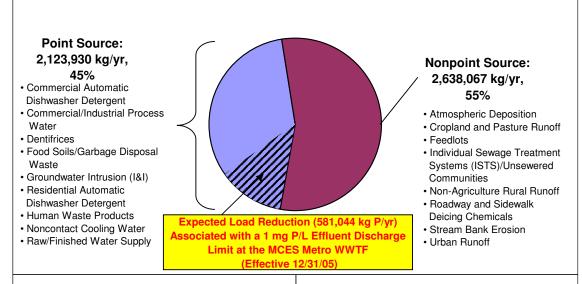
Under low flow conditions, the total point source phosphorus contribution represents 45 percent, while nonpoint sources of phosphorus represent 55 percent of the statewide loadings to surface waters. The expected load reduction of approximately 581,000 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTP would shift the point source contribution to approximately 37 percent of the total load and the nonpoint source contribution to 63 percent. The commercial/industrial process water represents 38 percent of the point source total phosphorus contributions, while human waste products represent 35 percent. The remaining point source categories contribute less than 14 percent of the statewide point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 9 percent of the point source total phosphorus contributions.

Cropland and pasture runoff represent 33 percent of the nonpoint source total phosphorus loadings, while atmospheric deposition represents 30 percent, with the remaining nonpoint source contributions below 11 percent.

Under low flow conditions, the bioavailable point source phosphorus contribution represents 57 percent of the statewide loadings to surface waters (see Figure EX-6). The expected load reduction of approximately 496,800 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTP would shift the point source contribution to approximately 50 percent of the total bioavailable phosphorus load. Commercial/industrial process water represents 40 percent of the point source bioavailable phosphorus contributions, while human waste products represent 35 percent. The

remaining point source categories contribute less than 12 percent of the statewide point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 10 percent of the point source bioavailable phosphorus contributions.

As shown in Figure EX-6, cropland and pasture runoff represents approximately 34 percent of the nonpoint source bioavailable phosphorus loadings; atmospheric deposition represents 19 percent; and Individual Sewage Treatment Systems (ISTS)/unsewered communities represent 17 percent, with the remaining nonpoint source contributions below 12 percent. Table EX-1 generally indicates that point sources of phosphorus are more bioavailable than nonpoint sources.


Table EX-1 Statewide phosphorus contributions of point and nonpoint sources by flow condition

		Flow Condition	1
	Low (Dry)	Average	High (Wet)
Total Phosphorus			
Point Source (kg/yr)	2,123,930 (45%)	2,123,930 (31%)	2,123,930 (19%)
Nonpoint Source (kg/yr)	2,638,067 (55%)	4,659,704 (69%)	8,932,735 (81%)
Total	4,761,997	6,783,634	11,056,665
Bioavailable Phosphorus			
Point Source (kg/yr)	1,975,757 (57%)	1,975,757 (44%)	1,975,757 (30%)
Nonpoint Source (kg/yr)	1,472,784 (43%)	2,559,026 (56%)	4,648,570 (70%)
Total	3,448,542	4,534,783	6,624,327

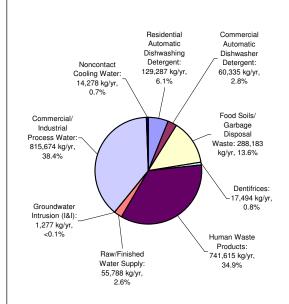

Looking more specifically at each source category in comparing Figures EX-5 and EX-6, on a proportional basis, indicates that ISTS/unsewered communities exhibits a significant increased contribution, while atmospheric deposition exhibits a significant decreased contribution, relative to the other sources for the bioavailable contribution of phosphorus. The relative shift for the remaining source categories is less than 2 percent in comparing the bioavailable and total phosphorus contributions.

Figure EX-5

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Statewide Dry, Low Flow Water Year

Point Source Total Phosphorus Contributions

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Total Phosphorus Contributions

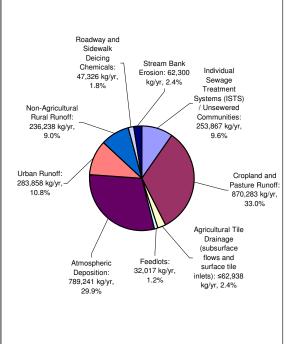
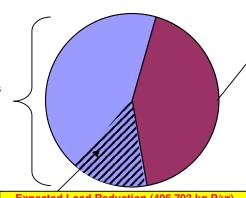
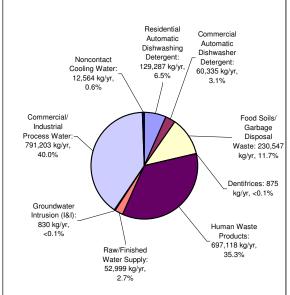



Figure EX-6

Estimated Bioavailable P Contributions to Minnesota Surface Waters Statewide Dry, Low Flow Water Year

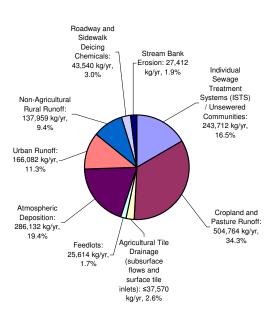
Point Source: 1,975,757 kg/yr, 57%

- Commercial Automatic Dishwasher Detergent
- Commercial/Industrial Process
 Water
- Dentifrices
- Food Soils/Garbage Disposal Waste
- Groundwater Intrusion (I&I)
- Residential Automatic Dishwasher Detergent
- Human Waste Products
- · Noncontact Cooling Water
- · Raw/Finished Water Supply



Expected Load Reduction (496,793 kg P/yr)
Associated with a 1 mg P/L Effluent Discharge
Limit at the MCES Metro WWTF
(Effective 12/31/05)

Nonpoint Source: 1,472,784 kg/yr, 43%


- Atmospheric Deposition
- · Cropland and Pasture Runoff
- Feedlots
- Individual Sewage Treatment Systems (ISTS)/Unsewered Communities
- · Non-Agriculture Rural Runoff
- Roadway and Sidewalk Deicing Chemicals
- Stream Bank Erosion
- Urban Runoff

Point Source Bioavailable P Contributions

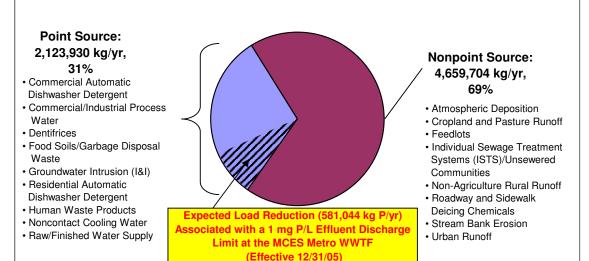
(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Bioavailable P Contributions

Average Flow Conditions

Under average flow conditions (see Figure EX-7), the total point source phosphorus contribution drops to 31 percent, compared to 45 percent for the statewide loadings to surface waters under low flow conditions. Cropland and pasture runoff represents 39 percent of the nonpoint source total phosphorus loadings; atmospheric deposition represents 19 percent; and streambank erosion represents 16 percent, with the remaining nonpoint source contributions below 9 percent. Compared to low flow conditions (see Figure EX-6), the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion, increased slightly for cropland and pasture runoff, decreased somewhat for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities. Table EX-1 also shows that the nonpoint source phosphorus loadings nearly double from low to average flow conditions. All nonpoint source categories except ISTS/unsewered communities increase from low to average flow conditions.

High Flow Conditions


Under high flow conditions (see Figure EX-8), the total point source phosphorus contribution drops to 19 percent, compared to 31 and 45 percent for the statewide loadings to surface waters under average and low flow conditions, respectively. Streambank erosion represents 40 percent of the nonpoint source total phosphorus loadings; cropland and pasture runoff represents 31 percent; and atmospheric deposition represents 11 percent, with the remaining nonpoint source contributions below 7 percent. Compared to an average flow year (Figure EX-7), Figure EX-8 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion, decreased slightly for cropland and pasture and non-agricultural rural runoff, decreased somewhat for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities. Table EX-1 shows a 3.3-fold increase in nonpoint source phosphorus loadings from low to high flow conditions and a near two-fold increase from average to high flow conditions.

Major Basin Phosphorus Source Category Loadings by Flow Condition

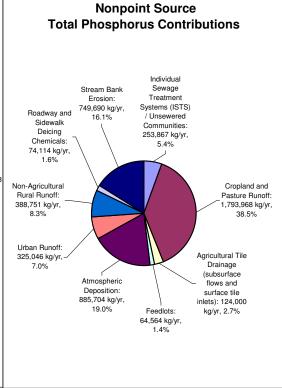

Table EX-2 presents the contributions of each source category to the total and bioavailable phosphorus loadings to surface waters in each basin and the state, by flow condition. The importance of the total and bioavailable phosphorus contributions from each source category varies significantly by basin, and somewhat by flow condition. Human waste products represent a significant portion of the total and bioavailable phosphorus loadings in the Upper Mississippi and Cedar River basins under each flow condition, and on a statewide basis, for the low and to a lesser extent average flow conditions. During low flow conditions, human waste products contribute

Figure EX-7

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Statewide Average Flow Water Year

Point Source Total Phosphorus Contributions Residential Automatic Dishwashing Detergent: 129,287 kg/yr, Commercial Automatic Noncontact Dishwasher Cooling Water: 14,278 kg/yr, Detergent: 60,335 kg/yr, 0.7% 2.8% Food Soils/ Commercial/ Garbage Industrial Disposal Process Water Waste: 288.183 815,674 kg/yr, kg/yr, 13.6% 38.4% Dentifrices: 17,494 kg/yr, 0.8% Groundwater Intrusion (I&I): 1,277 kg/yr, <0.1% Raw/Finished Water Supply: Human Waste 55,788 kg/yr, Products: 2.6% 741,615 kg/yr, 34.9% (Based on data from NPDES/SDS Permit Discharge

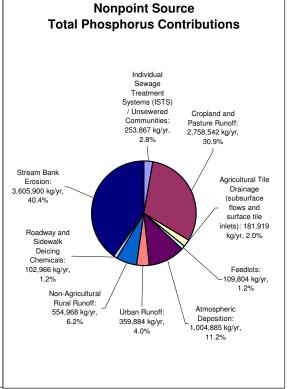

Monitoring Reports, 2001 through mid-2003.)

Figure EX-8

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Statewide Wet, High Flow Water Year

Point Source Total Phosphorus Contributions Residential Commercial Automatic Automatic Dishwashing Dishwasher Detergent: Detergent: 60,335 kg/yr, Noncontact 129,287 kg/yr Cooling Water: 6.1% 14,278 kg/yr, 0.7% Food Soils/ Garbage Commercial/ Disposal Industrial Waste: 288,183 Process Water kg/yr, 13.6% 815,674 kg/yr, 38.4% Dentifrices: 17,494 kg/yr, Groundwater 0.8% Intrusion (I&I): 1,277 kg/yr, < 0.1% Human Waste Products: Raw/Finished Water Supply: 741,615 kg/yr, 34.9% 55,788 kg/yr, 2.6% (Based on data from NPDES/SDS Permit Discharge

Monitoring Reports, 2001 through mid-2003.)

Table EX-2 Major Source Category Contributions of Total and Bioavailable Phosphorus to Each Basin and the State, by Flow Condition

				T										T																										Codes Birms															
Basin S		St. 0	St. Croix River L					Upper Mississippi River				Lower Mississippi River			r	Red River			\rightarrow	Rainy River			Lake Superior				Missouri River					Minnesota River					Cedar River				+	Des Moines River			/er	\vdash	St	atewic	ie	_					
Flow Condition	Lov	v	Avera	ge	High		Low	Ave	rage	Higl	h	Low	Ave	erage	High		Low	Ave	rage	Hig	h	Low	Av	/erage	н	igh	Low	Av	erage	Hig	gh	Low	Av	erage	Hi	gh	Low	A	verage	Hiç	ph	Low	Av	erage	High	┵	Low	Avera	age	High	Lo	N A	verage	e Hi	gh
Source Category	TP	вР	TP I	BP 1	P BF	P TF	ВР	TP	вР	TP	вР	Р ВР	ТР	вР	TP B	вР Т	P BP	TP	вР	TP	BP .	тР В	P TE	ВР	TP	ВР	TP B	P TP	BP	TP	вР	TP B	P TF	ВР	TP	BP	TP B	P T	ВР	TP	BP '	TP B	Р ТР	BP	TP B	BP TP	BP	TP	BP T	гР ВР	TP	BP 1	P BF	P TP	BP
Point Sources		Т	T	\top	\top	I	T	I														,															\perp	\perp		\sqcup	_	\perp	\perp	\perp	\perp	+		\sqcup	_	_	\vdash	\perp	+		-
Residential ADWD																															\perp				\perp	\perp		\perp		\sqcup	_	\perp	_	\perp	_	_		\vdash			\vdash	\rightarrow	+	 '	-
Commercial ADWD																\perp						\perp									_				\perp	Щ	_	\perp	\perp	\sqcup	\rightarrow	\perp	\perp		_	+	_	\vdash	_	_	\vdash	\rightarrow	+	 -	-
Food Soils/ Garbage Disposal Waste																\perp					\perp	\perp									_	_	\perp	\perp	\perp	Ш	_	\perp	\perp	\sqcup	_	_	\perp	-	_	+	_	\vdash	+	_	\vdash	+	+	+-'	\vdash
Dentifrices																\perp	Ь.		Ш		\perp	\perp				Ш		\perp	1		_			\perp	\perp	Ш			\perp	\sqcup	_			_		_	+	\vdash	+	+				_	
Human Waste Products		•						•			•						4										_ <		•				•		\perp	Ш	_ <		\perp	\sqcup	_	_				4	_	\vdash	_	_	•	•	1	4	•
Raw/Finished Water Supply																\perp		\perp			_					Ш			_	Ш	_	_	\perp	\perp	\perp	Ш	_	\perp	\perp	\perp	-	_	+	╄	_	+	+	\vdash	+	+	\vdash	+	+	+-	\vdash
Groundwater Intrusion (I&I)						L										\perp					_			_	_	Ш		_	\perp	Ш	\rightarrow	\perp	\perp	\bot	_	Ш.		_	_	\sqcup	$\overline{}$			+	\perp	_									•
Commercial/Industrial Process Water						K		•		•	•		•		•		\perp				'	•		•		\Box	_	\perp	\perp		\rightarrow	\perp	\perp	_		L !				Ш	•		_	+	-						~	•		4	•
Noncontact Cooling Water	Ш					\perp										_					_										\perp					Щ		\perp	\perp		\rightarrow		\perp			+					\vdash			\perp	\vdash
NonPoint Sources																\perp										_					_		_	_	_	\dashv		_			-	_	_	_		+	_			_	₩	_	_	_	⊢
ISTS/Unsewered Communities			● ·	•																		\perp	\perp		_	Ш		\perp	\perp												_			_		_								_	-
Cropland and Pasture Runoff						•		•							•	•							\perp			Ш		\perp	_										4	Ш	•	• •				4	•				•	~		45	H
Agricultural Tile Drainage						L										_	\perp				_	\perp	\perp		_	Ш		\perp	_		\perp	\perp	+	_	_	Н		_	_	\vdash	-	+	+	+	_	+	+	\vdash	+	_	\vdash	\rightarrow	+	—	\vdash
Feedlots					\perp	L					\perp	\perp		Ш									_		_							\rightarrow	\perp	_	_	Ш	_	\perp	_	\vdash	-	+	+	+	\vdash	+	+	\vdash	+	_		-		+	\vdash
Atmospheric Deposition		•	● ·	•		Ж		•			\perp	\perp		Ш					•		9	L	_	_	_		ĻL		•	•	•	_	\perp	_	_	\vdash	\perp	\perp		\vdash	\rightarrow	+	+	+	\vdash	+	+	\vdash	-	_	•			+	⊢
Urban Runoff											_	\perp				_					_						•					\perp	\perp	\perp	_	Н	_	+		\perp	\rightarrow	\perp	+	+	\vdash	+	+	\vdash	_	+	\vdash	\rightarrow	+	+	\vdash
Non-Agicultural Rural Runoff	•		◆ ·	•							_	\perp	\perp			4	\perp				4							_				_	\perp	_	_	\sqcup	\perp	+	\perp	\vdash	\rightarrow	+	+	+	\vdash	+	+	\vdash	_	+	\vdash	-	+	+	\vdash
Roadway and Sidewalk Deicers												\perp				┵	\perp		\perp		$\overline{}$	_	4				_					_			_		_	4,	+			+	-			_	+	\vdash	-		-	-		+	
Stream Bank Erosion			. [

KEY: TP -- Total Phosphorus

BP -- Bioavailable Phosphorus

ADWD - Automatic Dishwashing Detergent

Source category represents more than 20% of the total basin phosphorus loading.

Source category represents between 10% and 20% of the total basin phosphorus loading.

Source category represents less than 10% of the total basin phosphorus loading.

between 10 and 20 percent of the bioavailable phosphorus loadings in the Lake Superior and St. Croix, Lower Mississippi, Red, Missouri, and Minnesota River basins. Commercial/industrial process water represents a significant portion of the total and bioavailable phosphorus loadings in the Upper Mississippi, Lower Mississippi, Minnesota, and Des Moines River basins under each flow condition, and on a statewide basis, for the low and to a lesser extent average flow conditions. Phosphorus contributions from ISTS/unsewered communities are of relative importance in the St. Croix River basin.

Cropland and pasture runoff represents significant total and bioavailable phosphorus loadings in the St. Croix, Lower Mississippi, Red, Missouri, Minnesota, Cedar and Des Moines River basins, and on a statewide basis, under all flow conditions. The phosphorus contribution from cropland and pasture runoff is also significant in the Upper Mississippi River basin for the average and high flow conditions. Atmospheric deposition represents a significant portion of the phosphorus loadings in the Lake Superior, St. Croix, Red, and Rainy River basins for each flow condition. Non-agricultural rural runoff contributes a significant portion of the phosphorus loadings in the Lake Superior and Rainy River basins for each flow condition. It should be noted, based on the analyses used in this study, that the typical rate of total phosphorus export from each acre of non-agricultural land is approximately four times lower than the corresponding load from each acre of contributing agricultural land (cropland and pasture). Finally, Table EX-2 shows that streambank erosion is an important source of phosphorus under high flow conditions for all of the basins, and is fairly significant in the Lake Superior, Lower Mississippi, Rainy and Missouri River basins under average flow conditions. Streambank erosion can also contribute somewhat significant amounts of total phosphorus statewide and to the Minnesota and Cedar River basins under average flow conditions.

Concepts for Lowering Phosphorus Export from Point Sources

The concepts for lowering the phosphorus export from point sources are presented in two parts:

- 1) Lowering phosphorus loading discharged to POTWs
- 2) Lowering point source phosphorus <u>loading to surface waters</u>

Lowering Phosphorus Loading Discharged to POTWs

The assessment of phosphorus sources entering POTWs are intended to assist the MPCA in complying with MN Laws 2003, Chap. 128 Art. 1, Sec. 122., as follows:

The state goal for reducing phosphorus from non-ingested sources entering municipal wastewater treatment systems is at least a 50 percent reduction developed by the commissioner under section

166, and a reasonable estimate of the amount of phosphorus from non-ingested sources entering municipal wastewater treatment systems in calendar year 2003.

For purposes of complying with this legislation, this study has estimated that the current non-ingested phosphorus load entering POTWs is 2,573,000 kg/yr. A 50 percent reduction would require decreasing the phosphorus discharged to POTWs by at least 1,286,000 kg/yr. (Note: in this study, human wastes are the only ingested source; all other sources are defined as non-ingested.) The following reduction tactics for non-ingested sources are listed in descending order of applicability:

- Next to human wastes, a variety of industrial and commercial dischargers contribute the most phosphorus to POTWs. The contribution of phosphorus from these commercial and industrial sources accounts for approximately 46 percent (1,183,600 kg/yr) of the non-ingested phosphorus load discharged into POTWs. Total removal of phosphorus from commercial and industrial wastewater is not a feasible option. In most cases, reduction would have to come from resource/product substitution, improvements in technology, through recycling and reuse, and through pretreatment of wastewater prior to discharge to the POTW. Reducing commercial and industrial phosphorus contribution to POTWs by one half would reduce the total non-ingested phosphorus discharged to POTWs by almost 23 percent. Excise taxes and/or effluent strength charges may provide an incentive to reduce this source of phosphorus discharged to POTWs.
- Food soils and garbage disposal wastes account for approximately 28 percent (725,000 kg/yr) of the non-ingested phosphorus discharged to POTWs. This is a substantial amount, but it would be difficult to implement product modification or prohibit the discharge of food wastes into the sewer systems. Approximately 25 percent of the phosphorus from this source is discharged into the sewer system as garbage disposal waste. Garbage disposal waste could be sent elsewhere (trash, compost, etc.), whereas it would be more difficult to manage the food associated phosphorus from dish rinsing and dish washing. Short of inducing the food product industries to reduce their use of phosphates or eliminating garbage disposals and prohibiting the discharge of food wastes down the drain, there appears to be few choices for reducing this phosphorus load to POTWs. Public education about this issue might help reduce the discharge of food wastes down the drain.
- Residential ADWD contributes almost 13 percent (334,500 kg/yr) of the non-ingested phosphorus load to POTWs. Although there has been a slight decline in the consumption of

phosphorus for residential ADWD, SRI publication Chemical Economics Handbook - Industrial Phosphates (SRI, 2002) states that "it is unlikely that detergents with much lower phosphorus contents will be available in the near future." Currently, at least one brand of ADWD does not contain phosphorus; the phosphorus content of other brands varies significantly. Advertising and prominent content labeling would help reduce this source by aiding consumers in choosing low phosphorus products.

- Commercial and institutional ADWD contributes a statewide average of approximately 6
 percent (152,000 kg/yr) of the influent non-ingested phosphorus load discharged into POTWs.
- Water supply chemicals account for an estimated 5.5 percent (141,500 kg/yr) of the non-ingested phosphorus load to POTWs statewide. Phosphorus is used for the sequestration (withdrawal) of metals, such as iron and manganese, and for the corrosion control of lead and copper, which in some cases is a human health issue and is required by law for those communities that do not pass the state corrosion tests. Reduction options include iron and manganese removal or substituting alternative water treatment chemicals in place of those containing phosphorus.
- Dentifrices (toothpaste, mouth wash, denture cleaners) account for less than 2 percent of the total non-ingested phosphorus load to POTWs. Because the phosphorus load from this source is so minimal, it does not warrant major reduction steps.
- Stormwater inflow and infiltration (I & I) contribute a negligible amount of phosphorus to POTW influent. Although there are many good reasons to limit inflow and infiltration into sewer systems—such as preventing hydraulic overloading of treatment facilities—the reduction of influent phosphorus is not one of them.

Overall Recommendation for Lowering Phosphorus Loads to POTWs

Given that food soils would be very difficult to reduce, and that dentifrices, noncontact cooling water, and I & I contribute so little to the influent phosphorus load discharged to POTWs, it is recommended that reduction efforts focus on the following:

- residential ADWD
- commercial and industrial process wastewater
- commercial and institutional ADWD
- water treatment chemicals

A summary of the phosphorus load discharged to POTWs and the reduction potential is presented in Table EX-3.

Table EX-3 Reduction Potential for Phosphorus Loads to POTW

Summary	Phosphorus Load to POTWs (kg/yr)	Portion of Total Load to POTW		
Total Phosphorus Load Discharged to POTWs	4,468,000			
Human Waste Load	1,900,000	43		
Non-Ingested Waste Load	2,573,000	57		
Phosphorus Source	% Reduction to Non- Ingested Phosphorus Load (%)	Cumulative Reduction to Non-Ingested Phosphorus Load (%)		
Residential ADWD reduced to 0	13	13		
Commercial ADWD reduced to 0	6	19		
Commercial and Industrial Process Water reduced by one half	23	42		
Total Reduction		42		

To reach the state goal of a 50 percent reduction in the total non-ingested phosphorus contribution to POTWs, residential and commercial/institutional ADWD and water treatment chemicals would need to be eliminated completely and commercial and industrial process wastewater would need to be reduced more than 64 percent. Given that it will be difficult to completely eliminate commercial/institutional ADWD and water treatment chemicals, while reducing the commercial and industrial process wastewater loading by such a substantial amount, a 50 percent reduction in the total non-ingested phosphorus contribution to POTWs appears to be an ambitious goal.

Lowering Phosphorus Loads to Surface Waters

Recommendations for lowering the point source phosphorus load discharged to surface waters in each major basin vary, based on the type of treatment facility and treatment processes employed. Phosphorus that comes from POTW outflows (effluent) represents, on average, more than 80 percent of the total point source loads to waters of the state. The largest source of phosphorus from POTWs is from large (> 1.0 mgd) facilities (88%). Phosphorus reduction efforts should begin at these facilities. As discussed previously, many POTWs have implemented phosphorus removal and others will begin to implement it in the near future. The largest impact, as noted previously, is phosphorus removal at the MCES' Metro WWTP (see blue sidebar on page viii). The reduction of the effluent

phosphorus concentration to 1 mg/L at this one facility will result in the effluent phosphorus from POTWs being reduced from 80 percent to 74 percent of the point source load to waters of the state.

Privately owned wastewater treatment systems account for less than 0.5 percent of the total point source phosphorus discharged statewide. Increased phosphorus removal at these facilities will have only a negligible impact on the statewide point source phosphorus load.

Direct commercial and industrial sources statewide constitute approximately 18 percent of the point source phosphorus load. Combining direct commercial/industrial discharges with commercial/industrial discharges following treatment at POTWs represents 38 percent, statewide. It was not within the scope of this study to categorize the phosphorus loading data by commercial and industry type or to determine which industries are the largest contributors. However, it is recommended that industrial dischargers that make major contributions to the phosphorus loadings be evaluated in further detail.

Current Effluent Phosphorus Reduction Efforts by Wastewater Treatment Plants

As part of this study, several WWTPs were surveyed regarding phosphorus treatment methods and a review of the efforts of each of the cities to reduce phosphorus in their effluent was completed. The WWTPs ranged in size (0.7 to 24 million gallons per day), treatment methods (chemical and/or biological), and phosphorus discharge requirements (0.07 mg/L to 2.41 mg/L). Four of the eight WWTPs surveyed used chemical treatment only for phosphorus removal. Four of the eight WWTPs used enhanced biological phosphorus removal (EBPR). In addition to EBPR, three of the four plants surveyed also use chemical treatment to meet total phosphorus discharge requirements below 1 mg/L. The Rock Creek and Durham WWTPs in Portland, Oregon use EBPR and two-point alum addition to meet a stringent 0.07 mg/L total phosphorus discharge requirement set for the Tualatin Watershed west of Portland. Pilot testing and full-scale system modifications were required to reach the high level of phosphorus removal achieved by these plants. Alum is added to the primary clarifier prior to EBPR, as well as the secondary clarifier. The effluent from the secondary clarifier is then filtered for an average total phosphorus effluent concentration of 0.05 mg/L. Significant cost savings were observed once enhanced biological phosphorus removal was implemented at the Durham facility (i.e., the chemical costs for alum were cut by one third).

The City of St. Cloud has a Phosphorus Management Plan (PMP), with a primary goal of limiting the amount of phosphorus coming into the facility by means of a phosphorus reduction program and public outreach. The goal of the phosphorus reduction program is to assist non-domestic nutrient contributors (NDNC) in developing phosphorus reduction strategies that will reduce the amount of

phosphorus that enters the wastewater collection system and eliminate phosphorus slug loads. The city works with industrial users to keep phosphorus discharges to the WWTP below 6 mg/L. This method is effective at reducing spike loads and the average influent phosphorus concentrations.

The following summarizes the conclusions of the survey evaluating phosphorus reduction efforts by wastewater treatment plants:

- The cities implementing source reduction programs all achieved significant reduction in
 phosphorus loading on their WWTPs using a variety of methods: public outreach, phosphorus
 bans, surcharges for phosphorus treatment, and maximum limits on significant industrial
 users (SIU) phosphorus discharges.
- The St. Cloud WWTP showed that a reduction in influent phosphorus loading and phosphorus slug loads lead to a reduction in effluent phosphorus concentration.
- Chemical treatment is capable of reaching the lowest phosphorus effluent concentrations.
- The cost per unit of total phosphorus removed varied from \$0.96 to \$20.00 per pound of total phosphorus removed. The cost of treating phosphorus chemically appeared to show an economy of scale.
- The cost for chemical treatment was lower for those WWTPs that used a combination of EBPR and chemical treatment.
- EBPR alone is generally effective at achieving 0.5 mg/L to 1 mg/L effluent phosphorus concentrations. Chemical addition is necessary to achieve effluent phosphorus concentrations less than 0.5 mg/L. One of the best available bio/chemical treatment facilities (Durham WWTP, OR) was able to achieve an average effluent phosphorus concentration of 0.05 mg/L. To reach this low effluent concentration, significant pilot testing was required and phosphorus removal efficiency was dependent upon wastewater characteristics.
- Once the initial capital improvements are made there are no additional costs associated with phosphorus removal using EBPR.
- In some cases, EBPR can be implemented with simple process modifications (e.g., St Cloud aeration modifications) that achieve reductions in effluent phosphorus concentrations. St

Cloud was able to achieve an effluent phosphorus concentration of approximately 1 mg/L with this approach.

The Minnesota Environmental Science and Economic Review Board (MESERB) received funding from the legislature to complete a Wastewater Phosphorus Control and Reduction Initiative. The Initiative consists of an independent examination of selected wastewater treatment facilities by nationally recognized experts in biological phosphorus removal. A final report will evaluate actual and potential methods of phosphorus reduction, and develop a list of recommended cost-effective reduction strategies. Two seminars will also provide wastewater operators with the tools to implement immediate measures to reduce phosphorus in the final effluent. Project completion is scheduled for April 2005.

Concepts for Lowering Phosphorus Export from Nonpoint Sources Agricultural Runoff

Comparing past agricultural runoff loadings with the current phosphorus loading estimates—when it is assumed that moldboard plowing (which lifts, fractures and inverts the soil, producing furrows) is used on all row cropland—allows for an evaluation of the extent of progress in controlling phosphorus losses over the last twenty years, due to improvements in tillage management. Modeling indicates that in the Minnesota River basin, compared to an era when moldboard plowing was widely practiced, current day phosphorus losses from agricultural cropland have been reduced by about 146,000 kg/yr (from about 664,000 to 518,000 kg/yr), for a 28% reduction. In the Upper Mississippi River basin, current phosphorus losses from agricultural land have been reduced by about 87,000 kg/yr, for a 24% reduction. Similar comparisons show a 7% reduction for the Red River basin and no significant reduction for the Lower Mississippi River basin.

Although modeling indicates improvements in phosphorus reduction over the past 20 years, increased reduction could come from improved phosphorus fertilizer and manure management. If University of Minnesota recommendations were followed more consistently, phosphorus fertilizer usage could be reduced. For instance, the University has set a threshold above which crops do not respond to additional phosphorus. But phosphorus fertilizer is spread on significant areas of land in the Minnesota River basin, and elsewhere, even if soil test phosphorus levels exceed that threshold. Excess applications in the past were considered cheap forms of insurance for crop yield needs and, since even high soil phosphorus levels were wrongly perceived not to be released from soils, the environmental impact was considered minimal. Modeling indicates that in the Minnesota River basin, reductions in the rate of phosphorus fertilizer application could reduce phosphorus losses to surface

waters by about 81,000 kg/yr, as compared to existing conditions, for a 16% reduction. Comparable levels of reduction could occur with improved phosphorus fertilizer management in the Red River, and the Upper and Lower Mississippi River basins.

The potential impact of improved manure application methods is significant in the Red River basin. Phosphorus loads to surface waters could be reduced by about 75,000 kg/yr, for a 20% reduction. Improved manure application methods could potentially reduce phosphorus loads to surface waters in the Upper Mississippi (12%), Lower Mississippi (7%), and Minnesota River (7%) basins. Decreasing the area of cropland within 100 m of surface waters, which corresponds to land retirement programs such as those promoted in the Conservation Reserve and Conservation Reserve Enhancement Programs, are estimated to decrease the phosphorus loadings to levels that are comparable to non-agricultural rural runoff.

Atmospheric Deposition

Soil dust is estimated to be the largest source of atmospheric phosphorus. Therefore, reducing soil dust, particularly from wind erosion from agricultural fields, through the application of wind erosion best management practices (shelterbelts, no till planting, use of cover crops, etc.) should be a high priority.

Deicers

Efforts are currently underway, as part of MnDOT's road weather information system (RWIS), to use timely and accurate weather and road data in deicing application decisions to optimize the use of deicing materials. More accurate weather information could lead to reduced usage of deicing agents. These types of efforts should be used by other winter road maintenance agencies throughout the state. The use of brines should be considered to improve the effectiveness of deicing agents and thereby reduce the use of other deicers. The high phosphorus content of many of the agriculturally derived alternatives to road salt is of concern, as many of these products have phosphorus concentrations 100 to 10,000 times greater than road salt or sand. Testing should be done on these road salt alternatives and an assessment should be done to weigh their benefits against their environmental implications.

Streambank Erosion

There is the potential for substantial water quality benefits associated with lowering phosphorus export from streambank erosion, including reduced eutrophication and sedimentation, as well as improved biological habitat within reservoirs, lakes, wetlands, and river systems. Several methods can be implemented to help reduce streambank erosion: Careful land use planning that considers the potential adverse impacts associated with increased runoff volumes; well-designed stream road

crossings that consider the potential hydrodynamic changes to the system; exclusion or controlled access of pastured animals and preservation of riparian vegetation; and rotational grazing. There are opportunities to reduce streambank erosion in watersheds that have experienced flow volume increases from land use changes.

ISTS/Unsewered Communities

Many of the counties in Minnesota have been delegated to implement Minnesota Rules Chapter 7080 for ISTS, which require conformance with state standards for new construction of ISTSs and disclosure of the state of existing ISTS when a property transfers ownership. Several counties require ISTS upgrades at property transfer. Owners of ISTS that pose an Imminent Threat to Public Health and Safety (ITPHS), through direct discharge to tile lines or surface ditches or system seeping to the ground surface should be identified through a statewide survey to help residents determine whether their ISTS are adequately treating and disposing of sewage below grade. Local Units of Government (LUGs), ISTS permitting authorities and inspection programs should be targeted with MPCA audits to determine adequacy of performance in a number of key areas, including spot checks for conformance on new ISTS installations, level of effort on ISTS inspections and follow-through on replacement of noncompliant systems, and dealing with problem ISTS professionals. Since septic system failure is a widespread problem, a basinwide approach to addressing nonconforming systems with potential for high delivery of pollutants to public waters, such as straight pipe discharges and other types of ITPHS should be given priority attention. The LUGs should work with the MPCA to develop, populate and maintain a database, similar to MPCA's feedlot database that shows the location of each nonconforming system, especially where straight pipe discharges and other types of ITPHS are located. LUG personnel should be provided with an incentive to inventory all systems within their jurisdiction, and track system performance and maintenance.

Non-Agricultural Rural Runoff

The protection of natural areas is needed to ensure they retain the hydrologic and ecologic functions that keep surface runoff volumes low, nutrient (phosphorus) export low and groundwater recharge rates high. Many natural areas are under stress due to development pressures, invasion by exotic species and increased nutrient loading associated with runoff coming from adjacent land uses. Conservation easements, such as CREP and RIM, provide additional opportunities for reducing phosphorus export from contributory watershed areas.

Urban Runoff

The design, construction and maintenance of watershed BMPs will help reduce pollutant (phosphorus) loads to surface waters in urban areas. Water quality protection requires that all urban development design use a water budget approach, where the preservation of the infiltration and evapotranspiration components of the hydrologic cycle are primary considerations. Site planning that reduces impervious surface area and preserves infiltration will help attain water quality protection. A number of stormwater management and urban best management practices manuals are available that provide design guidance for controlling the impacts of urban runoff and promoting infiltration (Metropolitan Council, 2001; Schueler, 1995; Brach, 1989; US EPA. 2001). The National Pollutant Discharge Elimination System (NPDES) permit administered by the MPCA regulates runoff from construction sites, industrial facilities and municipal separate storm sewer systems (MS4s) to reduce the pollution and ecological damage. Phase I of the program focused on large construction sites, 11 categories of industrial facilities, and major metropolitan MS4s. Phase II broadened the program to include smaller construction sites, small municipalities (populations of less than 100,000) that were exempted from Phase I regulations, industrial activity, and MS4s. At a minimum, compliance with the stormwater pollution prevention planning requirements of this permit program is critical to minimize the phosphorus loading increases associated with urban runoff.

Relative Phosphorus Source Loading Uncertainty/Recommended Refinements

This assessment assumes that there is some variability and uncertainty surrounding the phosphorus loading estimates used for this study. The variability and uncertainty of the phosphorus loading computations done for each source category can generally be attributed to natural variability (such as variations in watershed and climatic conditions), a lack of source-specific data or regional relationships with watershed characteristics, error associated with extrapolation of available data, and in some cases, a lack of understanding about all of the processes contributing to the phosphorus loadings under each flow condition.

The phosphorus loading estimates for commercial/industrial process water, streambank erosion, cropland and pasture runoff, feedlot runoff, agricultural tile drainage, ISTS/unsewered communities, and atmospheric deposition are expected to have moderate to high variability and uncertainty relative to the other phosphorus source categories. Table EX-2 shows that, of these categories, commercial/industrial process water, streambank erosion, cropland and pasture runoff, and atmospheric deposition represent significant phosphorus contributions to some of the major basins

under more than one flow condition. Phosphorus loading estimates for human waste products are expected to have low variability and uncertainty relative to the other phosphorus source categories.

General recommendations intended to reduce the uncertainty of the phosphorus load estimates associated with the significant phosphorus source categories include:

- Continue to develop, populate and maintain intra- and inter-agency database information
 (preferably in geographic databases), similar to MPCA's Delta, environmental data access and
 feedlot databases, that can readily provide both information for resource-specific studies and data
 for the development of larger scale (such as agroecoregion, ecoregion, or regional) relationships
 based on existing programs
- Prioritize and complete source-specific studies to better understand the processes, identify and fill in data gaps for the phosphorus source categories with moderate to high uncertainty, and evaluate the effects of best management practices
- Enlist, train and coordinate new large-scale data collection efforts with volunteers and other state, county and local personnel to obtain chemical and biological data for future assessments (e.g., tracking nonconforming septic systems, streambank erosion inventories) that can be completed throughout the state

Overall Conclusions

The results of this assessment indicate that the estimated amounts of total and bioavailable phosphorus entering surface waters within each major basin and the state vary significantly, both by source category and by flow condition. The phosphorus loadings associated with several point and nonpoint source categories can be controlled to various levels, resulting in significant water quality improvements, depending on the water resource and flow condition. The following discussion provides some overall conclusions from this assessment:

• Because of the general nature of this analysis, it can be true that sources of phosphorus which are deemed minor at the basin scale, may actually contribute the majority of phosphorus to specific surface water bodies, at a localized scale. For example, point sources typically contribute little or no phosphorus to Twin Cities Metropolitan and most outstate lakes, but can represent a significant portion of the total phosphorus load to rivers under low flow conditions. Because of this, there is still a need to complete individual assessments of specific watersheds to evaluate specific loading conditions.

- Under average conditions, the point source total phosphorus contribution represents 31 percent of the loadings to surface waters, statewide, whereas nonpoint sources contribute 69 percent. Of these nonpoint sources, cropland and pasture runoff, atmospheric deposition, streambank erosion, human waste products, and commercial/industrial process water each represent between 10 and 30 percent of the total phosphorus loading. All of the remaining source category contributions are below 6 percent. The combination of household and commercial automatic dishwasher detergent represents approximately 3 percent of the total phosphorus contributions to surface waters in the state, during an average year.
- Under low flow conditions, the total point source phosphorus contribution represents 45 percent, compared to 31 and 19 percent for the statewide loadings to surface waters under average and high flow conditions, respectively. The bioavailable low flow point source phosphorus contribution represents 57 percent of the statewide loadings, confirming that point sources of phosphorus are more bioavailable than nonpoint sources. Comparing high flow to average and low flow conditions, the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion, decreased somewhat for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities.
- Nonpoint source phosphorus loadings nearly double from low to average flow conditions, and again from average to high flow conditions.
- Human waste products represent a significant portion of the total and bioavailable phosphorus loadings in the Upper Mississippi and Cedar River basins under each flow condition; and on a statewide basis, for the low and to a lesser extent average flow conditions. During low flow conditions, human waste products contribute between 10 and 20 percent of the bioavailable phosphorus loadings in the Lake Superior and St. Croix, Lower Mississippi, Red, Missouri, and Minnesota River basins.
- Commercial/industrial process water represents a significant portion of the total and bioavailable phosphorus loadings in the Upper Mississippi, Lower Mississippi, Minnesota, and Des Moines River basins under each flow condition, and on a statewide basis, for the low and to a lesser extent average flow conditions.
- Phosphorus contributions from ISTS/unsewered communities are of relative importance in the St. Croix River basin.

- Cropland and pasture runoff represents a significant portion of the total and bioavailable phosphorus loadings in the St. Croix, Lower Mississippi, Red, Missouri, Minnesota, Cedar and Des Moines River basins, and on a statewide basis, under all flow conditions. The phosphorus contribution from cropland and pasture runoff is also significant in the Upper Mississippi River basin for the average and high flow conditions.
- Atmospheric deposition represents a significant portion of the phosphorus loadings in the Lake Superior, St. Croix, Red, and Rainy River basins for each flow condition.
- Non-agricultural rural runoff contributes a significant portion of the phosphorus loadings in
 the Lake Superior and Rainy River basins for each flow condition, although the typical rate of
 total phosphorus export from each acre of non-agricultural land is approximately four times
 lower than the corresponding load from each acre of contributing cropland and pasture runoff.
- Streambank erosion is an important source of phosphorus under high flow conditions for all of
 the basins, and is fairly significant in the Lake Superior, Lower Mississippi, Rainy and
 Missouri River basins under average flow conditions. Streambank erosion can also contribute
 somewhat significant amounts of total phosphorus statewide and to the Minnesota and Cedar
 River basins under average flow conditions.
- The concepts for lowering the phosphorus export from point sources address possible reductions of phosphorus discharged to POTWs as well as phosphorus discharged to the surface waters in each basin. Food soils would be very difficult to reduce, and dentifrices, noncontact cooling water and I & I contribute little to the influent phosphorus load discharged to POTWs. If residential and commercial/institutional ADWD and water treatment chemicals were eliminated completely, commercial and industrial process wastewater would still need to be reduced more than 64 percent to attain a 50 percent reduction in the total non-ingested phosphorus contribution to POTWs (the goal established in MN Laws 2003, Chap. 128 Art. 1, Sec. 122). Given the difficulties in completely eliminating phosphorus from commercial/institutional ADWD and water treatment chemicals, and reducing the commercial and industrial process wastewater loading by more than 64 percent, a 50 percent reduction of non-ingested influent phosphorus appears to be an ambitious goal. In addition, a 50 percent reduction in influent may not mean a 50 percent reduction in the effluent depending upon the type of wastewater treatment processes used.

- A large portion of the influent phosphorus load to POTWs is from human waste products and/or is largely uncontrollable. Continued implementation of enhanced biological phosphorus removal (EBPR) will significantly reduce effluent phosphorus concentrations.
- Public education about the use of ADWD based on hardness and the availability of no- and lowphosphorus content products should be encouraged.

1.1 Background

Eutrophication of surface waters is a condition in which excess nutrients cause excessive growth of algae and other aquatic plants. Phosphorus is the nutrient primarily responsible for the eutrophication of Minnesota's surface waters. Too much phosphorus causes excessive growths of nuisance algae (blooms) and reduced water transparency, making waters unsuitable for swimming or other recreational activities. When there are excessive amounts of algae in surface waters and those algae die, the decay of the algae may consume dissolved oxygen in the water and stress the biological community. This may cause fish kills. Additionally, severe algal blooms may directly poison animals that ingest the algae, or cause allergic reactions in people who swim in the polluted water.

Phosphorus in lakes and streams comes from both point and nonpoint sources. Point sources are typically industrial and publicly-owned wastewater treatment plants (POTWs). Point sources usually have distinct pipe discharges to surface water and are discharged from wastewater treatment plants may come into the plant from a variety of sources. Phosphorus discharged from wastewater treatment plants may come into the plant from a variety of sources. Nonpoint sources of phosphorus are typically polluted runoff from cities and farmland, among other land uses. Nonpoint phosphorous sources do not generally have distinct discharge points and are not typically regulated under State Water Pollution Permit programs.

The amounts of phosphorus contributed to Minnesota surface waters by point and nonpoint sources are known to vary, both geographically and temporally, in response to annual variations in weather and climate, primarily. Variations in rainfall and watershed runoff alter both the amounts of runoff-borne non-point source phosphorus reaching surface waters and the waters' dilution capacities. Generally speaking, nonpoint sources of phosphorus comprise a much larger fraction of the aggregate total phosphorus load to Minnesota surface waters during relatively wet periods, while point sources become more important during dry conditions, compared to wet conditions. Previous work by the MPCA, completed as part of their *Minnesota River Basin Plan*, estimated that nonpoint sources of phosphorus loading monitored in the basin at Jordan, MN (comprising approximately 19 percent of the area of the state), predominate under high and average river flow conditions. Point source phosphorus loads dominated the basin's phosphorus budget under low flow conditions (Table 1-1), the MPCA further estimated, based on analyses of data collected at Jordan, MN near the river mouth.

Table 1-1 Minnesota River Point and Nonpoint Source Load Contributions at Various Flow Duration Intervals

Minnesota River Flow	Percentage of Duration Within Each Flow Interval	Nonpoint Source and Others Percent Contribution to Total Load	Point Source Percent Contribution to Total Load	
High (>7,100 cfs)	18.5	90	10	
Average (2,750 cfs)	70.7 *	74	26	
Low (<1,275 cfs)	10.8	28	72	

^{*}Percent of time flow was between 7,100 and 1,275 cfs

Results of this study, using a variety of estimation techniques to calculate phosphorus loading to Minnesota surface waters, confirm these load distribution patterns for the Minnesota River basin and the nine other major river basins either wholly or partially within the state. The phosphorus load estimates reported here are aggregate totals contributed to all waters of the state, including lakes, ponds, rivers, streams and wetlands, and ditches.

The amount of phosphorus contributed to surface waters is not the only factor that determines adverse impact of the pollutant. The form of phosphorus and its ease of being utilized by algae and other plants are important. Excessive algal production is dependent on the availability of usable (bioavailable) phosphorus. Phosphorus from a point source may be more bioavailable and exert a larger impact on surface water quality than a similar amount of nonpoint source phosphorus that enters the same surface water. Phosphorus from point sources is largely in a chemical form readily useable by plants (ca. 97 percent bioavailable), while phosphorus from nonpoint sources may be only 30 to 60 percent bioavailable to plants. Other critical factors affecting the water quality impacts are the type of water body the phosphorus enters (lake, river, reservoir) and season of the year.

1.2 Legislative Mandate to Conduct this Study

This watershed-based study of phosphorus contributions to Minnesota surface waters was conducted to inventory the following:

1. Sources and amounts of phosphorus entering three different sizes and categories of Publicly-Owned Treatment Works (POTWs; i.e., Wastewater Treatment Plants).

Sizes: (average daily flow rate)

- Less than 0.2 million gallons per day (mgd)
- 0.2 to 1.0 mgd
- Greater than 1.0 mgd

Categories: (flow contributors)

- Primarily domestic
- Domestic with some commercial/industrial
- Predominately commercial/industrial

Sources: (individual and/or categorical)

- Automatic dishwasher detergents
- Other household cleaners or household non-ingested sources
- Commercial/industrial, including:
 - . Process wastewater
 - . Noncontact cooling water
 - . Other additives
- Water supply, including water treatment chemicals
- Human waste products
- Groundwater intrusion to sanitary sewers

Information developed in this portion of the phosphorus inventory is intended to assist the MPCA in complying with MN Laws 2003, Chap. 128 Art. 1, Sec. 122:

The state goal for reducing phosphorus for non-ingested sources entering municipal wastewater treatment systems is at least 50 percent reduction based on the timeline for reduction developed by the commissioner under section 166, and a reasonable estimate of the amount of phosphorus from non-ingested sources entering municipal wastewater treatment system in calendar year 2003.

2. Sources and amounts of phosphorus entering Minnesota surface waters for each of the ten major basins and for the entire state of Minnesota from point- and nonpoint-sources during low (dry), average, and high (wet) flow conditions; and the effect of various phosphorus source reduction options on water quality.

Information developed in this portion of the phosphorus inventory is intended to assist the MPCA in complying with MN Laws 2003, Chap. 128, Art. 1, Sec. 16:

The commissioner of the pollution control agency must study the concept of lowering phosphorus in the wastewater stream and the effect on water quality in the receiving waters and how to best assist local units of government in removing phosphorus at public wastewater treatment plants, including the establishment of a timeline for meeting the goal in Minnesota Statutes, section 115.42.

1.3 Organization of this Report

To facilitate the reading of this report, results have been organized around identification of the sources and amounts of phosphorus contributed both to POTWs and to surface waters of the state. Sources and amounts contributed to surface waters includes both point and nonpoint source contributions. Wastewater treatment plants (Publicly-Owned, Private and Industrial) are included as point source contributors, in this context. The report discusses phosphorus contributions to surface waters of the state, both in terms of source category and by major basin, for low, average and high flow conditions. The hydrology of each basin under low, average and high flow conditions is discussed in more detail in Appendix A. Detailed discussions about each source contribution category are included in Appendices B through J. The report further assesses the importance of each phosphorus source contributor in regards to the bioavailability of its contribution (described in detail in Appendix K). Finally, this report concludes with a brief assessment of effluent total phosphorus reduction efforts by wastewater treatment plants, recommendations for lowering nonpoint sources of phosphorus and reducing load calculation uncertainty as part of future efforts.

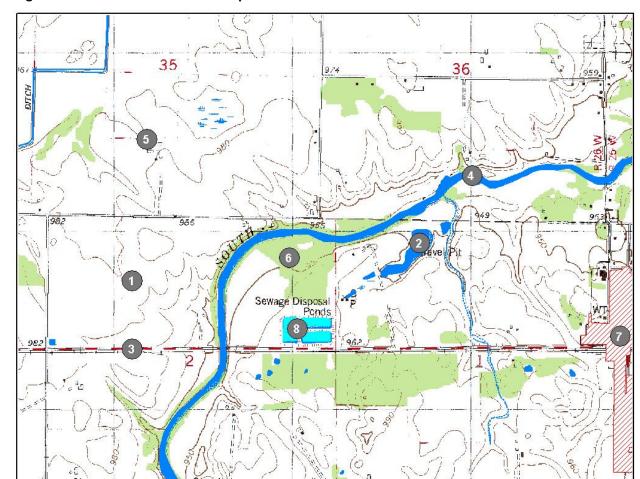
1.4 Frame of Reference for Quantifying Phosphorus Source Contributions to Surface Waters

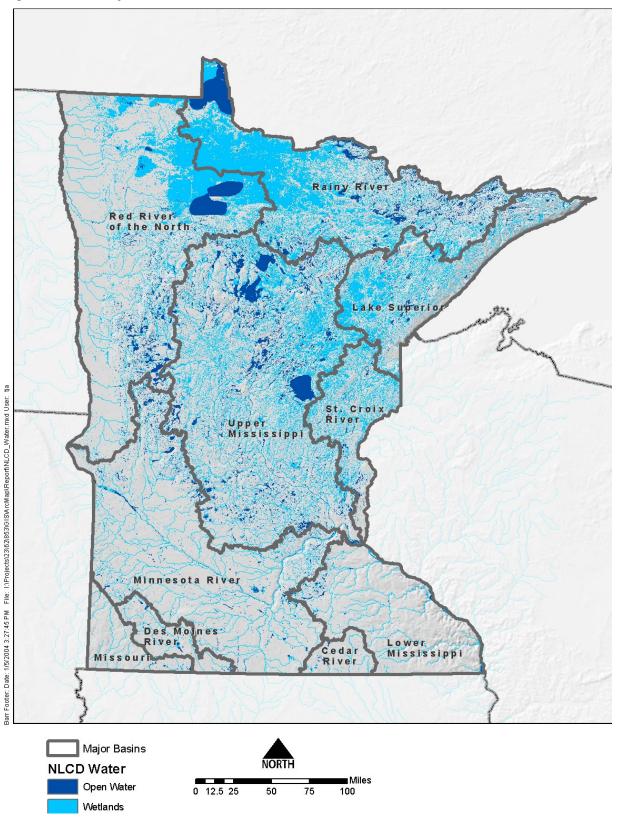
Estimating the phosphorus source contributions to Minnesota surface waters for each of the major basins requires the following information to establish a "frame of reference", or a basis for comparison by source category and by basin:

- A clear definition of surface waters and information about the locations of surface waters throughout Minnesota
- Knowledge about the amount of phosphorus produced and mode of transport for each point and nonpoint source category

Figure 1-1 illustrates an example of where each of the following phosphorus source categories (numbered to coincide with the figure) are typically located in relation to the various types of surface waters considered in this analysis:

- 1. Cropland, pasture and feedlot runoff
- 2. Atmospheric deposition
- 3. Deicing agents
- 4. Streambank erosion
- 5. Individual sewage treatment systems (ISTS)/unsewered communities
- 6. Non-agricultural rural runoff
- 7. Urban runoff
- 8. Point sources




Figure 1-1 Schematic for Phosphorus Source Contributions to Surface Waters

The analysis completed for this assessment consists of estimating the total amounts of phosphorus entering all of the various types of surface waters from each of the source categories within each major basin, as well as on a statewide basis.

1.4.1 Surface Waters Defined

For purposes of this analysis, all of the surface waters in Minnesota were mapped using ESRI ArcGIS software and were defined by using all of the various types of water bodies contained in the Minnesota Department of Natural Resources 24K Stream Layer (all records, including ditches and intermittent streams) and the USGS National Land Cover Database [NLCD] (1992). All land cover types identified as wetlands or lakes in the NLCD database were used as surface waters. As a result, all of the water surface areas shown (in dark blue) on Figure 1-1, including ditches, wetlands, lakes, rivers and intermittent streams, would be considered surface waters for the analysis discussed in this report. Figure 1-2 shows the areas of all of Minnesota's surface waters, within each of the ten major basins.

1.4.2 Context for Quantifying Phosphorus Source Contributions

As previously discussed, this assessment is intended to estimate the annual phosphorus loading (total and bioavailable), entering all of the various types of surface waters from each of the source categories under low, average and high flow conditions. The general nature and scale of this analysis allows for summarizing the estimated loadings for each major basin, and on a statewide basis. The characteristics of smaller watershed units (smaller than the major basin scale), or subwatersheds, were not utilized to estimate phosphorus loadings from the source categories. Since each of the various subwatersheds typically drain to wetlands, lakes, ditches or streams that each have their own unique processes for transformation or phosphorus uptake, no further breakdown of phosphorus inflow or outflow loadings by subwatershed or surface water type is possible with the scope of this analysis. As a result, the phosphorus loadings discussed in this report represent the total amount of phosphorus entering all of the combined surface water areas that are present within each major basin under each flow condition. For example, if urban runoff from the source area (#7) shown in Figure 1-1 is estimated to contribute 10 kg of phosphorus during average flow conditions, this analysis does not attempt to distinguish between how much of the 10 kg is going to the intermittent stream or to the river, nor does this analysis attempt to estimate how much this phosphorus load would be delivered to the mouth of the major basin. It should also be noted that the general nature of the results from this analysis means that minor sources of phosphorus, at the basin scale, may actually contribute the majority of phosphorus to specific surface water bodies, at a localized scale. For example, point sources typically represent contribute little or no phosphorus to Twin City Metropolitan and most outstate lakes, but can represent a significant portion of the total phosphorus load to rivers under low flow conditions. This explains the need to complete individual assessments of specific watersheds to evaluate specific loading conditions.

In addition, the phosphorus loadings estimated for this assessment are only intended to quantify the phosphorus source contributions originating in Minnesota for Minnesota surface waters. For example, no attempt has been made to estimate the phosphorus loadings to the St. Croix River basin, originating from Wisconsin, or the loadings to the Red River basin from North Dakota. While the context for this analysis does not allow for assessments to be made about the observed water quality at the mouth of each major river basin, it does allow for direct "apples to apples" comparison of the amounts of phosphorus originating from various source categories under various flow conditions. This analysis also facilitates comparison between basin, as well as statewide, so that the magnitude and proportional contribution of each source category can be compared throughout the state.

2.1 Basin Hydrology

This detailed assessment of phosphorus required an analysis of basin hydrology to properly evaluate the importance of the varying rainfall/runoff relationships for low, average and high flow conditions throughout the state. This section will discuss how these three flow conditions were defined and how rainfall and runoff volumes were determined for this analysis. The determination of flow conditions are especially important since they facilitate computation of nonpoint phosphorus sources and allow for the comparison of point and nonpoint phosphorus sources for the varied climatic conditions that occur across Minnesota. Following statistical analysis of the historical rainfall and runoff volumes, recent (1979-2002) water year (October 1 to September 30) data was identified to represent low, average and high flow conditions within each basin. A more detailed discussion about the approach and methodology for assessment of the basin hydrology is included in Appendix A.

2.1.1 Minnesota Basins

Figure 2-1 shows the ten major Minnesota basins considered in this analysis, along with locations of the USGS flow gaging sites used to estimate runoff during the various flow conditions. The ten major drainage basins within Minnesota vary greatly in their characteristics. Table 2-1 provides a summary of some of the characteristics of each basin. As shown in the table, there is significant variability of runoff and precipitation across the state. There is also a significant difference in land cover between basins, particularly between the southwest and northeast parts of the state.

2.1.2 Calculation of Basin Runoff Volumes

The phosphorus load estimates in this study were determined for low, average and high flow conditions, for each of the ten basins (further discussed in Appendix K). The phosphorus load estimates for each flow condition are based on the annual runoff volumes that have been determined from recent water year flow data. A characteristic of most of the basins is that water is received from upstream basins (such as the Lower Mississippi which receives flow from the Minnesota, St. Croix and Upper Mississippi basins) or water flows into the basin from neighboring states or provinces (Minnesota and Rainy River basins). The Upper Mississippi River is the only basin in the state that is a headwater basin (wholly within Minnesota). Therefore, flow and phosphorus data measured at the "outlet" or mouth of the basin will include both water and phosphorus originating from outside of Minnesota or from other upstream Minnesota basins. For example, 53 percent of the watershed area of the Red River of the North (which is the border between North Dakota and Minnesota), at the

Figure 2-1 Major Basins with USGS Flow Gaging Stations

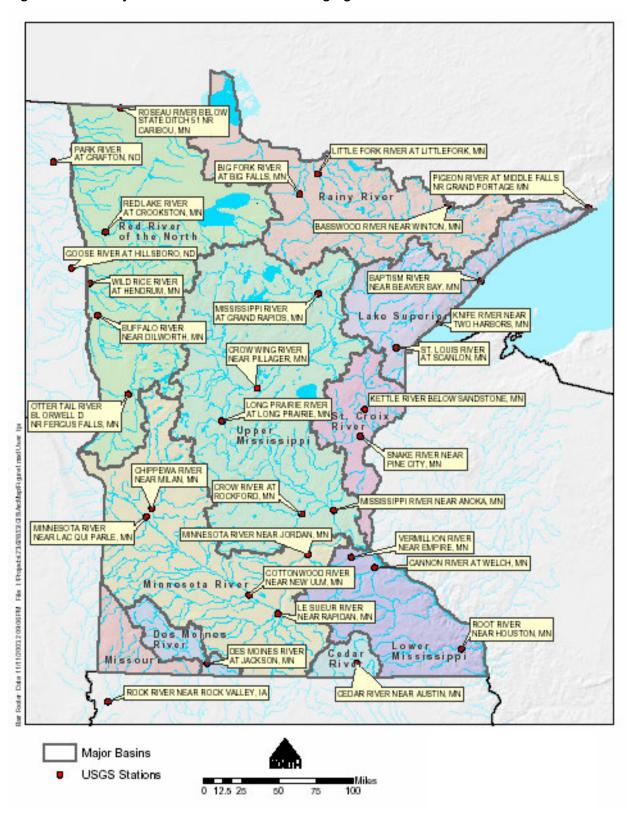


Table 2-1 Basin Characteristics

				Land Cover	Percentages ¹	18			
Basin	Area (Sq Miles)*	Average Precipitation (1979-2002)	Average Runoff (1979-2002)	Urban	Forested	Tilled Agricultural	Pasture/ Grassland	Wetland/Open Water	Other
Cedar River	1,028	32.06	9.80	3.4%	3.3%	83.4%	6.2%	3.7%	0.0%
Des Moines River	1,535	27.98	5.68	1.8%	1.8%	79.9%	11.0%	5.5%	0.0%
Lake Superior	6,149	29.11	12.44	1.4%	57.1%	2.6%	3.5%	33.3%	2.1%
Lower Mississippi	6,317	33.29	10.28	2.4%	15.4%	52.2%	24.8%	5.1%	0.1%
Minnesota River	14,943	28.14	5.61	2.2%	4.6%	72.7%	12.6%	7.8%	0.1%
Missouri	1,782	27.16	5.25	1.5%	1.0%	78.9%	16.0%	2.6%	0.0%
Rainy River	11,236	26.20	8.01	0.4%	41.4%	2.0%	2.3%	52.5%	1.3%
Red River	17,741	23.29	3.42	0.7%	12.0%	54.6%	8.8%	23.8%	0.2%
St. Croix River	3,528	30.61	9.71	1.3%	36.8%	10.8%	20.6%	30.1%	0.2%
Upper Mississippi	20,100	28.07	6.87	3.5%	29.1%	20.2%	16.7%	29.7%	0.7%
State Wide	79,202	27.39	6.83	1.9%	22.7%	38.1%	12.0%	24.7%	0.6%

^{*}Drainage area within Minnesota

Manitoba border, is in the State of North Dakota. Since this study is only concerned with phosphorus contributions from Minnesota, a methodology was developed to estimate only Minnesota's contribution of water. Runoff from the Minnesota portions of the ten basins were calculated using state-wide flow maps for the three flow conditions. Each map, developed using ESRI ArcView software, consists of a state-wide 1 km x km grid of values representing runoff in inches. Using these grids, runoff averages over the basins were determined. The methods used to develop these maps are described below.

2.1.2.1 River Discharge Data

Monthly mean stream flow data were collected from the United States Geologic Survey for 27 gaging stations in Minnesota, two in North Dakota and one in Iowa for a total of 30 gages. The stations were selected based on their length of record and the location of the gage within each of the ten basins. Annual runoff in inches, for each gage was determined by summing the monthly mean flows for each water year (October 1 – September 30) and dividing by the contributing watershed area to arrive at runoff in inches per year. The watershed areas were delineated using the Minnesota Department of Natural Resources Division of Waters Watershed Basin (1995) GIS Layer. This layer was developed using data from USGS 1:24,000 Quadrangle Maps.

2.1.2.2 Precipitation Data

Basin-wide precipitation data were made available from the State Climatology Office of the Minnesota Department of Natural Resources. The data consisted of monthly values calculated from a grid-based archive of historical monthly precipitation totals for the period of 1892 – 2002. These

^{**}Based on USGS National Land Cover Database (1992)

data consisted of estimated monthly total precipitation over each watershed, in inches, for each of the ten basins. Data for the period of 1979 - 2002 water years were used in this study.

2.1.2.3 Runoff Frequency Curves

The result of the basin runoff computations was a table of annual runoff values, in inches over each of the 30 watersheds. These data were used to develop two frequency curves for each of the 30 gages and were based on these following periods of record:

- Using all water years data were available
- Using water years 1979 2002

For curve one, the time period of available flow data varied greatly. Some gages had data available for up to 100 years and others only a dozen or so years. The second curve was developed to reflect current climatic and drainage conditions. For the period from 1979 to 2002, a complete record of data was available for most of the gages used. Since this period reflected current watershed drainage characteristics and climatic trends, the 1979-2002 record was used to develop the runoff mapping.

The frequency curves were developed using a statistical analysis of the annual basin flows adopted from *Guidelines for Determining Flood Flow Frequency*, Bulletin #17B, U.S. Water Resources Council, Sept. 1981. The Weibull plotting position method, described in this reference, was implemented to assign an exceedence probability (the probability of the flow being greater than or equal to a value) to every annual flow record in the time series. The probabilities were then plotted on semi-log paper to fit a trend line to the data. Different statistical equations were analyzed to determine which equation best describes the data. The frequency curves were then based on the best-fit equation, typically a Pearson Type III distribution.

From the frequency curves developed for the 1979-2002 water year period, runoff values from the 90 (dry year), 50 (average year) and 10 (wet year) percent probability were determined. The 90 percent value means that, on average, 90 percent of the years will have runoff exceeding this value. The 50 percent value shows the runoff amount that would be exceeded during one-half of the years, on average. The 10 percent value is the flow which would be exceeded during only 10 percent of the years. The 90 and 10 percent probabilities were the respective probabilities selected to represent low and high flow conditions, because they do not represent extreme events; rather they represent typical dry and wet periods for the basins (a 1 in 10 chance of occurring on any given year), respectively.

2.1.2.4 Precipitation Frequency Curves

Frequency curves were also developed for the basin-wide precipitation data. The data were summarized by water year and the same methodology used to develop the flow – frequency curves was utilized for the precipitation data.

2.1.2.5 Runoff Maps

The centroid (or center of the watershed) for each of the 30 USGS gaged watersheds was determined. The resulting X and Y coordinates of the centroid (in UTM Coordinates) were determined and were assigned the runoff values for the watershed. A table was constructed with the UTM coordinates and runoff values. This table was imported into Surfer Software and interpolated using the Kriging routine to create three state-wide 1 kilometer x 1 kilometer grids representing the dry, average and wet condition runoff values. The resulting Surfer grid files were imported into ArcView Spatial Analyst extension and were overlain with the boundaries of the major basins to provide an estimation of the wet, average and dry condition flow volumes based on the 10, 50 and 90 percentile frequencies, respectively.

It is important to note that, in general, the year in which the 10th percentile wet year flow volume occurred does not necessarily coincide with the year in which the 10th percentile wet year precipitation amount was observed. River discharge is not only a function of precipitation, but is affected by a number of hydrologic conditions such as drought and floods occurring in preceding years. For example, if the preceding year was much dryer than normal, much of the current year's rainfall (even though above average) may be used in refilling lake and wetland basins and replenishing soil moisture. The intensity of rainfall is another factor in the generation of runoff. For a given amount of precipitation, more of it will run off if the precipitation occurs during a heavy thunderstorms rather than rain falling during a gentle day-long shower. Therefore, there may be below-normal flow in years where precipitation is above-average. In this study it was assumed that the 10th percentile flow does occur in the same year that the 10th percentile rainfall occurs. The same assumption was made for the 50th and 90th percentile years. This simplifying assumption had to be made to facilitate a direct comparison between the three flow scenarios examined.

2.2 Phosphorus Sources to POTWs and Minnesota Surface Waters

As discussed in Section 1.2, the requirement to study the concept of lowering phosphorus in the wastewater stream and the effect on water quality mandated that this assessment inventory the sources and amounts of phosphorus entering three different sizes and categories of POTWs, along with the sources and amounts of phosphorus entering Minnesota surface waters for each major basin

and for the entire state of Minnesota from point- and nonpoint-sources. Section 2.2.1 presents the methodology used to inventory the sources and amounts of phosphorus entering POTWs, by size and category, as well as estimate the amount of phosphorus entering surface waters from point sources. Section 2.2.2 provides the methodology used to assess the sources and amount of phosphorus entering surface waters from nonpoint sources. Section 2.2.3 presents the methodology used to determine the bioavailability of the point and nonpoint sources that have evaluated for this analysis. Section 2.2.4 discusses the methodology used for an assessment of effluent total phosphorus reduction efforts by wastewater treatment plants.

2.2.1 Point Sources of Phosphorus

This section provides a discussion regarding determination of point sources of phosphorus to Minnesota watersheds and the sources of phosphorus discharged to Minnesota publicly owned treatment works (POTWs). A detailed discussion about the assessment of this source category is contained in Appendix B. For the purposes of this analysis, point sources of phosphorus include domestic (public and private) and industrial facilities that discharge treated wastewater to surface water through distinct discharge points and are regulated under state and federal pollution permit programs. Wastewater is generated by a number of sources and falls into two general categories: Domestic/Residential wastewater and Industrial and Commercial wastewater. Wastewater from these two sources is discharged to one of three categories of wastewater treatment facilities (WWTFs); POTWs, privately owned wastewater treatment systems for domestic sources, and industrial wastewater treatment systems. Land disposal of wastewater does not discharge to surface waters and was not considered as part of this analysis.

POTWs include wastewater treatment facilities owned and operated by public entities (cities and sanitary districts usually). These facilities treat varying proportions of domestic wastewater and commercial/industrial wastewater. For the purposes of this study, POTWs have been subdivided into the following additional categories:

- 1. Size (based on Average Wet Weather Design flow)
 - a. Small less than 0.2 million gallons per day (mgd)
 - b. Medium from 0.2 mgd to 1.0 mgd
 - c. Large greater than 1.0 mgd
- 2. Waste Treated (% by flow volume treated)
 - a. POTWs that serve mainly households and residences less than 20 % industrial or commercial contributions

- b. POTWs that have some commercial or industrial contribution between 20% and 50% industrial or commercial contributions
- c. POTWs that are dominated by a variety of commercial and industrial contributions greater than 50% industrial or commercial contributions

Privately owned wastewater treatment systems include those designated for treatment of domestic sources and that are privately owned and operated. This category of facility is generally small and serves a limited number of residences. Mobile home parks, resorts, and small communities are examples of privately owned wastewater treatment facilities.

Wastewater generated as a byproduct of an industrial or commercial process can either be discharged to a POTW for treatment or it can be treated (if needed) on site and discharged to a surface water under its own NPDES permit. In most cases, wastewater discharged from an industrial wastewater facility is from an industrial process. This category also includes noncontact cooling water.

2.2.1.1 Data Sources for Wastewater Treatment Facilities

Identification of the point sources of phosphorus and load estimates was accomplished with existing data and literature information. No direct monitoring of waste streams was undertaken for this portion of the study. The following sources of existing data were utilized:

- Minnesota Pollution Control Agency's Delta Database
- MNPRO Database
- Metropolitan Council Environmental Services
- Minnesota Department of Health (MDH)
- Individual contact with Minnesota Communities

The MPCA maintains a database of information required by NPDES permit holders and the monitoring data required by the permit, referred to as the Delta database. Data from the years 2001, 2002 and the first half of 2003 were used in this analysis. The Delta database contained data for more than 1,300 separate permits, many with multiple discharge points called stations, and all available flow and phosphorus data contained therein was used for this study. Since many permits do not include limits and/or monitoring requirements for phosphorus, there was no phosphorus data available for some permits. As a result, it was necessary to extrapolate phosphorus data from other permit information (e.g. permit application data and basin average phosphorus for similar facilities, etc.). Discussions with MPCA staff provided a list of the water sources for most of the noncontact

cooling water dischargers in the state. Information on noncontact cooling water additives was also provided by MPCA staff.

The Minnesota Department of Trade and Economic Development maintains a database (MNPRO) that contains information regarding community profiles for each city in Minnesota. The MNPRO database was used to obtain the following information:

- 1. A complete listing of Minnesota communities
- 2. Information on the type of wastewater treatment system a community utilizes for wastewater treatment
- 3. Population of the community
- 4. A list of businesses and industries in each community, the NAICS code and number of employees for each business.

All population data obtained from the MNPRO database were from 2001 estimates. The other data obtained from the MNPRO database were provided by the communities and there may be some variation regarding the dates this information was reported.

The Metropolitan Council Environmental Services (MCES) owns and operates the eight Twin Cities Metropolitan Area wastewater treatment facilities. The Industrial Waste & Pollution Prevention (IWPP) Section, located within MCES's Environmental Planning and Evaluation Department, regulates and monitors industrial discharges to the sewer system to ensure compliance with local and federal regulations. IWPP Section staff issue Industrial Discharge Permits to industrial users of the Metropolitan Disposal System. For each MCES industrial permit holder, MCES provided the following information:

- 1. Name and location of permit holder
- 2. SIC code number for each permit holder (was converted to NAICS code number)
- 3. Flow and phosphorus estimates (phosphorus data were not available for all permit holders)
- 4. Employee counts

The Minnesota Department of Health (MDH), the agency that regulates the quality of drinking water supplies in Minnesota, provided a list of communities that supplement their water supply with continuous phosphate additions (for corrosion control and iron and manganese sequestration) from 2001 to 2003. The MDH list provided the water treatment facility's annual flowrate for all 360 of the systems that add phosphorus. In addition, they provided the residual phosphorus concentrations for

the 120 systems that are required to add phosphorus for corrosion control. These data were used to calculate the total phosphorus contribution to the POTWs from the municipal water supplies.

A number of Minnesota communities were contacted to obtain data or to verify information regarding their wastewater treatment facilities. The types of information provided by these communities included:

- **Industrial Phosphorus Data.** Fourteen out-state (non-metro) communities with industrial phosphorus monitoring programs were contacted and provided data on influent loadings from industrial and commercial dischargers to their wastewater treatment facilities.
- **Population Data.** Many communities were contacted to determine the population served by the wastewater treatment facility.
- **Industrial Discharge Information.** Many communities and industries were contacted to verify the type and volume of wastewater discharge from an industrial source.

The following literature sources were reviewed to obtain information on the sources and amounts of phosphorus discharged to wastewater treatment facilities:

- Chemical Economics Handbook Industrial Phosphates The handbook provides detailed information on the mass of phosphorus consumed annually in the United States for major commercial, nonagricultural phosphate chemical products. The report provided historical data for the years 1984 through 2000 and forecasted data for the year 2005 for the following major commercial products:
 - Detergent builders
 - Water supply chemicals
 - Food and beverages
 - Dentifrices (oral hygiene products)
- Metcalf and Eddy, Inc. (1991) discusses the components that make up wastewater as well as typical wastewater flowrates and characteristics.
- A number of studies were conducted in the late-1970s and early-1980s that analyzed residential wastewater. These studies segregated wastewater from toilets (human wastes), garbage disposals, dishwashing water, food soils, baths and showers, laundry discharges, and automatic dishwasher detergent, and provided typical flowrates and pollutant characteristics (including phosphorus) for each of these sources. These studies found the following to contribute phosphorus to residential wastewater:
 - Human wastes
 - Garbage disposals
 - Dishwashing water

- Food soils
- Laundry discharges (completed prior to the ban on phosphorus in laundry detergent)
- And automatic dishwasher detergent

The data were provided in terms of daily per capita use rates. It was assumed that no major changes had occurred in the estimates for human waste, garbage disposal waste, and food soils and these data were used to estimate source amounts discharged to wastewater treatment facilities.

- Ligman, Hutzler and Boyle (1974) characterized the types of wastewater generated in a domestic household. They surveyed a total of 50 rural and urban households to determine the various sources and amounts of wastewater generated from the bathroom, the kitchen and the laundry and determined that there was no statistical difference in wastewater pollutant loads for each household.
- Siegrist, Witt, and Boyle (1976) characterized waste flows from individual rural households. They found that on average human waste contains approximately 1.6 grams of phosphorus per person per day.
- Boyle, Siegrist and Saw (1982) focused on treatment of graywater, but also provided a summary of the characterization of wastewater from households.
- Strauss (2000) provided information on the nutrient concentration in human waste and determined that humans excrete in the order of 2 grams of phosphorus per day.

2.2.1.2 Approach for Determining Phosphorus Discharged to POTWs

In addition to determining the point source loading of phosphorus to surface waters in each basin from each of the three types of treatment facilities (POTWs, privately owned treatment facilities, and industrial wastewater treatment systems), the other objective was to identify the sources and estimate the amount of phosphorus discharged to POTWs. Although not required by the legislation (see Section 1.2), the sources of phosphorus and an estimate of the amount discharged into privately owned treatment works was also completed. Finally, the major types of industrial discharge categories were also identified for the industrial wastewater treatment systems. Phosphorus loading to each type of treatment facility was categorized into the primary sources that were considered important (described below).

The following individual and/or categorical sources of phosphorus were evaluated for each POTW:

- Commercial/industrial process wastewater sources (including noncontact cooling water)
- Finished water supply and water treatment chemicals (such as polyphosphate compounds or orthophosphate compounds used for corrosion control purposes)

- Industrial and institutional automatic dishwasher detergent (ADWD)
- Residential automatic dishwasher detergent
- Dentifrices
- Groundwater intrusion into sanitary sewers
- Food soils and garbage disposal wastes (food soils include waste food and beverages poured down the sink, and food washed down the drain as a result of dish rinsing and washing)
- Ingested Human wastes

The following individual and/or categorical sources of phosphorus were evaluated for each privately owned treatment facility:

- Residential automatic dishwasher detergent
- Food soils and garbage disposal wastes
- Human wastes

It was assumed that these systems were small and that no industries would be discharging to a privately owned treatment facility and that the communities served by these systems would not be on a public water supply. Therefore, the commercial/industrial process wastewater sources, finished water supply and water treatment chemicals sources, industrial and institutional automatic dishwasher detergent and groundwater intrusion into the sanitary sewers sources were assumed not to contribute to these facilities.

Because much of the information gathered during the literature search for the various components of the influent wastewater was based on per capita values, it was necessary to accurately determine the population served for each of the POTWs and privately owned wastewater treatment facilities. The population served for each facility was not readily available for all of the permitted facilities. Therefore, the following stepwise approach was taken:

- 1. When available, the population served by a treatment facility as listed in the Delta database was used, unless comments from individual wastewater treatment plant operators required a modification to the estimates.
- 2. If population data were not available from the Delta database, the population of the community corresponding to the permit was assumed to equal the population served by the WWTF, which was obtained from the MNPRO database.
- 3. Communities and the populations served by individual sewage treatment systems (ISTS, [see Appendix H]) were compared to the communities having an NPDES permit as listed in the

Delta database. If a community had both a NPDES permit to discharge to a surface water and was also listed has being served by an ISTS, the difference of the City's population and the ISTS population was used as the population served by the treatment facility. If no information was available, the permit holder was contacted to verify the population served by each system.

- 4. The complete listing of communities within the state of Minnesota as contained in the MNPRO database were compared to both the NPDES list and the unsewered communities list to verify that all communities within the state were counted. Any unaccounted community with a population greater than 1,000 was contacted to determine their disposition wastewater treatment.
- 5. Communities with a population of less than 1,000 persons that did not have an NPDES permit and were not listed in the ISTS or unsewered community databases were assumed to be served by ISTS.

A wide variety of commercial and industrial operations discharge wastewater into POTWs under terms of wastewater discharge permits. Industrial process discharge monitoring data from MCES were collected for the eight MCES facilities. In addition to the MCES data, commercial and industrial process monitoring data were collected from the cities of Luverne, Melrose, Moorhead, St. Cloud, Winona, Faribault, Glencoe, New Ulm, Owatonna, Plainview-Elgin, Rochester, Zumbrota, Mankato and Marshall. In addition to the industrial monitoring data, the NAICS code number and number of employees were also obtained. Using this information, the estimated phosphorus load per employee was calculated for the various NAICS code numbers. This information was used to estimate the industrial/commercial process wastewater component of the POTW phosphorus loads. The quantities of phosphorus discharged to the sewer system by commercial and industrial operations for which data were obtained was estimated by extrapolating discharge data to an annual total. The data obtained for the various NAICS code industries were used to estimate the Industrial and Commercial wastewater components of the POTW phosphorus loads where no data were available. An average phosphorus load per employee was then calculated for each NAICS code number. The MCES industrial information received had employee count available for most of the facilities permitted. In addition, MNPRO listed the employee count for all the industries in their database. Employee count was used as the method of adjusting the phosphorus load for the variation of industry sizes within a NAICS code number (four to six digit matches). If there was no match found at the four-digit level, then no estimate of the phosphorus contribution was made.

Phosphorus-based chemicals are sometimes used for corrosion control and metal sequestration purposes in water supply systems. The Minnesota Department of Health provided a list of community water supplies and the average residual phosphorus concentration in the water supply for

the systems that are required to monitor their phosphate additions for the years 2001 through mid-year 2003. The average residual phosphorus concentration from this data was used for each of the communities that were known to add phosphorus, but for which there was no concentration data available. Literature values (Metcalf and Eddy, 1991) indicate that, on average, 70 percent of the water supplied from a water treatment facility is discharged back into a wastewater treatment facility. The phosphorus contribution from municipal water supplies to a POTW was calculated by estimating the annual phosphorus mass used in treatment of the water supply from the MDH data and assuming 70 percent of it is discharged to the POTW.

To estimate the residential ADWD detergent component of the WWTF phosphorus loads, the 2000 data on annual phosphate utilization for ADWD detergent formulation in the United States from the SRI publication Chemical Economics Handbook - Industrial Phosphates (SRI, 2002) was used, along with the estimated U.S. population for 2000, to estimate a per capita ADWD detergent usage of 0.085 kilograms per capita per year (kg/p·yr). This use rate was applied to the population served by each of the POTWs and privately owned treatment facilities to estimate the ADWD detergent components of the phosphorus loads.

Commercial and institutional ADWD detergents are used in restaurants, cafeterias, hotels, hospitals and other institutions, etc. These facilities are not considered as part of the commercial and industrial process wastewater phosphorus contribution as discussed previously. To estimate the commercial and institutional ADWD detergent component of the influent POTW phosphorus loads, 2000 data on annual phosphate utilization for commercial and institutional ADWD detergent formulation from SRI (2002) was used, along with the estimated U.S. population for 2000, to estimate a per capita commercial and institutional ADWD detergent usage of 0.04 kg/p·yr. This per capita use rate was applied to the population served by each of the POTWs to estimate the commercial and industrial ADWD detergent components of the phosphorus loads.

Other consumer products such as scouring cleaners (Comet[®] and Ajax[®]) and home cleaners (Spic & Span[®] and Lime Away[®]) no longer contain phosphorus. Therefore, it was assumed that there was no phosphorus contribution from these products. Commercial and institutional cleaners may use phosphate-based cleaners, but it was assumed that discharge of this source would be accounted for in the industrial and commercial process wastewater component and was not categorized separately.

Several sources were reviewed to determine the phosphorus loading to WWTFs from garbage disposals and from food soils (Siegrist, 1976 and Boyle et al, 1982). For the purposes of this report, food soils are defined as waste beverages and food washed down the sink and food washed down the

sink through dish rinsing and dish washing. The most recent per capita discharge rate of 0.1895 kgP/p·yr was applied to the populations served by each of the WWTFs to determine the phosphorus loading from this source.

Dentifrices are substances such as toothpaste and denture cleaners. Using 2000 data on annual phosphate consumed from dentifrices (from SRI, 2002) and the estimated U.S. population for 2000, the estimated per capita phosphorus contribution from dentifrices was 0.0115 kg/p·yr.

An attempt was made to determine the phosphorus loading from car and truck washes, but there was not enough data available to determine either the amount of flow or the number of car washes discharging to Minnesota POTWs. In addition, since it has become common for car washes to recycle or reuse wash water, no phosphorus load estimate for this source was made in this report.

Measurable effects from inflow and infiltration (I & I) at WWTFs will depend on the age of the sewer system piping, the total length of the sewer system piping and the joint construction of the sewer pipes. An average infiltration rate was obtained from data provided by MCES, based on average annual I & I flow estimates for their eight wastewater treatment facilities. These facilities vary in size and age and were considered to be representative of the systems throughout the state. The average I & I rate was approximately 10 percent of the total influent annually for the eight Twin Cities Metropolitan Area wastewater treatment facilities operated by MCES. The phosphorus concentration in I & I was estimated from phosphorus concentration data provided by the MPCA for each of the aquifers throughout the state. An average phosphorus concentration of 0.035 mg/L was assumed to be representative of the shallow groundwater throughout the state.

Human waste-derived phosphorus was separated from the total phosphorus load to each of the POTWs and privately owned treatment systems by difference, subtracting all other estimated phosphorus contributions from the total phosphorus inflows. This value was converted to a per capita value and then used to validate the computations for each WWTF by comparing it to literature values for blackwater (ingested human waste). Literature values ranged from 1.2 grams of phosphorus per capita per day (g/p·d) (Siegrist, 1978) to 2 g/p·d (Strauss, 2000).

2.2.1.3 Approach for Determining Phosphorus Loading to Surface Waters

Data on all municipal, private and industrial and commercial dischargers were obtained from the MPCA Delta database. As a first step, the stations for each permit were reviewed to verify that a valid discharge to a surface water was occurring for each station in each permit. As a result of this review, the following stations were deleted for this study:

- 1. Stations that represented land application of wastewater,
- 2. Stations that strictly represented a stormwater runoff discharge,
- 3. Permits that had no influent and effluent flow data. It was assumed that if there was no data for either the influent or the effluent stations, that there had been no discharge from that facility.

The NPDES discharges were separated into the following categories as part of the review process:

- Domestic vs. industrial flow was verified. In a few cases, the Delta database designation was modified. For example, prisons and schools were changed from an industrial source to a domestic source
- 2. Noncontact cooling water sources were noted, and
- 3. Mine pit dewatering sources were noted

Next, the influent and effluent flowrates for the NPDES surface water permits and stations were reviewed. If only influent flow data were available from the Delta database, the effluent flow was assumed to be equal to the influent flow. Similarly, if only effluent flowrates were available from Delta, the influent flowrates were assumed to be equal to the effluent flowrates. Pond systems presented a challenge in that they discharge intermittently and, when they do, the flowrate is relatively high. For many pond systems there was no discharge information available because they had not discharged during the period of record. In other instances the average annual effluent flow from a pond system greatly exceeded the annual average influent flow, so the average annual effluent flowrate was assumed to be equal to the measured influent flowrates for pond systems. For industrial wastewater treatment systems, only effluent flow data were required for this analysis. Following flowrate database development all flowrate data were then validated. The average flowrate and standard deviation was calculated for each permit station. Permits with high standard deviations were manually reviewed to spot the general trend in discharge rates and correct obvious errors.

The approach used to determine the phosphorus loading from each of the three types of facilities to the basin is very similar and is described below. Phosphorus loads were determined by multiplying the influent and effluent flowrates by the influent and effluent phosphorus concentrations, respectively. Phosphorus concentration data was obtained from the Delta database. Since many permits do not include limits and/or monitoring requirements for phosphorus, there were no effluent phosphorus data available for these permits. In addition, many facilities that have an effluent phosphorus limit monitor only the effluent phosphorus and do not monitor the influent phosphorus concentrations. In these cases, it was necessary to estimate phosphorus concentrations from other

sources. The annual influent and effluent phosphorus loads for each wastewater treatment facility and the effluent phosphorus loads for the industrial sources for which data were available were estimated as the products of the average phosphorus concentrations and flowrates extrapolated over the monitoring period. Missing POTW and privately owned treatment facility phosphorus concentrations were estimated by assuming the calculated basin average phosphorus concentration (as described in the previous paragraph) for similar facility types. In a limited number of cases calls were made to the permittee to verify phosphorus effluent concentrations.

The various types of industries discharging phosphorus from industrial wastewater treatment systems were identified. For each industrial wastewater discharger, their North American Industry Classification System (NAICS) code number was identified. This NAICS code allowed the data to be sorted by industry type. Effluent phosphorus concentrations for industrial wastewater treatment systems that did not have monitoring data were estimated from phosphorus data for industries with like NAICS codes. Noncontact cooling water dischargers were identified through review of the NPDES permit data. When available, the amount of phosphorus in these discharges was calculated from data contained in the Delta database. For each noncontact cooling water discharge, the source of the water was identified as were additions of phosphorus-based corrosion control chemicals. In calculating the phosphorus loads associated with noncontact cooling water, reported data on discharge volumes and phosphorus concentration were used whenever they were available. However, when the phosphorus concentration of noncontact cooling water was not specified in the permit data, the source of the cooling water was determined and any information on phosphorus additives was investigated with the MPCA. If the source of the cooling water was the municipal water supply and no phosphorus was added, it was assumed that the phosphorus concentration discharged was equivalent to the municipal water supply value. If the source of the cooling water was an on-site well, the phosphorus concentration was assumed to be equal to the groundwater phosphorus concentration. Finally, if the source of the cooling water was the same body of water that received the effluent and no phosphorus was added for water treatment, it was assumed that there was no additional phosphorus load to the surface water.

2.2.2 Nonpoint Sources of Phosphorus

This section provides a discussion regarding determination of nonpoint sources of phosphorus to Minnesota watersheds. For the purposes of this analysis, nonpoint sources of phosphorus include diffuse runoff associated with rainfall and snowmelt events as well as atmospheric fallout and discharge from distinct discharge points that are not individually regulated under state and federal

pollution permit programs. Detailed discussions about the assessment of these source categories are contained in Appendices C through J.

2.2.2.1 Agricultural Runoff

Runoff from agricultural lands contributes phosphorus to surface waters primarily through rainfall and snowmelt runoff from pasture and cropland, as well as direct runoff from open feedlots. The complex nature of the source and transport factors that determine how much phosphorus might be associated with runoff from agricultural lands required that separate approaches be used to estimate phosphorus loadings to surface waters from cropland and pasture runoff, which is described in Section 2.2.2.1.1, and direct runoff from open feedlots, discussed in Section 2.2.2.1.2. Each section provides a general discussion about how the phosphorus contribution to surface waters from each source of agricultural runoff was quantified. More detailed discussions about the methodology used for each analysis is included in Appendices C and D.

2.2.2.1.1 Cropland and Pasture

A combination of transport and source factors directly influence phosphorus (P) movement from cropland and pasture to surface waters (Sharpley et al., 1993). The USDA developed a P Index that integrates both transport and source factors to identify areas vulnerable to P export (Lemunyon and Gilbert, 1993). Transport factors include the mechanisms by which P is delivered to surface waters, such as erosion and runoff. Source factors represent the amount of P available for transport, including soil test P and P applied (rate and method) in fertilizer and organic forms. The objectives of this analysis were to assess phosphorus loadings to Minnesota's ten major drainage basins from agricultural runoff and erosion, under various flow conditions, and evaluate the uncertainty of this assessment. This section discusses how the phosphorus contribution to surface waters from cropland and pasture runoff was quantified. A more detailed discussion about the methodology used for this analysis is included in Appendix C.

This analysis was accomplished by using and extending a regional phosphorus index approach published by Birr and Mulla (2001). Phosphorus index values were estimated for Minnesota watersheds and agroecoregions based on phosphorus transport and source factors such as erosion during dry, average and wet years, streamflow during dry, average and wet years, contributing distance from surface waterbodies during dry, average and wet years, soil test phosphorus, and rate and method of land applied phosphorus from fertilizer and manure. Phosphorus index values were compared with field data on phosphorus loss from four sites over five years to estimate phosphorus export conditions. Phosphorus export coefficients were multiplied by the cropland contributing area within 100 m of surface water bodies to obtain phosphorus loadings from the edge of this

contributing area. It should be noted that throughout most of Minnesota, we believe that the risks of phosphorus transport to surface waters are greatest in the contributing corridor within about 100 m from surface waterbodies. Due to topographic variations along surface waterbodies, in some areas phosphorus contributions from overland runoff and erosion may occur from as far away as several hundreds of meters. In contrast, where berms are present along waterbodies it may be unlikely for a significant amount of surface runoff or erosion to enter surface water. Thus, the 100 m contributing corridor should be viewed as a regional average for contributions of P to surface waters from runoff and erosion on adjacent cropland.

Several alternative agricultural management scenarios were investigated and compared to a baseline scenario involving an average climatic year and existing rates of adoption of conservation tillage and existing rates of phosphorus fertilizer applications. The first alternative management was a scenario in which moldboard plowing is used on all row cropland. This is a worst case scenario for erosion, and exemplifies phosphorus losses typical of an era that existed twenty or more years ago. This scenario allows us to evaluate the extent of progress in controlling phosphorus losses over the last twenty years due to improvements in tillage management. The last scenario involves decreasing or increasing the area of cropland within 100 m of surface waterbodies. Decreases in area of cropland could correspond to land retirement programs such as those promoted in the Conservation Reserve and Conservation Reserve Enhancement Programs. Increases in cropland area would correspond to putting grass or forest riparian areas into production, alternatively this could be viewed as increasing the distance for cropland areas (now assumed to be 100 m) that contribute phosphorus to surface waters.

The following sections provide an overview of the modified phosphorus index, developed at the regional scale by Birr and Mulla (2001), and an approach for revising and utilizing the modified phosphorus index to estimate phosphorus loadings from agricultural sources to each of the ten major drainage basins in Minnesota during low, high and average flow conditions.

Birr and Mulla (2001) developed a modified version of the P Index, originally developed jointly by the USDA (ARS, CSREES, and NRCS), to prioritize phosphorus loss vulnerability at the regional scale from 60 watersheds located within Minnesota. This modified (regional) version of the P Index uses readily available data associated with the transport and sources of P. Transport factors include the mechanisms by which P is delivered to surface waters, such as erosion and runoff. Source factors represent the amount of P available for transport, including soil test P and P applied (rate and

method) in fertilizer and organic forms. The following discussion describes how each of the transport and source factors were initially determined by Birr and Mulla (2001):

- Soil erosion potential was calculated using the Universal Soil Loss Equation (USLE) as outlined by Wischmeier and Smith (1978). The Minnesota state soil geographic database (STATSGO) was used to supply many of the variables needed to calculate erosion potentials for each of the watersheds (USDA, 1991). Erosion potential was calculated for each soil type within a STATSGO map unit. Rainfall runoff factors (R) for each county were based on values provided by Wischmeier and Smith (1978). The STATSGO database provided a soil erodibility factor (K) for each soil type within a STATSGO map unit. The slope-steepness factor (S) represents an average of the high and low slope values given for each soil type within a STATSGO map unit. The slope-length factor (L) was assumed to be 46 m. A 1:250,000 scale landuse/landcover coverage developed by the USGS in the late 1970s and early 1980s was used to determine erosion potentials spatially coincident with cropland and pastureland (USEPA, 1994). An erosion potential value for all cropland and pastureland within a watershed was determined using the percent of each STATSGO map unit covering a watershed. The landuse coverage did not differentiate spatially between cropland and pastureland; however, Census of Agriculture data indicate that pastureland represents about 11% of this classification category in Minnesota (National Agricultural Statistics Service, 1999). Differences in potential erosion for the two land uses were accounted for in the determination of the C factor based on the proportion of hay reported for a particular county. Cropping management factors (C) were adapted from values provided by the USDA (1975) and Wischmeier and Smith (1978) for corn, wheat, soybean, hay, sugar beet, potato, oat, and barley. The C factors were calculated for each county based on the area of each harvested crop covering the county. Watershed values for the C factors were weighted based on the proportion of the watershed that was covered by the county. The C factor calculations include crop rotation effects but not the variation in tillage effects. The conservation practice factor (P) was assumed to be 1, because it could not be accurately quantified at the regional scale. The overall erosion potential value for each watershed represents the product of the areaweighted C factor and the variables R, K, and LS for each watershed (A = RKLSCP).
- Average annual runoff values for each watershed were derived from the average annual discharge monitored from 1951 to 1985 for 327 stations distributed throughout Minnesota (Lorenz et al., 1997).

- The area of cropland and pastureland within 91.4 m of drainage ditches and perennial streams (the primary contributing corridor) was determined using hydrography coverages developed by the Minnesota Department of Transportation (1999) and the USGS (1999). The USGS landuse/landcover coverage (USEPA, 1994) was used to determine the percentage of cropland and pastureland within the 91.4 m proximity to watercourses for each watershed.
- Mean soil test P levels for each county represented a 5-yr database consisting of 22,421 Bray-1 extractable P (Brown, 1998) samples analyzed by the University of Minnesota's soil testing laboratory. Soil test P levels for each watershed were based on the area of the watershed covered by each county.
- Data for P-fertilizer sales by county were obtained from the Minnesota Department of
 Agriculture (1997). Fertilizer P values for watersheds were based on a summation of areaweighted county-based values intersecting the watersheds. The total area of fertilized land
 within each watershed was determined using the same procedure based on reported county
 values (National Agricultural Statistics Service, 1999). The aggregated fertilizer P value was
 divided by the aggregated reported fertilized land for each watershed to determine fertilizer P
 application rates.
- The P content of livestock manure was calculated based on the total number of cattle, swine, broilers, and turkeys reported within each county (Midwest Planning Service, 1985; Schmitt, 1999; National Agricultural Statistics Service, 1999). The total amount of manure P was derived for each watershed based on the summation of area-weighted county values intersecting the watersheds. The reported total cropland area was also determined using the same procedure (National Agricultural Statistics Service, 1999). The aggregated total P content of manure was normalized by the aggregated total cropland area for each watershed to determine organic P application rates.
- For the modified P Index, each site characteristic is assigned a weighting factor based upon the premise that site characteristics have a varying impact on P loss to runoff. Each site characteristic has an associated P loss rating value (very low, low, medium, high, and very high) using a base of 2 to reflect the higher potential for P loss associated with higher rating values. The P Index rating is the summation of the product of the rating value and corresponding weighting value for each site characteristic. Because P application method could not be accurately depicted at the regional scale, the highest organic and fertilizer P application method rating values were used to represent a worst-case scenario. Categories

corresponding to the rating values were derived by segregating the distribution of statewide values for each site characteristic into five classes using the quantile classification method available in ArcView software (ESRI, 2000).

This section provides an approach for revising and utilizing the modified (regional) phosphorus index (from Birr and Mulla, 2001) to estimate phosphorus loadings from agricultural sources to each of the ten major drainage basins in Minnesota during low, high and average flow conditions. The following adjustments to the modified phosphorus index computations and supplementary tasks were used to improve and update the analysis of phosphorus loading:

- The MPCA has developed and updated a feedlot inventory and manure management database (with an associated GIS coverage), based on registered feedlot data obtained from each of the counties. The total amount of manure P was derived for each agroecoregion and watershed based on the summation of area-weighted township values intersecting the agroecoregions or watersheds. The aggregated total P content of manure can then be normalized by the aggregated total cropland area for each agroecoregion or watershed to determine and revise the organic P application rates.
- Phosphorus fertilizer sales data by county for the most current crop year (2002) were
 obtained from the Minnesota Department of Agriculture and used to update this part of the
 modified phosphorus index computations based on a summation of area-weighted countybased values intersecting the agroecoregions or watersheds.
- GIS coverages for runoff volumes in each agroecoregion or watershed under average, high and low flow conditions were developed to evaluate how phosphorus export from agricultural lands would be expected to change with varying climate conditions. Runoff volumes were estimated as described in Sections 2.1 and presented in Section 3.1. In addition, rainfall runoff erosivity (R values) was estimated for the USLE for dry, average and wet years corresponding to the low, average and high flow conditions. These estimates were based on an algorithm developed for monthly precipitation data by Renard and Freimund (1994). The modified phosphorus index values and total phosphorus export were then computed for each of the agroecoregions or watersheds under high and low flow conditions, using the corresponding values for runoff volume and rainfall runoff erosivity.
- Based on farm survey data collected by the Minnesota Department of Agriculture,
 phosphorus application methods are generally much better than those assumed by Birr and

Mulla (2001). A majority of farmers apply their phosphorus fertilizer with the planter or using incorporation before crop planting. In view of this, a statewide medium loss potential was applied for method of fertilizer P application method, corresponding to fertilizer applied before the crop and incorporated immediately. An initial scenario involving a medium loss potential for the method of manure application was developed for the entire state. Subsequently, a second scenario was developed assuming variability in the loss potential associated with method of manure application. Manure P application methods vary primarily in response to the type of animal species. Manure from beef, dairy, and poultry is high in solids, while manure from hogs is high in liquid. Beef operations tend to be small in scope, have a tendency towards inadequate manure storage facilities, and manure from these operations tends to be hauled on a daily basis. Beef operations also tend to involve cattle wading in streams. Dairy operations tend to have adequate manure storage facilities, and manure is applied followed by a tillage operation to incorporate manure. Poultry operations tend to have adequate manure storage facilities, and the manure is incorporated using tillage following land application. Hog operations tend to have adequate storage facilities, and the manure is land applied using injection. In terms of the phosphorus index, this means that beef operations tend to have a very high phosphorus loss potential, dairy and poultry operations tend to have a medium loss potential, while hog operations tend to have a low loss potential. The geographic variability in phosphorus loss potential associated with these variations in method of manure application was evaluated using the number of animal units of different species from the MPCA feedlot inventory database. The effect of this variability and/or uncertainty in method of manure application was estimated using the modified phosphorus index.

• Birr and Mulla (2001) states that spatial trends in soil erosion potential observed throughout Minnesota are potentially influenced by both the underlying assumptions used in the methodology and the exclusion of factors that control soil erosion. A lack of detailed information pertaining to the spatial variation in C and P factors may have caused the spatial distribution of erosion potential values to vary more gradually across the region than is realistic. The spatial variation in the C factor of the USLE was estimated by accounting for the effects of crop rotations, the effects of conservation tillage on crop residue levels, and the effects of existing acreage of land in Conservation Reserve Program (CRP). Typically the C factor for land in CRP is 0.001 or so, while row cropland has a C factor varying from 0.05 to 0.4 depending on the rotation and the amount of crop residue present. Three scenarios were evaluated to account for the influence of tillage methods on crop residue levels remaining

after planting. These were a scenario involving conventional tillage with no residue left (worst C scenario), and a scenario involving conservation tillage leaving more than 50% of the soil covered by crop residue (best C scenario). This is not typical of existing crop rotations or tillage management systems in Minnesota, nor is it a goal of existing watershed restoration or conservation programs to achieve this high level of crop residue cover. Also estimated was a scenario for average crop residue cover (average C scenario) based on county tillage transect data for the percent of fields with conservation tillage (30% residue cover). In the average C scenario, we developed a weighted C factor based on the relative area of cropland in conservation tillage versus moldboard plowing. Data for the C factors of various crop rotations with varying levels of crop residue were estimated using tables provided by the USDA-NRCS. Thus, using information on crop rotations, crop residue levels, and acreage of land in CRP, we developed scenarios for both soil erosion by water and the modified phosphorus index involving the C factor of the USLE. Variability in the P factor of the USLE was estimated using the Local Government Annual Reporting System (LARS) database of conservation practices provided by the Board on Soil and Water Resources (BWSR). This database was edited to estimate the area of supporting conservation practices affecting the P factor implemented from 1997-present in Minnesota counties. These practices include terracing, contour strip cropping, filter strips, sediment basins, and restored wetlands. Each practice was assigned a typical P factor. Since supporting conservation practices have typically been implemented for the last 50 years, we assumed that the area where these practices were implemented was 10 times greater than the area determined using the LARS database. A county average P factor was then determined using the area weighted P factors for land with supporting practices and the land without supporting practices (P=1). The variability and/or uncertainty associated with conservation practices, such as conservation tillage, contour stripcropping, terracing, and other supporting practices was then estimated for agroecoregions and watersheds using the modified phosphorus index.

Two different approaches were tested for converting phosphorus index values to edge of field phosphorus losses to surface waters. The first method attempted to estimate phosphorus losses from the edge of field based on monitoring data for phosphorus loads in 53 Minnesota streams and rivers. This method did not successfully produce meaningful results. The second method estimated phosphorus losses from the edge of cropland fields based on export coefficients which were derived from the phosphorus index values. This is the method used for final estimates of basin wide phosphorus loadings to surface waters from the edge of cropland fields. The following discussion provides details about each methodology:

- Existing data for phosphorus loads measured by watershed water quality monitoring was summarized for 53 ditches, streams and rivers throughout Minnesota. The data was separated according to flow conditions into phosphorus loads for dry, average and wet years. Estimates for phosphorus losses discharged to surface waters in the same watersheds from nonagricultural rural, streambank erosion, and point sources of phosphorus were also obtained. The monitored phosphorus loads were adjusted by subtracting the losses from nonagricultural rural and point sources of phosphorus, and by subtracting half of the phosphorus losses from streambank erosion. Only half of the streambank erosion losses were subtracted because much of the sediment from streambank erosion is transported as bedload, which is not measured in most water quality monitoring studies. The remaining phosphorus loadings were then divided by the area of cropland within 91 m of streams and ditches to provide an estimate of the potential phosphorus losses from the edge of cropland fields. The resulting adjusted phosphorus yields were not very consistent with expected results, and were not deemed meaningful. Many of the adjusted phosphorus yields were negative in dry years because the point source loadings were larger than the monitored phosphorus loadings in the watershed. This could be due to phosphorus uptake by algae or plants. In wet years the adjusted phosphorus yields exhibited a huge range, from nearly zero to several hundreds of kg P/ha. This was most likely the result of several factors. The first factor is that the phosphorus monitoring load data were collected using a variety of methods, ranging from grab samples to automated water quality sampling. The second is that the monitored loads were collected over different lengths of time, ranging from a single season to multiple years. The third factor is that the adjusted phosphorus losses were not corrected to account for contributions of phosphorus from ISTS, atmospheric deposition, or urban runoff. This led to unrealistically high adjusted phosphorus loads during average and wet years. The fourth factor is that the phosphorus delivery ratio from each non-agricultural source should be varied by source and by flow regime when adjusting the monitored loads. For example, the delivery ratio for streambank erosion (assumed to be 0.5) would vary with flow regime. As a result, this approach for estimating edge of field phosphorus losses from agricultural sources was not used.
- Birr et al. (2002) found that there is a strong linear correlation (r² =0.82) between a version of the modified phosphorus index values (from Birr and Mulla, 2001) and the pathway (or field scale) phosphorus index values. The modified phosphorus index values are typically thirteen times higher than the pathway phosphorus index values. Similarly, there is a strong linear correlation between the estimated pathway phosphorus index values and the observed

phosphorus export (expressed in kg/ha/yr) at the field scale. The pathway phosphorus index values are typically five times higher than the total phosphorus export, at the field scale (Mulla, 2003). This suggests that we can estimate phosphorus losses from the edge of cropland fields by dividing the phosphorus index results by a factor of approximately 65. This gives an estimate of the losses of total phosphorus to surface waters from cropland and pastureland in units of kg/ha/yr, which represents the phosphorus export coefficient for agricultural land. Since the version of the modified phosphorus index used in this study is slightly different from the one used by Birr et al. (2002), we decided to develop a relationship between the phosphorus index and the phosphorus export coefficient using phosphorus loss data compiled from University of Minnesota research at four sites in or near Minnesota. The sites are located near Morris, Minnesota (Ginting et al., 1998), Lancaster, Wisconsin (Munyankusi, 1999), and two sites in Scott County, Minnesota (Hansen et al., 2001). These sites involved measurements of total phosphorus losses from the edge of agricultural fields (typically a corn and soybean rotation) ranging in area from 0.5 to 1.6 ha. Data from these sites were collected between 1996 and 2000. Two of these years experienced average climatic conditions, two were a little wetter than average, and one was a little drier than average. Fields were treated using a range of tillage and manure management methods. The tillage treatments included moldboard plowing, chisel plowing, ridge tillage, and no-tillage. Manure treatments included no manure, heavy rates of manure, and variations in timing of manure application. Total phosphorus losses from the fourteen individual treatments at these four sites ranged from 0.1 to 2.3 kg/ha/yr, with an average of 0.68 kg/ha/yr in total phosphorus loss from the edge of field. The counties where these four research sites are located have a range of tillage practices, with the percent of farmland having at least 30% crop residue cover ranging from about 47% in Scott and Stevens counties to about 64% of cropland with at least 30% residue cover in Houston county, the nearest county in Minnesota to Lancaster, Wisconsin. The phosphorus index values for an average climatic year and the existing residue cover adoption rates indicated above are 24, 32, and 43 in the Chippewa, Root and Lower Minnesota watersheds, respectively. If we take the P Index values for each watershed and divide them by the average phosphorus losses for the study sites in that watershed, the resulting conversion factor (or divisor) is 78. If on the other hand, we take the average phosphorus index value for these three regions of 33 and divide this by the average phosphorus loss from the edge of field in these experiments at four sites (0.68 kg/ha), we obtain 48.5 as the conversion factor between the phosphorus index and the phosphorus losses from the edge of field. This conversion factor is somewhat lower than both the conversion

factor of 65 initially obtained using the relationship between the matrix and pathway versions of the phosphorus index, and the conversion factor of 78 obtained by averaging the divisors obtained for each watershed. Taking the divisor of 48.5 as the most realistic estimate for the conversion factor, and rounding this conversion factor up to 50 for significant digits, we then divided all the phosphorus index values for each watershed and agroecoregion in Minnesota by 50 to obtain phosphorus export coefficients. The resulting phosphorus export coefficients for an average year are 0.43 kg/ha/yr for major watersheds and 0.44 kg/ha/yr for agroecoregions. For wet years the export coefficients are 0.65 kg/ha/yr for watersheds and 0.68 kg/ha/yr for agroecoregions. For dry years the export coefficients are 0.21 kg/ha/yr for watersheds and 0.22 kg/ha/yr for agroecoregions. According to Heiskary and Wilson (1994), recommended phosphorus export coefficients for Minnesota agricultural lands are 0.2, 0.4, or 0.6 kg/ha/yr for low, mid, and high export risk conditions. Hence, our statewide average export coefficients for low, mid, and high export risk conditions (0.21, 0.43, and 0.65 kg/ha/yr) compare favorably with those recommended by Heiskary and Wilson (1994).

The procedure for estimating basin wide loads of phosphorus exported from the edge of agricultural fields is to multiply the export coefficients described above by the area of cropland within a distance of 100 m of surface water bodies (perennial and intermittent streams, ditches, wetlands, and lakes). On average, about 32% of all cropland lies within this distance of surface water bodies statewide, with a range of from 21 to 52% in major river basins. This procedure accounts for the variability in risk of phosphorus loss from the edge of field due to climatic effects as well as the variability in soil, management and hydrologic factors. Variability in the phosphorus index values across the state are translated into variability in phosphorus losses from the edge of field using the export coefficient. On top of this, we added another 10% to the phosphorus loadings to account for contributions from cropland farther than 100 m from surface waterbodies. This is consistent with results from research conducted by Sharpley et al. (1994), Daniel et al. (1994) and Gburek et al. (2000), who concluded (in SERA-17, 2004) that only 10% of the phosphorus loadings to surface waters from overland transport on agricultural lands arise from outside the primary contributing corridor (100 m or farther from surface water bodies). The added 10% does not include additional phosphorus contributions that arise from surface tile inlets or subsurface tile drains. As previously discussed, we believe that the risks of phosphorus transport to surface waters are greatest in the contributing corridor within about 100 m from surface waterbodies. Due to topographic variations along surface waterbodies, in some areas phosphorus contributions from overland runoff and erosion may occur from as far away as several hundreds of meters. In contrast, where berms are present along waterbodies it may be unlikely for a significant amount of surface runoff or erosion to enter surface water. Thus, the 100 m

contributing corridor should be viewed as a regional average for contributions of P to surface waters from runoff and erosion on adjacent cropland.

As mentioned above, the current methods of estimation do not consider the influence that surface tile intakes farther than 100 m may have on phosphorus loadings. To include the effects of surface tile intakes we would need to know the number of tile intakes per unit area, the area of cropland contributing to tile intake flow, and the phosphorus export coefficients for surface tile intakes. These data are not available for Minnesota in enough detail to be confident about their representativeness. Since depressional areas around tile inlets generally trap 60-80% of the sediment and phosphorus flowing to the inlets, the phosphorus export coefficient for surface tile intakes is smaller than that for direct overland flow to surface waters (Ginting et al., 2000). Ginting et al. (2000) studied phosphorus loads carried by surface tile intakes in two small catchments located in the Watonwan watershed of the Minnesota River basin. They found that, over a three year period with slightly below precipitation amounts, phosphorus loads carried by surface tile intakes averaged 0.099 kg/ha annually, with measured concentrations of phosphorus in surface tile intakes as high as 4 mg/L. This loading (0.099 kg/ha) is significantly smaller than the amounts of phosphorus transported by surface runoff and erosion in the same region (0.68 kg/ha). There were three surface tile intakes studied by Ginting et al. (2000), and the average phosphorus load transported by each tile intake annually was 2.82 kg/yr. Surveys of surface tile intake density in 32 small watersheds within the Minnesota River basin (MPCA, 1994) show that there is one surface tile intake for every 23 to 1210 acres in the watershed. The average is one surface tile intake for every 100 or so watershed acres (the acreage that actually contributes to surface tile intake P loads is smaller than this, but few data exist to know what the contributing acreage actually is). If we assume that there is one surface tile intake for every 100 acres within the poorly drained soils of the Minnesota River basin, we estimate that there are roughly 33,333 surface tile intakes in the basin. Assuming a phosphorus load of 2.8 kg/yr for each tile intake, the total phosphorus loading from surface tile intakes to surface water bodies in the Minnesota River basin would result in 94,000 kg per year. This is approximately 18% of the phosphorus loading from cropland within 100 m of surface waters in the Minnesota River basin during an average year (517,862 kg/yr).

Similarly, the current methods do not consider the influence of subsurface tile drainage on phosphorus export to surface waters. Randall et al. (2000) studied losses of phosphorus in subsurface drainage in a four year manure and fertilizer study on a Webster clay loam typical of the poorly drained soils in the Minnesota River basin. According to Randall et al. (2000), on average over half of the drainage flows carry non-detectable amounts of phosphorus. The remainder of drainage flows

have a concentration of total phosphorus averaging about 0.03 mg/L (with maximum observed concentrations of about 0.12 mg/L), for an average annual loss of 0.027 kg P/ha. If this rate is applied to the area of cropland in the Minnesota River basin having tile drainage, it gives a phosphorus loading of about 30,000 kg/yr, which is quite small (6% of total) compared to the phosphorus loading from cropland within 100 m of surface waters during an average year (517,862 kg/yr). Subsurface drainage phosphorus loads from other major basins would be much smaller, because tile drainage is of limited extent in basins other than the Minnesota River basin. The plains of the Cedar, Lower Mississippi and the southern watersheds in the Upper Mississippi River basins have similar geomorphology, precipitation and land uses that would also control drainage practices, but no attempt was made to quantify the phosphorus loads from subsurface drainage in these basins as part of this analysis. The phosphorus loadings from subsurface tile drains collected by Randall et al. (2000) are the only data published in peer reviewed journals from Minnesota studies. Other studies of phosphorus losses in Minnesota subsurface tile drainage include those conducted by Alexander and Magdalene (1998) from 1995 to 1997 at the Rollings East Tile (RET) site, and by the Minnesota Department of Agriculture from 1998 to 2001 at the Red Top farm, both of which are located in the Minnesota River basin. The study by Alexander and Magdalene (1998) does not estimate phosphorus loadings from subsurface tile drainage, instead, it reports only the concentrations of phosphorus measured. The concentrations of phosphorus measured in subsurface tile drainage by Alexander and Magdalene (1998) are very comparable in seven out of ten storms they monitored to the concentrations measured by Randall et al. (2000) over a four year period. In two other storms monitored by Alexander and Magdalene (1998), the phosphorus concentrations ranged between 0.42 and 1.5 mg/L, much higher than those measured by Randall et al. (2000). At the Red Top farm study, based on 9 field years of water quality monitoring data for average climatic years, the annual average phosphorus loading from subsurface tile drains was 0.11 kg/ha. These larger field drainage systems were constructed of concrete tiles which differ from the smaller plot based plastic drain tiles studied by Randall et al. (2000). Based on this comparison, we conclude that more research is needed to accurately define the mean and range in phosphorus loading from subsurface drainage tiles in the Minnesota River basin. Not enough research data are available to reliably estimate the phosphorus loadings from surface tile intakes or subsurface tile drains to surface waters in the Minnesota River basin during dry or wet climatic years. As a first approximation, we can scale the phosphorus loadings from tile drains so that they have the same relative ratio as the phosphorus index based loadings for the Minnesota River basin in dry, average and wet years (262,851; 517,862; and 759,749 kg/yr, respectively). This gives phosphorus loadings from subsurface tile drains of 15,227 kg/yr during dry years and 44,013 kg/yr during wet years. Using the same approach, phosphorus loadings from

surface tile inlets during dry and wet years would be 47,711 and 137,906 kg/yr, respectively. As previously discussed, this approach substantially overestimates the phosphorus loadings in dry years.

2.2.2.1.2 Feedlot Runoff

The primary way that feedlots contribute phosphorus to surface waters, apart from land application of manure, is through open lot runoff during precipitation and snowmelt events. Overall, a small fraction of the total manure phosphorus generated at feedlots enters waters during precipitation and snowmelt events. Many feedlots do not have an open lot because they keep animals inside the barn most or all of the time, while many of those with outdoor open lots collect runoff in impoundments or treat the runoff as it passes through downslope vegetation. Yet many feedlots still maintain open lots. This section discusses how the phosphorus contribution to surface waters from feedlot runoff was quantified. A more detailed discussion about the methodology used for this analysis is included in Appendix D.

Most of this manure phosphorus (P) generated will be applied to cropland. However, a fraction of the manure P can be lost in feedlot runoff during precipitation or snowmelt events. Most feedlots with open lot runoff are from smaller beef, dairy and swine feedlots, with much fewer instances of non-compliance observed for moderate and large sized feedlots (Mulla et al., 2001). Phosphorus runoff loading from open lot feedlots can be estimated with a feedlot evaluation model developed in Minnesota (Young et al., 1982). The (FLEval) model was developed to estimate pollutant loadings at the feedlot edge and to account for any contaminant retention/treatment that occurs in downslope vegetation and cropland. The Board of Water and Soil Resources developed an equation to estimate annual loadings and annual runoff from the FLEval model predictions. The model predicted that between 0.1 and 1.1 percent of phosphorus generated at feedlots with inadequate runoff controls will enter surface waters.

The following discussion summarizes the steps taken to develop estimates of P loading to surface waters from open lot runoff:

- **Step 1.** Determine the number of beef, dairy and swine animal units found at all feedlots with open lots (excluding feedlots with 1000 or more animal units).
 - **Step 2.** Multiply the results in step 1 by the annual manure P generated by each type of livestock. This provides P generated by livestock in all open lots.
 - **Step 3**. Multiply the results in step 2 by the estimated percentage of open lot feedlots that contribute phosphorus during certain storm events. This provides P generated by livestock at feedlots that contribute P to waters.

Step 4. Multiply the results in step 3 by the typical fraction of P that is lost to surface waters during low, average and high flow years. This provides the estimated P loading to surface waters from open lots.

A more detailed discussion of the results of each of the above steps is included in Appendix D. The results of each of the calculations for the 4 steps is shown and discussed in Section 3.3.2.2.

2.2.2.2 Atmospheric Deposition

Phosphorus in the atmosphere can be derived from a number of sources, including natural sources such as pollen, soil (from wind erosion) and forest fires, as well as anthropogenic sources such as fertilizer application and oil and coal combustion. Agricultural activities (pre-planting field preparations, harvesting) can increase the amount of soil-derived phosphorus in the atmosphere. Phosphorus can also be released into the atmosphere in vapor form from various materials (sewage sludge, landfills) by microbial reduction processes. The atmosphere contributes phosphorus and phosphorus-containing material to terrestrial and aquatic ecosystems by wet (precipitation in various forms such as rain, sleet or snow) and dry (very small particles) deposition. This section provides a general discussion about the methodology used to quantify the amount of phosphorus entering surface waters from this source category. A more detailed discussion of the methodology used for this analysis is included in Appendix E. The results of the phosphorus loading computations for this source are discussed in Section 3.3.3.

A literature review indicated that limited data are available from Minnesota sources to estimate phosphorus deposition to the surface waters. The previous best source of information for precipitation input (wet deposition) of phosphorus to Minnesota watersheds is Verry and Timmons (1977). No data on dry deposition of phosphorus in Minnesota was identified. The following sources of data were considered to be the best available for providing estimates of atmospheric phosphorus inputs to Minnesota's surface waters.

MPCA:

- Nutrient (including phosphorus) and metal concentrations in precipitation from a special study conducted from August 1999 to September 2001 at four monitoring sites in Minnesota
- 2. PM10 air concentrations determined from particulate filters and elemental speciation of the PM10 mass by X-ray Fluorescence (XRF) analysis for the 30 sites included in the Statewide Air Toxics Monitoring Study (1996-2001).

National Atmospheric Deposition Program (NADP):

- 1. Annual volume weighted calcium concentrations in precipitation for the period of record from NADP sites located in, and adjacent to, Minnesota.
- 2. Monthly volume weighted calcium concentrations for four sites (Fernberg, Marcell, Camp Ripley, Lamberton) for use in establishing the relationship between phosphorus and calcium in precipitation for NADP sites.

Minnesota Department of Natural Resources, State Climatology Office: Annual normal precipitation amount for each river basin basis was obtained from the State Climatology Office.

The phosphorus concentrations from the special study, along with NADP calcium data, were used to derive the relationship between phosphorus and calcium in precipitation for the four NADP monitoring sites. The relationship between phosphorus and calcium in precipitation at these four NADP sites was then applied to the entire state.

Data files for PM10 air concentrations and elemental speciation of the PM10 mass by XRF analysis were obtained from the MPCA for the 30 sites included in the Statewide Air Toxics Monitoring Study (1996-2001). The two key parameters to be obtained from the particulate filters were calcium and phosphorus concentrations. Calcium concentrations were typically available for each sampling period. However, upon review of the individual site data files, phosphorus concentrations were not available, so an alternative method for deriving phosphorus concentrations for the particle filters was employed for this analysis. This alternative method assumes that the relationship between phosphorus and calcium in precipitation is transferable to the particulate filter data (i.e., the same material being washed out in the precipitation is the same material being dry deposited and collected on the particulate filters). The critical assumptions and the details of calculating phosphorus air concentrations from the particulate filter data is further described in Appendix E.

2.2.2.2.1 Dry Deposition

The following steps were taken to estimate the areal phosphorus deposition rate from dry fallout:

- 1. Establishing the relationship between phosphorus and calcium on particle filters.
 - a. The relationship of phosphorus and calcium on the particle filters is assumed to be the same as the relationship of phosphorus and calcium in precipitation; the soil dust being washed out in precipitation is the same dust being dry deposited and collected on the PM10 filters.
 - b. The best source of phosphorus and calcium in precipitation data is the special study conducted by the St. Croix Watershed Research Station. The total phosphorus and

calcium concentrations (hereafter denoted as total [P]) and total [Ca] in precipitation data) were determined from August 1991 – September 2001 at 4 sites: Fernberg (Ely), Marcell, Camp Ripley, Lamberton; referred to as "reference sites".

c. The relationship on a sample-by-sample basis (milligrams per square meter; mg/m²) between total [P] and total [Ca] in precipitation at the 4 reference sites was established through regression analysis:

$$y = 0.0289x$$
 (through zero) ($R^2 = 0.42$)

Where: y = Total phosphorus in micrograms per square meter $(\mu g/m^2)$ x = Total calcium in $\mu g/m^2$.

- 2. Extrapolating the relationship of [P] and [Ca] from precipitation to the particulate filters.
 - a. Since the regression equation for [P] and [Ca] in precipitation goes through zero, this regression equation can be applied to data from other media under the assumption that the ratio is the same (i.e., particulate filter data) without having to convert units. Essentially forcing the regression equation through zero creates a ratio of [P] to [Ca] that can be applied to other data.
 - b. In this regard, the regression equation from above can be modified as follows for application to the particle filter data.

$$y = 0.0289x$$
 (through zero) ($R^2 = 0.42$)

Where: $y = \text{Total phosphorus in micrograms per square meter cubic meter } (\mu g/m^3)$ $x = \text{Total calcium in } \mu g/m^3$.

- 3. Estimating [P] in air at the MPCA's air monitoring locations.
 - a. The regression equation from 2.b. was then used to estimate [P] in ambient air at the MPCA air monitoring sites. Annual [Ca] concentrations in micrograms per cubic meter were calculated for each monitoring site based on the individual sample [Ca] concentrations. The annual average [Ca] in air is then used in the regression equation to derive an estimate of annual average [P] in air.
- 4. Calculating dry phosphorus deposition
 - a. Monitoring sites locations were mapped with respect to basin boundaries:

Cedar River: Albert Lea

Des Moines River: Pipestone

Lake Superior: Virginia (2 sites), Duluth (2), Silver Bay, Hibbing

Minnesota River: North Mankato, Brandon Township, Granite Falls, Willmar,

Swift County

Mississippi (Upper) St. Paul (3), Minneapolis (3), Bemidji, Elk River, Fort Ripley, Alexandria, Hutchinson, St. Cloud, St. Michael, Grand Rapids, Little Falls

Mississippi (Lower): Rochester, Goodhue County, Apple Valley, Winona

Missouri River: Pipestone

Rainy River: Warroad, International Falls
Red River: Fergus Falls, Moorhead, Perham

St. Croix River: West Lakeland, Pine County (Sandstone)

- b. Calculation components for phosphorus deposition in a basin:
 - Estimated phosphorus air concentration; if more than one site assigned to a basin then the average phosphorus in air concentration used in the deposition calculation.
 - The estimated phosphorus air concentration (or the average phosphorus air concentration if more than one site is in a basin) is to be split into two size fractions based on MPCA collocated PM10 and PM2.5 samplers (average from 5 sites):

42% fine fraction (< 2.5 microns)
58% coarse fraction

• A deposition velocity for each particle size fraction was estimated based on the information from Meyers (2003):

Fine fraction deposition velocity = 0.5 centimeters per second (cm/s); Coarse fraction deposition velocity = 3 cm/s.

- The coarse and fine particle deposition is summed together to provide a "total" particle deposition estimate.
- Conversion factors: convert seconds to years, cm to meters, and μg/m³ to kg/ha.

The reader should note that for the dry deposition estimate, no adjustments were made in the estimation of dry deposition in a dry or a wet year; data are not available at this time to derive estimates of dry deposition during different precipitation regimes. The dry deposition rates were applied to area estimates of surface waters (open water + wetland as designated in USGS NLCD GIS coverage) in each basin.

2.2.2.2.2 Wet Deposition

The following steps were taken to estimate the areal phosphorus deposition rate from wet deposition:

- 1. Establishing the relationship between phosphorus and calcium in precipitation.
 - a. NADP routinely analyzes rain samples for pH, alkalinity, major cations (including calcium and potassium) and major anions (including sulfate, nitrate). Since calcium concentrations are available for all samples that were analyzed, and calcium is a signature for soil contributions, the relationship between phosphorus and calcium would need to be established. The use of NADP data also provides some consistency in the data used for estimating wet phosphorus deposition.
 - b. The best source of phosphorus in precipitation data is the special study conducted by the St. Croix Watershed Research Station. The total phosphorus concentrations (hereafter denoted as total [P]) in precipitation data) determined from August 1991 September 2001 at 4 sites: Fernberg (Ely), Marcell, Camp Ripley, Lamberton; referred to as "reference sites". The special study also provided measurements on total [Ca] in precipitation.
 - c. An initial analysis identified that the total [Ca] from the special study was approximately two times greater than the [Ca] reported by NADP for the same time period. The NADP does not acidify samples; therefore the NADP reports dissolved [Ca]. To compensate for NADP reporting dissolved [Ca], and to provide the best estimate of [P] in precipitation from the auxiliary (NADP) sites, it was determined that the relationship between [P] and [Ca] in precipitation should be determined by using the total [P] concentrations from the special study conducted by the St. Croix Watershed Research Station and the dissolved [Ca] reported by NADP for these same "reference" sites.
 - d. The volume-weighted relationship on a sample-by-sample basis between total [P] in precipitation and dissolved [Ca] in precipitation from NADP at these same reference sites (collocated sampling occurred) was established by MPCA staff (Dr. Ed Swain, 2003) through regression analysis:

$$y = 0.0671x - 0.4586 \quad (R^2 = 0.47)$$
 Where:
$$y = \text{Total phosphorus in micrograms per liter } (\mu g/L)$$

$$x = \text{NADP calcium (dissolved) in } \mu g/L.$$

- 2. Extrapolating the relationship of [P] and [Ca] in precipitation to other locations.
 - a. The regression analysis based on total [P] and dissolved [Ca] concentrations for the reference sites was then used to estimate [P] in precipitation at other NADP monitoring sites (referred to as "auxiliary sites"). Annual volume-weighted [Ca] in precipitation data (annual volume weighted average) were obtained for the auxiliary sites from NADP and the regression equation from above was then used to estimate total [P] in precipitation for each auxiliary site.

b. The auxiliary monitoring sites will supplement the information from the reference sites in calculating wet phosphorus deposition to specific basins.

3. Calculating wet phosphorus deposition

a. Monitoring sites locations were mapped with respect to basin boundaries and assignments to watershed made based on site locations:

Cedar River: Lamberton

Des Moines River: Lamberton

Lake Superior: Hovland, Wolf Ridge, Fond du Lac

Minnesota River: Lamberton

Mississippi (Upper): Marcell, Camp Ripley, Cedar Creek

Mississippi (Lower): Wildcat Mountain

Missouri River: Lamberton

Rainy River: Voyageurs Nat. Park, Marcell, Fernberg

Red River: Icelandic State Park

St. Croix River: Grindstone Lake, Cedar Creek

b. Calculation components for phosphorus deposition in a basin:

o Annual average precipitation for the basin (obtained from State Climatology Office)

- [P] in precipitation (annual, volume weighted average; measured at one of the reference sites or estimated for one of the auxiliary sites; if more than one site assigned to a basin then the average [P] in precipitation used in the deposition calculation)
- Area estimate (hectares or acres) of open surface water (surface water + wetland as designated in GIS) in a basin.

2.2.2.3 Deicing Agents

The use of deicing chemicals has increased in the U.S. since the 1940s and 1950s to provide "bare pavement" for safe and efficient winter transportation. As more and more transportation agencies adopted the "bare pavement" policy, the use of salt, salt and sand mixtures, liquid brines and alternative deicers increased with the need to maintain this standard for pavement conditions during inclement weather. Other road agencies in Minnesota such as cities, townships and counties use deicing agents to maintain a similar standard for pavement conditions during inclement weather. The search for alternatives to salt for road deicing has been prompted primarily due to the infrastructure corrosion concerns and the impacts of chloride on water quality and vegetation. Recently, some limited research has documented water quality concerns related to phosphorus and other chemicals present in deicing agents, as well as the alternative compounds. This section provides a general

discussion about the methodology used to quantify the amount of phosphorus entering surface waters from this source category. A more detailed discussion of the methodology used for this analysis is included in Appendix F. The results of the phosphorus loading computations for this source are discussed in Section 3.3.4.

Review of the existing scientific literature with regard to deicing agents as a phosphorus source was concerned with three major areas; 1) usage patterns of deicing agents in Minnesota and other states with regard to road types and road management agency, 2) the phosphorus content of deicing agents – salt, sand, and deicing alternatives, and 3) the impact of weather patterns on usage levels.

Phosphorus loading computations were primarily based upon the MnDOT data sources as this was the most detailed data set and extended over the longest time period. Loading calculations for TCMA counties were obtained from published data and other road types were extrapolated using the MnDOT data trends, applications rates and deicing mixtures. The MnDOT database was the most comprehensive and most useful in determining application rates across the range of conditions for wet, dry and average years. The applications rates for each MnDOT District, and thus for each basin, is based upon the use of statewide averages based upon their relationship to snowfall amounts over a winter. Application rates for salt and sand were then adjusted to account for the wet, dry and average conditions based upon the ratios derived from the 1971 – 2003 time period and the relationship between the years of detailed information provided in the Salt Solutions Report and MnDOT's Work Management System Reports (SRF Consulting Group, 1998; MnDOT, 2003). The use of brine for deicing has increased in recent years, but the period of record for its application is limited and thus 2002 rates were used in the calculations as insufficient data was available to attempt to adjust for year-to-year variability in its application rate.

MnDOT's road classes (service levels) were used to further define the application assumptions for the mix ratios of deicers used on the three road types maintained by MnDOT. Based upon an examination of the 2003 – 02 deicer usage report the total salt plus sand application, in tons per lane mile, was modified for the three types of roads maintained by MnDOT (MnDOT, 2003).

- 01 Interstate Trunk Highway uses a 100% salt assumption (assuming "super commuter" service level)
- 02 U.S. Trunk Highway uses a 70% salt assumption (assuming "urban commuter" service level)

03 - Minnesota Trunk Highway – uses a 50% salt assumption (assuming "rural commuter" service level)

County and local road agency specific data was less readily available for use in this analysis, except for the TCMA counties. An analysis was undertaken using the 1994 – 1997 data available for the TCMA to develop usage rates for the County State Aid Highway (CSAH) system. The TCMA deicer usage rates were summarized based upon average conditions (1994 – 95) for both salt and sand usage on a lane mile basis. The 1995 – 1997 period was used for calculation of the wet year conditions. The dry year conditions were used based upon the 90th percentile summary statistics. These usage numbers were applied to all CSAH miles across the state as they were viewed as the more heavily traveled and thus more highly maintained roads in both the TCMA and out-state areas. Deicer usage rates for other county highways and local roads were developed based upon an even smaller database of actual usage rates. As such, the usage rates for the "rural" counties in the TCMA – Scott, Carver and Chisago counties – were used to develop usage rates for other roads included in this analysis. An analysis was undertaken using the 1994 – 1997 data available for these TCMA in manner consistent with the CSAH analysis described above.

As the concern over and documentation of the environmental impacts of deicing agents has increased, a number of authors and agencies have attempted to document the concentrations of other elements or compounds of concern that are introduced into the environment through road deicing. This analysis summarized and utilized the phosphorus concentrations from these analyses of the various deicers.

As a review of existing literature was undertaken it became obvious that the application rates and mixtures of deicers used are strongly predicated by weather conditions. An examination of the MnDOT records indicated that the number of "events" per season appeared to be the driving factor in the quantities of material applied. The high variability in the number of events between regions of the state in any given year, as well the year-to-year variability in the number of events precluded the use of events in this analysis. The MnDOT application guidelines provided some insight into how the variations in weather patterns impacted usage levels by counties and local units of government. Based upon an assessment of the snow data and usage levels provided by MnDOT for the period of 1971 to 2003 the amount of winter snow was used as a surrogate for the number of events. The winter snow fall amount at MSP Airport was used to define average, dry (low snowfall – 90th percentile) and wet (10th percentile) conditions.

2.2.2.4 Streambank Erosion

The stability of stream channels is a complex issue that is highly influenced by the dynamics of natural and anthropogenic disturbances. The banks of unstable streams typically undergo erosion, both in the form of particle detachment from hydrodynamic drag and mass failure following erosion of the bank toe. The phosphorus attached to eroded streambank material is immediately delivered to the receiving water where it may ultimately become available for biologic uptake, re-deposited downstream, or transported with the flow out of the system. This section provides a general discussion about the methodology used to quantify the amount of phosphorus entering surface waters from streambank erosion. A more detailed discussion of the methodology used for this analysis is included in Appendix G. The results of the phosphorus loading computations for this source are discussed in Section 3.3.5.

Simon and Hupp (1986) developed a six-stage, semi-quantitative model of channel evolution in disturbed channels, for bed-level trends, that qualitatively recognizes bank slope development. The third and fourth stages represent stream degradation, characterized by the lowering of the channel bed and basal erosion, with a subsequent increase in bank heights and slopes, leading to masswasting from slab, pop-out and deep-seated rotational failure.

Several researchers have determined that the stream sediment load is proportional to stream discharge (Lane, 1955; Glysson, 1987; Tornes, 1986; Kuhnle and Simon, 2000; Syvitski et al., 2000). Instantaneous flow and sediment transport data are used to develop sediment-transport rating curves, which are typically based on logarithmic regression relationships. A steep regressed slope to the rating relationship indicates both high sediment availability and high transport capacity. The slope of the suspended-sediment rating relationship varies (Simon, 1989a; Simon et al., 2003), depending upon the stage of channel evolution. Simon (1989a) determined that the highest slope of the suspended-sediment rating relationship corresponds to the stream stages (III and IV) that are undergoing the highest degree of degradation. Migration of knickpoints (or vertical step-changes in bed surface elevation) up tributary streams during Stage III, and bank failures by mass wasting during Stage IV, both serve to significantly increase sediment yield (Simon, 1989a). For restabilized streams (Stage VI), the slope of the suspended-sediment rating relation is approximately 1.5, as opposed to 1.0 for "natural" streams (Stage I).

The approach used to assess this source of phosphorus utilized the data and techniques from the available literature to estimate total phosphorus loadings to the surface waters within each of the ten major basins in Minnesota. The literature search and review of available monitoring data involved a

compilation of streambank erosion studies completed within Minnesota, along with an evaluation of the literature pertaining to sediment yield from Minnesota watersheds, to define the contribution of streambank erosion to the total phosphorus budget. Wherever possible, streambank erosion studies completed for Minnesota streams were used to determine the phosphorus load under low, average and high flow conditions for the respective basins. Sediment yield literature specific to the various regions of the state was consulted to develop an approach and assist with the assessment of the remaining unstudied watersheds.

Five published studies were found that specifically addressed streambank erosion for streams that originate in Minnesota. Wherever possible, average annual streambank sediment erosion, average annual erosion per stream mile, slope of suspended sediment rating relation, sediment erosion as a percentage of observed downstream suspended solids loading, and EPA Level III Ecoregion were expressed for each stream studied. Most of the estimates of streambank sediment erosion were the result of stream channel surveys (including aerial photos) to evaluate streambank retreat (or migration) and eroding bank area to determine the average annual volume of material eroded. One study (Sekely et al., 2002) also produced a probability plot of annual streambank erosion rates.

In addition to the streambank sediment erosion studies, two regional studies have been completed involving sediment yield data for Minnesota watersheds (Tornes, 1986; Simon et al., 2003). Tornes (1986) analyzed the average annual sediment yield data for 33 USGS gaging stations, in or adjacent to Minnesota, while Simon et al. (2003) determined sediment yield, on the basis of the 1.5-year recurrence interval flow rate, for each of the EPA Level III Ecoregions. Tornes (1986) determined the average annual sediment yield for each of the gaging stations by developing sediment-transport curves for each of the stations and applying the relationships to flow-duration curves to calculate and sum the sediment loadings at each interval. Simon et al. (2003) determined sediment yield quartiles, minimum, and maximum yields, on the basis of the 1.5-year recurrence interval (or effective discharge) flow rate, for each of the EPA Level III Ecoregions.

The approach for determining phosphorus loading from streambank erosion generally involved the following steps:

- Convert published streambank erosion estimates into average annual sediment yield
- Using the published sediment-transport curves from Tornes (1986), determine the relationship between average annual sediment yield and the slope of the sediment-transport curve segment containing the 1.5-year recurrence interval flow rate, as a surrogate for the effective discharge

- Apply average annual sediment yields from published streambank erosion estimates and Tornes (1986) to respective watershed units in GIS and determine average annual areaweighted monitored sediment yield for each of the EPA Level III Ecoregions in Minnesota
- Compare average annual monitored sediment yield for each of the EPA Level III Ecoregions in Minnesota to the effective discharge rate sediment yields published by Simon et al. (2003) for the same ecoregions and make adjustments, if necessary
- Apply average annual sediment yield for each of the EPA Level III Ecoregions to the
 unmonitored portions of the state and estimate streambank sediment erosion component based
 on difference between average annual sediment yield for ecoregion and estimated annual
 sediment yield for stable (Stage VI) stream, with slope of suspended sediment rating relation
 equal to 1.5 (per Simon, 1989a)
- Estimate annual streambank sediment erosion for all watersheds under low and high flow conditions, based on the probability plot relationship (taken from Sekely et al., 2002) of annual streambank erosion rates
- Combine the streambank erosion sediment loadings associated with each watershed with the
 average soil test phosphorus concentration (based on 16 surface samples collected from Blue
 Earth River escarpments, as described in Sekely et al., 2002) to calculate the total phosphorus
 load associated with sediment loading estimated from streambank erosion in each basin for
 each flow condition

2.2.2.5 Individual Sewage Treatment Systems/Unsewered Communities

"Undersewered" areas are communities or residential areas which have a crude sewage collection system with little or no treatment component and/or have individual systems which are non-conforming. Individual sewage treatment system (ISTS) refers to a sewage treatment and disposal system located on a property, using subsurface soil treatment and disposal for an individual home or establishment. MPCA (2002a) states that most undersewered communities and many failing septic systems outside of undersewered areas have relatively direct connections to surface waters through tiles lines and road ditches, resulting in a very high delivery potential. "Failing" ISTS are specifically defined as systems that are failing to protect groundwater from contamination, while those systems which discharge partially treated sewage to the ground surface, road ditches, tile lines, and directly into streams, rivers and lakes are considered an imminent threat to public health and safety (ITPHS). This section provides a general discussion about the methodology used to quantify the amount of phosphorus

entering surface waters from the ISTS/unsewered communities source category. A more detailed discussion of the methodology used for this analysis is included in Appendix H. The results of the phosphorus loading computations for this source are discussed in Section 3.3.6.

The conventional ISTS consists primarily of a septic tank and a soil absorption field. Septic tanks remove most settleable and floatable material and function as an anaerobic bioreactor that promotes partial digestion of retained organic matter (EPA, 2002). Septic tank effluent, which contains significant concentrations of pathogens and nutrients, has traditionally been discharged to soil, sand, or other media absorption fields for further treatment through biological processes, adsorption, filtration, and infiltration into underlying soils which are suitable for treatment and disposal. Phosphorus is present in significant concentrations in most wastewaters treated by ISTS. Monitoring below ISTS systems has shown that the amount of phosphorus leached to groundwater below an operating ISTS depends on several factors: the characteristics of the soil, the thickness of the unsaturated zone through which the wastewater percolates, the applied loading rate, and the age of the system (EPA, 2002). The amount of phosphorus in ground water varies from background concentrations to concentrations comparable to that of septic tank effluent. Phosphorus export to surface waters from ISTS and unsewered communities is dependent on the following factors:

- Phosphorus content of waste load
- Population served by ISTS or unsewered communities
- Compliance of treatment systems with performance standards
- Characteristics of soil absorption field, groundwater conditions and proximity to surface waters

Data pertaining to the phosphorus content of the untreated waste load from unsewered communities was addressed in the Point Sources Technical Memorandum (Appendix B), prepared for this project. For the purposes of this analysis, the phosphorus contained in untreated sewage discharge from non-conforming ISTS or unsewered communities consists of the following sources, with the corresponding per capita loadings of phosphorus (see Appendices B and H):

Source	Phosphorus Load (kg/cap/yr)
Automatic dishwasher detergent	0.1250
Dentifrices	0.0115
Food soils and garbage disposal wastes	0.1895
Ingested Human wastes	0.5585
Total	0.8845

Dentifrices include toothpaste and other dental care products. Food soils include waste food and beverages poured down the sink, and food washed down the drain as a result of dish rinsing and washing. The total per capita phosphorus load of 0.8845 kg/yr (1.946 lbs/cap/yr), was assumed to apply to the population served by ISTS or unsewered communities throughout the state.

The number of people served by ISTS was estimated from a variety of data sources. Two of the data sources were spreadsheets provided by the Minnesota Pollution Control Agency, another was the 1990 Census (United States Census Bureau, 1990), and the last was estimated based on the POTW population served from the Point Sources Technical Memorandum (Appendix B). This last method using the difference between the 2000 Census (United States Census Bureau, 2000) population and the POTW population served were used in the study to estimate phosphorus loadings from ISTS. This data showed good consistency with the other data available for ISTS in Minnesota. By using the third method, a total accounting of domestic waste disposal is provided in this study.

The MPCA developed a spreadsheet, updated in September, 2003, providing a list of unsewered communities within Minnesota (MPCA, 2003). The major basin for each of these communities was estimated by assigning an approximate geographic location based on a city, township, lake/county, or township-range-section location (whichever provided the most detailed location).

The Minnesota River basin had a significant number of households served by sewage treatment systems that involved direct discharge to a tile drain line (Tetra Tech, 2002). The majority of these systems, referred to as direct-to-tile ISTS, include a septic tank with no other treatment. Assuming that most of the direct-to-tile ISTS are located in rural areas with tile lines, Tetra Tech (2002) extracted data from the Minnesota River Assessment Project, or MRAP (MPCA, 1994), to develop a

relationship between the number of direct-to-tile ISTS and cropland. The ISTS densities and cropland were then mapped by minor watersheds across the Minnesota River basin. The geographic trend in density was assumed to be consistent with the MRAP designations for three nutrient source regions, and the average density of direct-to-tile ISTS per 10,000 acres of cropland was determined for each source region. For this analysis, the assumptions about direct-to-tile ISTS density per 10,000 acres of cropland for each source region were retained for the Minnesota River basin. Since no assessments of direct-to-tile ISTS had been published for any other basins in Minnesota, several of the minor watersheds in surrounding basins were assumed to have direct-to-tile ISTS densities comparable to the three Source Regions, based on knowledge of the presence of drain tiles, cropland and their proximity to the MRAP study areas. The amount of cropland and area of each Source Region was determined and multiplied to determine the total number of direct-to-tile systems for each basin. The population served by direct-to-tile ISTS was estimated by multiplying the number of systems by the average household size for each basin.

The MPCA maintained a spreadsheet with the number of ISTS by local units of governments (LUG) with ISTS ordinances in 2002 (MPCA, 2002). Included in the spreadsheet was the LUG name and type (e.g. city, township or county). An estimate of the number of full time and seasonal residences served by ISTS was included in the spreadsheet. There was also an estimate of the number of systems failing to protect groundwater and an estimate for the number of systems which are considered an ITPHS. The population served was estimated by multiplying the number of full time residences by the population per household values (for the 2000 census) for the LUG's respective county.

Based on the availability of data and the potential for variation in phosphorus export from undersewered communities and the various types of conforming and nonconforming ISTS, phosphorus loadings were estimated for each of the following source categories:

- Unsewered communities
- Direct-to-tile ISTS
- Conforming and nonconforming seasonal ISTS
- Remaining conforming and nonconforming ISTS

The populations associated with unsewered communities and direct-to-tile ISTS in each basin were assumed to receive treatment from septic tanks before discharging to surface waters. The number of

seasonal residences had also been estimated in the MPCA ISTS LUG spreadsheet (MPCA, 2002). Since no data was available for the population served by seasonal ISTS, a household size of 2.1 was assumed and applied to the number of seasonal residences in each basin. No literature was found, so it was assumed that seasonal residences are occupied for four months each year. It was further assumed that, since seasonal residences are typically located in close proximity to surface waters, nonconforming ISTS (both failing and ITPHS) would contribute all of the 43 percent of phosphorus passing through a septic tank to surface waters. Conforming seasonal ISTS were assumed to remove 80 percent of the total phosphorus loading, due to treatment from the septic tank and soil absorption field, before discharging to surface waters in each basin.

Since most of the permanent residences are not typically located as close in proximity to surface waters as seasonal residences, it was assumed that both fully conforming and failing ISTS would provide higher phosphorus attenuation for permanent residences than what was assumed for seasonal residences. Conforming ISTS were assumed to remove 90 percent of the overall total phosphorus loading, while failing ISTS were assumed to remove 70 percent of the overall total phosphorus loading, before discharging to surface waters in each basin. The nonconforming ISTS, considered an ITPHS, were assumed to be contributing all of the 43 percent of phosphorus passing through a septic tank to surface waters.

2.2.2.6 Non-Agricultural Rural Runoff

Section 2.2.2.1 discusses the methods used to estimate the phosphorus loadings associated runoff from agricultural lands, while Section 2.2.2.7 describes the methodology used to quantify the amount of phosphorus in runoff from urban land cover types. This section provides a general discussion about the methodology used to quantify the amount of phosphorus entering surface waters in runoff from unincorporated areas that are not considered agricultural land cover types (referred to as non-agricultural rural). The major natural land cover types included in the non-agricultural rural land use group are forests (coniferous, deciduous and mixed), grasslands and shrublands. Rural residential areas, transportation infrastructure, and other typically urban land uses such as residential and commercial developed areas outside the boundaries of incorporated urban areas are also included in this assessment. A more detailed discussion of the methodology used for this analysis is included in Appendix I. The results of the phosphorus loading computations for this source are discussed in Section 3.3.7.

Within some of the major basins of Minnesota, forests and grasslands still cover up to 60% of the watershed area. The hydrologic cycling of annual precipitation in natural vegetation moves most of

the water to infiltration and thus promotes stable stream base flows and reduces surface runoff. In natural plant communities, much of the phosphorus pool is retained within the plant community and the soil profile, with plant biomass creation, senescence and subsequent decomposition processes cycling nutrients back into the soil profile. The high soil infiltration rates in these plant communities lead to low surface runoff rates and little soil loss via erosion, and thus low rates of nutrient export to surface waters. In most cases the surface runoff rates are less than 10% of the annual precipitation for these plant communities and phosphorus export rates are below 0.169 kilograms of phosphorus per hectare per year (0.151 pounds per acre per year).

The scientific literature was reviewed to determine the hydrologic regimes, nutrient cycling mechanisms and phosphorus loading factors for each of the land cover types included in the Non-Agricultural Rural Runoff category. The hydrologic and nutrient export relationships examined for the rural land cover types are generally discussed in this section, while the hydrologic and nutrient export relationships for rural residential and commercial/industrial/transportation land cover types are discussed in Section 2.2.2.7.

Interception of rainfall occurs at multiple levels within the forest – tree canopy, tree and shrub layer stems, shrub canopy, herbaceous layer and ground litter – to reduce overland flows (Brooks, et al, 2003; Verry 1976). Other authors have reported little or no overland flow from intact deciduous or coniferous forests due to interception (Binkley, 2001; Knighton and Steigler, 1980; Metcalfe and Butle, 1999; Verry, 1969).

While a fair amount of literature exists on forest hydrology and nutrients, comparable literature for shrublands and grasslands is much less extensive. Many authors suggest that runoff rates and nutrient exports form these communities are low, however the supporting evidence is limited. Brye, et al. (2000) and Brye, et al. (2002) evaluated the water and phosphorus budgets of a restored prairie near Madison WI. The authors reported that rainfall interception by plant residue was a significant component of the annual water budget (nearly 70%). Higher soil storage and ET rates led to lower soil drainage and runoff volumes. Runoff volumes were 11% to 18% of the water budget, with a mean of 14.5% for the test plots. Snowmelt was responsible for nearly all of the runoff volumes. Timmons and Holt (1977) reported that phosphorus losses from grasslands to be in a range of 0.100 kg P/ha/yr to 0.250 kg P/ha/yr, with a phosphorus concentration in runoff of 0.200 mg P/L. Using the water budget data from Brye, et al (2000) and Brye, et al (2002) and phosphorus concentration data from Timmons and Holt (1977), an export loading rate of 0.169 kg P/ha/yr for ecoregion VIII was calculated. Using the water budget information from Winter and Carr (1980), Winter, et al,

(2001), Winter, Rosenberry (1995 and 1998) and Shjeflo (1968) and concentration data from USACE (2001), a phosphorus export of 0.060 kg P/ha/yr was calculated for ecoregion VI. Data from Olness, et al (1988) and Menzel, et al (1978) provided an export rate 0.175 kg P/ha/yr for grassland pasture.

A search of the literature provided no reported shrubland phosphorus export rates (Holechek, et al, 1977; Dodds, et al, 1996: Burke, et al, 1990). Most shrublands are composed of a herbaceous layer of grasses and forbs with a sparse over story of trees and/or low shrubs. MN DNR (1993) and Leach and Givnish (1999) suggest that many of the hydrologic and ecologic attributes of forest and prairie communities are present in shrublands. Low runoff rates, high annual evapotranspiration and limited nutrient losses of the two shrubland community components provide a basis to conclude that shrublands are intermediate with regard to phosphorus export. Based upon these assumptions, the nutrient export rate for shrubland was determined from the average of the grassland and deciduous forest communities. The calculated value used for this assessment is 0.129 kg P/ha/yr.

This investigation of phosphorus loadings from non-agricultural rural land uses draws upon ecoregion-based loading and export rates for phosphorus in Minnesota. The use of ecoregions allows the similarities in underlying ecological conditions to be aggregated across basin boundaries and state boundaries to develop accurate estimates of loadings. Ecoregions are defined as regions of relative homogeneity in ecological systems, such that geographic characteristics such as soils, vegetation, climate, geology, and land cover are relatively similar within the bounds of each ecoregion (Omernik, 2000). The US EPA has developed generalized "nutrient Ecoregions" that are aggregations of the Level III Ecoregions (EPA 2000d, EPA 2000e). Within Minnesota there are three EPA Level III Aggregate Ecoregions (shown in Figure 2, Appendix I). As the number of phosphorus export studies completed in Minnesota is relatively small, the use of export rates from the larger Level III aggregate regions provides a wider data set that can be extrapolated across the basins (MPCA, 2003).

The Corn Belt and Northern Great Plains – Aggregate Ecoregion VI – is comprised of rolling plains and flat lake beds, dominated by extensive, highly productive cropland (EPA, 2000a). Nutrient-rich soils significantly influence surface and subsurface water quality and high concentrations of nitrate and phosphorus cause water quality problems in many basins. The Mostly Glaciated Dairy Region – Aggregate Ecoregion VII – is dominated by forests, dairy operations, and livestock farming (EPA, 2000b). This ecoregion was mostly glaciated and includes flat lake plains, rolling till plains, hummocky stagnation moraines, hills, and low mountains. The Nutrient Poor Largely Glaciated Upper Midwest and Northeast – Aggregate Ecoregion VIII – is characterized by extensive forests,

nutrient-poor soils, a short growing season, limited cropland, and many marshes, swamps, lakes, and streams.

An assessment was completed on the literature values for phosphorus export rates to examine any differences between the three aggregate level ecoregions. The literature data was statistically summarized, where available, and the ecoregion mean value was determined for each plant community. These values were used for the phosphorus load calculations.

For the purposes of defining and quantifying the phosphorus loads to Minnesota basins, the non-agricultural rural land uses within these three Aggregate Ecoregions were classified and enumerated using the USGS National Land Cover Data (NLCD). The National Land Cover Data Set for the Conterminous United States is derived from the Landsat thematic mapper data system (Vogelmann, 2001). The NLCD cover classes included in the non-agricultural rural category include the following:

- Unincorporated Urban Areas
 - Low intensity residential (outside incorporated urban areas)
 - High intensity residential (outside incorporated urban areas)
 - o Commercial/Industrial/Transportation (outside incorporated urban areas)
- Deciduous Forest
- Evergreen Forest
- Mixed Forest
- Shrubland
- Grasslands/Herbaceous
- Urban / Recreational Grasses
- Other
 - o Quarries/Strip Mines/Gravel Pits
 - o Transitional

The development of nutrient loading estimates in the absence of direct monitoring has generally been completed by applying areal based nutrient export rates to the watershed area to calculate the annual nutrient mass (Beaulac and Reckhow, 1982: Reckhow, et al, 1980; Panuska and Lillie, 1995; Clesceri, et al, 1986a; Clesceri, et al, 1986b; McFarland and Hauck, 2001). Phosphorus export coefficients assume 100% of the land transports phosphorus that will reach surface waters. The phosphorus export coefficient is part of the total phosphorus loading equation:

$$L = \sum_{i=1}^{m} c_i \bullet A_i$$

L is total phosphorus loading from land (in kilograms per year), m is number of land use types, c_i is the phosphorus export coefficient for land use i (in kilograms per hectare per year), and A_i is area of land use i (in hectares).

Over large watershed areas, the phosphorus export is not proportional to watershed area and some attenuation of phosphorus occurs, especially in natural vegetation that have low runoff rates. Recently, authors who have examined the nutrient export issue on landscape level scales (large watersheds and higher order streams) have raised concerns over the applicability of export coefficients across large watershed areas (Birr and Mulla, 2001; Cammermeyer, et al, 1999; Johnson and gage, 1997; Jones, et al, 2001; Mattson and Isaac, 1999; McFarland and Hauck, 1998; Richards, et al, 2001; Sharpley, et al, 1993; Soranno, et al, 1996; Worrall and Burt, 1999). The underlying issue related to this concern is that not all areas in a large watershed contribute nutrients and sediment equally. Novotny and Chester (1989) showed that the sediment delivery rate decreases with increasing watershed size. They report that in humid regions only a portion of a watershed contributes to surface runoff; they called these contributory areas of a watershed the "hydrologically active areas". Soranno, et al. (1996) and Cammermeyer, et al, (1999) suggest two adjustments to account for the attenuation by including a transmission coefficient (T) that represents the proportion of phosphorus transported down slope along the path of overland flow and a phosphorus flux coefficient (f_i) , that represents the phosphorus production and transport that reaches a surface water body. While this equation applies more strictly to watershed modeling with GIS software, the underlying premises apply directly to the loading assessment methodology used here. The authors suggest that the phosphorus loading equation can be modified:

$$L = \sum_{i=1}^{m} \sum_{y=1}^{n} f_i \bullet A_{y,i} \bullet T_i^y$$

T is the transmission coefficient (O<T<1) representing the proportion of phosphorus transported, f_i is the phosphorus flux coefficient, n is the number of pixels, and p is the pixel distance of overland flow.

Soranno, et al (1996) reported that the greatest contribution of loadings was derived from land uses within the riparian corridor, a corridor that varies in width depending upon topography and runoff conditions. Based upon modeling of monitored watersheds they found that the total annual rainfall

affected the phosphorus loading by creating variability as to the effective contributory area. In most cases, the transmission coefficient is determined through GIS modeling of the watershed area. The GIS-based development of transmission coefficients for use in this assessment was beyond the scope of the project. In the absence of a calculated T, an estimate of the contributory area of a watershed based upon land use and the application of a basin runoff factors were chosen for the load calculations. The basin runoff factor accounts for the differences in effective flow length and thus runoff volumes between the three precipitation scenarios (Soranno et al, 1996; Cammermeyer, et al, 1999; Barr Engineering, 2003b). The phosphorus loading estimation methodology used in this assessment assumes that c_i will be equal to f_i through the use of calculated loadings from the 100 meter contributory areas only.

The phenomenon of contributory area and variability in nutrient mass over a range of flow scenarios is a central question to the estimation of large basin loads. The literature was reviewed for a consensus on the size of this contributory area and the impact of hydrologic conditions upon the size and export estimation. Novotny and Chester (1989) calibrated and verified hydrologic models for a number of Milwaukee area basins and found that sediment delivery ratios ranged from 0.01 for pervious areas and 1.0 for completely storm-sewered urban areas. Johnson, et al (1997) found that landscape factors within the 100 meter ecotone adjacent to streams were sufficient predictors of stream water chemistry. Tufford, *et al*, (1998) reported that the land within 150 meters of streams was a better predictor of nutrient concentrations. Many authors have suggested that riparian land cover within 100 meters can mediate upslope impacts on water quality (Schmitt, et al, 1999; Cole et al, 1997; Castelle, et al, 1994; Roth, et al, 1996; Osborne and Kovacic, 1993).

Based upon the literature review conclusion that the 100 meter riparian zone has the greatest influence on water chemistry, we have chosen to estimate phosphorus loads from the 100 meter zone of land use immediately adjacent to perennial streams, lakes and wetlands in all of the basins. It should be noted that throughout most of Minnesota, it is believed that the risks of phosphorus transport to surface waters are greatest in the contributing corridor within about 100 m from surface waterbodies. Due to topographic variations along surface waterbodies, in some areas phosphorus contributions from overland runoff and erosion may occur from as far away as several hundreds of meters. In contrast, where berms are present along waterbodies it may be unlikely for a significant amount of surface runoff or erosion to enter surface water. Thus, the 100 m contributing corridor should be viewed as a regional average for contributions of phosphorus to surface waters from runoff and erosion on adjacent lands.

The NLCD land use coverage for the non-agricultural rural was determined using ArcView to create land cover quantities for all lands within 100 meters of all surface waters (as defined in Section 1.4.1). This 100 meter wide area was used for the calculation of the effective contributory area for each land cover types for each basin.

The phosphorus load for each land use was calculated by multiplying the phosphorus export coefficient by the 100 m contributory area and basin runoff factor for each land use category. The basin runoff factor is based upon the percent differences between runoff in the wet and dry precipitation scenarios compared to the average conditions for each basin. This information was generated from the calculation of runoff volumes as part of the basin hydrology (discussed in Sections 2.1 and 3.1). Use of the basin runoff factor and contributory watershed area for loading calculations, allowed for the following adjustment of the loadings based upon the annual runoff:

Basin natural area load (kg) = Export rate (kg/ha/yr) * Contributory area (ha) * Basin runoff factor

2.2.2.7 Urban Runoff

The conversion of land areas to urban land uses leads to changes in watershed hydrology and pollutant load rates. The areal increase in impervious surfaces in urban areas over undeveloped rural and natural land uses leads to greater surface water runoff volumes. The increased runoff coupled with human activities increases the types of pollutants and delivery rate of these pollutants to surface waters. Impermeable surfaces shed water as surface runoff, lowering the infiltration and evapotranspiration components of the hydrologic cycle. Surface runoff is generally directed to storm sewers and other conveyance systems to rapidly move the large volumes to receiving waters and prevent flooding. This section provides a general discussion about the methodology used to quantify the amount of phosphorus entering surface waters from urban runoff. A more detailed discussion of the methodology used for this analysis is included in Appendix J. The results of the phosphorus loading computations for this source are discussed in Section 3.3.8.

The methodology used for this analysis involved review of the literature to document urban runoff quality in Minnesota, determining the extent of each urban land cover type present within each basin, and calculating the variation of the estimated phosphorus loadings under each flow condition. It was apparent from the literature review that the quality and quantity of the data available was insufficient for the use of quantifying basin-specific data for this assessment. The need to quantify phosphorus loadings across basins with regard to three different hydrologic conditions (low, average and high

flow conditions) required that a method be developed to model phosphorus loadings with regard to land use and hydrologic conditions. The scientific literature was thus reviewed to determine the hydrologic regimes, nutrient cycling mechanisms and phosphorus loading factors for each of the urban land cover categories.

In an attempt to determine the range of phosphorus concentrations in urban runoff, the summary data was reviewed and the site specific data from previous or ongoing monitoring studies was examined. The available monitoring data included a combination of flow-weighted mean or event mean concentrations, expressed as median, geometric or arithmetic means. The inconsistency in data reporting limited the use of many of the data sets found during the literature review process. Schwartz and Naiman (1999) suggest using the mean concentration as the representative concentration introduces significant bias into the annual load estimates and report that the use of flow-weighted mean concentration (FWMC) provides an unbiased estimate of annual load. Data collected in the literature review, chosen for inclusion in the database, had to meet the following criteria:

- Phosphorus data was collected for the duration of individual storm events and was reported as Event Mean Concentration (EMC)
- Numerous samples had to be collected at the same monitoring location throughout a given year
- Land use was either reported in adequate detail or land use could be determined using ArcView with delineated watersheds and USGS National Land Cover Data (NLCD)
- A large fraction of the runoff generated from a monitored watershed was not routed through storm water treatment BMPs such as detention ponds

Precipitation data was also gathered from the rain gage nearest to the chosen monitoring sites. Driver and Tasker (1990) found that, in developing linear regression equations for the estimation of storm water loads, the total storm rainfall and total contributory drainage area were the most significant factors, while impervious area, land-use and mean annual climatic characteristics were also significant. The high level of correlation between land use type and effective impervious area has also been noted by many investigators (Schueler, 1987; Driver and Tasker, 1990; Beaulac and Rechkow, 1982). Likewise nutrient loadings increase with increasing impervious surface area, most likely due to the ease of washoff and transport in curb and gutter systems and on other hard surfaces

(Brezonik, et al, 2002; Schueler, 1994). Higher impervious percentage watersheds yield lower phosphorus concentrations, but the larger volume of water leads to the higher phosphorus loading rates (Bannerman, et al, 1992; Swenson, 1998; Beaulac and Rechkow, 1982). McFarland and Hauck (2001) suggest that use of multiple regression analysis using measured flows and water quality data for heterogeneous land uses allows the estimation of loads that represent average conditions accurately. For this assessment, an evaluation was completed for the monitoring data collected at the same location for multiple years and under different hydrologic conditions. This data showed that the concentration of phosphorus in stormwater at the same site is often higher during dry years compared to an average year, and is lower during a wet year compared to an average year. From the available studies that had multiple years of monitoring data, a ratio was developed by dividing the concentration of total phosphorus in runoff for a wet year by the average year, and by dividing the concentration of total phosphorus in runoff for a dry year by the average year. Overall, the wet to average ratio was 0.8 and the dry to average ratio was 1.18. To quantify the relationship between annual precipitation, land use (the four urban NLCD land uses: low intensity residential, high intensity residential, commercial-industrial-transportation, and urban recreational grasses), impervious percentage, and the annual flow-weighted total phosphorus concentration, single variable and multivariate linear regressions were performed, based on estimated impervious percentages for each land cover type. There was a significant relationship between annual flow-weighted mean total phosphorus concentration, impervious percentage, and annual precipitation.

Export coefficients are commonly reported according to land use and are developed during a given year under a particular hydrologic condition (Beaulac and Reckhow, 1982: Reckhow, et al, 1980; Panuska and Lillie, 1995; Clesceri, et al, 1986a; Clesceri, et al, 1986b; McFarland and Hauck, 2001). In some cases the export coefficient is adjusted to reflect a normal climatic year. The most common approach to estimating loads is based upon Schueler's (1987) regression of rainfall runoff volume and percentage imperviousness of a watershed combined with a flow-weighted mean concentration. The equation is widely used for loading estimates and is used in this assessment to determine runoff coefficient based upon impervious percentage:

Runoff coefficient (R_v) = 0.05 + 0.009 (Impervious Percentage)

The pollutant load is calculated by multiplying runoff volume with the pollutant concentration to obtain a mass load. For the purposes of defining and quantifying the phosphorus loads to Minnesota basins, the land uses within incorporated areas were classified and enumerated using the USGS National Land Cover Data (NLCD). The National Land Cover Data Set for the Conterminous United

States is derived from the Landsat thematic mapper data system (Vogelmann, 2001). The NLDC cover classes included in the land uses within incorporated areas assessed are:

- Urban Developed Areas
 - o Low intensity residential
 - o High intensity residential
 - o Commercial/Industrial/Transportation
- Deciduous Forest
- Evergreen Forest
- Mixed Forest
- Shrubland
- Grasslands/Herbaceous
- Urban / Recreational Grasses
- Agricultural lands
 - o Pasture/Hay
 - o Row Crops
 - o Small Grains
- Other
 - o Quarries/Strip Mines/Gravel Pits
 - o Transitional (new development)

The percent imperviousness applied to each of these urban land uses and then used in calculation of the runoff coefficient for this assessment are as follows:

Land cover class	Percent impervious
Low intensity residential	32%
High intensity residential	42%
Commercial/Industrial/Transportation	57%
Urban / Recreational Grasses	32%
Transitional	57%

(adapted from Zielinski, 2002 and analysis of TCMA GIS coverage)

For this assessment, all of the developed urban uses are assumed to have storm water conveyance systems in place – minimally drainage ditches and conveyance channels up to full curb and gutter with piping. The number of acres for each of the four developed urban land uses was determined for the incorporated areas in each of the ten basins. To calculate the expected concentration of total phosphorus in urban runoff for each basin, the average percent imperious area for the four developed

urban land uses (high and low intensity residential, commercial/industrial/transportation and urban/recreational grasses) in each basin and the annual precipitation for the dry, average, and wet year were used as inputs to the regression model.

Phosphorus loading from the four developed urban land uses in each basin was then calculated according to the following equation:

Basin load = Concentration * Contributory area * Runoff coefficient * Annual Rainfall Depth

where: concentration is based upon the concentration regression equations developed for urban runoff in each of the basins,

contributory area is equal to the total area for each land use class,

runoff coefficient = 0.05 + 0.009 * impervious percentage,

annual rainfall depth is the annual precipitation for the loading flow condition scenario by basin.

The phosphorus load for each of the other non-agricultural land uses within incorporated areas were calculated by multiplying the phosphorus export coefficient by the contributory area and basin runoff factor, as described in Section 2.2.2.6. Phosphorus loads from agricultural land uses within incorporated areas were calculated using the same methodology as for the remaining agricultural areas statewide, as described in Section 2.2.2.1.

2.2.3 Bioavailability of Phosphorus by Source

The purpose of this section is to provide a discussion about the bioavailable fraction of phosphorus from individual point and nonpoint sources of phosphorus. A more detailed discussion of the methodology and results of this analysis are included in Appendix K. The results of the bioavailable phosphorus determinations for each source category are also presented in Section 3.2. This discussion is based on a review of the available literature and the results of POTW-specific and basin-specific sampling and analysis. This section is intended to:

- Provide an introduction to the forms of phosphorus in the aquatic environment
- Describe the results of the literature review for each category of point and nonpoint sources

- Present the results of POTW-specific and basin-specific sampling and analysis for bioavailable phosphorus
- Compare and summarize estimates of bioavailable phosphorus fraction for each source type

2.2.3.1 Forms of Phosphorus in the Aquatic Environment

In general, bioavailable phosphorus is defined as the portion of the total phosphorus in surface waters that is available for plant growth. Excess bioavailable phosphorus in freshwater systems can result in accelerated plant growth. Phosphorus is the principal nutrient causing excessive growth of algae and other aquatic plants in Minnesota's surface waters.

Phosphorus exists in water in either a dissolved phase or a particulate phase. Dissolved phosphorus in natural waters is usually found in the form of phosphates (PO₄-3). Dissolved phosphates exist in three forms: inorganic (commonly referred to as orthophosphate or soluble reactive phosphorus- SRP), inorganic polyphosphate (or metaphosphate) and organically bound phosphate. Particulate phosphorus contains phosphorus sorbed to inorganic (mineral) and organic particles, including phosphorus contained within algae. Dissolved inorganic phosphate (orthophosphate) is the form required by plants for growth. The analytical procedure for measuring total phosphorus, which includes a sulfuric acid extraction, accounts for all forms of phosphorus, both dissolved and particulate, including phosphorus contained in algae.

Orthophosphates are immediately available in the aquatic environment for algal uptake. Natural processes produce orthophosphates, but major man-influenced sources include: partially treated and untreated sewage; runoff from agricultural sites; and application of some lawn fertilizers. Orthophosphate concentrations in a water body vary widely over short periods of time as plants take it up and release it. Polyphosphates are used for treating boiler waters and in detergents. Also, polyphosphates are used in drinking water treatment in many municipalities. In water, polyphosphates are unstable and will eventually convert to orthophosphate and become available for plant uptake.

Organic phosphates (particulate and dissolved) are bound or tied up in plant or animal tissue, waste solids, or associated with other organic matter. Organic phosphates are formed primarily by biological processes. They are contributed to sewage by body waste and food residues, and also may be formed from orthophosphates in biological treatment processes or by receiving water biota. After decomposition, the organic form can be converted to orthophosphate as a result of microbially-induced mineralization of phosphorus-containing organic matter.

Not all forms of phosphorus are utilized to the same degree or at the same rate by plants and microbial communities. Association of phosphorus with particulate or organic matter reduces bioavailability; such forms of phosphorus are immediately unavailable for uptake by algae. While a significant amount of phosphorus can enter water bodies in an immediately unavailable form, there is the potential for this unavailable phosphorus to undergo physical or chemical cycling processes that may convert it (all or partially) to the readily bioavailable form of phosphorus, orthophosphate. For example, the decomposition of organic matter by microbial activities can result in mineralization of phosphorus to orthophosphate. Desorption or dissolution of particle-associated phosphate represents another mechanism of conversion from unavailable to bioavailable forms.

DePinto *et al.* (1986) characterized phosphorus into three forms: orthophosphate – immediately bioavailable for algal uptake; external ultimately-available phosphorus – not immediately available but ultimately converted to orthophosphate at a specific rate; and external refractory phosphorus – not available while in the water column. Total bioavailable phosphorus is then comprised of orthophosphate and the external ultimately-available phosphorus. It is indeed the bioavailable phosphorus that affects the algal production in the aquatic environment in combination with other nutrients (e.g. nitrogen and silicon), light, and temperature.

Different sources provide water bodies with a variety of the forms of phosphorus described above, in variable proportions. Phosphorus in lakes and streams comes from both point and nonpoint sources. Point sources are typically publicly-owned wastewater treatment plants (POTWs) and permitted industrial discharges. Phosphorus discharged from wastewater treatment plants may come into the plant from a variety of sources. Nonpoint sources are typically polluted runoff from cities and farmland, erosion and sedimentation, atmospheric deposition, direct input by animals and wildlife, and natural decomposition of rocks and minerals.

A comprehensive literature search and review was conducted to compile available information on the bioavailable phosphorus fractions of individual point and nonpoint sources of phosphorus to surface waters. The results of this literature review are presented in the following discussion.

2.2.3.2 Bioavailable Phosphorus in POTW Effluent

The bioavailable phosphorus fraction in POTW effluent is generally assumed to be high compared to that of other sources to surface waters (Lee *et al.*, 1980). Young *et al.* (1982) sampled the effluent from four municipal treatment plants in the vicinity of the Great Lakes during the summer of 1979 for bioavailable phosphorus. They conducted bioassays where measurement of phosphorus taken up

by *Scenedesmus* sp. provided the measure of bioavailable phosphorus fraction. They developed a series of relationships among different forms of phosphorus.

On average, 82% of the dissolved phosphorus was bioavailable in the short term (less than 30 days from sample collection). Orthophosphate was a major component of the dissolved phosphorus (69% on average). Moreover, the regression coefficient relating bioavailable dissolved phosphorus to orthophosphate was unity, indicating that the orthophosphate fraction was totally available.

For particulate phosphorus, they found that the bioavailable particulate phosphorus correlated closely with the total particulate phosphorus fractions. On average (with the samples taken from the effluent of the four wastewater treatment plants), 55% of the total particulate phosphorus was bioavailable in the short term (again, less than 30 days).

The ultimately bioavailable dissolved phosphorus (became bioavailable after 30 days) represented approximately 99 percent of the total dissolved phosphorus. The ultimately bioavailable particulate phosphorus was approximately 63 percent of the total particulate phosphorus.

Data from the wastewater treatment plants indicated that 83% of the total wastewater phosphorus in those effluent samples was ultimately available.

In addition to the information gathered from the literature review, effluent from eight Minnesota POTWs was sampled between October 13 and October 17, 2003. The samples were analyzed for total phosphorus and orthophosphate. The ultimately bioavailable particulate phosphorus was estimated using the relationship developed by Young *et al.* (1982) described above. The results of this analysis are presented in Table 2-2. The bioavailable phosphorus fraction in these samples ranged from 75-96%, with an average of 85.5%, which is typical for POTW effluents based on the results of the literature review. Measured particulate phosphorus concentrations also are consistent with expected range based on the literature. Chemical and biological phosphorus removal is implemented at all of these POTWs with the exception of Albert Lea and Wilmar. Albert Lea and Wilmar also have industrial discharges to the POTW that contain high phosphorus levels.

Table 2-2 Estimated Bioavailable Phosphorus (BAP) Fractions of Samples Collected from the Final Effluent of Eight Minnesota POTWs

	TSS	Total P	Orthophosphate	Particulate	Ultimately Bioavailable Particulate P	Particulate BAP	Total BAP
City	(mg/L)	(mg/L)	(mg/L)	P (mg/L)	(mg/L)	fraction	fraction
Albert Lea	<5.0	5.32	4.31	1.01	0.65	0.64	0.93
Alexandria	<5.0	0.187	0.102	0.085	0.07	0.78	0.90
St. Cloud	<5.0	0.250	0.068	0.182	0.13	0.70	0.78
Fergus Falls	<5.0	0.166	0.019	0.147	0.11	0.72	0.75
Mankato	11	2.04	1.57	0.47	0.31	0.66	0.92
MCES- Metro	<5.0	0.293	0.130	0.163	0.12	0.71	0.84
Rochester	13	0.948	0.286	0.662	0.43	0.65	0.76
Wilmar	10	7.24	6.41	0.83	0.54	0.65	0.96

2.2.3.3 Bioavailable Phosphorus in Runoff

The transfer of phosphorus from terrestrial to aquatic systems in runoff can occur in dissolved and particulate forms. Phosphorus loading from nonpoint sources depends on a large number of factors, such as geology and hydrology of the region, land use, and population density. For example, sandy soils have less retention of phosphorus than clays and high slope and high runoff lead to lower retention. Caraco (1995) found that population density was related to orthophosphate export from watersheds and predicted 47% of the variation in orthophosphate export in the dataset from 32 large rivers. Other variations could be related to the geochemical factors that alter orthophosphate in rivers or could be due to variability in human behaviors that lead to variable phosphorus export. For example, human agricultural practices, soil composition, diets, detergent use, and extent of sewer services and sewage treatment can vary greatly between different areas. Phosphorus loss from land not only affects the surface runoff, but also gets transferred in subsurface flow (Gaynor and Findley, 1995; Lennox et al., 1997; Haygarth et al., 1998; and Withers et al., 1999).

It has been shown that the orthophosphate concentration in surface runoff is related to the soil phosphorus concentration in the topsoil (McDowell and Sharpley, 2001). For example, Pote *et al.* (1996) found that that the orthophosphate concentration in surface runoff was linearly related to

phosphorus extracted by Mehlich-3 (r^2 of 0.72), Bray-I (r^2 of 0.75), Olsen (r^2 of 0.72), distilled water (r^2 of 0.82), iron oxide paper (r^2 of 0.82), acidified ammonium oxalate (r^2 of 0.85), and phosphorus sorption saturation (r^2 of 0.77).

Surface runoff from grassland, forest land or nonerosive soils carries little sediment and is generally dominated by dissolved phosphorus, although phosphorus transport attached to colloidal material also may be important where land is overstocked (Haygarth and Jarvis, 1997; Simrad *et al.*, 2000). Sharpley *et al.* (1995) also reported that runoff from grass and forestland carries little sediments, and is therefore, generally dominated by orthophosphate.

As reported by Sharpley *et al.* (1995), the discharge of organic and inorganic phosphorus in runoff from several Atlantic Coastal Plain watersheds was related to soil phosphorus composition. The high organic phosphorus content of forest soils (331 mg/kg; 70% of total phosphorus) contributed 51% of total phosphorus loss in runoff (0.31 kg/ha/y) as particulate organic phosphorus and 10% as dissolved organic phosphorus. For agricultural soils of lower organic phosphorus content (161 mg/kg, 25% of total phosphorus), only 32% of total phosphorus loss in runoff (2.41 kg/ha/y) was particulate organic phosphorus and 1% was dissolved organic phosphorus (Vaithiyanathan and Correll, 1992). Similarly, from 16 to 38% of phosphorus in runoff from Polish meadows and cultivated fields and as much as 70% of lake water phosphorus was bound to organic compounds (Szpakowska and Zyczynska-Baloniak, 1989). These losses varied seasonally, with both inorganic and organic phosphorus concentrations in canal and lake water decreasing during summer months (Ryszkowski *et al.*, 1989).

Estimates for urban runoff particulates, tributary particulates and lake sediments in the lower Great Lakes basins by bioassay methods have reported an average of 30% bioavailable phosphorus (Cowen and Lee, 1976; Williams *et al.*, 1980).

2.2.3.4 Bioavailable Phosphorus in Agricultural Runoff

The sources of phosphorus from agricultural land can include soil phosphorus, manure or fertilizer applications. Those sources of phosphorus emanate from a number of source areas within the landscape and their amount, form, and timing are very variable as a result of short-term and often unpredictable changes in hydrological conditions and farming practices, including crop rotation, the application of fertilizers and manures, or the movement of animals from one field to another (Lennox *et al.*, 1997). Phosphorus may be transported to a water body from agricultural lands by leaching, runoff or erosion. The loss of phosphorus in surface runoff from agricultural lands occurs as particulate and dissolved forms (Haygarth and Sharpley, 2000). Particulate phosphorus includes phosphorus associated with soil particles and large molecular-weight or organic matter eroded during

flow events and constitute the major proportion of phosphorus transported from most cultivated lands (60-90%, Pietilainen and Rekolainen, 1991). Several studies have reported that the loss of dissolved phosphorus in surface runoff from agricultural land depends on the phosphorus content of surface soil (STP- soil test P concentration), but that the relationship varies with soil type, tillage, and crop management (Pote *et al.*, 1996; Sharpley *et al.*, 1996). Moreover, it will depend on the topography and soil hydrology.

James *et al.* (2002) used fractionation procedures and phosphorus adsorption-desorption assays to delineate bioavailable forms and refractory or unavailable forms of phosphorus in the runoff of the Redwood River basin, an agriculturally-dominated tributary of the Minnesota River. Over several storm periods monitored in 1999, 75% of the phosphorus load originating from the watershed was in bioavailable forms while only 25% was in refractory forms. Bioavailable particulate forms included phosphorus loosely bound to suspended sediments (19%), phosphorus bound to iron (11%), and bioavailable particulate organic phosphorus (14%). After runoff discharges to receiving waters, the former two forms of bioavailable particulate phosphorus can be transformed to dissolved forms that are available to biota for uptake via eH and pH reactions and kinetic processes, while the latter form can be mineralized via decomposition processes. Bioavailable dissolved forms included orthophosphate and dissolved organic phosphorus.

Several studies have suggested that agricultural management may influence the bioavailability of phosphorus transported in runoff (McDowell and McGregor, 1980; Wendt and Corey, 1980). Concentration and amounts of bioavailable phosphorus in runoff from corn (*Zeamays* L.) were lower from no till compared to conventionally tilled plots under simulated rainfall (Andraski *et al.*, 1985; Mueller *et al.*, 1984). Bioavailable phosphorus in these studies was measured by resin extraction of unfiltered runoff, and thus includes dissolved phosphorus plus phosphorus desorbed from sediment (Huettl *et al.*, 1979). However, Andraski *et al.* (1985) calculated that bioavailable phosphorus averaged 20% of total phosphorus and was not affected by tillage treatment.

Sharpley *et al.* (1992) assessed the impact of agricultural practices on phosphorus bioavailability in runoff by determining dissolved phosphorus, bioavailable particulate phosphorus, and particulate phosphorus in runoff from 20 watersheds (in the Southern Plains region of Oklahoma and Texas) unfertilized and fertilized, grassed and cropped watersheds over a 5-yr period. Although bioavailable phosphorus and bioavailable particulate phosphorus losses in runoff were reduced by agricultural practices minimizing runoff and erosion, the proportion of phosphorus transported in bioavailable forms increased. Both total phosphorus (14-88% as bioavailable phosphorus) and

particulate phosphorus (9-69% as bioavailable particulate phosphorus) bioavailability varied appreciably with agricultural practices. Thus, bioavailable phosphorus is a dynamic function of physical and chemical processes controlling both dissolved phosphorus and bioavailable particulate phosphorus transport. Dissolved phosphorus transport depends on desorption-dissolution reactions controlling phosphorus release from soil, fertilizer reaction products, vegetative cover, and decaying plant residues. Bioavailable particulate phosphorus is a function of physical processes controlling soil loss and particle-size enrichment and chemical properties of the eroded soil material governing phosphorus sorption availability. The authors also found that the percent bioavailability of particulate phosphorus transported in runoff from each of these watersheds decreased with an increase in sediment concentration of runoff averaged for each watershed. They found a linear regression relationship between particulate phosphorus availability and logarithm of sediment concentration (with $\rm r^2=0.84$):

Particulate Phosphorus Bioavailabilty (%) = $82 - 15 \log$ sediment conc. (g/L)

This relationship may be attributed to an increased transport of silt- and sand-sized (>2 µm) particles, of lower phosphorus content than finer clay-sized (<2 µm) particles, as sediment concentration of runoff increases. Further, particulate phosphorus bioavailability may decrease with an increase in size of eroded soil particles, which contain less sorbed phosphorus and more primary mineral phosphorus (i.e., apatite) of lower availability compared with finer clay-sized particles (Dorich *et al.*, 1984; Sharpley *et al.*, 1981; Syers *et al.*, 1973).

O'Connor *et al.*, (2002) compared phosphorus bioavailability of biosolids, manures and fertilizer. They found that phosphorus bioavailability was greater for phosphorus-fertilizer than manures and biosolids. However, if biological phosphorus removal is implemented in the treatment process, phosphorus in biosolids tends to be as bioavailable (74% to 132%) as fertilizer phosphorus.

A study conducted by Ekholm and Krogerus (2003), with samples from different sources, concluded that phosphorus in agricultural runoff appeared to be more bioavailable to algae (31%) than phosphorus in forest runoff (16%).

2.2.3.5 Bioavailable Phosphorus in Atmospheric Deposition

For Lake Michigan, Murphy and Doskey (1975) reported a 30-fold greater total phosphorus concentration in rainfall than in lake water. Since 25-50% of the total phosphorus in rainfall is soluble, it is directly available to organisms in the lake (Murphy and Doskey 1975; Peters 1977).

The bioavailability of dry deposition or the particulate fraction of wet deposition can be characterized by the bioavailability of phosphorus in the soils in the region.

Increases in the atmospheric deposition of phosphorus may result from annual climatic changes (Sharpley *et al.* 1995). For example, the input of phosphorus in rainfall to an Oklahoma watershed in 1981 (208 g/ha/yr) was much greater than that in either 1982 (49 g/ha/yr) or 1983 (41 g/ha/yr) (Sharpley *et al.* 1985). This increase was attributed to the low annual rainfall in 1980 (642 mm, 105 mm below average). The drier soil was more susceptible to wind erosion and the airborne material increased the phosphorus content of subsequent rainfall and dry deposition.

2.2.3.6 Comparison of Phosphorus Bioavailability from Different Sources

Many forms of particulate matter in the waters of the State of Minnesota contain a certain amount of bioavailable phosphorus, the actual rate and extent of release of the bioavailable component depends on the physical and chemical characteristics of the material. It also depends on the biological characteristics as well as the population of the microorganisms in the suspended material mineralizes the organic detritus material. Young *et al.* (1995) have compared the relative bioavailability of particulate phosphorus from various sources to the Great Lakes by comparing the bioavailable phosphorus in particulate matter from point sources (wastewater suspended solids), and nonpoint sources (suspended solids and bottom sediments from tributaries, lake bottom sediments, and eroding bluff solids from the region). A wastewater treatment plant at Ely, Minnesota was also sampled and it showed the highest rate of release of bioavailable particulate phosphorus (0.27 grams released/gram particulate phosphorus/day, or 0.27/day) among the point and nonpoint sources sampled in that study (Young and DePinto, 1982). The release rate did appear to decline in magnitude as treatment of wastewater progressed from the raw influent \rightarrow biologically treated effluent \rightarrow final effluent (i.e., 0.30 /day \rightarrow 0.27 /day \rightarrow 0.20 /day). Young and DePinto (1982) summarized the results on relative bioavailability of particulate phosphorus for the point and nonpoint sources (Table 2-3).

Ekholm and Krogerus (2003) analyzed 172 samples (during 1990-2000) representing phosphorus in point and nonpoint sources and in lacustrine matter. The bioavailability of phosphorus expressed as the proportion of potentially bioavailable phosphorus ranged from 3.3 to 89% (Table 2-4).

Table 2-3 Relative Bioavailability of Particulate Phosphorus from Various Sources to the Lower Great Lakes (Young and DePinto 1982)

Source	Bioavailable Percentage	Release Rate (1/day)
Wastewater (≤ 80%)	≤ 80%	≤ 0.4
Bottom sediments (≤ 50%)	≤ 50%	≤ 0.2
Tributary suspended sediment	≤ 40%	≤ 0.1
Eroding bluff	~0	~ 0

Table 2-4 Proportion of Bioavailable Phosphorus in Total Phosphorus by Different sources (Ekholm and Krogerus 2003)

	Bioavailable P (% of Tot-P)		
Source	Mean	MinMax.	
Wastewater effluent from rural population	89	74-98	
Biologically treated urban wastewater effluent	83	61-103	
Dairy house wastewater	69	27-93	
Biologically and chemically treated wastewater effluent	36	0-67	
Field runoff	31	15-50	
Industrial wastewater effluent	30	4-89	
Fish fodder and feces	29	9-72	
Large Rivers water	20	3-45	
Agricultural rivers	20	12-30	
Field surface soils	19	6.8-24	
Forest runoff	16	0-55	
Lake settling matter	7.9	1.6-21	
Lake bottom sediments	3.3	0.1-11	

2.2.3.7 Summary of Literature Review

The above review covers as much research and data from phosphorus bioavailability studies as could be found in the available time and resources. There is a desire to estimate the fraction of phosphorus in each potential source category identified by the MPCA as contributing phosphorus to Minnesota waters. However, the bioavailability of some of these individual source categories has not been studied; therefore, we were not able to find directly applicable estimates for bioavailable fractions in

the literature. The general categories for which data are available include: municipal wastewater treatment plants, agricultural, forest and urban runoff, and atmospheric deposition.

While the dissolved phosphorus from any of these sources can generally be assumed to be 100% bioavailable, the particulate phosphorus associated with these various source categories in general exhibit a wide range of bioavailability.

For point sources, the fraction of total phosphorus in the discharge that is bioavailable is not only governed by the sources of phosphorus to the treatment plant influent (e.g., human wastes, household cleaners, groundwater infiltration, etc.) but it will be dependent on the treatment train being employed within the plant. Data are generally available for wastewater treatment plant influent and effluent, however not for all individual phosphorus source categories. Knowing, however, that household cleaners and detergents are amended with polyphosphates, it is reasonable to assume that virtually 100% of these categories will ultimately become available by hydrolysis to orthophosphates.

For nonpoint sources, the input of total phosphorus and bioavailable phosphorus will be strongly dependent on the land use from which the phosphorus load is derived (e.g., agricultural runoff will be different from forestland runoff). Furthermore, agricultural practices can affect bioavailable phosphorus appreciably. Another determinant is the surficial geology within the watershed. We have seen, for example, that phosphorus associated with calcareous minerals like apatite is much less bioavailable than phosphorus adsorbed to iron-oxide minerals. In general, the particulate phosphorus in non-point sources derived from land runoff tends to be less bioavailable than point source particulate phosphorus.

Bioavailable phosphorus fractions for each of the specific source categories of interest were estimated by combining the results of the literature review with best professional judgment to specify a most likely value for a number of the remaining phosphorus source categories. A range was also estimated in an attempt to cover the potential range site-specific determinations might show. These estimates are presented in Table 2-5. These estimates of bioavailable fraction should be used with care, understanding the uncertainty inherent in each estimate. Nevertheless, they can be used to assess relative contributions of bioavailable phosphorus from the source categories to assist in planning additional data collection or targeting specific sources for control. As evident from the literature review, wide ranges of bioavailable fractions were noted for runoff sources, while estimation techniques for the bioavailable fraction from POTW effluent were better quantified.

Table 2-5 Estimates of Bioavailable Phosphorus Fractions for Specific Source Categories

	Phospho	rus Sources	Fraction of PP that is Bioavailable (Range)	Fraction of PP that is Bioavailable (Most Likely)	Fraction of DP that is Bioavailable (Most Likely)	Fraction of TP that is Particulate (Most Likely)	Estimate of TP that is Bioavailable (Most Likely)
		Automatic Dishwasher Detergent	NA	NA	1.0	0.0	1.0
		Dentifrices (toothpastes)	0 – 0.1	0.05	NA	1.0	0.05
		Other Household Cleaners or Non- ingested Sources	NA	NA	1.0	0.0	1.0
	Phosphorus Sources to POTWs	Food Soils/Garbage Disposal Wastes	0.7 - 0.9	0.8	1.0	0.9	0.8
		Human Waste Products	0.7 - 0.9	0.8	1.0	0.3	0.94
		Raw/Finished Water Supply	0.4 - 0.6	0.5	1.0	0.1	0.95
Point Sources		Groundwater Intrusion (I&I)	0.2 - 0.5	0.3	1.0	0.5	0.65
		Process Water	0.2 - 1.0	0.7	1.0	0.1	0.97
		Noncontact Cooling Water	0.4 - 0.8	0.6	1.0	0.3	0.88
		Car Washes	0.2 - 0.8	0.5	1.0	0.3	0.85
		POTW Effluent	0.6 – 0.8	0.7	1.0	0.5	0.855
		d Wastewater Treatment Systems for omestic Use (effluent)	0.6 - 0.9	0.8	1.0	0.3	0.94
	Commercial/Industrial Wastewater Treatment Systems (effluent)		0.2 - 0.8	0.6	1.0	0.3	0.88
Non-Point	Individua	l Sewage Treatment Systems	0.6 - 0.9	0.8	1.0	0.2	0.96

	Phosphorus Sources		Fraction of PP that is Bioavailable (Range)	Fraction of PP that is Bioavailable (Most Likely)	Fraction of DP that is Bioavailable (Most Likely)	Fraction of TP that is Particulate (Most Likely)	Estimate of TP that is Bioavailable (Most Likely)
Sources	Agricultural Runoff	Improperly Managed Manure	0.5 - 0.7	0.6	1.0	0.5	0.80
		Crop Land Runoff	0.2 - 0.7	0.4	1.0	0.7	0.58
		Turfed Surfaces	0.2 - 0.7	0.4	1.0	0.7	0.58
	Urban Runoff	Impervious Surfaces	0.10 - 0.5	0.2	1.0	0.5	0.60
	Forested Land		0.2 - 0.5	0.3	1.0	0.8	0.44
	Roadway and Sidewalk Deicing	salt	0.2 - 0.8	0.6	1.0	0.2	0.92
	Chemicals	sand	0.1 - 0.3	0.2	1.0	0.8	0.36
	Stream Bank Eros	0.1 - 0.5	0.3	1.0	0.8	0.44	
	Atmospheric Deposition	Dry	0.05 - 0.4	0.2	NA	1.0	0.2
	Aumosphono Deposition	Wet	0.05 - 0.4	0.2	1.0	0.6	0.5

2.2.4 Assessment of Effluent Total Phosphorus Reduction Efforts by POTWs

This section provides a general discussion about the methodology used to assess the effluent total phosphorus reduction efforts of POTWs. A more detailed discussion of the methodology used for this analysis is included in Appendix L. The results of this assessment are discussed in Section 3.5.

This discussion is intended to provide the Minnesota Pollution Control Agency (MPCA) with information on current practices of cities to reduce the phosphorus concentration in their wastewater treatment plant (WWTP) effluent through such approaches as reduction in the influent phosphorus loading, chemical phosphorus precipitation, and enhanced biological phosphorus removal (EBPR). Information was collected from six Minnesota cities and two Oregon cities on their programs to reduce their effluent phosphorus loading. A small sampling of Minnesota cities was used due to the limited number of cities that had data available on phosphorus reduction and its costs. The two Oregon cities were included because of their ability to meet a very stringent effluent phosphorus limit of 0.07 mg/L. Where available, costs for the specific phosphorus reduction efforts are provided. Finally, conclusions are drawn on the effectiveness of effluent phosphorus reduction efforts based on the data provided.

As mentioned above, three approaches were used either separately or in combination by the communities surveyed to reduce their effluent phosphorus concentrations: source reduction, chemical precipitation, and EBPR. Source reduction efforts varied significantly between cities in the survey. The simplest approach was a public education campaign to promote reductions in the use of household products with high concentrations of phosphorus. The more aggressive cities implemented fees based on the phosphorus content of the sewered discharge for their significant industrial users (SIU). Pretreatment was also required in one city if a SIU exceeded a pre-defined phosphorus loading threshold.

Chemical phosphorus precipitation is the use of metal salts to promote the precipitation of metal phosphates. Iron or aluminum are the most commonly used metals. The metal salt can be added at many different points in the WWTP treatment train. The most common point of application is immediately prior to secondary clarification. The chemical used and point of application are identified for each plant surveyed. The equipment required for chemical precipitation is minimal with systems adding metal salts prior to secondary clarification needing only a bulk storage tank and a chemical dosing pump. The largest cost for chemical precipitation phosphorus treatment is operations, which includes chemical cost and the cost of additional sludge disposal. The chemical costs are provided for all WWTPs surveyed using chemical precipitation.

EBPR is achieved in the activated sludge system by promoting the growth of bacteria that can hyper-accumulate phosphorus. This is achieved by creating an initial anaerobic zone in the activated sludge system followed by the traditional aerobic zone. In addition, low molecular weight organic acids must be present in the anaerobic zone to achieve EBPR. These acids can be produced in the sewer system, in the primary clarifier, or in a separate sludge fermenter. EBPR can be implemented using a wide range of approaches. The simplest approach can be to adjust air flow within the activated sludge basins to create the anaerobic zone. The more sophisticated approaches can require separate anaerobic basins and separate sludge digestion tanks. Phosphorus is ultimately removed from the EBPR system when the bacteria, which have hyper-accumulated phosphorus, are wasted from the activated sludge system.

It should be noted that WWTPs that have not implemented phosphorus treatment (i.e., either chemical phosphorus precipitation or EBPR) will likely see a reduction in the effluent phosphorus concentration proportional to the reduction in influent phosphorus concentration. WWTPs using chemical precipitation to meet effluent phosphorus limits will not likely experience a reduction in effluent phosphorus concentration if the influent phosphorus concentration is reduced because chemical precipitation will continue to be required to meet the effluent phosphorus limit. A reduction in influent phosphorus (soluble) concentration will reduce the amount of chemical required to achieve the effluent phosphorus limit, which will ultimately result in a reduction in chemical cost for phosphorus treatment. However, if the influent phosphorus was not soluble, which is precipitated chemically, but was particulate phosphorus, which is precipitated by flocculation, there may not be a direct reduction in chemical costs. Finally, WWTPs using EBPR will not likely experience a reduction in effluent phosphorus concentration if the influent phosphorus concentration is reduced because of the limits of this technology. The cost for operating EBPR will not be affected by the reductions in the influent phosphorus concentration.

3.1 Basin Hydrology

This section presents the results of statistical analyses done on the historical rainfall and runoff volumes to develop frequency curves and runoff maps that represent low, average and high flow conditions within each basin. The variability of basin hydrology is important since the phosphorus load estimates for each flow condition are based on the annual runoff volumes that have been determined from recent water year flow data. A more detailed discussion about the results of the assessment for the basin hydrology is included in Appendix A.

3.1.1 Frequency Curves

The runoff and precipitation frequency curves for each of the watersheds are shown in Appendix A. The curves show that for gages in the south and west portions of the state, the period of 1979-2002 flows were consistently above the long-term period of record. The frequency curves for much of Northeast Minnesota, particularly the Rainy River, the North Shore of Lake Superior, and St. Croix River basins did not show this trend. The curves indicate that there is a general trend of decreasing runoff from east to west. The Lake Superior basin has the highest runoff rate in the state, with the Baptism River watershed having the highest values within that basin (average annual runoff of 15.3 inches). The Red River of the North basin had the least runoff, with the Buffalo River watershed experiencing 2.8 inches of runoff in an average year, which is the lowest of the Minnesota gages used in this analysis. Decreasing runoff from east to west also occurs in southern Minnesota, but the trend is less dramatic than in the north. The Root River watershed in extreme southeast Minnesota has nearly 11 inches of runoff for the period of 1979-2002, while the Rock River in southwest Minnesota and northwest Iowa has average annual runoff of 5.6 inches. Increases in runoff are more dramatic moving south in the state, as flows approach high flow conditions.

3.1.2 Runoff Maps

As discussed in Section 2.1.2.5, the runoff frequency curves were used to develop maps showing the statewide runoff values. The maps showing the estimated runoff volumes during low (dry), average and high flow (wet) conditions are shown in Figures 3-1, 3-2, and 3-3, respectively. The runoff mapping confirms what the frequency curves indicated: there is a general trend of decreasing runoff from east to west, but the trend is less dramatic in the south, compared to the northern part of the state for each flow condition. Also, comparing the runoff volume gradients in the east and west

Figure 3-1 Annual Runoff, Low Flow Conditions

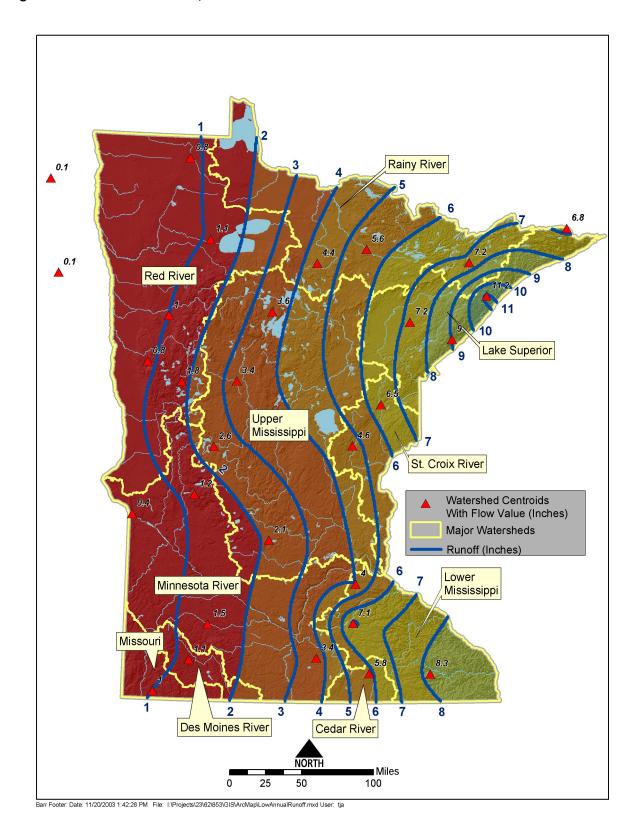
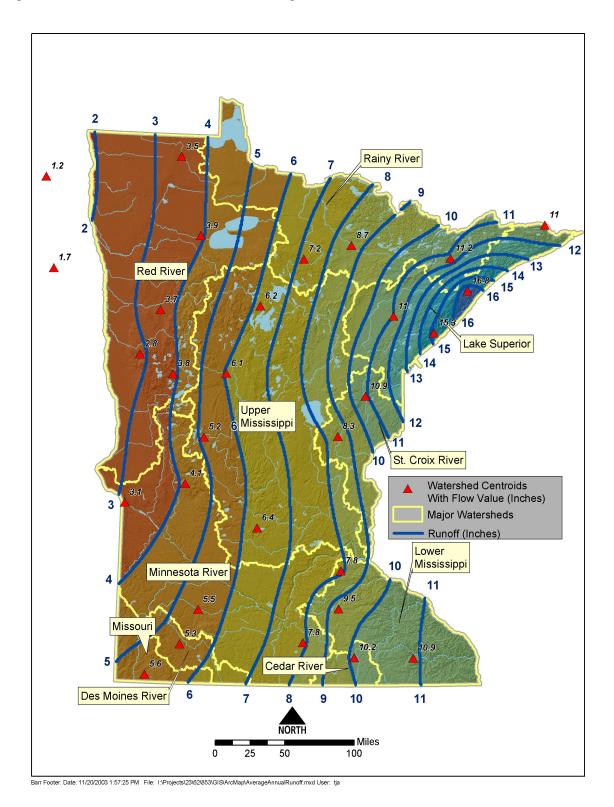
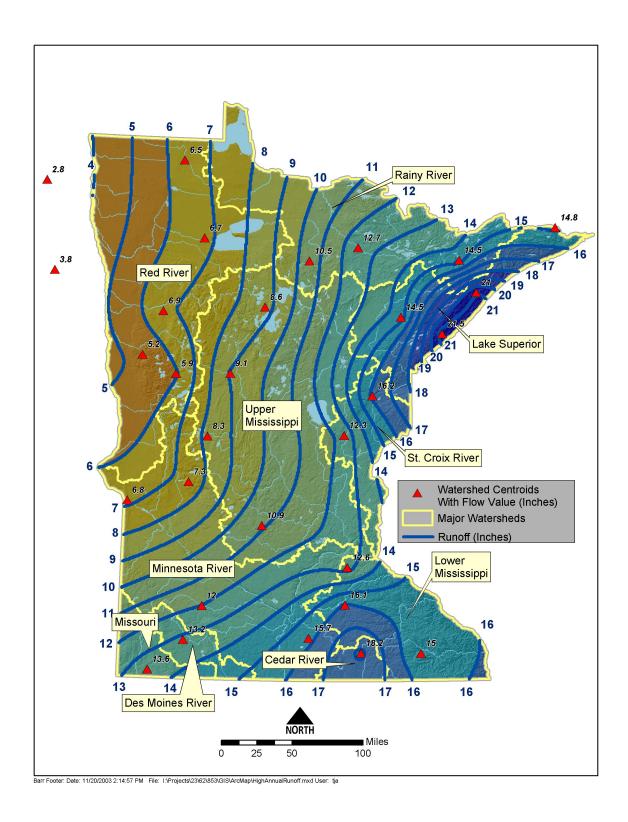




Figure 3-2 Annual Runoff, Average Flow Conditions

P:\23\62\853\Report\Final\Final Report.doc

Figure 3-3 Annual Runoff, High Flow Conditions

extremes of the state, shows that the gradient increases significantly from low to average flow, and from average to high flow, conditions.

Table 3-1 shows the 10 basinwide average values developed from these maps for the wet (high flow), average and dry (low flow) conditions. Table 3-1 also provides a summary of basin wide average precipitation for the wet, average and dry years based on the frequency determinations. Also shown in Table 3-1 is the runoff percentage calculated using the ratio of runoff to rainfall. This runoff percentage is significantly lower (less than 9 percent) for the Des Moines, Minnesota, Missouri, and Red River basins, compared to the remaining basins under low flow conditions. With the exception of the Upper Mississippi River (approximately 16 percent), the runoff percentage in the remaining basins exceeds 20 percent under low flow conditions. Comparing the runoff percentages from low flow to average and high flow conditions, the percentages increase more significantly (to between 21 and 37 percent) for the Des Moines, Minnesota, Missouri, and Red River basins, than they do for the remaining basins (between 30 and 48 percent). The runoff percentages under high flow conditions, with the possible exception of the Red River basin (21 percent), indicate that a large percentage of the rainfall volumes (between 30 and 48 percent) would be measured as runoff at a downstream gaging location. However, it should be noted that some portion of the runoff volumes shown in Table 3-1 does not represent runoff from land surfaces, and are actually entering surface waters from groundwater or other subsurface flow paths.

Table 3-1 Basinwide Runoff and Precipitation

	Dry Conditions			Average Conditions			Wet Conditions		
Basin	Rainfall (inches)	Runoff (inches)	Percent Runoff	Rainfall (inches)	Runoff (inches)	Percent Runoff	Rainfall (inches)	Runoff (inches)	Percent Runoff
Cedar River	27.5	5.6	20.4%	32.1	9.8	30.6%	41.3	17.5	42.4%
DesMoines River	22.0	1.4	6.4%	28.0	5.7	20.3%	36.8	13.4	36.4%
Lake Superior	25.5	7.9	30.8%	29.1	12.4	42.7%	35.1	16.7	47.7%
Lower Mississippi	27.0	7.1	26.5%	33.3	10.3	30.9%	39.8	15.6	39.1%
Minnesota River	22.1	1.9	8.7%	28.1	5.6	19.9%	34.8	11.2	32.2%
Missouri River	21.1	1.0	4.6%	27.2	5.3	19.3%	35.6	12.8	36.0%
Rainy River	22.4	4.8	21.4%	26.2	8.0	30.6%	32.1	11.4	35.6%
Red River	18.6	1.1	5.7%	23.3	3.4	14.7%	28.9	6.1	21.1%
St. Croix River	23.7	5.6	23.7%	30.6	9.7	31.7%	37.6	14.3	38.1%
Upper Mississippi River	22.6	3.6	15.8%	28.1	6.9	24.5%	34.3	10.4	30.5%

3.2 Estimated Basin Total Phosphorus Amounts Contributed to POTWs and Surface Waters (by Source)

This section is intended to present the results of the total phosphorus loading estimates to surface waters in each basin by source category. The following sections provide a detailed discussion of the results of the phosphorus loading estimates for each source category, including assessments of which major basins are specifically influenced by each source category. The phosphorus loading estimates are also further described in Appendices B through J.

3.2.1 Point Sources

3.2.1.1 Sources and Amounts of Phosphorus Discharged to POTWs

The sources of phosphorus to POTWs and to privately owned treatment facilities were identified and quantified by the methods described in Section 2.2.1.2. The total phosphorus load discharged to POTWs in each basin is presented in Table 3-2. The annual amount of total phosphorus discharged into POTWs in Minnesota is estimated to be 4,468,000 kg/yr. Table 3-2 shows that 53 percent (2,384,900 kg/yr) of the total phosphorus load discharged to POTWs originated from the Upper Mississippi River basin, which includes a majority of the loading to POTWs in the Twin Cities Metropolitan Area. The influent load to the Metro plant represents 75 percent (1,794,400 kg/yr) of the total phosphorus load discharged to POTWs in the Upper Mississippi River basin.

Table 3-2 Total Phosphorus Load Discharged to POTWs

	Total (kg/yr)
Basin	
Cedar River	105,200
Des Moines River	46,200
Lake Superior	227,000
Lower Mississippi River	501,900
Minnesota River	952,200
Missouri River	26,400
Rainy River	20,100
Red River	150,600
St. Croix River	53,500
Upper Mississippi River	2,384,900
Total	4,468,000

As part of this study, the influent phosphorus discharged into POTWs and publicly owned treatment facilities was separated into its major constituent sources. Figure 3-4A and 3-4B illustrates the contributions of various phosphorus sources to the influent phosphorus loads for the POTWs and privately owned treatment facilities. Both figures show that human waste, followed by commercial and industrial process wastewater, is the largest contributor of phosphorus to POTWs and privately owned treatment facilities in most of the basins. The influent phosphorus load discharged to POTWs and privately owned treatment facilities is also broken down by source category for the entire state in Table 3-3 and 34, respectively. Table 3-3 shows that human waste represents approximately 42 percent of the phosphorus load to POTWs in the state, while commercial and industrial process wastewater represents approximately 27 percent of the influent phosphorus load. Table 3-4 shows that human waste represents approximately 60 percent of the influent phosphorus load to the privately owned treatment facilities throughout the state. Comparing Table 3-3 to Table 3-4 reveals that the total influent phosphorus load to POTWs is approximately 500 times higher than the influent load to privately owned treatment facilities throughout the state.

The human waste component of the influent phosphorus loading to POTWs and privately owned treatment facilities is the single largest influent source in all ten basins. The human waste component comprises between approximately 36 percent and 69 percent on a basin basis and averages approximately 42 percent statewide of the total influent phosphorus loading.

Next to human wastes, a variety of industrial and commercial dischargers constitute the next highest contribution of phosphorus in influent to POTW wastewater. The commercial and industrial dischargers comprised between 5 percent and 35 percent, on a basin basis, and approximately 27 percent of the total phosphorus loads entering POTWs, statewide. The POTWs in the Minnesota River basin receive an average of 35 percent of the influent phosphorus load from commercial and industrial process wastewater sources. This is the only basin in which the commercial and industrial process wastewater contribution approaches the human waste contribution.

Figure 3-4A Average Influent Phosphorus Loading to POTWs & Privately Owned Treatment Facilities by Basin; less than 250,000 kg/yr

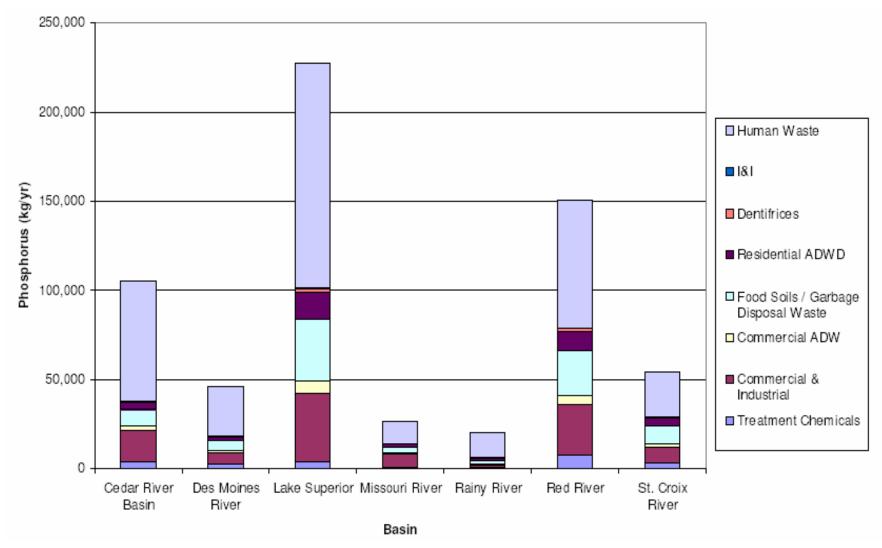


Figure 3-4B Average Influent Phosphorus Loading to POTWs & Privately Owned Treatment Facilities by Basin; greater than 250,000 kg/yr

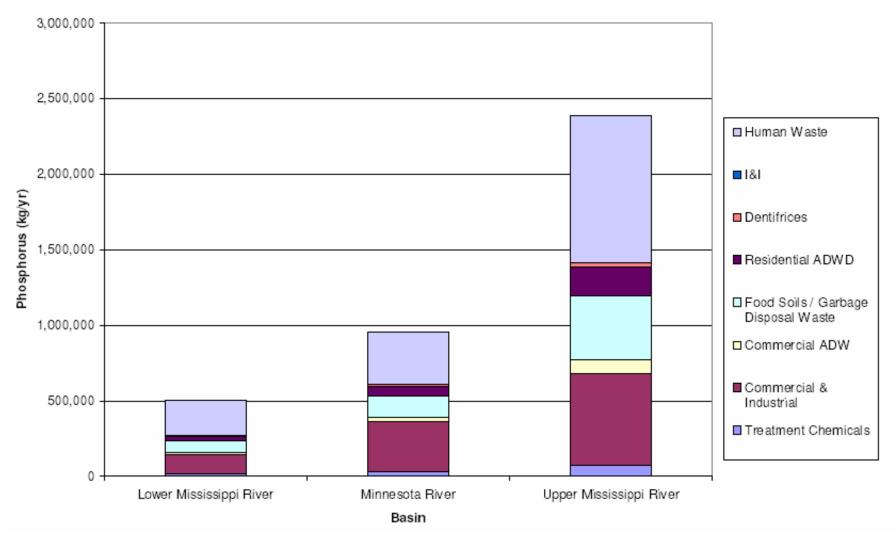


Table 3-3 Estimated Statewide Phosphorus Loadings to POTWs

	F	hosphorus Load (kg/yr)		% of Total
INFLUENT		(Kg/y1)		70 01 10101
Domestic Wastewater		2,986,392		66.8%
Residential Automatic Dishwasher Detergents	324,431		7.3%	
Food Soils / Garbage Disposal Waste	722,873		16.2%	
Dentifrices	43,894		1.0%	
Human Waste	1,895,195		42.4%	
Commercial & Industrial Process Wastewater		1,186,229		26.5%
Commercial & Institutional Automatic Dishwasher Detergent		151,815		3.4%
Water Treatment Chemicals		140,188		3.1%
Inflow & Infiltration		3,333		0.1%
Total		4,467,958		100.0%
EFFLUENT				
Total		1,735,869		100.0%

Table 3-4 Estimated Statewide Phosphorus Loadings to Private WWTP

		ı	sphorus Load (g/yr)	% of Total
INFLUE	NI			
Domesti	c Wastewater		7,804	97.6%
	Residential Automatic Dishwasher Detergents	855	10.7%	
	Food Soils / Garbage Disposal Waste	2,019	25.2%	
	Dentifrices	118	1.5%	
	Human Waste	4,813	60.2%	
Water T	reatment Chemicals		193	2.4%
Total			7,997	100.0%
EFFLUE	TN			
Total			3,456	100.0%

The commercial and industrial process wastewater dischargers to POTWs were grouped by four digit NAICS code for each of the basins. The industries that contributed less than 1 percent of the industrial/commercial process wastewater phosphorus load were grouped in the "Other" category. The data suggests that food product processing is the largest contributor of commercial/industrial phosphorus discharged to POTWs. Animal slaughtering and processing (NAICS #3116) was the largest phosphorus contributor, estimated to discharge 168,000 kg/yr. Fruit and vegetable preserving and specialty food manufacturing (NAICS #3114) contributes 132,000 kg/yr, followed by grain and oilseed manufacturing (NAICS #3112) and dairy product manufacturing (NAICS # 3115), at 127,000 kg/yr and 45,000 kg/yr, respectively.

The information obtained regarding food soils and garbage disposal wastes suggests that this source category contributes a moderate amount of phosphorus to untreated wastewater. For the ten Minnesota basins, these amounts range from 8.8 percent to 18.4 percent and averages approximately 16 percent statewide of influent phosphorus totals. The total phosphorus load to POTWs and privately owned treatment facilities from food soils and garbage disposal wastes was estimated to be 725,000 kg/yr.

The residential use of ADWD detergents contributes a relatively smaller amount of phosphorus. For the Minnesota basins, these amounts range from 4.0 to 8.2 percent, and averaged 7.3 percent statewide, of influent total phosphorus discharging into POTWs and privately owned treatment facilities.

Dentifrices contribute a relatively small amount of phosphorus to the influent wastewater stream for each of the basins. These amounts range from 0.5 percent to 1.1 percent (1.0 percent statewide average) of the total influent phosphorus discharged into POTWs and privately owned treatment facilities.

The commercial and institutional use of ADWD detergents contributes a relatively small amount of phosphorus to untreated wastewater. For the ten Minnesota basins, these amounts ranged from 1.9 percent to 3.7 percent, while it was 3.4 percent of all sources for the statewide total influent phosphorus.

A variety of phosphorus-based chemicals are added to municipal water supplies to inhibit and control scale and corrosion, soften water and control pH. The municipal water treatment chemicals phosphorus contribution to POTWs ranged from 1.7 percent to 5.7 percent in each of the basins, and 3.1 percent statewide, of the total influent phosphorus.

The results of this study indicate that inflow and infiltration contribute a negligible amount of phosphorus to POTW influent. The inflow and infiltration contribution was approximately 0.1 percent of the total influent phosphorus load discharged into POTWs.

Subtracting the human waste component from the total POTW phosphorus influent yields the estimated total non-ingested phosphorus load discharged to POTWs. Table 3-5 presents the non-ingested phosphorus loadings to POTWs, by source category, for each basin and throughout the state. The total non-ingested phosphorus load to POTWs is approximately 2,572,900 kg/yr, which is approximately 58 percent of the total influent phosphorus load to POTWs. Commercial and industrial process wastewater represents approximately 46 percent of the total non-ingested phosphorus load. At 28 percent, food soils represent the next largest category of non-ingested phosphorus loading to POTWs. The combined residential ADWD detergent and commercial and institutional ADWD detergent categories represent approximately 18.5 percent of the non-ingested phosphorus loading to POTWs.

3.2.1.2 Phosphorus Loading to Surface Waters

The point source effluent phosphorus loads to each of the ten Minnesota basins and the state were computed using the methods described in Section 2.2.1.3. The estimated point source phosphorus loads to each of the ten Minnesota basins, along with the corresponding flow weighted mean concentrations on an average annual basis, are presented in Table 3-6. The estimated annual phosphorus load to waters of the state is 2,124,000 kg/yr, with a flow weighted mean effluent concentration of 0.6 mg/L. Fifty-six percent of the total point source effluent phosphorus load for the state is being discharged in the Upper Mississippi River basin. Table 3-6 also shows that the flow-weighted mean effluent phosphorus concentrations vary between 0.04 and 5.4 mg/L for the basins.

Table 3-5 Non-Ingested Phosphorus Loadings to POTWs

	Residential ADWD (kg/yr)	Food Soils / Garbage Disposal Waste (kg/yr)	Dentifrices (kg/yr)	Commercial and Industrial Process Wastewater (kg/yr)	Commercial and Institutional ADWD (kg/yr)	Water Treatment Chemicals (kg/yr)	Inflow and Infiltration (kg/yr)	Total (kg/yr)
Basin								
Cedar River	4,200	9,300	600	18,000	2,000	3,800	70	38,000
Des Moines River	2,400	5,300	300	6,600	1,100	2,600	30	18,300
Lake Superior	15,400	34,300	2,100	38,200	7,200	3,900	310	101,400
Lower Mississippi River	32,000	71,452	4,300	132,900	15,000	13,900	320	269,900
Minnesota River	63,100	140,700	8,500	333,200	29,500	31,500	610	607,100
Missouri River	1,400	3,200	200	7,500	700	1,000	20	14,000
Rainy River	1,300	2,500	200	1,000	600	700	20	6,300
Red River	11,200	24,900	1,500	28,000	5,200	7,800	120	78,700
St. Croix River	4,300	9,600	600	8,800	2,000	3,100	50	28,500
Upper Mississippi River	189,200	421,700	25,600	612,000	88,600	71,800	1,790	1,410,700
Total	324,500	723,000	43,900	1,186,200	151,900	140,100	3,300	2,572,900
Percent of Non-Ingested Phosphorus Load to POTWs	12.6%	28.1%	1.7%	46.1%	5.9%	5.4%	0.1%	

Table 3-6 Total Point Source Phosphorus Loads to Surface Waters for Each Basin and the State

	Point Source Effluent Phosphorus Load (kg/yr)	Flow Weighted Mean Effluent Phosphorus Concentration (mg/L)
<u>Basin</u>		
Cedar River	56,800	2.5
Des Moines River	55,500	5.4
Lake Superior	34,800	0.04
Lower Mississippi River	267,400	0.5
Minnesota River	371,700	0.6
Missouri River	13,200	3.3
Rainy River	44,300	0.6
Red River	78,100	0.8
St. Croix River	22,100	1.3
Upper Mississippi River*	1,180,100	0.9
State Total	2,124,000	0.6

Table 3-7 summarizes the estimated point source phosphorus loads for the three categories of treatment facilities; POTWs, privately owned wastewater treatment systems for domestic sources, and industrial wastewater treatment systems for each basin and the state. POTWs discharge an estimated 1,735,800 kg/yr of phosphorus or approximately 82 percent of the total point source phosphorus load statewide. In the Rainy River and Des Moines River basins, POTWs accounted for only an estimated 9.3 percent and 27 percent of the respective total point source phosphorus loading to each basin. Whereas, POTWs in the Lake Superior, St. Croix River, Missouri River, Upper Mississippi River, and Cedar River Basins accounted for between 91 and 99 percent of the total point source phosphorus loads.

Table 3-7 Point Source Phosphorus Loads by Facility Type

	Publicly Owned Treatment Works (kg/yr)	POTW Flow Weighted Mean Effluent Phosphorus Concentration (mg/L)	Private WWT Systems for Domestic Use (kg/yr)	Private WWT Systems Flow Weighted Mean Effluent Phosphorus Concentration (mg/L)	Commercial and Industrial WWT Systems (kg/yr)	Commercial and Industrial Flow Weighted Mean Effluent Phosphorus Concentration (mg/L)
<u>Basin</u>						
Cedar River	56,400	3.95	0	NA	390	0.25
Des Moines River	15, 100	2.04	0	NA	40,440	10.61
Lake Superior	31,800	0.48	40	0.41	2,970	0.004
Lower Mississippi River	184,000	2.71	270	2.50	83,120	0.34
Minnesota River	237,800	1.84	840	3.73	133,060	0.30
Missouri River	12,400	3.49	20	1.18	750	2.03
Rainy River	4,100	1.06	10	1.06	40,160	0.57
Red River	64,300	2.62	30	3.00	13,810	0.37
St. Croix River	20,400	2.04	300	1.95	1,360	0.21
Upper Mississippi River	1,109,500	2.94	1,960	3.50	68,650	0.35
State Total	1,735,800	2.47	3,470	2.96	384,710	0.29

NA - Not Applicable

The data used for this study is from the years 2001, 2002 and the first half of 2003. During that time period some POTWs have implemented phosphorus removal and others will begin to implement removal in the future. The largest impact is probably phosphorus removal at the MCES' Metro plant, which is required to implement phosphorus removal to meet a 1 mg/L permit limit, which becomes effective December 31, 2005. MCES intends to be meeting the 1 mg/L limit during 2004 (as an annual average), since treatment facilities improvements have been completed. The Metro plant discharges to the Upper Mississippi River basin and had an average phosphorus effluent concentration for the study period of 3.0 mg/L at an average annual phosphorus load to the basin of approximately 870,000 kg/y. A reduction in the phosphorus concentration to 1 mg/L would result in a reduction of an estimated 581,044 kg of phosphorus per year. Because this one facility accounts for approximately 74 percent of the phosphorus load to the Upper Mississippi River basin and an estimated 40 percent statewide, phosphorus removal at this one facility will have a significant impact on the relative phosphorus loads in this basin and the state. Additional but smaller load reductions should be expected as more phosphorus effluent limits are implemented.

The phosphorus removal efficiency in POTWs and privately owned treatment facilities was estimated based on the estimated influent and effluent loads. Table 3-8 shows that the estimated average phosphorus removal is 61 percent in POTWs, and 57 percent for the private facilities, throughout the state. The phosphorus removal efficiencies for all of the POTWs in each basin range from 46 to 86 percent, while the efficiencies for private facilities in each basin are between 47 and 92 percent. By state rule all NPDES permitted discharges in the Lake Superior basin have 1 mg/L effluent limits.

Table 3-8 Phosphorus Removal in POTWs and Privately Owned Treatment Facilities

	POTW			Private		
Basin	Influent Load	Effluent Load	Percent Removal	Influent Load	Effluent Load	Percent Removal
	(kg/yr)	(kg/yr)	(%)	(kg/yr)	(kg/yr)	(%)
Cedar River Basin	105,200	56,400	46%	0	0	
Des Moines River	46,200	15,100	67%	0	0	
Lake Superior	227,000	31,800	86%	500	40	92%
Lower Mississippi River	501,900	184,000	63%	800	300	63%
Minnesota River	952,200	237,800	75%	1,500	800	47%
Missouri River	26,400	12,400	53%	100	20	80%
Rainy River	20,100	4,100	80%	30	10	67%
Red River	150,600	64,300	57%	0	0	
St. Croix River	53,500	20,400	62%	800	300	63%
Upper Mississippi River	2,384,900	1,109,500	53%	4,300	2,000	
State-wide	4,468,000	1,735,800	61%	8,030	3,470	57%

The estimated point source effluent phosphorus load to each basin was categorized by POTW size and category, for each of the influent phosphorus source components. The number of facilities is given in parentheses for each of the following sizes and categories:

- 1. Size (based on Average Wet Weather Design flow)
 - a. Small less than 0.2 mgd (316 facilities)
 - b. Medium from 0.2 mgd to 1.0 mgd (149 facilities)
 - c. Large greater than 1.0 mgd (68 facilities)
- 2. Waste Treated (% by flow volume treated)
 - a. POTWs that serve mainly households and residences less than 20 % industrial or commercial contributions (128 facilities)
 - b. POTWs that have some commercial or industrial contribution between 20% and 50% industrial or commercial contributions (207 facilities)
 - c. POTWs that are dominated by a variety of commercial and industrial contributions greater than 50% industrial or commercial contributions (198 facilities)

Approximately 88 percent of the phosphorus load discharged statewide from POTWs is from large POTWs (i.e., >1.0 mgd), while 8.5 percent of the point source phosphorus load is from POTWs categorized as medium (i.e., 0.2 to 1.0 mgd) and only 3.5 percent is from small POTWs (i.e., <0.2 mgd). Within the large category, POTWs that have some commercial or industrial contribution (between 20% and 50% industrial or commercial contributions) contribute the majority (72 percent) of the phosphorus load from this category to the basins. The following size categories of POTWs were ranked from high to low, based on their phosphorus load discharged statewide:

- 1. Large POTWs that have some commercial or industrial contribution between 20% and 50% industrial or commercial contributions (1,100,000 kg/yr)
- 2. Large POTWs that are dominated by a variety of commercial and industrial contributions greater than 50% industrial or commercial contributions (347,000 kg/yr)
- 3. Large POTWs that serve mainly households and residences less than 20 % industrial or commercial contributions (83,000 kg/yr)
- 4. Medium POTWs that are dominated by a variety of commercial and industrial contributions greater than 50% industrial or commercial contributions (68,000 kg/yr)
- 5. Medium POTWs that have some commercial or industrial contribution between 20% and 50% industrial or commercial contributions (65,000 kg/yr)
- 6. Small POTWs that are dominated by a variety of commercial and industrial contributions greater than 50% industrial or commercial contributions (23,000 kg/yr)
- 7. Small POTWs that have some commercial or industrial contribution between 20% and 50% industrial or commercial contributions (22,000 kg/yr)
- 8. Small POTWs that serve mainly households and residences less than 20 % industrial or commercial contributions (14,000 kg/yr)
- 9. Medium POTWs that serve mainly households and residences less than 20 % industrial or commercial contributions (14,000 kg/yr)

Privately owned treatment facilities, for domestic use, account for less than half of a percent of the total point source phosphorus load to Minnesota surface waters. This amounts to approximately 10,000 kg/yr of phosphorus to all surface waters in the state.

Commercial and industrial wastewater systems, discharging directly to surface waters, make up the remaining point source phosphorus percentage of approximately 18 percent. They discharge an estimated 385,000 kg/yr to Minnesota surface waters. This study did not attempt to determine each of the major commercial and industrial phosphorus contributors. Noncontact cooling water is a subcategory of point source commercial and industrial wastewater. It is estimated that noncontact cooling water contributes approximately 14,000 kg/yr, or approximately 0.7 percent, of the total

phosphorus load to surface waters in the state. In eight of the ten basins, noncontact cooling water accounted for less than one-half of a percent of the total phosphorus load. In the Red River basin, it accounted for 4.5 percent (3,500 kg/yr), and in the Minnesota River basin, it accounted for approximately 1.2 percent (4,500 kg/yr), of the total phosphorus load to the basin.

For this study, it was assumed that the influent components of the POTW's and privately owned treatment facility's phosphorus loads were represented in the treatment plant effluent in the same proportions as in the influent. It is understood that that this may not be the case, that phosphorus from the various sources may not have the same treatability. However, due to the various types of treatment and their variable removal rates, it was not in the scope of this study to estimate the individual removal rates for each type of treatment system, for each source of phosphorus. The commercial and industrial wastewater contributions were separated into those facilities discharging directly to surface waters under their own NPDES permit (Commercial & Industrial Wastewater Systems) and those discharging their wastewater to a POTW for treatment (described in Section 3.3.1.1 as Commercial and Industrial Process Wastewater).

3.2.2 Agricultural Runoff

3.2.2.1 Cropland and Pasture Runoff

As discussed in Section 2.2.2.1.1, phosphorus index values were calculated and compared with field data on phosphorus loss from four sites over five years to estimate phosphorus export conditions for each flow condition, by basin and for the entire state. The following discussion presents the results of the scenarios completed for this analysis to evaluate the impacts of rainfall/runoff conditions, crop residue cover and management practices on the estimated phosphorus risk indices:

• Average Hydrologic Runoff Volume, Average Rainfall Runoff Erosivity, Poor Crop Residue Cover Management Conditions—This scenario was based on long-term average stream flows, average rainfall erosivity, and no crop residue cover due to moldboard plow tillage methods. It is a worst case scenario for tillage methods, but the effects of supporting conservation practices such as contour strip cropping, terracing, and filter strips are here considered. From a practical standpoint, most areas of Minnesota use tillage systems that leave more crop residue than assumed in this scenario, so the phosphorus risks are overestimated in this scenario. As a rough guideline to identify impaired surface waters, Birr and Mulla (2001) suggested that values of the phosphorus index should not exceed 32 in Minnesota watersheds, except in the Red River of the North Basin, where a critical level of 25 should not be exceeded. There are seventeen watersheds in south central Minnesota with a phosphorus index value greater than 32, these include the

Lower Minnesota, Winnebago, Upper Cedar, Hawk Creek-Yellow Medicine, Blue Earth, Lac Qui Parle, Cannon, Rush-Vermillion, Middle Minnesota, South Fork of the Crow, Cottonwood, and Watonwan watersheds. Watersheds such as the Le Sueur, Redwood, Chippewa, Watonwan and South Fork of the Crow also have high phosphorus index scores (ranging from 30-31). It is well known that the Minnesota River basin generates the largest phosphorus losses of any major river basin in Minnesota. Thus, it is not surprising that nine of the twelve major watersheds in the Minnesota River basin have a phosphorus index value that exceeds 30. Watersheds in the northern half of Minnesota generally have phosphorus index values less than 21.

- Average Hydrologic Runoff Volume, Average Rainfall Runoff Erosivity, Average Crop Residue Cover Management Conditions—This scenario is similar to the previous one, except that erosion and phosphorus index values are based on the average crop residue levels as reported in tillage transect surveys. Thirteen watersheds have phosphorus index values that exceed 32, including the Lower Minnesota, Blue Earth, Shell-Rock, Cannon, Rush-Vermillion, Middle Minnesota, South Fork of the Crow, and Watonwan watersheds. These are primarily in the Minnesota River basin and Lower Mississippi River basin. Not as many watersheds have phosphorus index values exceeding 32 in this scenario as in the previous scenario, due to greater crop residue cover in this scenario.
- Average Hydrologic Runoff Volume, Average Rainfall Runoff Erosivity, Best Crop Residue Cover Management Conditions—This scenario was the same as the previous scenario, except that we assumed that conservation tillage leaving 50% of the soil covered by crop residue was practiced on row cropland. From a practical standpoint, most areas of Minnesota use tillage systems that leave less crop residue than assumed in this scenario, so the phosphorus risks are underestimated in this scenario. In general, the increase in crop residue cover produces lower phosphorus index scores in this scenario in comparison with the previous scenario involving average residue cover. Phosphorus index values exceed a score of 32 with this scenario for the Lower Minnesota, Winnebago, Cannon, Rush-Vermillion, and La Crosse-Pine watersheds. Then next highest scores occur primarily in the Minnesota River basin and in southeastern Minnesota, including the Coon-Yellow, Buffalo-Whitewater, Shell-Rock, Root, Hawk Creek-Yellow Medicine, Zumbro, Blue Earth, and Lac Qui Parle watersheds. Most of the northern half of Minnesota shows low risks for phosphorus transport in this scenario.
- Dry Hydrologic Runoff Volume, Dry Rainfall Runoff Erosivity, Best Crop Residue Cover Management Conditions, Cropland Contributing Corridor Based on Perennial Streams and

Ditches—In this scenario, the hydrologic runoff and rainfall runoff erosivity values were typical of dry years. Crop residue cover was based on widespread adoption of conservation tillage. One caveat is that the percent of cropland within 91.4 m of perennial streams and ditches may be unrealistic for this scenario. In dry years the cropland that contributes eroded sediment and runoff to surface waters may be considerably less in area than the cropland that contributes in average years. Thus, the phosphorus index values in this scenario may be overestimated. Phosphorus index values for this scenario are always smaller than those for the scenario based on an average climatic year. The maximum phosphorus index value for watersheds in the dry year scenario is about 29, whereas the maximum value for an average year is about 41. No watersheds exceed the critical phosphorus index value of 32 in this scenario, and none are in the next highest category ranging from 31 to 34 either. Only one watershed, the Lower Minnesota watershed has a phosphorus index score between 27 and 30. Only a handful of watersheds have phosphorus index scores ranging from 22-26, while a majority have scores below 21.

- Dry Hydrologic Runoff Volume, Dry Rainfall Runoff Erosivity, Best Crop Residue Cover Management Conditions, Cropland Contributing Corridor Based on Perennial Streams Only— This scenario is the same as the previous, except that the cropland contributing corridor is reduced in area by assuming that only croplands near perennial streams contribute to phosphorus losses in dry years. This is reasonable, since most ditches flow only sporadically during dry years. No watersheds or agroecoregions have phosphorus index values that exceed 25 or 27, respectively, in this scenario. Only two small watersheds have phosphorus index scores greater than 21, the La Crosse-Pine and Rush-Vermillion watersheds of southeastern Minnesota. This scenario is probably a more accurate representation of the risks of phosphorus transport to surface waters in dry years than the scenario that was based on a contributing corridor around both perennial streams and ditches.
- Met Hydrologic Runoff Volume, Wet Rainfall Runoff Erosivity, Best Crop Residue Cover Management Conditions, Cropland Contributing Corridor Based on Perennial Streams and Ditches—This scenario indicates the risk of phosphorus transport to surface waters from agricultural land during wet years. It is based on runoff volumes and rainfall runoff erosivity values for wet years, on widespread adoption of conservation tillage, and on a cropland contributing corridor 91.4 m wide around perennial streams and ditches. Comparing this scenario with that for an average climatic year, it is evident that the risks of phosphorus loss have increased by a large amount (phosphorus index scores as high as 43) in a significant number of watersheds and agroecoregions. In the wet year scenario there are 24 watersheds with a

phosphorus index score exceeding 32, whereas there were only 5 in the average year scenario. The watersheds exceeding the critical score in wet years are spread across south central and central Minnesota, as well as the Red River of the North basin. It is interesting to note that many of the watersheds in southeastern Minnesota are still below this critical threshold in wet years. This is primarily because of their relatively smaller percent area of cropland within 91.4 m of perennial streams and ditches. As will be shown in the next scenario, if the effects of intermittent streams are considered, the risk of phosphorus transport is considerably increased in southeastern Minnesota.

- Wet Hydrologic Runoff Volume, Wet Rainfall Runoff Erosivity, Best Crop Residue Cover Management Conditions, Cropland Contributing Corridor Based on All Streams and Ditches—This scenario differs from the previous one in that the effects on phosphorus transport of cropland near intermittent streams, which flow during wet years, was considered. The risks of phosphorus transport to surface waters are considerably increased all across Minnesota in comparison to the scenario for wet years which does not consider intermittent streams. Most of the southern two thirds of Minnesota watersheds and agroecoregions exceed the critical phosphorus index score of 32 in this scenario. Only the watersheds and agroecoregions in the far northeastern portion of Minnesota are relatively unaffected by including the effects of intermittent streams on phosphorus transport. This scenario is probably a more accurate representation of the risks of phosphorus transport to surface waters in wet years than the scenario based on a contributing corridor around only perennial streams and ditches.
- Average Hydrologic Runoff Volume, Average Rainfall Runoff Erosivity, Average Crop Residue Cover Management Conditions, Reduced Phosphorus Fertilizer, Cropland Contributing Corridor Around Perennial Streams and Ditches—This scenario illustrates the reductions in risk of phosphorus transport to surface waters (based on a contributing corridor around perennial streams and ditches only) due to reductions in rate of application of phosphorus fertilizer. These reductions were only made in watersheds or agroecoregions that had both high soil test phosphorus levels and high rates of phosphorus fertilizer application. More specifically the reductions were made where STP was greater than 32 ppm and fertilizer P application rates exceeded 27 kg/ha or where STP was greater than 39 ppm regardless of fertilizer P application rates. In both these cases, the rate of phosphorus fertilizer application was reduced to 5 kg/ha. These reductions reduce the risk of phosphorus transport in about one third of watersheds and agroecoregions, namely those units where the soil is generally capable of supplying P for crop production with little or no phosphorus fertilizer application. The phosphorus index values in the

Middle Minnesota, Cottonwood, Lower Minnesota, Rush-Vermillion and Cannon watersheds are reduced significantly in this scenario in comparison to their phosphorus index values for the scenario (scores decrease from generally above 32 to generally below 27), thus bringing them below the critical threshold. Large reductions in phosphorus index values also occur in the Le Sueur watershed.

Average Hydrologic Runoff Volume, Average Rainfall Runoff Erosivity, Average Crop Residue Cover Management Conditions, Variable Manure Application Method—This scenario involves consideration of the variations in manure application method arising from differences in animal species and manure storage facilities. The baseline scenario assumes that manure is applied and incorporated immediately just before planting a crop. This is most likely an overly optimistic scenario for most manure applications in the state. The phosphorus index values are more realistic for Minnesota watersheds and agroecoregions based on consideration of differences across regions in manure application methods. Phosphorus index scores increase in this scenario relative to the baseline scenario that assumes relatively good methods of manure application. The increases are particularly noteworthy in northern Minnesota, where beef cattle operations are relatively abundant relative to other types of animal production. Beef cattle operations tend to be small, and many lack adequate manure storage facilities. This results in frequent hauling and land application of manure, generally without incorporation, including application of manure during the winter to frozen or snow covered cropland. Small increases in phosphorus index scores also occur in portions of the Red River of the North basin, in areas with relatively abundant beef cattle. These small increases bring the phosphorus index scores close to the critical threshold value of 25 in that region. Phosphorus index scores are relatively unaffected in southern Minnesota in regions where hog production dominates, because hog producers tend to have adequate manure storage and inject their manure rather than spreading it on the soil surface where it is very susceptible to losses by erosion and runoff.

Agricultural phosphorus export coefficients show considerable variation across basins and across climatic conditions (Figure 3-5). Export coefficients (kg/ha) during average climatic conditions vary from 0.54 kg/ha for the Minnesota River basin, 0.4 kg/ha for the Red River basin, 0.39 kg/ha for the Upper Mississippi River basin, and 0.66 kg/ha for the Lower Mississippi River basin. During wet years, the export coefficients are increased to 0.81 kg/ha for the Minnesota River, to 0.54 kg/ha for the Red River, to 0.69 kg/ha for the Upper Mississippi River, and to 0.80 kg/ha for the Lower Mississippi River basin. The export coefficients decrease during dry years to 0.28, 0.13, 0.22, and

0.36 kg/ha for the Minnesota, Red, Upper Mississippi, and Lower Mississippi River basins, respectively.

Phosphorus export coefficients for river basins with relatively sparse agricultural cropland are smaller than the coefficients for river basins with intensive agricultural land use. For example, during average climatic years, the phosphorus export coefficients for the Lake Superior, Rainy, and St. Croix River basins are only 0.24, 0.23 and 0.38 kg/ha, respectively.

Phosphorus loads exported to surface waters from agricultural lands under dry, average and wet climatic conditions are shown in Table 3-9 and Figure 3-6 (based on an analysis of phosphorus index values and export coefficients for major watersheds). Under average climatic conditions, the phosphorus loads are greatest for the Minnesota River basin (517,862 kg/yr), followed by the Red River (384,695 kg/yr), the Upper Mississippi (359,681 kg/yr) and the Lower Mississippi (232,581 kg/yr) River basins. All of the other basins have phosphorus loads that are considerably smaller than the loads in these four basins.

As expected, phosphorus loads exported from agricultural lands to surface waters are considerably greater during wet years than average years. Under wet climatic conditions, the phosphorus loads exported in the Minnesota, Red, Upper Mississippi, and Lower Mississippi River basins are 759,749, 545,247, 652,266, and 282,780 kg/yr, respectively. In dry years the phosphorus loads exported are 262,851, 131,311, 200,865, and 116,810 kg/yr, respectively, for these same basins.

Phosphorus loads from agricultural lands are much smaller for the Rainy, Lake Superior and St. Croix River basins than the basins with larger proportions of agricultural cropland (the Minnesota, Red, Upper and Lower Mississippi River basins). For example, during years with average climatic conditions, phosphorus loads exported from agricultural land to surface waters are only 13,112, 20,713, 59,931 kg/yr for the Lake Superior, Rainy and St. Croix River basins, respectively. Similar comparisons can be made for wet and dry climatic years.

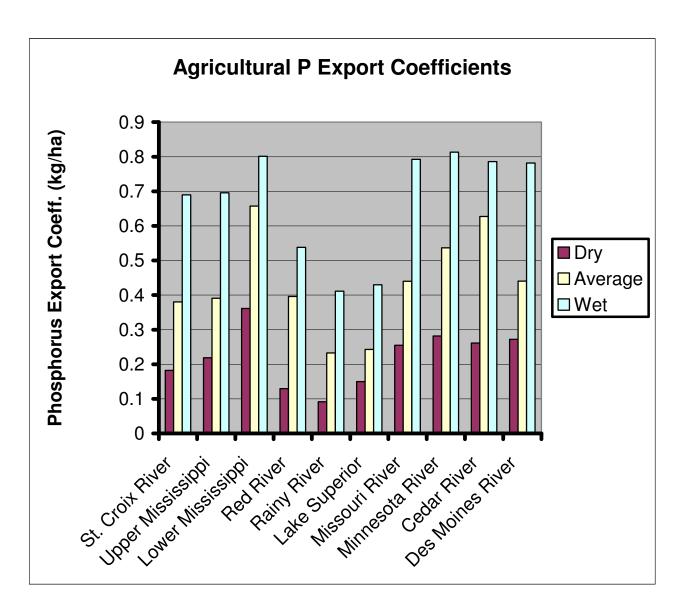


Figure 3-5 Cropland and pasture runoff P export coefficients (kg/ha) for major drainage basins in dry, average, and wet climatic years.

Export coefficients are derived from major watershed based phosphorus index values. These do not include contributions from surface tile inlets or subsurface tile drains.

Table 3-9 Phosphorus Loadings (kg/yr) to Minnesota Surface Waters from Agricultural Cropland by Major Drainage Basin Based on an Analysis of Phosphorus Index Values in Major Watersheds.

P	hosphorus Loads* Exp	orted from Agricultural L	and (kg/yr)
Basin	Dry Year	Average Year	Wet Year
St. Croix River	27857	59931	110046
Upper Mississippi	200865	359681	652266
Lower Mississippi	116810	232581	282780
Red River	131311	384695	545247
Rainy River	8988	20713	36072
Lake Superior	7617	13112	22528
Minnesota River	262851	517862	759749
Missouri River	36055	58758	109222
Cedar River	13722	33270	42444
Des Moines River	24670	37743	73149

^{*}These loads are computed by multiplying the phosphorus export coefficients for each major watershed by the area of cropland within the contributing corridor for the same major watershed, and then summing over all major watersheds with the river basin. An additional 11.1% load is then added to account for phosphorus contributions by overland flow from outside the contributing corridor, excluding the contributions from surface tile inlets and subsurface tile drains.

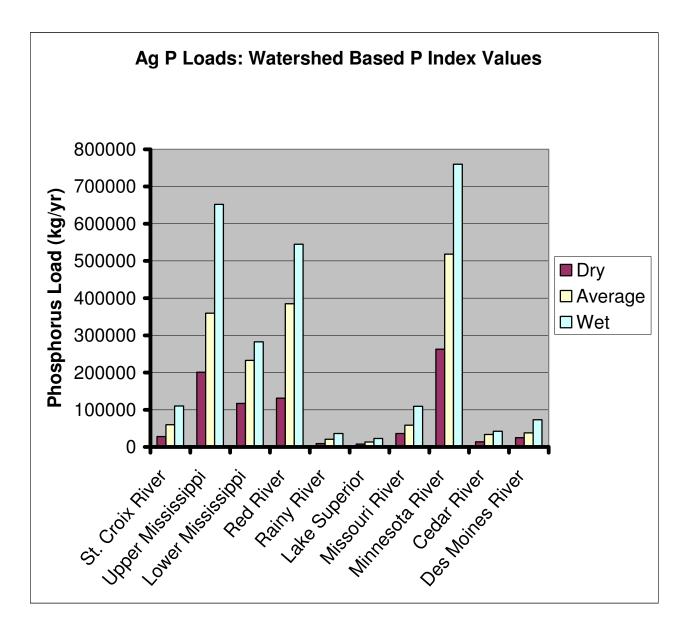


Figure 3-6 Cropland and pasture runoff phosphorus loads (kg/yr) exported to surface waters in major drainage basins of Minnesota under dry, average and wet climatic conditions

These results are based on phosphorus export coefficients derived from major watershed based phosphorus index values. These do not include contributions from surface tile inlets or subsurface tile drains.

The method of estimation used here does not consider the influence that subsurface tile drains and surface tile intakes farther than 100 m may have on phosphorus loadings. As discussed in Section 2.2.2.1.1, the total phosphorus loading from surface tile intakes to surface water bodies in the Minnesota River basin would result in 94,000 kg per year, while the phosphorus loading from subsurface tile drainage is estimated to be 30,000 kg/yr. The combined loading of 124,000 kg/yr is approximately 24 percent of the Minnesota River basin phosphorus loading from cropland within 100

m of surface waters during an average year (517,862 kg/yr). As previously discussed, not enough research data are available to reliably estimate the phosphorus loadings from surface tile intakes or subsurface tile drains to surface waters in the Minnesota River basin during dry or wet climatic years. As a first approximation, scaling the phosphorus loadings from tile drains so that they have the same relative ratio as the phosphorus index based loadings for the Minnesota River basin in dry, average and wet years (262,851; 517,862; and 759,749 kg/yr, respectively) results in estimated phosphorus loadings from subsurface tile drains of 15,227 kg/yr during dry years and 44,013 kg/yr during wet years. Using the same approach, phosphorus loadings from surface tile inlets in the Minnesota River basin during dry and wet years would be 47,711 and 137,906 kg/yr, respectively. As mentioned previously, the phosphorus loadings in dry years are expected to be overestimates.

In summary, the risk of phosphorus transport to surface waters depends on many factors. These include factors affecting soil erosion by water (conservation tillage, landscape steepness, climate), soil test phosphorus levels, rate of application of phosphorus from fertilizer or manure, and method of application of manure. Extensive databases for Minnesota watersheds and agroecoregions were developed to explore the variation in risks of phosphorus transport to surface waters in response to these factors. The results show that phosphorus losses are more sensitive to climatic variability than any other factor. The fraction of cropland near streams and ditches also has a large impact on phosphorus losses, during both wet and dry years. Watersheds and agroecoregions in Minnesota exhibit a considerable amount of variation in the risks of phosphorus loss. In general, the watersheds and agroecoregions with the greatest potential for phosphorus loss are located in the Lower Mississippi and Minnesota River basins. This is because of a combination of high rates of erosion, high rates of phosphorus application from fertilizer or manure, and a high percentage of cropland near streams and ditches. From a basin wide perspective, however, the greatest phosphorus loads are exported from agricultural lands to surface waters in the Minnesota River basin, followed by the Red River, Upper Mississippi, and Lower Mississippi River basins. Basins with relatively small areas of agricultural land use, such as the Lake Superior, Rainy and St. Croix River basins have significantly smaller phosphorus loads exported from agricultural lands to surface waters than basins with significant amounts of agricultural land use. Analysis shows that farmers have made progress in controlling phosphorus losses from agricultural cropland over the last twenty years or more due to accelerated adoption of conservation tillage. Additional progress can be made through continued adoption of best management practices, including reductions in the amount of phosphorus fertilizer applied to cropland when soil phosphorus levels are sufficient for crop production. Improved methods of manure application are also important in northern drainage basins for reductions in

phosphorus loads to surface waters. Land retirement programs can be effective at reducing phosphorus loads to surface waters if cropland near surface waters is targeted for retirement.

3.2.2.2 Feedlot Runoff

The results of each of the four steps (discussed in Section 2.2.2.1.2) taken to estimate the phosphorus loadings from noncompliant open feedlots are presented in Table 3-10, along with the results of the phosphorus loading computations for runoff from noncompliant open feedlots during low, average and high flow conditions within each of the major basins of the state. Table 3-10 shows that the Lower Mississippi River produces the most phosphorus in feedlot runoff, with similar loadings estimated for the Upper Mississippi and Minnesota River basins. These three basins combined account for 88, 81, and 78 percent of the total statewide phosphorus loadings from feedlot runoff under low, average and high flow conditions, respectively. On a statewide basis, the total phosphorus loading during an average year is twice as high as the loading during a low flow year, while the high flow loading estimate is approximately 1.7 times higher than the estimate for average flow conditions. Table 3-10 shows that dairy in the Upper Mississippi River produces the largest amount of manure phosphorus generated from all open lots, followed by beef in the Minnesota River basin.

Due to uncertainties, variability and unaccounted sources (further described in Appendix D), the feedlot runoff loading results could be significantly higher or lower in some basins than the results show. It should be noted that even though feedlots are a small fraction of total P loading from a basin-wide perspective, some feedlots have been shown to contribute relatively high percentages of P loading to individual lakes and localized water resources.

Table 3-10 Estimated Annual Phosphorus Loadings for Outdoor Open Lot Feedlot Runoff to Surface Waters

Major Basin	IcaiaA	P Produced per Animal Unit	Open Lot Animal Units	Manure P Produced from All Open Lots	Assumed Open Lots Contributing P to Waters	Manure P Produced from P Contributing Feedlots	Surface Wa	of P Generated ters from Non Condition (fr	-Compliant		ed TP from by Flow Co	
		lbs/yr	AU	lbs	fraction	lbs P/yr	fraction	fraction	fraction	kg P/yr	kg P/yr	kg P/yr
2,000	Common		10000000	40 J. ASSE-1840USO		100000000000000000000000000000000000000	Low	Average	High	Low	Average	High
Cedar	Beef	33.5	6,809	228,102	0.35	79,836	0.0036	0.0062	0.0112	130	225	406
	Dairy	47.8	2,529	120,886	0.35	42,310	0.0033	0.0057	0.0102	63	109	196
	Hogs	26.6	9,759	259,589	0.35	90,856	0.0033	0.0057	0.0102	136	235	420
3	000000	10,000	86723353		250,000	882355555	57800000000	(480)41	Basia Total	330	569	1,022
Des Moines	Beef	33.5	48,639	1,629,407	0.35	570,292	0.0009	0.0036	0.0085	233	931	2,199
	Dairy	47.8	3,945	188,571	0.35		0.0008	0.0033		24	99	231
	Hogs	26.6	48,122	1,280,045	0.35	448,016	0.0008	0.0033		163	671	1,565
T						1900(01)			Basia Total	419	1,701	3,994
Lake Superior	Beef	33.5	3,074	102,979	0.35	36,043	0.005	0.008	0.0107	82	131	175
	Dairy	47.8	3,203	153,103	0.35	53,586	0.0045	0.0073		109	177	236
	Hogs	26.6	92	2,447	0.35	857	0.0045	0.0073		2	3	4
	33953	2325	(3)	813338	45.500	57.30	120000000	3355550	Basia Total	193	311	414
Lower	Beef	33.5	238,216	7,980,236	0.35	2,793,083	0.0045	0.0065	0.0033	5,701	8,235	12,543
	Dairy	47.8	200,040	9,561,912	0.35	3,346,669	0.0041	0.0059	0.003	6,224	8,956	13,662
	Hogs	26.6	79,301	2,109,407	0.35		0.0041	0.0059		1,373	1,976	3,014
Y Y		20.0	10,001	2,100,401	0.00	100,202	0.0041	0.0000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300000000000000000000000000000000000000		0.0000000000000000000000000000000000000
Minnesota	Beef	33.5	358,579	12,012,397	0.35	4,204,339	0.0012	0.0036	Basia Total 0.0071	13,298 2,288	19,167 6,865	29,219 13,540
	Dairy	47.8	158,480	7,575,344	0.35	2,651,370	0.0012	0.0036	0.0064	1,323	3,969	7,697
	Hogs	26.6	271,561	7,223,523	0.35	2,528,233	0.0011	0.0033		1,261	3,784	7,339
	nogs	20.0	211,501	1,220,320	0.55	2,520,255	0.0011	0.0033	50037507500	2000	25.000	
	- /		400.430			1,555.001			Basin Total	4,873	14,619	28,576
Missouri	Beef	33.5	132,679	4,444,747	0.35	1,555,661	0.0006	0.0033	0.008	423	2,329	5,645
	Dairy	47.8 26.6	27,219 81,589	1,301,068	0.35 0.35	455,374	0.0005 0.0005	0.003 0.003		103 172	620 1,034	1,487 2,481
4	Hogs	20.0	01,503	2,170,267	0.33	759,594	0.0005	0.003	11000-014 (1800) 1100	923333		40010010000
1 200	0.05/02	1000	20100-1	S 699200			2 2-171971	· 10340	Basin Total	699	3,982	9,613
Rainy	Beef	33.5	8,993	301,266	0.35	105,443	0.003	0.005		143	239	359
	Dairy	47.8	1,668	79,730	0.35	27,906	0.0027	0.0045		34	57	86
	Hogs	26.6	116	3,086	0.35	1,080	0.0027	0.0045	0.0068		2	3
									Basin Total	179	298	448
	Beef	33.5	142,375	4,769,563	0.35	1,669,347	0.0006	0.0022	0.0039	454	1,666	2,953
	Dairy	47.8	54,886	2,623,551	0.35	918,243	0.0005	0.002	0.555.555	208	833	1,499
3	Hogs	26.6	9,740	259,084	0.35	90,679	0.0005	0.002	0.0036	21	82	148
s say estent o	Greens	5 13625		V. 0294243100	2000		o contract	de constantent	Basia Total	683	2,581	4,601
	Beef	33.5	28,985	970,998	0.35	339,849	0.0036	0.0062		555	956	1,403
	Dairy	47.8	36,362	1,738,104	0.35	608,336	0.0033	0.0056		911	1,545	2,263
	Hogs	26.6	1,744	46,390	0.35	16,237	0.0033	0.0056	0.0082	24	41	60
	- A 1550V	300000	->0.000	000001230	154,5700	10012007130	0.000,000	354,767,2434,0	Basia Total	1,490	2,542	3,726
	Beef	33.5	256,585	8,595,598	0.35	3,008,459	0.0023	0.0044	0.0066	3,139	6,004	9,006
	Dairy	47.8	391,607	18,718,815	0.35	6,551,585	0.0021	0.004	0.006	6,241	11,887	17,830
	Hogs	26.6	53,454	1,421,876	0.35	497,657	0.0021	0.004	0.006	474	903	1,354
									Basin Total	9,853	18,794	28,191
								49	atewide Total	32,017	64,564	109,804

3.2.3 Atmospheric Deposition

As identified in Table 3-11, the estimate of atmospheric phosphorus deposition for each basin is based on the area identified as "water" or "wetland" in the GIS database. Estimates of average wet phosphorus deposition (average precipitation) range from ~ 0.069 kg ha⁻¹ yr⁻¹ in the Rainy River to 0.212 kg ha⁻¹ yr⁻¹ in the Cedar River basin (see Table 3-11). When factoring in dry/wet years, Table 3-11 shows that the range in potential wet phosphorus deposition is from approximately 0.059 kg ha⁻¹ yr⁻¹ in the Rainy River basin (dry year) to 0.273 kg ha⁻¹ yr⁻¹ in the Cedar River basin (wet year). The estimates of average phosphorus wet deposition (average precipitation) for the respective basins, ranges from approximately 2,100 kg/yr for the Cedar River to approximately 155,850 kg/yr for the Upper Mississisppi.

Estimates of average dry phosphorus deposition (assuming average precipitation year) range from approximately 0.028 kg ha⁻¹ yr⁻¹ in the St. Croix River basin to approximately 0.241 kg ha⁻¹ yr⁻¹ in the Cedar River basin (Table 3-11). Estimates of average "total" (wet + dry) phosphorus deposition range from ~ 0.102 kg ha⁻¹ yr⁻¹ in the Rainy River basin (dry year) to 0.513 kg ha⁻¹ yr⁻¹ in the Cedar River basin (wet year) (Table 3-11). The largest phosphorus loading of approximately 299,044 kg/yr is found in the Upper Mississippi basin. As noted in Table 3-11, dry deposition could only be estimated for an "average" year due to the lack of available data for estimating deposition during a wet or dry year. Therefore, total (wet + dry) estimates for the dry, average, and wet years for each basin in Table 3-11 use the same dry deposition value, which adds some uncertainty to the deposition estimates (further discussed in Appendix E).

Table 3-11 Estimated Total Phosphorus Deposition to Minnesota Basins

					D V. a	A V	Wat Vari		0/ -4		etland Basin Load	
Basin	Low Precipitation Phosphorus Deposition [1] (kg ha ⁻¹ yr ⁻¹)	Average Precipitation Phosphorus Deposition [1] (kg ha ⁻¹ yr ⁻¹)	High Precipitation Phosphorus Deposition [1] (kg ha ⁻¹ yr ⁻¹)	Dry Phosphorus Deposition [2] (kg ha ⁻¹ yr ⁻¹)	Dry Year Total (wet+dry) Phosphorus Deposition [3a] (kg ha ⁻¹ yr ⁻¹)	Average Year Total (wet+dry) Phosphorus Deposition [3b] (kg ha ⁻¹ yr ⁻¹)	Wet Year Total (wet+dry) Phosphorus Deposition 3[c] (kg ha ⁻¹ yr ⁻¹)	Basin Waters and Wetland Area [4] (hectares)	% of Total Basin Land Area [5]	Dry Year Total (wet+dry) Phosphorus Deposition [6a] (kg/yr)	Average Year Total (wet+dry) Phosphorus Deposition [6b] (kg/yr)	Wet Year Total (wet+dry) Phosphorus Deposition [6c] (kg/yr)
Cedar River	0.1815	0.2118	0.2725	0.2408	0.4223	0.4526	0.5133	9,924	3.7	4,191	4,492	5,095
Des Moines River	0.1452	0.1848	0.2428	0.0686	0.2138	0.2534	0.3114	21,761	5.5	4,652	5,514	6,777
Lake Superior	0.0765	0.0873	0.1053	0.0447	0.1212	0.1320	0.1501	531,000	33.3	64,382	70,118	79,677
Minnesota River	0.1458	0.1854	0.2296	0.0761	0.2219	0.2615	0.3057	300,462	7.8	66,672	78,567	91,850
Mississippi, Lower [7]	0.1253	0.1545	0.1847	0.0925	0.2177	0.2470	0.2771	82,740	5.1	18,016	20,435	22,930
Mississippi, Upper [8]	0.0809	0.1006	0.1228	0.0703	0.1512	0.1709	0.1931	1,548,735	29.7	234,154	264,658	299,044
Missouri River	0.1392	0.1795	0.2349	0.0686	0.2079	0.2481	0.3035	12,016	2.6	2,497	2,981	3,647
Rainy River	0.0590	0.0690	0.0846	0.0431	0.1021	0.1121	0.1277	1,525,718	52.4	155,792	171,065	194,778
Red River	0.0778	0.0975	0.1209	0.1102	0.1880	0.2077	0.2311	1,092,132	23.8	205,367	226,843	252,432
St. Croix River	0.0938	0.1211	0.1488	0.0280	0.1218	0.1491	0.1768	275,251	30.1	33,518	41,032	48,655
State Wide Totals								5,399,738		789,241	885,704	1,004,885

Note:

^[1] The phosphorus deposition rates from dry, average and wet precipitation volumes. Dry, average and wet year precipitation volume data based on the 1979-2002 period (using water years 10/1-9/30). The dry period is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the MDNR (2003).

^[2] Includes coarse and fine dry deposition. Calculations assumed to be for an "average" precipitation year.

There is insufficient information to estimate deposition for a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year.

^{[3}a] Total deposition = low precipitation phosphorus deposition + dry deposition

^{[3}b] Total deposition = average precipitation deposition + dry deposition

^{[3}c] Total deposition = high precipitation phosphorus deposition + dry deposition

^[4] Basin area is that part of the basin within the state's borders designated as "Water" or "Wetland" in the GIS database. Surface water included open water, woody wetlands and emergent herbaceous wetlands as defined by the USGS National Landcover database (~1992). This is a landsat based raster data set developed by the USGS with a minimum mapping unit of 30 meters.

^[5] The percentage of the total land area within a river basin that is designated as water or wetland surface water.

^{[6}a] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry deposition rate was used to calculate this total.

^{[6}b] The total phosphorus deposition rate to the basin water or wetland surface waters. The average precipitation deposition rate + dry deposition rate was used to calculate this total.

^{[6}c] The total phosphorus deposition rate to the basin water or wetland surface waters. The high precipitation deposition rate + dry deposition rate was used to calculate this total.

^[7] Lower Mississippi is that part of the Mississippi downstream of where the St.Croix River merges with the Mississippi.

^[8] Upper Mississippi is that part of the Mississippi upstream of where the St.Croix River merges with the Mississippi.

3.2.4 Deicing Agents

The phosphorus loadings for each basin were computed using the deicing agents application rates and concentrations for the lane miles in each basin, as discussed in Section 2.2.2.3. Each basin calculation was completed using the application rates for the respective MnDOT Districts that encompass the basin; whenever the basin includes TCMA counties, those state highway lane miles were calculated using the higher Metro District rates for each county. Table 3-12 presents the phosphorus loading results for each of the basins under the three loading scenarios and a summary for the state-wide total phosphorus loading to surface waters from deicing agents under the same three scenarios.

Table 3-12 Major Basin and Statewide Total Phosphorus Loadings from Deicers for Each Snowfall Scenario

Basin	Snowfall Scenario	Tons of Salt	Tons of Sand	Gallons of Brine	P from Salt, kg	P from Sand, kg	P from Brine, kg	Total P, kg
	Dry Year	37,525	55,343	59,431	170	1893	0.03	2,063
St. Croix River	Avg Year	47,143	88,364	59,431	213	3022	0.03	3,236
	Wet Year	57,862	124,331	59,431	262	4252	0.03	4,514
	Dry Year	214,976	376,477	521,969	973	12876	0.26	13,849
Upper Mississippi River	Avg Year	279,640	600,253	521,969	1266	20529	0.26	21,795
	Wet Year	350,167	835,955	521,969	1585	28590	0.26	30,176
_	Dry Year	88,034	132,454	268,117	399	4530	0.13	4,929
Lower Mississippi River	Avg Year	110,716	213,189	268,117	501	7291	0.13	7,793
	Wet Year	136,270	302,924	268,117	617	10360	0.13	10,977
	Dry Year	112,554	240,506	135,874	510	8226	0.07	8,735
Red River	Avg Year	156,495	374,579	135,874	708	12811	0.07	13,519
	Wet Year	204,893	546,846	135,874	928	18703	0.07	19,630
	Dry Year	32,576	57,318	160,864	147	1960	0.08	2,108
Rainy River	Avg Year	41,389	95,993	160,864	187	3283	0.08	3,470
	Wet Year	51,190	138,824	160,864	232	4748	0.08	4,980
Lake Superior	Dry Year	37,625	60,767	91,289	170	2078	0.04	2,249

Basin	Snowfall Scenario	Tons of Salt	Tons of Sand	Gallons of Brine	P from Salt, kg	P from Sand, kg	P from Brine, kg	Total P, kg
	Avg Year	47,755	98,765	91,289	216	3378	0.04	3,594
	Wet Year	59,068	140,577	91,289	267	4808	0.04	5,075
	Dry Year	16,903	32,231	25,586	77	1102	0.01	1,179
Missouri River	Avg Year	23,002	49,589	25,586	104	1696	0.01	1,800
	Wet Year	29,845	68,392	25,586	135	2339	0.01	2,474
	Dry Year	141,111	285,517	251,770	639	9765	0.12	10,404
Minnesota River	Avg Year	193,267	446,062	251,770	875	15256	0.12	16,131
	Wet Year	251,497	589,445	251,770	1138	20160	0.12	21,298
	Dry Year	15,504	21,514	43,379	70	736	0.02	806
Cedar River	Avg Year	19,503	33,493	43,379	88	1145	0.02	1,234
	Wet Year	24,042	46,803	43,379	109	1601	0.02	1,710
	Dry Year	13,370	27,606	18,403	61	944	0.01	1,005
Des Moines River	Avg Year	18,573	42,620	18,403	84	1458	0.01	1,542
	Wet Year	24,447	59,097	18,403	111	2021	0.01	2,132
	Dry Year	710,178	1,289,734	1,576,683	3,215	44,110	0.77	47,326
Statewide Totals	Avg Year	937,483	2,042,906	1,576,683	4,244	69,869	0.77	74,114
	Wet Year	1,189,280	2,853,194	1,576,683	5,384	97,582	0.77	102,966

Table 3-12 shows that the estimated phosphorus loadings associated with heavy snowfall years are approximately twice as high as the loadings associated with low snowfall years, in each basin, with the average years generally falling directly between each of the other snowfall scenarios. In descending order, the three basins experiencing the largest total phosphorus loadings to surface waters, in each snowfall scenario, are the Upper Mississippi, Minnesota and Red River basins. The Upper Mississippi River basin accounts for nearly 30% of the total phosphorus loadings, statewide.

3.2.5 Streambank Erosion

The phosphorus loadings for each basin were computed using the approach and methodology discussed in Section 2.2.2.4. Table 3-13 presents the results of the phosphorus loading computations

and assessments for each flow condition, by basin and for the entire state. Table 3-14 compares the phosphorus yield associated with streambank erosion for each flow condition, by basin and the entire state. Table 3-13 shows that the estimated streambank erosion total phosphorus loadings under low flow conditions are approximately an order of magnitude lower than average flow conditions, while the streambank erosion estimates under high flow conditions are about a half an order of magnitude higher than average flow conditions.

Table 3-13 Summary of Total Phosphorus Loading Estimates (kg/yr) for Streambank Erosion

<u>Basin</u>	Low Flow Conditions	Average Flow Conditions	High Flow Conditions
Cedar River	140	12,200	59,600
Des Moines River	130	7,350	47,900
Lake Superior	4,730	35,100	207,000
Lower Mississippi	45,500	322,000	1,280,000
Minnesota River	9,910	200,000	900,000
Missouri River	1,440	16,100	71,600
Rainy River	0	52,700	318,000
Red River of the North	0	8,840	146,000
St. Croix River	20	15,500	98,000
Upper Mississippi	430	79,900	477,800
Statewide Totals	62,300	750,000	3,606,000

Table 3-14 Summary of Estimated Total Phosphorus Yield (kg/km²/yr) from Streambank Erosion for Average Flow Conditions

<u>Basin</u>	Average Flow Conditions
Cedar River	4.6
Des Moines River	1.9
Lake Superior	2.2
Lower Mississippi	19.7
Minnesota River	5.2
Missouri River	3.5
Rainy River	1.8
Red River of the North	0.2
St. Croix River	1.7
Upper Mississippi	1.5
Statewide Totals	3.4

The relative difference between the estimated phosphorus loadings for each basin (from Table 3-14) corresponds well with the variation of observed sediment yields throughout the State, although sediment yield and streambank erosion loadings would not necessarily be expected to vary the same if other sources of phosphorus and sediment measured in the yield vary significantly. Based on the estimated yield from each basin, the Lower Mississippi River basin loadings are significantly higher

than any other basin, followed by the Minnesota and Cedar River basins. This corresponds well with the portion of the State with significant loess deposits, and corresponds with the findings of other researchers (Tornes, 1986; Simon and Rinaldi, 2000; Simon et al., 2003). For each flow condition, the Lower Mississippi River basin streambank erosion estimates from Table 3-13 account for more than a third of the total loading estimated for the State. Under the low flow condition, the Lower Mississippi River basin streambank erosion estimates accounts for more than 70 percent of the total loading estimated for the State.

3.2.6 Individual Sewage Treatment Systems/Unsewered Communities

As discussed in Section 2.2.2.5, population served by Individual Sewage Treatment System (ISTS) or undersewered communities, compliance of treatment systems with performance standards, groundwater conditions, and characteristics of soil absorption field and proximity to surface waters are important factors in determining phosphorus export. The MPCA ISTS LUG spreadsheet provided estimates of the number of full time and seasonal residences served by ISTS, along with the number of failing systems and an estimate for the number of systems which are an ITPHS (Imminent Threat to Public Health and Safety). The population data used for both ISTS and undersewered communities are included in Table 3-15. Table 3-15 also shows the number of residential systems in each basin. The Upper Mississippi River basin accounts for almost one-quarter of the population served by ISTS and more than 60 percent of the unsewered areas population. The Minnesota, Lower Mississippi, Red and St. Croix River basins serve ISTS populations of between 110,000 and 160,000, while the Minnesota and St. Croix River basins have unsewered area populations between 25,000 and 33,000. The remaining basins represent small fractions of the statewide populations served by ISTS and undersewered communities.

Table 3-15 shows the percentages of failing systems and systems which discharge partially treated sewage (or are considered an ITPHS), estimated for each of the basins and the state. These estimates show that the Des Moines River basin has the highest percentage (41%) of ISTS systems considered an ITPHS, followed by the Minnesota and Missouri River basins with 29 and 22 percent, respectively. The St. Croix, Lake Superior, Rainy and Upper Mississippi River basin estimates for percentages of ISTS considered an ITPHS were all less than 8 percent. Table 3-15 shows that the Rainy River basin had the highest (43%), while the St. Croix basin had the lowest (11%), percentages of failing ISTS systems. All of the other basins had estimated percentages of failing ISTS systems between 24 and 35 percent. The high percentage for the Rainy River basin may be partially due to the presence of high water tables relative to the other basins.

Table 3-15 presents the results of the phosphorus loading computations done for the assessment of ISTS and undersewered communities. The last five columns of Table 3-15 show the estimated total phosphorus loadings to surface waters from undersewered communities, direct-to-tile ISTS, all seasonal ISTS, the remaining ISTS, and the total load in each basin (and the state) from all four source categories. On a statewide basis, Table 3-15 shows that more than half of the phosphorus load from undersewered communities/ISTS is coming from permanent ISTS, while approximately 35 percent of the total load originates from undersewered communities. Undersewered communities represent a large percentage of the total load to the St. Croix and Upper Mississippi River basins (56 and 53 percent, respectively). Undersewered communities represent less than 27 percent of the total phosphorus load for the remaining basins. Direct-to-tile ISTS represents 20, 16 and 11 percent of the total phosphorus load in the Cedar Minnesota, and Des Moines River basins, respectively; but less than 8 percent for the remaining basins. The estimated seasonal ISTS contributions are 16 and 18 percent of the total phosphorus loads in the Rainy River and Lake Superior basins, respectively, and less than 7 percent for the remaining basins. The remaining ISTS contributions (from both conforming and nonconforming systems) accounts for more than 40 percent of the total phosphorus load from ISTS/undersewered communities in all of the basins. The highest total phosphorus contribution from the remaining ISTS category is 87 percent in the Missouri River basin.

Table 3-15 Estimated Annual Phosphorus Loadings for ISTS and Unsewered Communities

											Ertimated P Luad Pruduced (kq) Ertimated P Luad Dircharged to Surface Wate								ters (kq)
	ISTS Papulation by Difference	Tutal Residential Systems	Percent Pertielly Treated		Vareuered Arear Papulation	Per	Direct-tu- Tile Systems		Remaining ISTS Pap.	Secrenci Pap.	Umrawarad Araw	Direct- tm-Tile Systems	Secretel ISTS	Remaining ISTS	Unrouered Arear	Direct-te Tile Systems		Remaining ISTS	Tatal
Codar Rivor	17,654	4,500	15.7%	34.6%	299	3.92	514	2,016	15,339	0	264	1,784	- 0	13,568	114	767		2,999	3,880
Dar Mainar River	6,818	5,420	41.1%	23.8%	1,028	1.28	419	536	5,254	191	909	474	56	4,647	391	204	20	1,316	1,930
Lake Superior	39,419	16,000	5.5%	35.0%	342	4.80	0	0	39,077	16,363	303	0	4,825	34,565	130	0	1,415	6,507	8,051
Lawer Mirrirrippi	143,466	31,002	10.6%	26.8%	11,272	4.75	450	2,137	130,057	1,676	9,971	1,891	494	115,041	4,287	813	141	21,707	26,949
Minnesata River	158,257	67,100	29.4%	32.8%	25,872	2.55	7,399	18,847	113,538	10,437	22,885	16,671	3,077	100,430	9,841	7,168	1,056	26,377	44,442
Mirrouri	16,697	5,233	22.1%	33.4%	509	3.27	227	743	15,445	281	450	658	83	13,662	194	283	27	3,275	3,778
Rainy River	33,533	23,928	7.0%	43.1%	6,216	2.02	0	0	27,317	15,395	5,498	0	4,539	24,163	2,364	. 0	1,431	5,056	8,851
RodRivor	112,474	46,447	13.1%	27.0%	8,366	2.92	0	0	103,508	16,655	7,931	0	4,911	91,558	3,410	0	1,434	18,038	22,882
St. Craix River	110,520	45,249	2.3%	11.4%	32,612	2.76	0	0	77,908	10,857	28,847	0	3,201	68,913	12,404	0	741	8,987	22,132
Upper Mirrirrippi	453,857	227,515	7.8%	24.7%	154,636	2.32	436	1,014	298,147	67,809	136,836	897	19,993	263,725	58,839	386	5,497	46,250	110,972
	ž		2		£			13		0 0		2				2	23		25
TOTAL	1,092,695	472,394	11.6%	26.4%	241,812	2.69	9,445	25,294	825,589	139,665	213,894	22,373	41,180	730,271	91,974	9,621	11,762	140,510	253,86

3.2.7 Non-Agricultural Rural Runoff

As described in Section 2.2.2.6, the ecoregion-based phosphorus export rates and contributory areas for each land cover type within each basin were utilized, along with the basin runoff factors, to calculate the results of the phosphorus loadings for each basin and the state. The phosphorus loading results are shown in Table 3-16. The highest total phosphorus loadings are estimated for the Rainy River, Upper Mississippi River and Lake Superior basins, which combined, represent approximately 75 percent of the non-agricultural rural total phosphorus loadings for each flow condition. For each land cover type the estimated total phosphorus loadings for the high flow condition are typically one-and-one-half to two-and-one-half times as high as the low flow loadings for each basin, with the average flow condition loadings typically mid-way between the high and low flow condition loadings. Table 3-16 shows that deciduous forest represents approximately 45, 50 and 55 percent of the statewide non-agricultural rural total phosphorus loadings under low, average and high flow conditions, respectively. The evergreen forest and commercial/industrial/transportation land cover types each represent approximately 13 percent of the statewide non-agricultural rural total phosphorus loadings under average flow conditions with the commercial/industrial/transportation percentage being higher (19%) under low flow and lower (10%) under high flow conditions.

Table 3-16 Estimated Annual Phosphorus Loadings for Non-Agricultural Rural Land Cover Types

Basin	Hydrology Scenario	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/ Clay	Transitional	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Urban/ Recreational Grasses	Total Kg P
	Dry Year	69.8	8.2	1263.7	2.7	0.0	291.1	0.0	1.9	0.0	0.0	28.3	1,666
Cedar River	Avg Year	73.9	8.7	1338.2	2.9	0.0	510.7	0.0	3.3	0.0	0.0	30.0	1,968
	Wet Year	75.7	8.9	1369.6	2.9	0.0	914.2	0.0	5.9	0.0	0.0	30.7	2,408
	Dry Year	35.8	1.1	1020.1	0.0	0.0	117.5	2.7	3.0	0.1	0.0	98.3	1,279
Des Moines River	Avg Year	41.5	1.3	1183.0	0.0	0.1	469.9	10.6	12.0	0.4	0.0	114.0	1,833
	Wet Year	46.7	1.5	1332.3	0.0	0.3	1108.9	25.1	28.4	0.8	0.0	128.4	2,673
	Dry Year	178.4	93.3	4546.1	92.9	559.1	23219.3	7883.2	10799.0	264.2	177.0	181.0	47,993
Lake Superior	Avg Year	190.7	99.7	4859.4	99.3	887.4	36856.1	12513.1	17141.2	419.4	281.0	193.5	73,541
	Wet Year	204.1	106.7	5201.1	106.3	1198.0	49755.7	16892.7	23140.7	566.2	379.3	207.1	97,758
T M	Dry Year	214.9	53.6	4496.0	16.3	1.2	4944.9	63.7	348.5	0.3	35.7	313.9	10,489
Lower Mississippi River	Avg Year	238.6	59.6	4991.9	18.1	1.8	7064.2	91.1	497.8	0.4	51.0	348.6	13,363
Kivei	Wet Year	252.5	63.0	5284.0	19.2	2.7	10667.0	137.5	751.7	0.6	77.0	369.0	17,624
	Dry Year	539.2	61.4	5962.3	0.3	2.3	3772.9	93.5	197.0	64.2	0.0	1603.9	12,297
Minnesota River	Avg Year	627.1	71.4	6934.2	0.4	6.7	11096.9	274.9	579.3	188.8	0.0	1865.3	21,645
	Wet Year	695.7	79.2	7693.0	0.4	13.4	22193.8	549.9	1158.6	377.6	0.0	2069.5	34,831
	Dry Year	39.6	0.7	1412.6	0.0	0.0	48.7	0.2	0.9	0.0	0.1	51.2	1,554
Missouri River	Avg Year	46.6	0.9	1662.6	0.0	0.0	270.5	0.9	5.1	0.1	0.6	60.3	2,047
	Wet Year	53.0	1.0	1890.4	0.0	0.1	659.9	2.3	12.5	0.2	1.4	68.5	2,689
	Dry Year	226.2	42.2	6770.8	189.7	1394.9	27232.8	15260.7	17633.1	2445.7	25.1	199.9	71,421
Rainy River	Avg Year	248.5	46.4	7436.2	208.3	2324.8	45388.0	25434.5	29388.4	4076.2	41.8	219.6	114,813
	Wet Year	273.7	51.1	8191.5	229.5	3324.4	64904.8	36371.4	42025.4	5829.0	59.8	241.9	161,503
D. J. D 6 41	Dry Year	310.8	41.4	5839.0	122.5	167.6	7806.5	343.6	357.4	396.2	0.1	849.9	16,235
Red River of the North	Avg Year	362.5	48.2	6810.6	142.8	540.7	25182.4	1108.4	1153.0	1278.0	0.4	991.3	37,618
North	Wet Year	410.0	54.6	7702.9	161.5	962.4	44824.6	1973.0	2052.4	2274.8	0.7	1121.1	61,538
	Dry Year	252.4	71.7	2257.9	0.0	83.9	9777.1	515.1	810.9	61.3	34.3	734.8	14,599
St. Croix River	Avg Year	293.4	83.3	2624.8	0.0	144.6	16857.1	888.1	1398.2	105.7	59.1	854.2	23,308
	Wet Year	320.0	90.9	2863.2	0.0	212.6	24779.9	1305.6	2055.3	155.4	86.8	931.7	32,801
TT 34' ' '	Dry Year	2780.6	573.4	11562.3	30.5	695.5	27379.7	5221.9	5762.3	1309.9	1.3	3386.8	58,704
Upper Mississippi River	Avg Year	3181.9	656.2	13231.0	34.9	1337.4	52653.3	10042.2	11081.4	2519.1	2.4	3875.6	98,615
River	Wet Year	3509.1	723.6	14591.4	38.5	2032.9	80033.1	15264.1	16843.8	3829.0	3.7	4274.1	141,143

	Hydrology Scenario	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/ Clay	Transitional	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Urban/ Recreational Grasses	Total Kg P
	Dry Year	4,648	947	45,131	455	2,904	104,591	29,385	35,914	4,542	274	7,448	236,238
Statewide Totals	Avg Year	5,305	1,076	51,072	507	5,244	196,349	50,364	61,260	8,588	436	8,552	388,751
	Wet Year	5,840	1,181	56,120	558	7,747	299,842	72,522	88,075	13,034	609	9,442	554,968

3.2.8 Urban Runoff

As described in Section 2.2.2.7, the phosphorus concentrations, runoff coefficients and contributory areas for each urban land cover type within each basin were utilized, along with the annual rainfall amounts for each flow condition, to calculate the results of the phosphorus loadings for each basin and the state. The phosphorus loading results are shown in Table 3-17. The highest total phosphorus loadings are estimated for the Upper Mississippi River basin, which represents approximately 50 percent of the total phosphorus loadings from incorporated areas for each flow condition. The Minnesota River basin represents approximately 20 percent, while no other basin represents more than 10 percent of the total phosphorus loadings from incorporated areas for each flow condition. For each land cover type the estimated total phosphorus loadings for the high flow condition are typically one-and-one-half times as high as the low flow loadings for each basin, with the average flow condition loadings typically mid-way between the high and low flow condition loadings. Low intensity residential land cover represents between 26 and 30 percent of the statewide total phosphorus loadings from incorporated areas under the various flow conditions. The commercial/industrial/transportation and high intensity residential land cover types represent approximately 20 percent and 15 percent, respectively, of the statewide total phosphorus loadings from incorporated areas under the various flow conditions. Agricultural runoff represents approximately 12, 20 and 25 percent of the statewide total phosphorus loadings from incorporated areas under low, average and high flow conditions, respectively.

Table 3-17 Estimated Annual Phosphorus Loadings for Incorporated Urban Areas

Basin	Hydrology Scenario	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/ Clay	Transitional	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Urban/ Recreational Grasses	Agricultural Lands in Incorporated Areas	Total Kg P
	Dry Year	738.7	1,251.5	1,827.8	0.0	0.0	46.2	0.0	0.2	0.0	0.0	262.1	413	4,539
Cedar River	Avg Year	782.3	1,325.3	1,935.6	0.0	0.0	53.9	0.0	0.3	0.0	0.0	277.5	1,002	5,377
	Wet Year	800.6	1,356.4	1,981.0	0.0	0.0	69.4	0.0	0.3	0.0	0.0	284.0	1,278	5,770
	Dry Year	1,097.6	245.8	992.7	0.0	0.0	18.8	0.3	0.2	0.0	0.0	460.6	351	3,167
Des Moines River	Avg Year	1,272.8	285.0	1,151.1	0.0	0.0	23.9	0.4	0.3	0.0	0.0	534.1	537	3,805
	Wet Year	1,433.5	321.0	1,296.4	0.0	0.0	31.5	0.6	0.4	0.0	0.0	601.6	1,042	4,727
	Dry Year	3,598.6	2,472.8	5,495.7	320.0	516.4	5,794.7	896.9	1,309.8	83.7	64.3	1,355.6	1,060	22,969
Lake Superior	Avg Year	3,846.7	2,643.3	5,874.5	342.1	552.0	6,613.3	1,023.6	1,494.8	95.5	73.4	1,449.0	1,824	25,832
	Wet Year	4,117.2	2,829.2	6,287.6	366.1	590.8	7,966.8	1,233.2	1,800.7	115.0	88.5	1,550.9	3,134	30,080
Lower Mississippi	Dry Year	9,032.4	4,987.8	7,823.2	0.4	181.1	983.8	21.8	83.5	0.2	50.9	4,967.4	5,291	33,423
River	Avg Year	10,028.5	5,537.9	8,685.9	0.4	201.1	1,212.7	26.9	103.0	0.2	62.7	5,515.2	10,535	41,909
Kivei	Wet Year	10,615.5	5,862.0	9,194.3	0.5	212.8	1,449.9	32.2	123.1	0.2	74.9	5,838.0	12,809	46,212
	Dry Year	24,477.9	8,625.8	14,846.9	11.6	205.0	1,135.2	38.8	44.9	5.7	0.8	8,057.5	5,723	63,173
Minnesota River	Avg Year	28,467.9	10,031.9	17,267.0	13.5	238.4	1,445.1	49.4	57.2	7.2	1.1	9,371.0	11,275	78,225
	Wet Year	31,583.3	11,129.8	19,156.6	15.0	264.5	1,786.3	61.0	70.7	8.9	1.3	10,396.5	16,541	91,015
	Dry Year	913.6	223.8	707.4	1.8	0.0	14.2	0.0	0.2	0.0	1.2	389.7	614	2,866
Missouri River	Avg Year	1,075.3	263.4	832.6	2.1	0.0	18.3	0.0	0.2	0.0	1.6	458.7	1,000	3,652
	Wet Year	1,222.7	299.5	946.7	2.3	0.0	24.0	0.0	0.3	0.0	2.0	521.5	1,859	4,878
	Dry Year	800.7	370.1	948.4	122.1	191.4	913.8	226.2	355.9	23.0	2.3	227.1	218	4,399
Rainy River	Avg Year	879.4	406.5	1,041.6	134.1	210.2	1,066.6	264.1	415.4	26.8	2.7	249.5	502	5,199
	Wet Year	968.7	447.8	1,147.4	147.7	231.6	1,305.2	323.1	508.3	32.8	3.3	274.8	874	6,265
Red River of the	Dry Year	3,978.4	2,141.3	4,231.8	0.0	13.2	177.9	8.7	5.4	0.4	0.0	1,561.0	1,229	13,347
North	Avg Year	4,640.4	2,497.6	4,936.0	0.0	15.4	223.0	10.9	6.8	0.5	0.0	1,820.7	3,599	17,750
North	Wet Year	5,248.4	2,824.8	5,582.7	0.0	17.5	277.1	13.5	8.5	0.7	0.0	2,059.3	5,101	21,133
	Dry Year	2,888.4	718.1	2,076.0	0.0	22.8	735.7	109.4	117.1	0.3	16.4	1,631.9	3,397	11,713
St. Croix River	Avg Year	3,357.8	834.7	2,413.3	0.0	26.6	951.3	141.5	151.4	0.3	21.2	1,897.1	7,309	17,104
	Wet Year	3,662.7	910.5	2,632.5	0.0	29.0	1,168.2	173.7	185.9	0.4	26.1	2,069.3	13,421	24,279
Upper Mississippi	Dry Year	53,550.4	32,497.7	31,620.6	38.9	1,173.4	4,982.4	628.5	814.1	104.1	47.3	17,099.9	21,243	163,800
River	Avg Year	61,278.5	37,187.6	36,183.9	44.5	1,342.7	6,190.1	780.9	1,011.4	129.3	58.8	19,567.7	38,038	201,813
Mivei	Wet Year	67,579.4	41,011.4	39,904.5	49.1	1,480.8	7,560.0	953.7	1,235.2	157.9	71.8	21,579.7	68,981	250,565

	Hydrology Scenario	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/ Clay	Transitional	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Urban/ Recreational Grasses	Agricultural Lands in Incorporated Areas	Total Kg P
	Dry Year	101,077	53,535	70,570	495	2,303	14,803	1,931	2,731	217	183	36,013	39,539	323,397
Statewide Totals	Avg Year	115,630	61,013	80,321	537	2,586	17,798	2,298	3,241	260	221	41,140	75,621	400,667
	Wet Year	127,232	66,992	88,130	581	2,827	21,638	2,791	3,933	316	268	45,176	125,040	484,924

3.3 Summary of Phosphorus Loadings by Basin

3.3.1 Phosphorus Loadings by Source Category

This assessment found that, <u>under average flow conditions</u>, the point source total phosphorus contribution represents 31 percent, while nonpoint sources of total phosphorus represent 69 percent of the loadings to surface waters, statewide (see Figure 3-7). The point source phosphorus loadings to surface waters are broken down in proportion to the influent phosphorus loadings (inflows) to wastewater treatment plants (WWTPs) in the state from each wastewater source category. This assumes that the proportion of the phosphorus load from each source category in the wastewater influent remains the same in the wastewater effluent (or treated discharge) from each treatment facility. Figure 3-7 shows for average flow conditions the major phosphorus nonpoint sources to surface waters are as follows:

- cropland and pasture runoff (26%)
- atmospheric deposition (13%)
- commercial/industrial process water (12%)
- streambank erosion (11%)
- human waste products (11%)

All of the remaining source category contributions are below 6 percent. The combination of residential and commercial automatic dishwasher detergent (ADWD) represents approximately 3 percent of the total phosphorus contributions to surface waters in the state, during an average year.

Under average flow conditions, the relative magnitude of the total phosphorus loadings from the sum of all source categories in the Upper Mississippi River basin is significantly higher than the remaining basins, with the second highest phosphorus loadings occurring in the Minnesota River basin (see Figure 3-8a). The Lower Mississippi and Red River basin total phosphorus loadings are approximately one-third less than the Minnesota River basin loadings.

Figure 3-8a illustrates the relative magnitudes of each of the phosphorus source category loadings estimated for each basin under average flow conditions, while Figure 3-8b shows the same information normalized to the basin area, as another way to compare the phosphorus loadings from basin to basin. Figures 3-8a and 3-8b show that, relative to the other phosphorus source categories in each basin, agricultural runoff is a significant source of phosphorus in all but the Lake Superior and Rainy River basins. Human waste products are a significant source of phosphorus in the Upper Mississippi River basin, along with commercial/industrial process water and food soils.

Figure 3-7
Estimated Total Phosphorus Contributions to Minnesota Surface Waters
Statewide

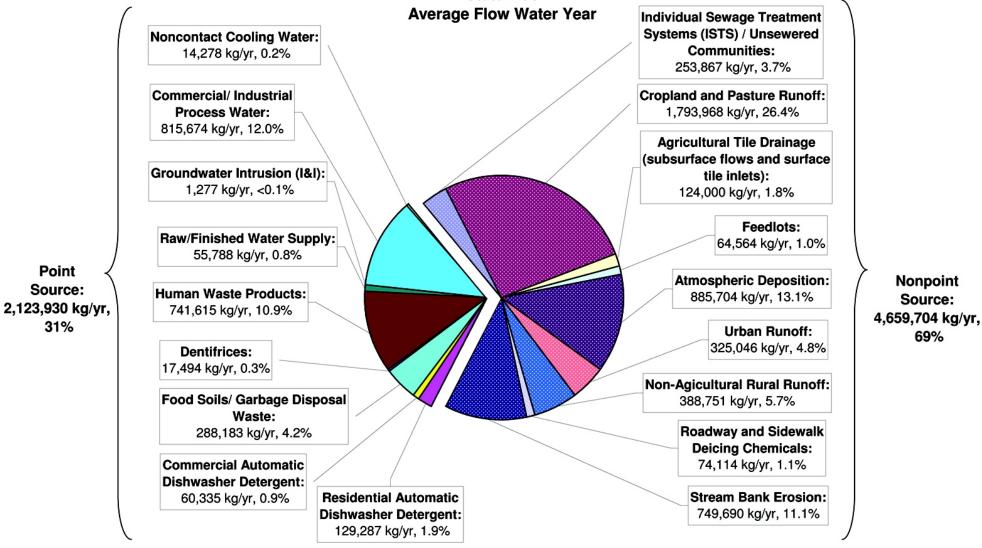


Figure 3-8a Total Phosphorus Loads to Minnesota Surface Waters - By Major Drainage Basin: Average Flow Conditions

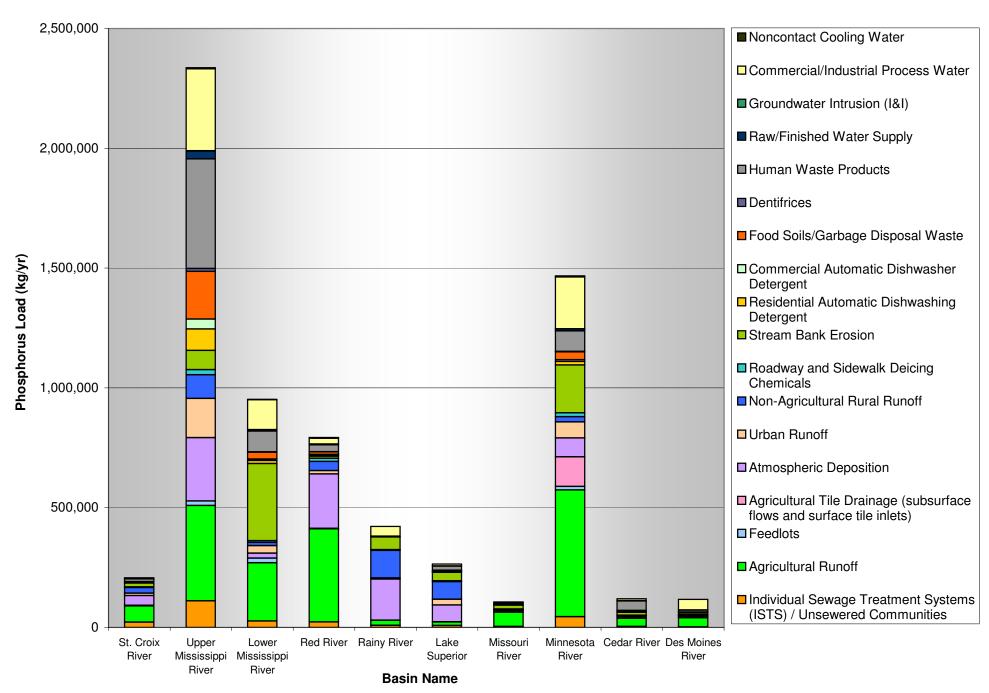
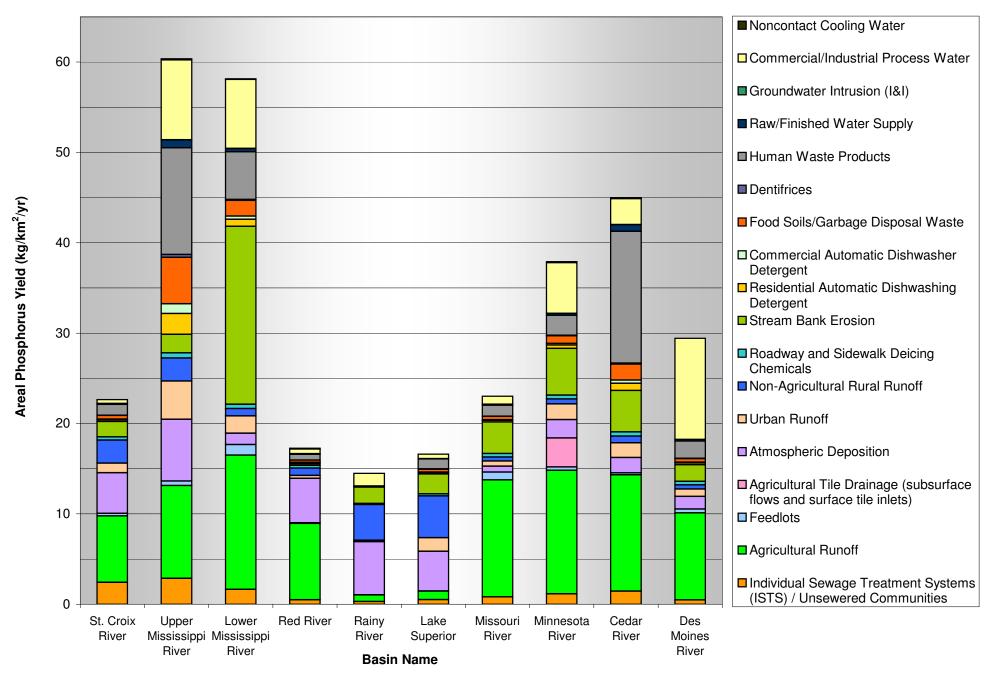



Figure 3-8b Watershed Total Phosphorus Yields to Minnesota Surface Waters - By Major Drainage Basin: Average Flow Conditions

It should be noted that the data used for this study to assess point source loadings are from the years 2001, 2002 and the first half of 2003. Since that time period, phosphorus removal was implemented at the MCES' Metro WWTP. Because this one facility accounted for approximately 74 percent of the point source phosphorus load to the Upper Mississippi River basin and an estimated 40 percent statewide, continued phosphorus removal at this one facility will have a significant impact on the future relative phosphorus loads in this basin and the state.

Figures 3-8a and 3-8b also show that atmospheric deposition comprises significant percentages of the annual phosphorus loads as follows:

- Upper Mississippi River basin (11%)
- St. Croix River basin (20%)

• Red River basin (29%)

• Rainy River basin (34%)

This reflects the large amount of surface water and the relatively low amounts of other sources in these basins.

Streambank erosion is a significant source of phosphorus in the Lower Mississippi River basin (34%) and, to a lesser degree, in the Minnesota River basin (14%). Commercial/industrial process water is an important source of phosphorus in the Lower Mississippi (13%), Minnesota (15%), Des Moines (38%), and the Rainy River (10%) basins. Non-agricultural rural runoff sources of phosphorus are important in the Rainy River (27%) and Lake Superior (28%) basins. Finally, human waste products are a significant source of phosphorus in the Upper Mississippi (20%) and Cedar River (32%) basins.

3.3.2 Phosphorus Source Category Loadings by Flow Condition

Both total and bioavailable phosphorus source estimates vary significantly under each flow condition. This is the result of changes in the nonpoint source loading from different flow conditions. Point source loads remain constant for the three flow conditions. Total amount and relative source contributions are summarized in Table 3-18 which indicates that point sources of phosphorus are more bioavailable than nonpoint sources.

Table 3-18 Statewide phosphorus contributions of point and nonpoint sources by flow condition

		Flow Condition	1
	Low (Dry)	Average	High (Wet)
Total Phosphorus			
Point Source (kg/yr)	2,123,930 (45%)	2,123,930 (31%)	2,123,930 (19%)
Nonpoint Source (kg/yr)	2,638,067 (55%)	4,659,704 (69%)	8,932,735 (81%)
Total	4,761,997	6,783,634	11,056,665
Bioavailable Phosphorus			
Point Source (kg/yr)	1,975,757 (57%)	1,975,757 (44%)	1,975,757 (30%)
Nonpoint Source (kg/yr)	1,472,784 (43%)	2,559,026 (56%)	4,648,570 (70%)
Total	3,448,542	4,534,783	6,624,327

Under low flow conditions, the total point source phosphorus contribution represents 45 percent, while nonpoint sources of phosphorus represent 55 percent of the statewide loadings to surface waters. The expected load reduction of approximately 581,000 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTP would shift the point source contribution to approximately 37 percent of the total load and the nonpoint source contribution to 63 percent. Under low flow conditions, the bioavailable point source phosphorus contribution represents 57 percent of the statewide loadings to surface waters (see Table 3-18). The expected load reduction of approximately 496,800 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTP would shift the point source contribution to approximately 50 percent of the total bioavailable phosphorus load.

Under average flow conditions (see Table 3-18), the total point source phosphorus contribution drops to 31 percent, compared to 45 percent for the statewide loadings to surface waters under low flow conditions. The nonpoint source phosphorus loadings nearly double from low to average flow conditions.

Under high flow conditions (see Table 3-18), the total point source phosphorus contribution drops to 19 percent, compared to 31 and 45 percent for the statewide loadings to surface waters under average and low flow conditions, respectively. Table 3-18 shows a 3.3-fold increase in nonpoint source phosphorus loadings from low to high flow conditions and a near two-fold increase from average to high flow conditions.

Table 3-19 presents the contributions of each source category to the total and bioavailable phosphorus loadings to surface waters in each basin and the state, by flow condition. The importance of the total and bioavailable phosphorus contributions from each source category varies significantly by basin, and somewhat by flow condition. Human waste products represent a significant portion of the total and bioavailable phosphorus loadings in the Upper Mississippi and Cedar River basins under each flow condition, and on a statewide basis, for the low and to a lesser extent average flow conditions. During low flow conditions, human waste products contribute between 10 and 20 percent of the bioavailable phosphorus loadings in the Lake Superior and St. Croix, Lower Mississippi, Red, Missouri, and Minnesota River basins. Commercial/industrial process water represents a significant portion of the total and bioavailable phosphorus loadings in the Upper Mississippi, Lower Mississippi, Minnesota, and Des Moines River basins under each flow condition, and on a statewide basis, for the low and to a lesser extent average flow conditions. Phosphorus contributions from ISTS/unsewered communities are of relative importance in the St. Croix River basin.

Cropland and pasture runoff represents significant total and bioavailable phosphorus loadings in the St. Croix, Lower Mississippi, Red, Missouri, Minnesota, Cedar and Des Moines River basins, and on a statewide basis, under all flow conditions. The phosphorus contribution from cropland and pasture runoff is also significant in the Upper Mississippi River basin for the average and high flow conditions. Atmospheric deposition represents a significant portion of the phosphorus loadings in the Lake Superior, St. Croix, Red, and Rainy River basins for each flow condition. Non-agricultural rural runoff contributes a significant portion of the phosphorus loadings in the Lake Superior and Rainy River basins for each flow condition. It should be noted, based on the analyses used in this study, that the typical rate of total phosphorus export from each acre of non-agricultural land is approximately four times lower than the corresponding load from each acre of contributing agricultural land (cropland and pasture). Finally, Table 3-19 shows that streambank erosion is an important source of phosphorus under high flow conditions for all of the basins, and is fairly significant in the Lake Superior, Lower Mississippi, Rainy and Missouri River basins under average flow conditions. Streambank erosion can also contribute somewhat significant amounts of total phosphorus statewide and to the Minnesota and Cedar River basins under average flow conditions.

Table 3-19 Major Source Category Contributions of Total and Bioavailable Phosphorus to Each Basin and the State, by Flow Condition

							T					Т										T																																
Basin	St. Croix River Upper Mississippi I				ppi Riv	ver	Lower Mississippi Riv			er		Red River		Rainy River				Lake Superior					Missouri River					Minnesota River					ar Riv	er		De	s Moi	Moines River		_	S	statewi												
Flow Condition	Low		verage	Тн	igh	Low		verage	Hie	ah	Low	Av	erage	High	h	Low	A	/erage	Тн	ligh	Lov	v A	Average	, ,	ligh	Low	Av	erage	Hi	gh	Low	, A	verage	н	igh	Low	,	verage	Hi	gh	Low	A	verage	High		Low	Ave	rage	High	L	.ow	Averag	ge l	ligh
Source Category	TP E	$\overline{}$	T	+	Ť	T	_	T			T		T	Ť	\neg	T	$\overline{}$	T	${}^{+}$	Ť	$\overline{}$	$\overline{}$	T	au	ВР		\top	ВР	ТР	вР	TP I	вр ті	РВР	ТР	ВР	TP E	вр т	Р ВР	ТР	вР	тр В	P TF	Р ВР	ТР	вр т	гР ВР	ТР	вР	тр в	Р ТР	ВР	TP E	3P TF	вР
Point Sources			\top	T	\Box	T	T	十							T		T	Ť	T				\top	T																						7					\Box	\perp		Ш
Residential ADWD																																										2				\perp					\sqcup	\perp	\perp	\perp
Commercial ADWD			\top	T																																										\perp		Ш			Ш	\perp	\perp	\perp
Food Soils/ Garbage Disposal Waste			\top			•																																						\sqcup	\bot	\perp		\sqcup			\perp	\perp	\perp	\sqcup
Dentifrices				\top																																										\perp		\sqcup			\perp	\rightarrow		
Human Waste Products	1	•							•	•	•		•			•												•			•	•					•									\perp		\sqcup	\perp			•		•
Raw/Finished Water Supply																																	\perp		Ш	\perp		\perp		Ш		\perp			_	\perp		\sqcup		_	\sqcup	\rightarrow	\perp	\perp
Groundwater Intrusion (I&I)																																									Щ,		\perp	\sqcup	_									
Commercial/Industrial Process Water									•	•					•																\perp	\perp	\perp		\sqcup		•			•			\bot	\vdash	_	4						•	-	
Noncontact Cooling Water																																								Щ					\perp					_	$\perp \perp$		\bot	+
NonPoint Sources																														\dashv										\rightarrow					_					4			—	+
ISTS/Unsewered Communities					•							7													Ш																													
Cropland and Pasture Runoff								•						•	•										Ш			_	_												•									-		_		4
Agricultural Tile Drainage																	\perp				Ш				Ш			_	_	Ш	_	\perp		\bot	\sqcup	_			╀	\sqcup		_		\vdash	_	+	+-	\vdash	-	+	+	+	+	+
Feedlots																															\rightarrow			_	\perp	_		\perp	_	\square		+		\vdash	_	+	+	\vdash	-				+	+
Atmospheric Deposition		•					_											•		•										•	_		\perp		\perp	_	_		_			+		\vdash	+	+	+	\vdash	_	•	1	•	+	+
Urban Runoff												\perp							_							•	•				_	\perp	\perp	\perp					4	\square		+	+	\vdash	\dashv	+	+	\vdash	\perp	+	+	\rightarrow	+	+
Non-Agicultural Rural Runoff											\perp	\perp			4				\perp												_	\perp	\perp	_			+		\perp	\sqcup	\perp	+		\vdash	\dashv	+	+	\vdash	_	+	+	+	+	+
Roadway and Sidewalk Deicers								\perp								_	\perp	\perp	_		\sqcup										_															+	+	\vdash			+			
Stream Bank Erosion									•										-																				100															

KEY: TP -- Total Phosphorus

BP -- Bioavailable Phosphorus

ADWD -- Automatic Dishwashing Detergent

- Source category represents more than 20% of the total basin phosphorus loading.

- Source category represents between 10% and 20% of the total basin phosphorus loading.

-- Source category represents less than 10% of the total basin phosphorus loading.

3.4 Phosphorus Sources and Estimated Amounts Contributed to Surface Waters (by Basin, Total and Bioavailable)

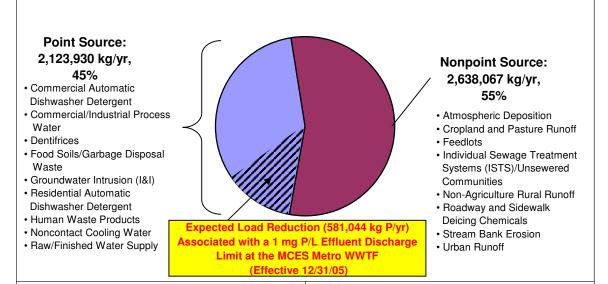
This section is intended to present the results of the total and bioavailable phosphorus loading estimates to surface waters from each source category, by basin. The following sections provide a detailed discussion of the results of the phosphorus loading estimates for each major basin and the state, including assessments of which phosphorus source categories are important at varying flow conditions.

3.4.1 Statewide Inventory

This section discusses the results of all of the combined phosphorus source estimates for all of the basins in the state under each flow condition for total and bioavailable phosphorus.

3.4.1.1 Dry Conditions (Low Flow)

3.4.1.1.1 Total Phosphorus


Figure 3-9 shows that, under low flow conditions, the total point source phosphorus contribution represents 45 percent, while nonpoint sources of phosphorus represent 55 percent of the statewide loadings to surface waters. The expected load reduction of approximately 581,000 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTF would shift the point source contribution to approximately 37 percent of the total load and nonpoint source to 63 percent. Figure 3-9 shows that commercial/industrial process water and human waste products represent 38 and 35 percent, respectively, of the point source total phosphorus contributions. The remaining point source categories contribute less than 14 percent of the statewide point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 10 percent of the point source total phosphorus contributions. As shown in Figure 3-9, cropland and pasture runoff and atmospheric deposition represent 33 and 30 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 11 percent.

3.4.1.1.2 Bioavailable Phosphorus

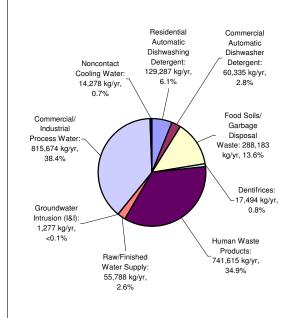

Figure 3-10 shows that, under low flow conditions, the bioavailable point source phosphorus contribution represents 57 percent of the statewide loadings to surface waters. The expected load reduction of approximately 496,800 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTF would shift the point source contribution to approximately 50 percent of the total bioavailable phosphorus load. Figure 3-10 shows that commercial/industrial process water and human waste products represent 40 and 35 percent, respectively, of the point source bioavailable phosphorus contributions. The remaining point source categories contribute less than 12 percent of the statewide point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 10 percent of the point source bioavailable

Figure 3-9

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Statewide Dry, Low Flow Water Year

Point Source Total Phosphorus Contributions

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Total Phosphorus Contributions

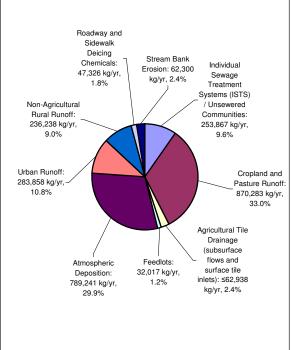
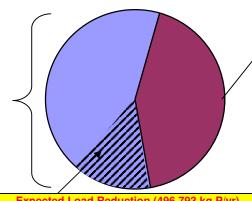
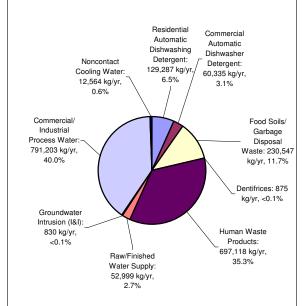



Figure 3-10

Estimated Bioavailable P Contributions to Minnesota Surface Waters Statewide Dry, Low Flow Water Year

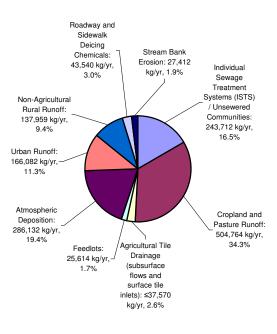
Point Source: 1,975,757 kg/yr, 57%

- Commercial Automatic Dishwasher Detergent
- Commercial/Industrial Process Water
- Dentifrices
- Food Soils/Garbage Disposal Waste
- Groundwater Intrusion (I&I)
- Residential Automatic Dishwasher Detergent
- Human Waste Products
- · Noncontact Cooling Water
- Raw/Finished Water Supply



Expected Load Reduction (496,793 kg P/yr)
Associated with a 1 mg P/L Effluent Discharge
Limit at the MCES Metro WWTF
(Effective 12/31/05)

Nonpoint Source: 1,472,784 kg/yr, 43%


- Atmospheric Deposition
- · Cropland and Pasture Runoff
- Feedlots
- Individual Sewage Treatment Systems (ISTS)/Unsewered Communities
- Non-Agriculture Rural Runoff
- Roadway and Sidewalk Deicing Chemicals
- Stream Bank Erosion
- Urban Runoff

Point Source Bioavailable P Contributions

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Bioavailable P Contributions

phosphorus contributions. As shown in Figure 3-10, cropland and pasture runoff, atmospheric deposition and ISTS/unsewered communities represent approximately 34, 19 and 17 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 12 percent. A comparison of Figures 3-9 and 3-10 generally indicates that point sources of phosphorus are more bioavailable than nonpoint sources. Looking more specifically at each source category in comparing Figures 3-9 and 3-10, indicates that ISTS/unsewered communities exhibits a significant increased contribution, while atmospheric deposition exhibits a significant decreased contribution, relative to the other sources for the bioavailable contribution of phosphorus. The relative shift for the remaining source categories is less than 2 percent in comparing the bioavailable and total phosphorus contributions in each figure.

3.4.1.2 Average Condition

3.4.1.2.1 Total Phosphorus

Under average flow conditions, Figure 3-11 shows that the total point source phosphorus contribution drops to 31 percent, compared to 45 percent for the statewide loadings to surface waters under low flow conditions. The expected load reduction of approximately 581,000 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTF would shift the point source contribution to approximately 25 percent of the total load. As presented in Figure 3-11, cropland and pasture runoff, atmospheric deposition, and streambank erosion represent 39, 19 and 16 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 9 percent. Compared to low flow conditions (Figure 3-9), Figure 3-11 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion, increased slightly for cropland and pasture runoff, decreased somewhat for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities.

3.4.1.2.2 Bioavailable Phosphorus

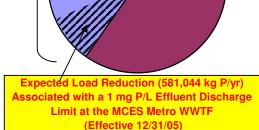
Under average flow conditions, Figure 3-12 shows that the bioavailable point source phosphorus contribution drops to 44 percent, compared to 57 percent for the statewide loadings to surface waters under low flow conditions. The expected load reduction of approximately 496,800 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTF would shift the point source contribution to approximately 37 percent of the total bioavailable phosphorus load. As presented in Figure 3-12, cropland and pasture runoff, atmospheric deposition, and streambank erosion represent 40, 13 and 13 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 10 percent. Compared to low flow conditions (Figure 3-10), Figure 3-12 shows that the relative statewide nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion, increased slightly for cropland and

Figure 3-11

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Statewide Average Flow Water Year

Point Source: 2,123,930 kg/yr, 31% · Commercial Automatic Dishwasher Detergent · Commercial/Industrial Process Water Dentifrices · Food Soils/Garbage Disposal

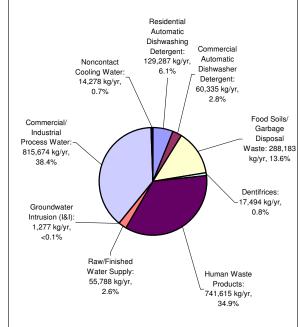
Waste


• Groundwater Intrusion (I&I)

· Residential Automatic Dishwasher Detergent

· Human Waste Products

· Noncontact Cooling Water


• Raw/Finished Water Supply

Nonpoint Source: 4,659,704 kg/yr, 69%

- Atmospheric Deposition
- · Cropland and Pasture Runoff
- Feedlots
- Individual Sewage Treatment Systems (ISTS)/Unsewered Communities
- Non-Agriculture Rural Runoff
- Roadway and Sidewalk **Deicing Chemicals**
- · Stream Bank Erosion
- Urban Runoff

Point Source Total Phosphorus Contributions

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Total Phosphorus Contributions

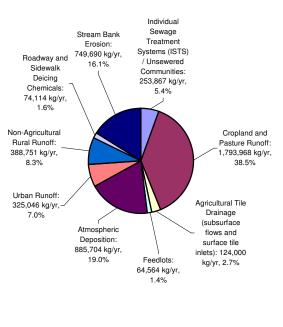
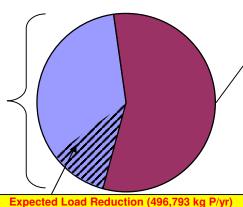
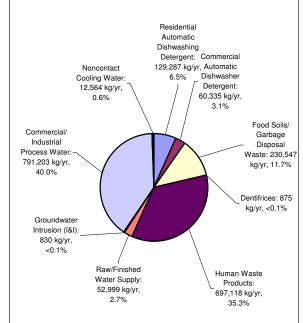



Figure 3-12

Estimated Bioavailable P Contributions to Minnesota Surface Waters Statewide Average Flow Water Year

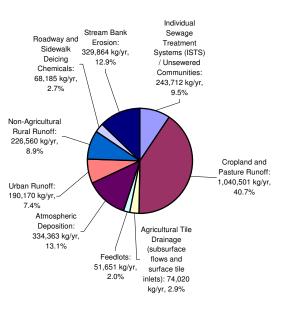
Point Source: 1,975,757 kg/yr, 44%

- Commercial Automatic Dishwasher Detergent
- Commercial/Industrial Process Water
- Dentifrices
- Food Soils/Garbage Disposal Waste
- Groundwater Intrusion (I&I)
- Residential Automatic Dishwasher Detergent
- · Human Waste Products
- Noncontact Cooling Water
- Raw/Finished Water Supply



Expected Load Reduction (496,793 kg P/yr)
Associated with a 1 mg P/L Effluent Discharge
Limit at the MCES Metro WWTF
(Effective 12/31/05)

Nonpoint Source: 2,559,026 kg/yr, 56%


- Atmospheric Deposition
- Cropland and Pasture Runoff
- Feedlots
- Individual Sewage Treatment Systems (ISTS)/Unsewered Communities
- Non-Agriculture Rural Runoff
- Roadway and Sidewalk Deicing Chemicals
- Stream Bank Erosion
- Urban Runoff

Point Source Bioavailable P Contributions

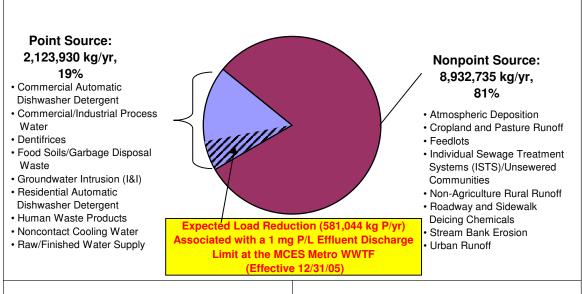
(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

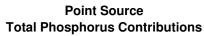
Nonpoint Source Bioavailable P Contributions

pasture runoff, decreased somewhat for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities.

3.4.1.3 Wet Condition (High Flow)

3.4.1.3.1 Total Phosphorus


Under high flow conditions, Figure 3-13 shows that the total point source phosphorus contribution drops to 19 percent, compared to 31 and 45 percent for the statewide loadings to surface waters under average and low flow conditions, respectively. The expected load reduction of approximately 581,000 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTF would shift the point source contribution to approximately 15 percent of the total load. As presented in Figure 3-13, streambank erosion, cropland and pasture runoff, and atmospheric deposition represent 40, 31 and 11 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 7 percent. Compared to average flow conditions (Figure 3-11), Figure 3-13 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion, decreased slightly for cropland and pasture and non-agricultural rural runoff, decreased somewhat for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities.


3.4.1.3.2 Bioavailable Phosphorus

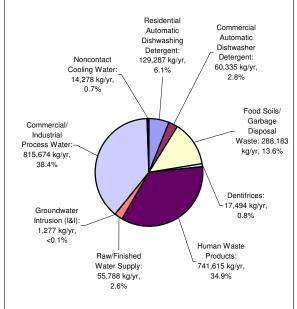

Under high flow conditions, Figure 3-14 shows that the bioavailable point source phosphorus contribution drops to 30 percent, compared to 44 and 57 percent for the statewide loadings to surface waters under average and low flow conditions, respectively. The expected load reduction of approximately 496,800 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTF would shift the point source contribution to approximately 24 percent of the total load. As presented in Figure 3-14, streambank erosion, cropland and pasture runoff, and atmospheric deposition represent 34, 34 and 9 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions at or below 7 percent. Compared to average flow conditions (Figure 3-12), Figure 3-14 shows that the relative statewide nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion, decreased slightly for cropland and pasture and non-agricultural rural runoff, decreased somewhat for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities.

Figure 3-13

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Statewide Wet, High Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

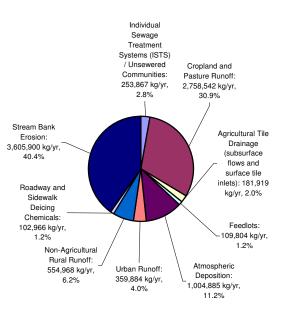
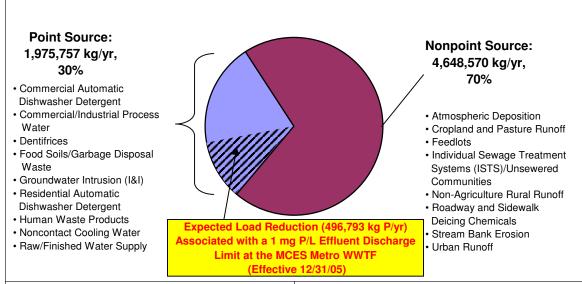
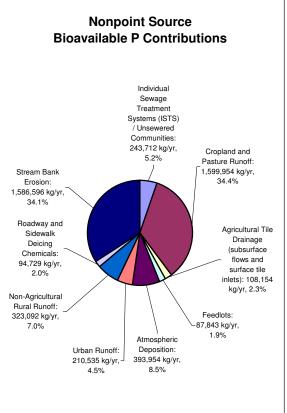




Figure 3-14

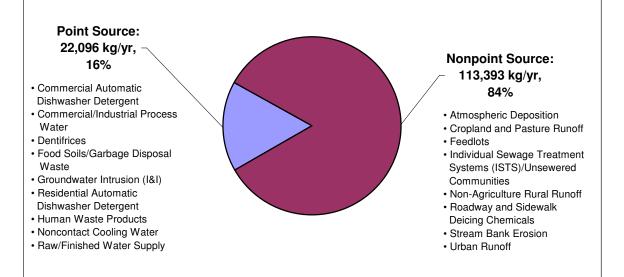
Estimated Bioavailable P Contributions to Minnesota Surface Waters Statewide Wet, High Flow Water Year

Point Source Bioavailable P Contributions Residential Commercial Automatic Automatic Noncontact Dishwashing Dishwasher Cooling Water Detergent: Detergent: 12,564 kg/yr, 129,287 kg/yr 60,335 kg/yr, 0.6% 6.5% 3.1% Food Soils/ Commercial/ Garbage Industrial Process Water: Disposal Waste: 230,547 791,203 kg/yr, kg/yr, 11.7% Dentifrices: 875 kg/yr, <0.1% Groundwater Intrusion (I&I): 830 kg/yr, Human Waste <0.1% Products: Raw/Finished 697,118 kg/yr, Water Supply: 35.3% 52,999 kg/yr, (Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

3.4.2 St. Croix River Basin

3.4.2.1 Dry Conditions (Low Flow)

3.4.2.1.1 Total Phosphorus


Figure 3-15 shows that, under low flow conditions, the total point source phosphorus contribution represents 16 percent, while nonpoint sources of phosphorus represent 84 percent of the loadings to surface waters in the St. Croix River basin. Figure 3-15 also shows that human waste products, commercial/industrial process water, and food soils represent 50, 17 and 17 percent, respectively, of the point source total phosphorus contributions. The remaining point source categories contribute less than 8 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 11 percent of the point source total phosphorus contributions. As shown in Figure 3-15, cropland and pasture runoff, atmospheric deposition, and ISTS/unsewered communities represent 28, 30, and 20 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 13 percent.

3.4.2.1.2 Bioavailable Phosphorus

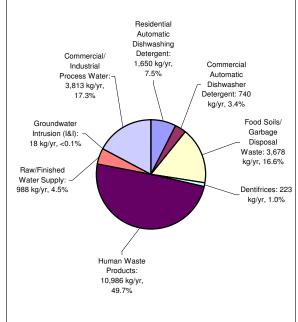

Figure 3-16 shows that, under low flow conditions, the bioavailable point source phosphorus contribution represents 22 percent of the loadings to surface waters in the St. Croix River basin. Figure 3-16 also shows that human waste products, commercial/industrial process water, and food soils represent 51, 18 and 15 percent, respectively, of the point source bioavailable phosphorus contributions. The remaining point source categories contribute less than 9 percent of the point source loadings to the St. Croix River basin. The combination of residential and commercial automatic dishwasher detergent represents approximately 12 percent of the point source bioavailable phosphorus contributions. As shown in Figure 3-16, cropland and pasture runoff, atmospheric deposition and ISTS/unsewered communities represent approximately 26, 21 and 30 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 13 percent.

Figure 3-15

Estimated Total Phosphorus Contributions to Minnesota Surface Waters St. Croix River Basin Dry, Low Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

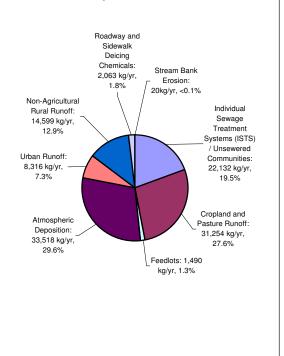
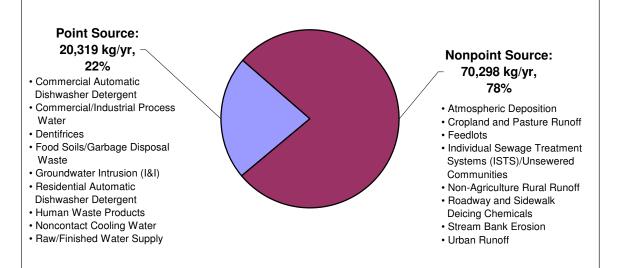
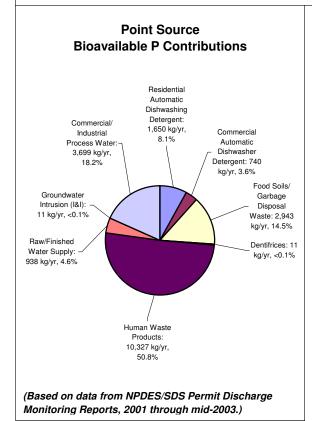
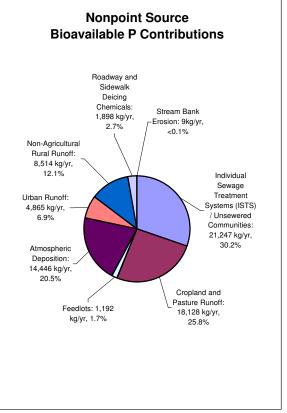





Figure 3-16

Estimated Bioavailable P Contributions to Minnesota Surface Waters St. Croix River Basin Dry, Low Flow Water Year

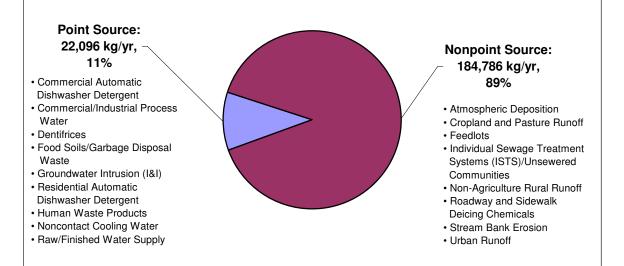
3.4.2.2 Average Condition

3.4.2.2.1 Total Phosphorus

Under average flow conditions, Figure 3-17 shows that the total point source phosphorus contribution drops to 11 percent, compared to 16 percent for the loadings to surface waters in the St. Croix River basin under low flow conditions. As presented in Figure 3-17, cropland and pasture runoff, atmospheric deposition, non-agricultural rural runoff and ISTS/unsewered communities represent 36, 22, 12, and 12 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 9 percent. Compared to low flow conditions (Figure 3-15), Figure 3-17 shows that the relative nonpoint source contributions of total phosphorus increased significantly for streambank erosion, as well as cropland and pasture runoff, decreased slightly for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities.

3.2.2.2.2 Bioavailable Phosphorus

Under average flow conditions, Figure 3-18 shows that the bioavailable point source phosphorus contribution drops to 16 percent, compared to 22 percent for the loadings to surface waters in the St. Croix River basin under low flow conditions. As presented in Figure 3-18, cropland and pasture runoff, atmospheric deposition, non-agricultural rural runoff and ISTS/unsewered communities represent 36, 17, 12, and 19 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 7 percent. Compared to low flow conditions (Figure 3-16), Figure 3-18 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion, as well as cropland and pasture runoff, decreased slightly for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities.


3.4.2.3 Wet Condition (High Flow)

3.4.2.3.1 Total Phosphorus

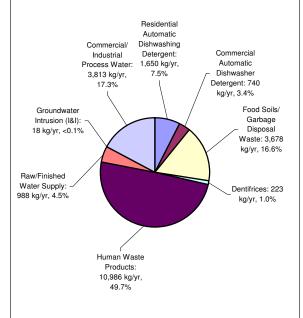

Under high flow conditions, Figure 3-19 shows that the total point source phosphorus contribution drops to 6 percent, compared to 11 and 16 percent for the loadings to surface waters in the St. Croix River basin under average and low flow conditions, respectively. As presented in Figure 3-19, streambank erosion, cropland and pasture runoff, and atmospheric deposition represent 29, 36 and 14 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 10 percent. Compared to average flow conditions (Figure 3-17), Figure 3-19 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion, decreased slightly for cropland and pasture and non-agricultural rural runoff, decreased somewhat for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities.

Figure 3-17

Estimated Total Phosphorus Contributions to Minnesota Surface Waters St. Croix River Basin Average Flow Water Year

Point Source Total Phosphorus Contributions

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

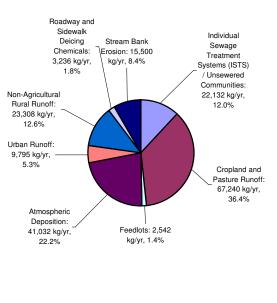
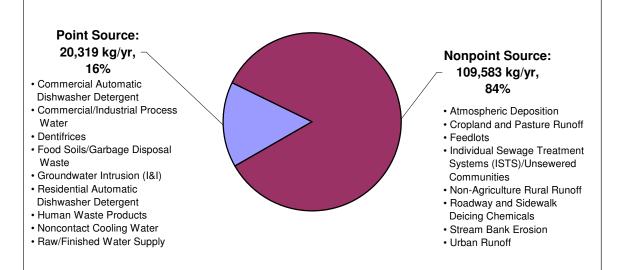
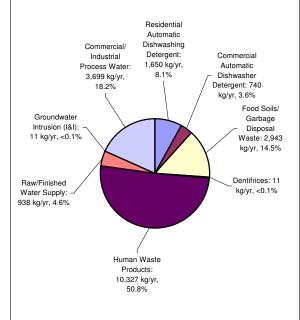




Figure 3-18

Estimated Bioavailable P Contributions to Minnesota Surface Waters St. Croix River Basin Average Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

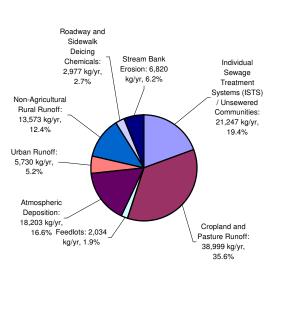
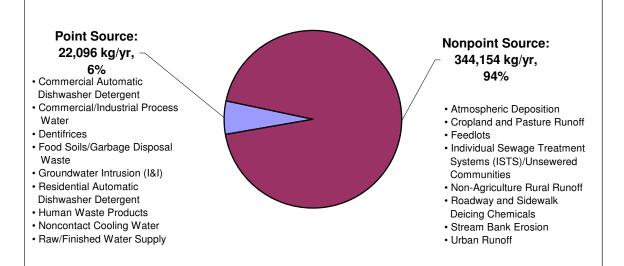
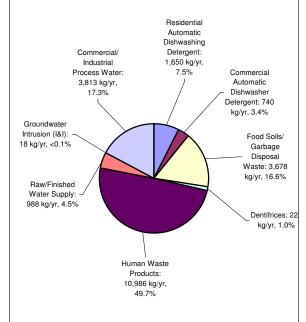
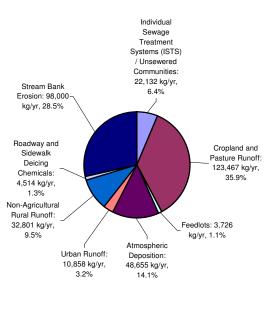




Figure 3-19


Estimated Total Phosphorus Contributions to Minnesota Surface Waters St. Croix River Basin Wet, High Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

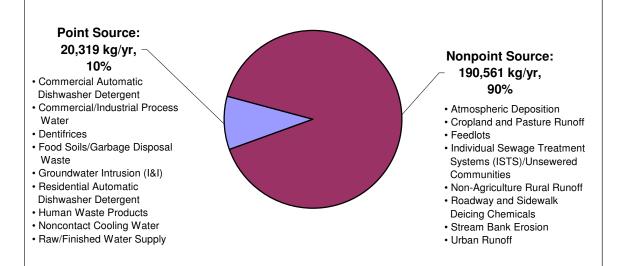
3.4.2.3.2 Bioavailable Phosphorus

Under high flow conditions, Figure 3-20 shows that the bioavailable point source phosphorus contribution drops to 10 percent, compared to 16 and 22 percent for the loadings to surface waters in the St. Croix River basin under average and low flow conditions, respectively. As presented in Figure 3-20, cropland and pasture runoff, streambank erosion, atmospheric deposition, non-agricultural runoff and ISTS/unsewered communities represent 38, 23, 12, 10, and 11 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions at or below 4 percent. Compared to average flow conditions (Figure 3-18), Figure 3-20 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion, increased slightly for cropland and pasture, decreased slightly for non-agricultural rural runoff, decreased somewhat for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities.

3.4.3 Upper Mississippi River Basin

3.4.3.1 Dry Conditions (Low Flow)

3.4.3.1.1 Total Phosphorus


Figure 3-21 shows that, under low flow conditions, the total point source phosphorus contribution represents 60 percent, while nonpoint sources of phosphorus represent 40 percent of the loadings to surface waters in the Upper Mississippi River basin. The expected load reduction of approximately 581,000 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTF would shift the point source contribution to approximately 43 percent of the total load. Figure 3-21 shows that commercial/industrial process water and human waste products represent 29 and 39 percent, respectively, of the point source total phosphorus contributions. The remaining point source categories contribute less than 17 percent of the point source loadings in the Upper Mississippi River basin. The combination of residential and commercial automatic dishwasher detergent represents approximately 11 percent of the point source total phosphorus contributions. As shown in Figure 3-21, cropland and pasture runoff, atmospheric deposition, urban runoff and ISTS/unsewered communities represent 28, 30, 18 and 14 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 8 percent.

3.4.3.1.2 Bioavailable Phosphorus

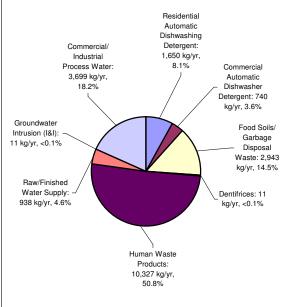

Figure 3-22 shows that, under low flow conditions, the bioavailable point source phosphorus contribution represents 70 percent of the loadings to surface waters in the Upper Mississippi River basin. The expected load reduction of approximately 496,800 kg/yr associated with a 1 mg/L permit

Figure 3-20

Estimated Bioavailable P Contributions to Minnesota Surface Waters St. Croix River Basin Wet, High Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

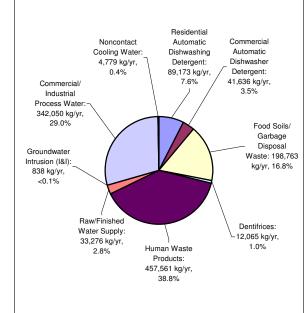


Figure 3-21

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Upper Mississippi River Basin Dry, Low Flow Water Year

Point Source: 1,180,141 kg/yr, **Nonpoint Source:** 60% 792,627 kg/yr, · Commercial Automatic 40% Dishwasher Detergent · Commercial/Industrial Process Atmospheric Deposition Water · Cropland and Pasture Runoff Dentifrices Feedlots • Food Soils/Garbage Disposal • Individual Sewage Treatment Waste Systems (ISTS)/Unsewered • Groundwater Intrusion (I&I) Communities · Residential Automatic • Non-Agriculture Rural Runoff Dishwasher Detergent • Roadway and Sidewalk · Human Waste Products Deicing Chemicals Expected Load Reduction (581,044 kg P/yr) · Noncontact Cooling Water Stream Bank Erosion • Raw/Finished Water Supply Associated with a 1 mg P/L Effluent Urban Runoff **Discharge Limit at the MCES Metro WWTF**

Point Source Total Phosphorus Contributions

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

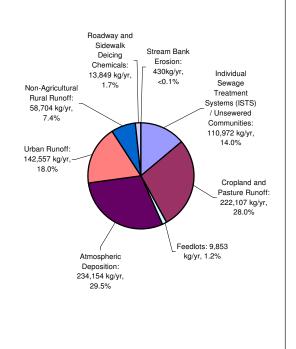
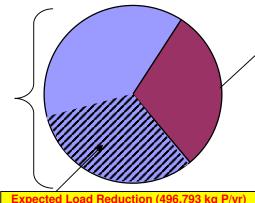
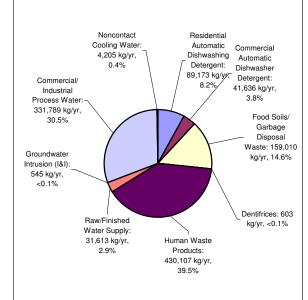



Figure 3-22

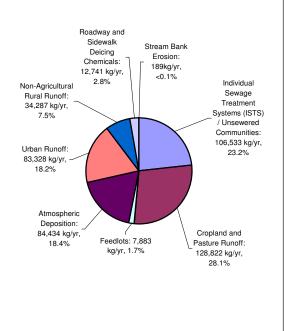
Estimated Bioavailable P Contributions to Minnesota Surface Waters Upper Mississippi River Basin Dry, Low Flow Water Year

Point Source: 1,088,681 kg/yr, 70%

- Commercial Automatic Dishwasher Detergent
- Commercial/Industrial Process Water
- Dentifrices
- Food Soils/Garbage Disposal Waste
- Groundwater Intrusion (I&I)
- Residential Automatic Dishwasher Detergent
- · Human Waste Products
- · Noncontact Cooling Water
- Raw/Finished Water Supply



Nonpoint Source: 458,218 kg/yr, 30%


- Atmospheric Deposition
- · Cropland and Pasture Runoff
- Feedlots
- Individual Sewage Treatment Systems (ISTS)/Unsewered Communities
- Non-Agriculture Rural Runoff
- Roadway and Sidewalk Deicing Chemicals
- Stream Bank Erosion
- Urban Runoff

Expected Load Reduction (496,793 kg P/yr)
Associated with a 1 mg P/L Effluent
Discharge Limit at the MCES Metro WWTF

Point Source Bioavailable P Contributions

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

limit at the MCES Metro WWTF would shift the point source contribution to approximately 56 percent of the total bioavailable phosphorus load. Figure 3-22 shows that commercial/industrial process water and human waste products represent 31 and 40 percent, respectively, of the point source bioavailable phosphorus contributions. The remaining point source categories contribute less than 15 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 12 percent of the point source bioavailable phosphorus contributions. As shown in Figure 3-22, cropland and pasture runoff, atmospheric deposition, urban runoff and ISTS/unsewered communities represent approximately 28, 18, 18 and 23 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 8 percent.

3.4.3.2 Average Condition

3.4.3.2.1 Total Phosphorus

Under average flow conditions, Figure 3-23 shows that the total point source phosphorus contribution drops to 51 percent, compared to 60 percent for the loadings to surface waters in the Upper Mississippi River basin under low flow conditions. The expected load reduction of approximately 581,000 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTF would shift the point source contribution to approximately 34 percent of the total load. As presented in Figure 3-23, cropland and pasture runoff, atmospheric deposition, and urban runoff represent 34, 23 and 14 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 10 percent. Compared to low flow conditions (Figure 3-21), Figure 3-23 shows that the relative nonpoint source contributions of total phosphorus increased significantly for streambank erosion, increased slightly for cropland and pasture runoff, decreased somewhat for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities.

3.4.3.2.2 Bioavailable Phosphorus

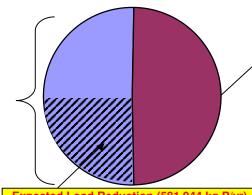
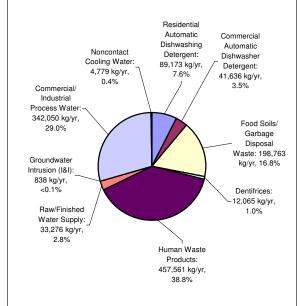

Under average flow conditions, Figure 3-24 shows that the bioavailable point source phosphorus contribution drops to 62 percent, compared to 70 percent for the loadings to surface waters in the Upper Mississippi River under low flow conditions. The expected load reduction of approximately 496,800 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTF would shift the point source contribution to approximately 47 percent of the total bioavailable phosphorus load. As presented in Figure 3-24, cropland and pasture runoff, atmospheric deposition, urban runoff, and ISTS/unsewered communities represent 35, 15, 15 and 16 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 10

Figure 3-23

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Upper Mississippi River Basin Average Flow Water Year

Point Source: 1,180,141 kg/yr, 51%

- Commercial Automatic Dishwasher Detergent
- Commercial/Industrial Process Water
- Dentifrices
- Food Soils/Garbage Disposal Waste
- Groundwater Intrusion (I&I)
- Residential Automatic Dishwasher Detergent
- Human Waste Products
- · Noncontact Cooling Water
- Raw/Finished Water Supply



Expected Load Reduction (581,044 kg P/yr)
Associated with a 1 mg P/L Effluent
Discharge Limit at the MCES Metro WWTF
(Effective 12/31/05)

Nonpoint Source: 1,156,229 kg/yr, 49%

- Atmospheric Deposition
- · Cropland and Pasture Runoff
- Feedlots
- Individual Sewage Treatment Systems (ISTS)/Unsewered Communities
- Non-Agriculture Rural Runoff
- Roadway and Sidewalk Deicing Chemicals
- Stream Bank Erosion
- Urban Runoff

Point Source Total Phosphorus Contributions

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

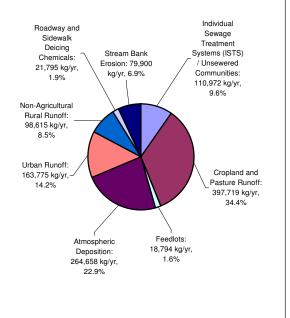
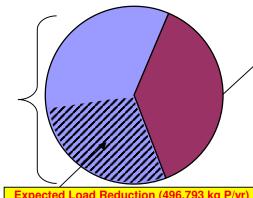
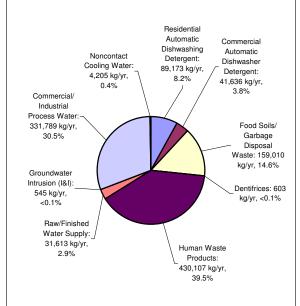



Figure 3-24

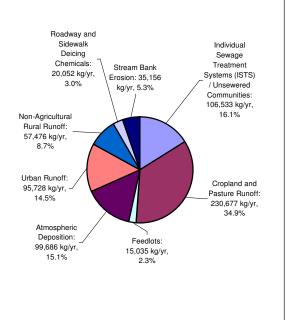
Estimated Bioavailable P Contributions to Minnesota Surface Waters Upper Mississippi River Basin Average Flow Water Year

Point Source: 1,088,681 kg/yr, 62%

- Commercial Automatic Dishwasher Detergent
- Commercial/Industrial Process Water
- Dentifrices
- Food Soils/Garbage Disposal Waste
- Groundwater Intrusion (I&I)
- Residential Automatic Dishwasher Detergent
- Human Waste Products
- Noncontact Cooling Water
- Raw/Finished Water Supply



Expected Load Reduction (496,793 kg P/yr)
Associated with a 1 mg P/L Effluent
Discharge Limit at the MCES Metro WWTF
(Effective 12/31/05)


Nonpoint Source: 660,342 kg/yr, 38%

- Atmospheric Deposition
- · Cropland and Pasture Runoff
- Feedlots
- Individual Sewage Treatment Systems (ISTS)/Unsewered Communities
- Non-Agriculture Rural Runoff
- Roadway and Sidewalk Deicing Chemicals
- · Stream Bank Erosion
- Urban Runoff

Point Source Bioavailable P Contributions

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

percent. Compared to low flow conditions (Figure 3-22), Figure 3-24 shows that the relative nonpoint source contributions of total phosphorus increased significantly for streambank erosion, increased slightly for cropland and pasture runoff, decreased somewhat for urban runoff and atmospheric deposition, and decreased significantly for ISTS/unsewered communities.

3.4.3.3 Wet Condition (High Flow)

3.4.3.3.1 Total Phosphorus

Under high flow conditions, Figure 3-25 shows that the total point source phosphorus contribution drops to 37 percent, compared to 51 and 60 percent for the loadings to surface waters in the Upper Mississippi River basin under average and low flow conditions, respectively. The expected load reduction of approximately 581,000 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTF would shift the point source contribution to approximately 23 percent of the total load. As presented in Figure 3-25, streambank erosion, cropland and pasture runoff, and atmospheric deposition represent 24, 36 and 15 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 10 percent. Compared to average flow conditions (Figure 3-23), Figure 3-25 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion, increased slightly for cropland and pasture, decreased slightly for non-agricultural rural runoff, and decreased significantly for urban runoff, atmospheric deposition and ISTS/unsewered communities.

3.4.3.3.2 Bioavailable Phosphorus

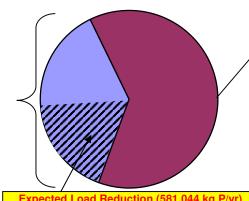
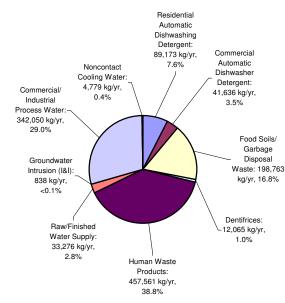

Under high flow conditions, Figure 3-26 shows that the bioavailable point source phosphorus contribution drops to 50 percent, compared to 62 and 70 percent for the loadings to surface waters in the Upper Mississippi River basin under average and low flow conditions, respectively. The expected load reduction of approximately 496,800 kg/yr associated with a 1 mg/L permit limit at the MCES Metro WWTF would shift the point source contribution to approximately 35 percent of the total load. As presented in Figure 3-26, streambank erosion and cropland and pasture runoff represent 19 and 38 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions at or below 11 percent. Compared to average flow conditions (Figure 3-24), Figure 3-26 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion, increased slightly for cropland and pasture, decreased slightly for non-agricultural rural runoff, and decreased significantly for urban runoff, atmospheric deposition and ISTS/unsewered communities.

Figure 3-25

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Upper Mississippi River Basin Wet, High Flow Water Year

Point Source: 1,180,141 kg/yr, 37%

- Commercial Automatic Dishwasher Detergent
- Commercial/Industrial Process Water
- Dentifrices
- Food Soils/Garbage Disposal Waste
- Groundwater Intrusion (I&I)
- Residential Automatic Dishwasher Detergent
- Human Waste Products
- · Noncontact Cooling Water
- · Raw/Finished Water Supply



Expected Load Reduction (581,044 kg P/yr)
Associated with a 1 mg P/L Effluent Discharge
Limit at the MCES Metro WWTF
(Effective 12/31/05)

Nonpoint Source: 1,990,156 kg/yr, 63%

- Atmospheric Deposition
- · Cropland and Pasture Runoff
- Feedlots
- Individual Sewage Treatment Systems (ISTS)/Unsewered Communities
- Non-Agriculture Rural Runoff
- Roadway and Sidewalk
 Deicing Chemicals
- Stream Bank Erosion
- Urban Runoff

Point Source Total Phosphorus Contributions

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

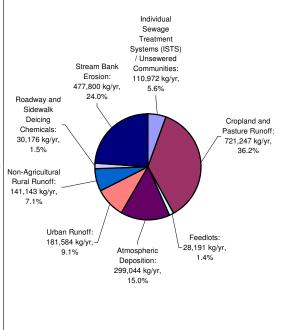
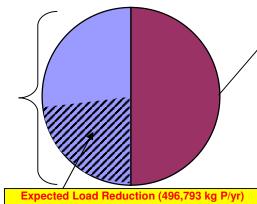
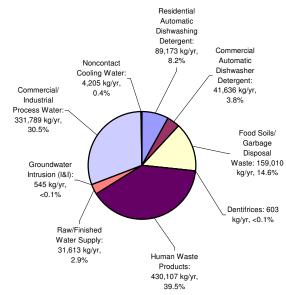



Figure 3-26

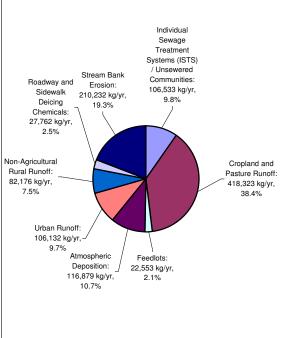
Estimated Bioavailable P Contributions to Minnesota Surface Waters Upper Mississippi River Basin Wet, High Flow Water Year

Point Source: 1,088,681 kg/yr, 50%

- Commercial Automatic Dishwasher Detergent
- Commercial/Industrial Process Water
- Dentifrices
- Food Soils/Garbage Disposal Waste
- Groundwater Intrusion (I&I)
- Residential Automatic Dishwasher Detergent
- Human Waste Products
- Noncontact Cooling Water
- Raw/Finished Water Supply



Expected Load Reduction (496,793 kg P/yr)
Associated with a 1 mg P/L Effluent Discharge
Limit at the MCES Metro WWTF
(Effective 12/31/05)


Nonpoint Source: 1,090,590 kg/yr, 50%

- Atmospheric Deposition
- Cropland and Pasture Runoff
- Feedlots
- Individual Sewage Treatment Systems (ISTS)/Unsewered Communities
- Non-Agriculture Rural Runoff
- Roadway and Sidewalk
 Deicing Chemicals
- Stream Bank Erosion
- Urban Runoff

Point Source Bioavailable P Contributions

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

3.4.4 Lower Mississippi River Basin

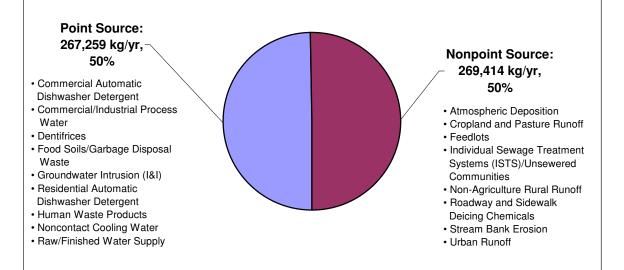
3.4.4.1 Dry Conditions (Low Flow)

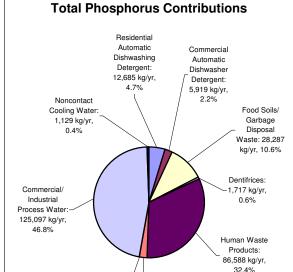
3.4.4.1.1 Total Phosphorus

Figure 3-27 shows that, under low flow conditions, the total point source phosphorus contribution represents 50 percent, while nonpoint sources of phosphorus represent 50 percent of the loadings to surface waters in the Lower Mississippi River basin. Figure 3-27 also shows that human waste products, commercial/industrial process water, and food soils represent 32, 47 and 11 percent, respectively, of the point source total phosphorus contributions. The remaining point source categories contribute less than 5 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 7 percent of the point source total phosphorus contributions. As shown in Figure 3-27, cropland and pasture runoff, streambank erosion, urban runoff, and ISTS/unsewered communities represent 45, 17, 10 and 10 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 5 percent.

3.4.4.1.2 Bioavailable Phosphorus

Figure 3-28 shows that, under low flow conditions, the bioavailable point source phosphorus contribution represents 61 percent of the loadings to surface waters. Figure 3-28 also shows that human waste products, commercial/industrial process water, and food soils represent 33, 48 and 9 percent, respectively, of the point source bioavailable phosphorus contributions. The remaining point source categories contribute less than 6 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 8 percent of the point source bioavailable phosphorus contributions. As shown in Figure 3-28, cropland and pasture runoff, streambank erosion, urban runoff and ISTS/unsewered communities represent approximately 44, 12, 10 and 16 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 7 percent.


3.4.4.2 Average Condition

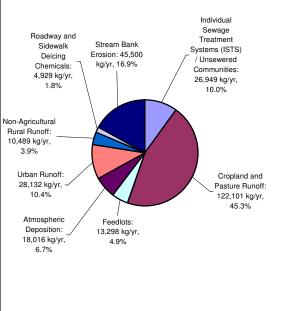

3.4.4.2.1 Total Phosphorus

Under average flow conditions, Figure 3-29 shows that the total point source phosphorus contribution drops to 28 percent, compared to 50 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-29, cropland and pasture runoff and streambank erosion represent 36 and 47 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 5 percent. Compared to low flow conditions (Figure 3-22), Figure 3-29 shows that the relative nonpoint source contributions of total phosphorus

Figure 3-27

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Lower Mississippi River Basin Dry, Low Flow Water Year

Point Source


(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

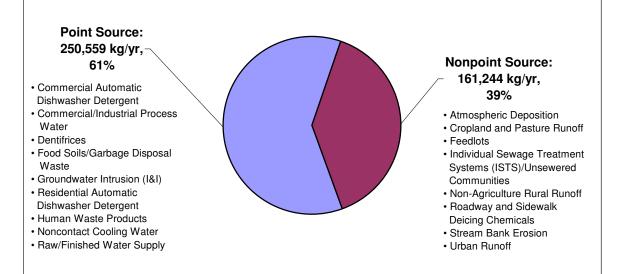
Raw/Finished

Water Supply:

5,717 kg/yr,

Nonpoint Source Total Phosphorus Contributions

Groundwater


Intrusion (I&I):


120 kg/yr,

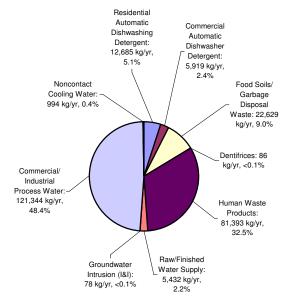

<0.1%

Figure 3-28

Estimated Bioavailable P Contributions to Minnesota Surface Waters Lower Mississippi River Basin Dry, Low Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

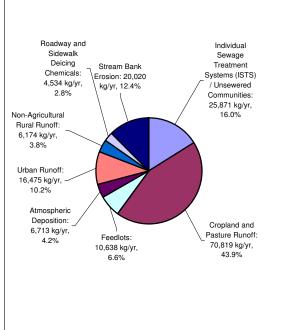
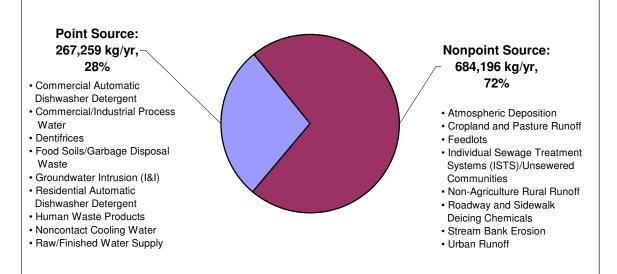
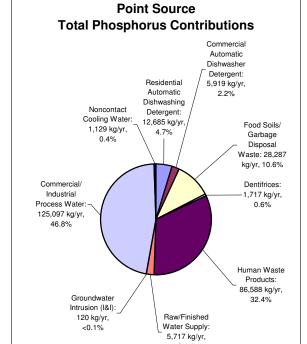
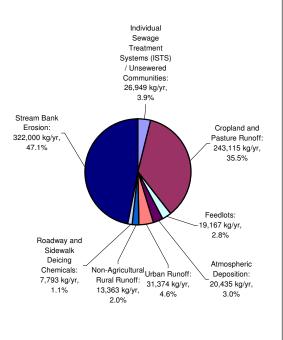




Figure 3-29


Estimated Total Phosphorus Contributions to Minnesota Surface Waters Lower Mississippi River Basin Average Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

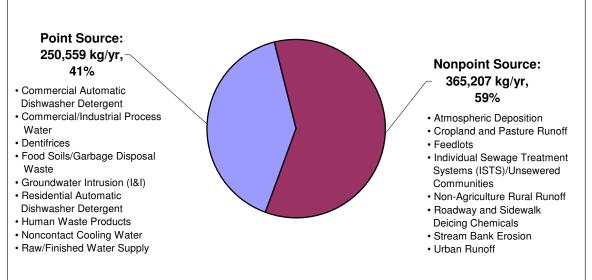
increased significantly for streambank erosion, decreased slightly for cropland and pasture runoff, and decreased significantly for all of the remaining source categories.

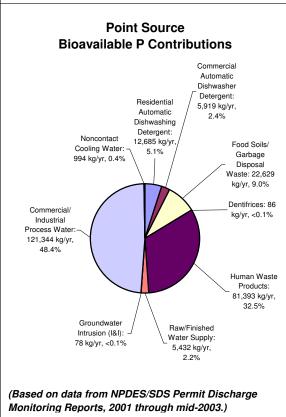
3.4.4.2.2 Bioavailable Phosphorus

Under average flow conditions, Figure 3-30 shows that the bioavailable point source phosphorus contribution drops to 41 percent, compared to 61 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-30, cropland and pasture runoff and streambank erosion represent 39 and 39 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 8 percent. Compared to low flow conditions (Figure 3-28), Figure 3-30 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion, decreased slightly for cropland and pasture runoff, and decreased significantly for all of the remaining source categories.

3.4.4.3 Wet Condition (High Flow)

3.4.4.3.1 Total Phosphorus


Under high flow conditions, Figure 3-31 shows that the total point source phosphorus contribution drops to 13 percent, compared to 28 and 50 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-31, streambank erosion and cropland and pasture runoff represent 75 and 17 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 2 percent. Compared to average flow conditions (Figure 3-29), Figure 3-31 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories.


3.4.4.3.2 Bioavailable Phosphorus

Under high flow conditions, Figure 3-32 shows that the bioavailable point source phosphorus contribution drops to 23 percent, compared to 41 and 61 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-32, cropland and pasture runoff and streambank erosion represent 21 and 68 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions at or below 4 percent. Compared to average flow conditions (Figure 3-30), Figure 3-32 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories.

Figure 3-30

Estimated Bioavailable P Contributions to Minnesota Surface Waters Lower Mississippi River Basin Average Flow Water Year

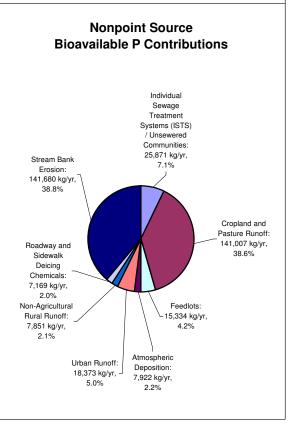
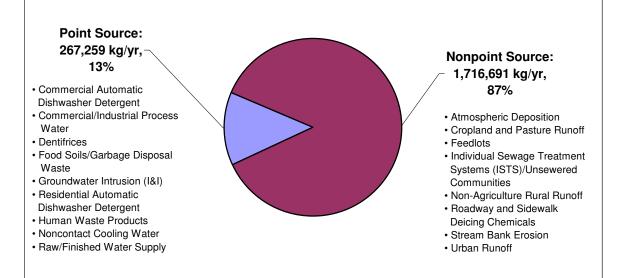
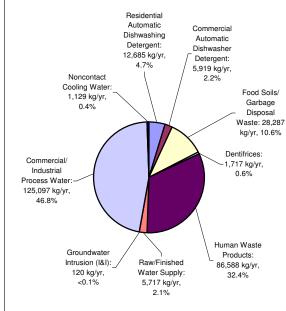




Figure 3-31

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Lower Mississippi River Basin Wet, High Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

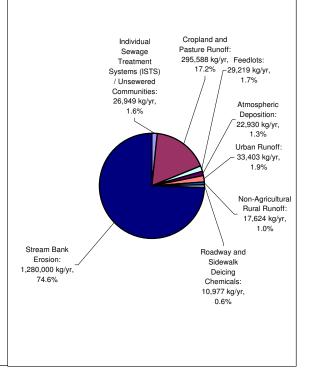
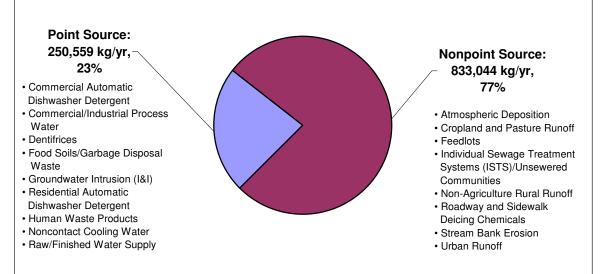
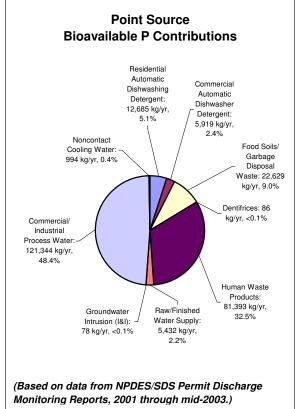
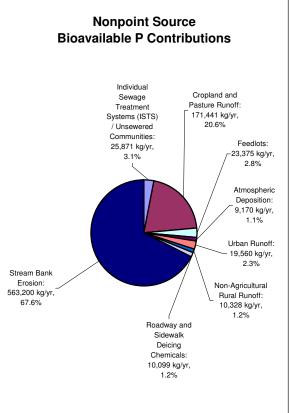





Figure 3-32

Estimated Bioavailable P Contributions to Minnesota Surface Waters Lower Mississippi River Basin Wet, High Flow Water Year

3.4.5 Red River Basin

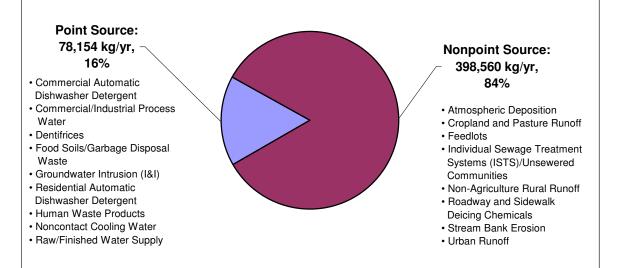
3.4.5.1 Dry Conditions (Low Flow)

3.4.5.1.1 Total Phosphorus

Figure 3-33 shows that, under low flow conditions, the total point source phosphorus contribution represents 16 percent, while nonpoint sources of phosphorus represent 84 percent of the loadings to surface waters in the Red River basin. Figure 3-33 also shows that human waste products, commercial/industrial process water, and food soils represent 37, 31 and 14 percent, respectively, of the point source total phosphorus contributions. The remaining point source categories contribute less than 7 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 9 percent of the point source total phosphorus contributions. As shown in Figure 3-33, cropland and pasture runoff and atmospheric deposition represent 33 and 52 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 6 percent.

3.4.5.1.2 Bioavailable Phosphorus

Figure 3-34 shows that, under low flow conditions, the bioavailable point source phosphorus contribution represents 28 percent of the loadings to surface waters. Figure 3-34 also shows that human waste products, commercial/industrial process water, and food soils represent 37, 32 and 12 percent, respectively, of the point source bioavailable phosphorus contributions. The remaining point source categories contribute less than 7 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 10 percent of the point source bioavailable phosphorus contributions. As shown in Figure 3-34, cropland and pasture runoff and atmospheric deposition represent approximately 41 and 35 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 12 percent.


3.4.5.2 Average Condition

3.4.5.2.1 Total Phosphorus

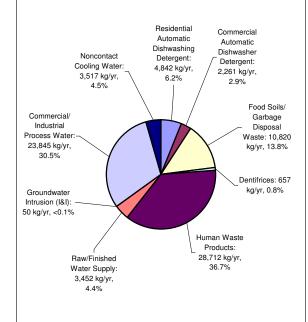

Under average flow conditions, the total point source phosphorus contribution drops to 10 percent, compared to 16 percent for the loadings to surface waters under low flow conditions (Figure 3-35). Cropland and pasture runoff and atmospheric deposition represent 54 and 32 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 6 percent. Compared to low flow conditions (Figure 3-33), Figure 3-35 shows that the relative nonpoint source contributions of total phosphorus increased significantly for cropland and pasture runoff and decreased significantly for several of the remaining source categories.

Figure 3-33

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Red River Basin Dry, Low Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

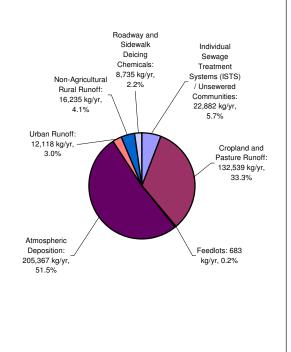
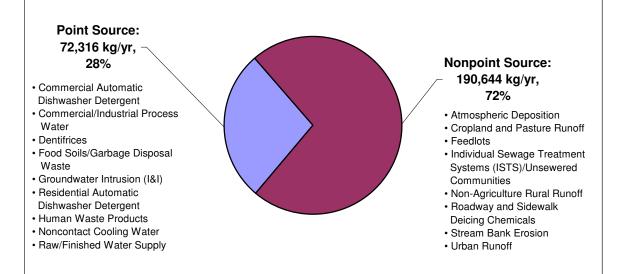
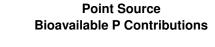
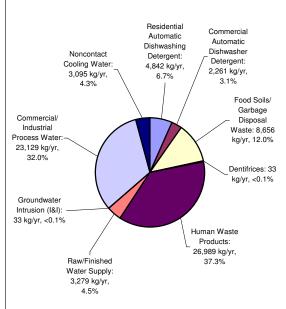





Figure 3-34

Estimated Bioavailable P Contributions to Minnesota Surface Waters Red River Basin Dry, Low Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

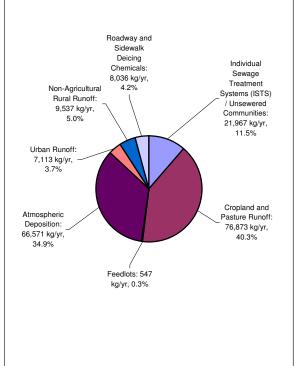
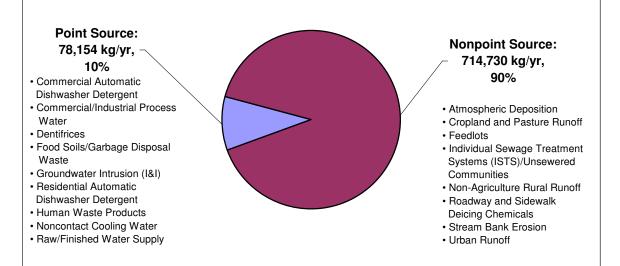
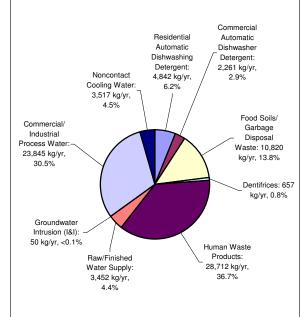
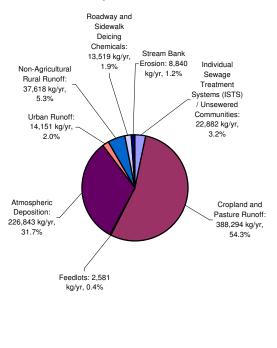




Figure 3-35


Estimated Total Phosphorus Contributions to Minnesota Surface Waters Red River Basin Average Flow Water Year

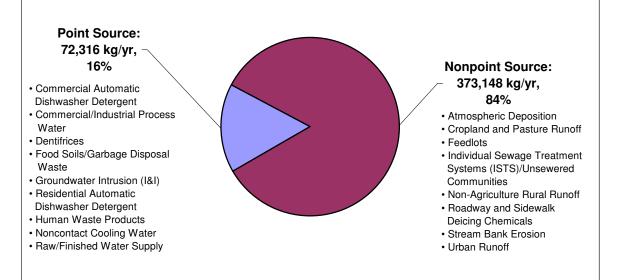
(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

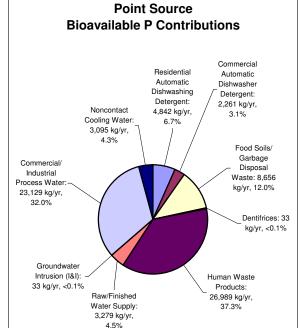
3.4.5.2.2 Bioavailable Phosphorus

Under average flow conditions, Figure 3-36 shows that the bioavailable point source phosphorus contribution drops to 16 percent, compared to 28 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-36, cropland and pasture runoff and atmospheric deposition represent 60 and 21 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 6 percent. Compared to low flow conditions (Figure 3-34), Figure 3-36 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for cropland and pasture runoff and decreased significantly for several of the remaining source categories.

3.4.5.3 Wet Condition (High Flow)

3.4.5.3.1 Total Phosphorus


Under high flow conditions, Figure 3-37 shows that the total point source phosphorus contribution drops to 7 percent, compared to 10 and 16 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-37, streambank erosion, atmospheric deposition and cropland and pasture runoff represent 14, 24 and 51 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 6 percent. Compared to average flow conditions (Figure 3-35), Figure 3-37 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories, except cropland and pasture runoff.


3.4.5.3.2 Bioavailable Phosphorus

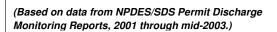

Under high flow conditions, Figure 3-38 shows that the bioavailable point source phosphorus contribution drops to 11 percent, compared to 16 and 28 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-38, cropland and pasture runoff, atmospheric deposition and streambank erosion represent 57, 16 and 11 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 7 percent. Compared to average flow conditions (Figure 3-36), Figure 3-38 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories, except cropland and pasture runoff.

Figure 3-36

Estimated Bioavailable P Contributions to Minnesota Surface Waters Red River Basin Average Flow Water Year

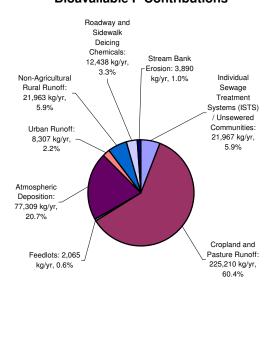
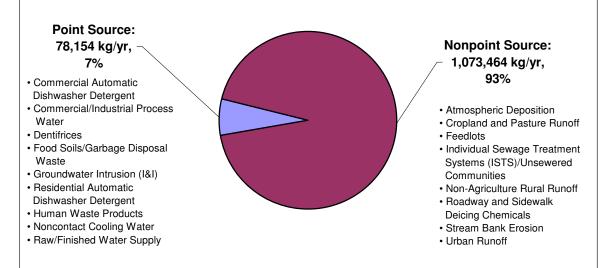
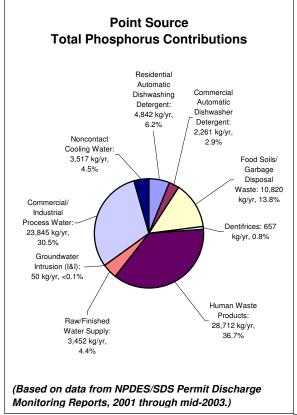




Figure 3-37

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Red River Basin Wet, High Flow Water Year

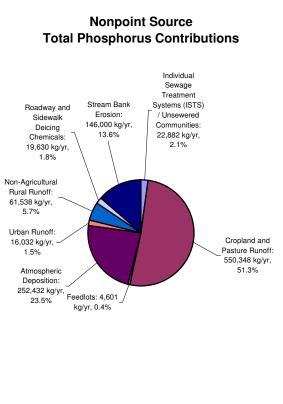
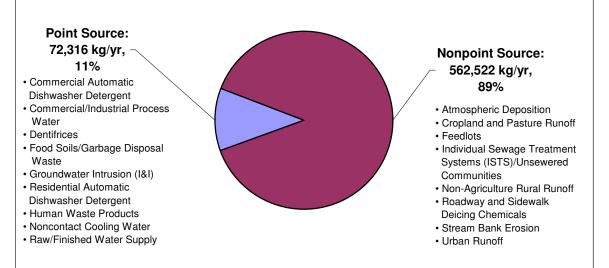
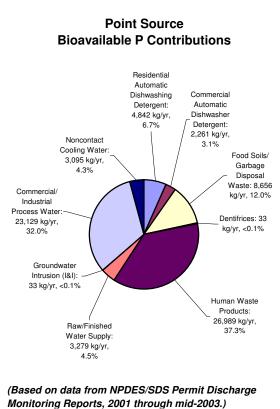
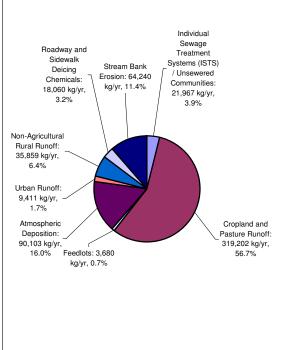





Figure 3-38

Estimated Bioavailable P Contributions to Minnesota Surface Waters Red River Basin Wet, High Flow Water Year

3.4.6 Rainy River Basin

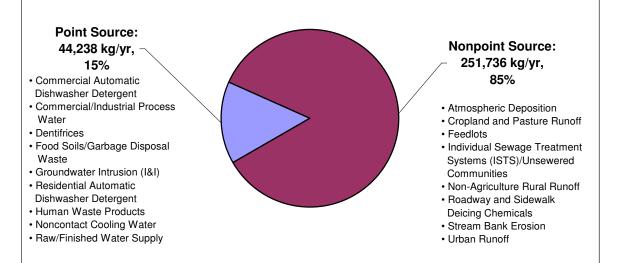
3.4.6.1 Dry Conditions (Low Flow)

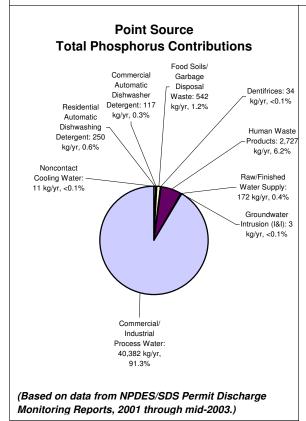
3.4.6.1.1 Total Phosphorus

Figure 3-39 shows that, under low flow conditions, the total point source phosphorus contribution represents 15 percent, while nonpoint sources of phosphorus represent 85 percent of the loadings to surface waters in the Rainy River basin. Figure 3-39 also shows that commercial/industrial process water represents 91 percent of the point source total phosphorus contributions. The remaining point source categories contribute less than 7 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 1 percent of the point source total phosphorus contributions. As shown in Figure 3-39, non-agricultural rural runoff and atmospheric deposition represent 28 and 62 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 4 percent.

3.4.6.1.2 Bioavailable Phosphorus

Figure 3-40 shows that, under low flow conditions, the bioavailable point source phosphorus contribution represents 27 percent of the loadings to surface waters. Figure 3-40 also shows that commercial/industrial process water represents 92 percent of the point source bioavailable phosphorus contributions. The remaining point source categories contribute less than 7 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 1 percent of the point source bioavailable phosphorus contributions. As shown in Figure 3-40, non-agricultural rural runoff and atmospheric deposition represent approximately 35 and 49 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 8 percent.

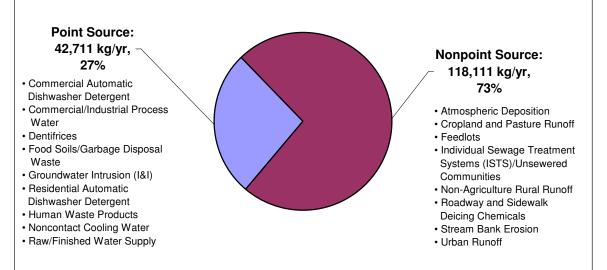

3.4.6.2 Average Condition

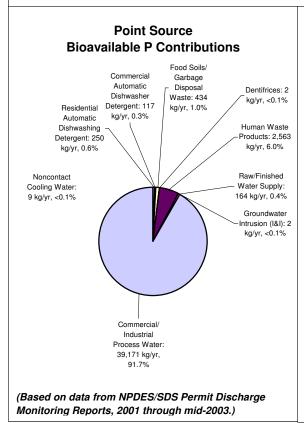

3.4.6.2.1 Total Phosphorus

Under average flow conditions, Figure 3-41 shows that the total point source phosphorus contribution drops to 10 percent, compared to 15 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-41, non-agricultural rural runoff and atmospheric deposition represent 30 and 45 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 15 percent. Compared to low flow conditions (Figure 3-39), Figure 3-41 shows that the relative nonpoint source contributions of total phosphorus increased significantly for streambank erosion and decreased significantly for atmospheric deposition.

Figure 3-39

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Rainy River Basin Dry, Low Flow Water Year





Nonpoint Source Total Phosphorus Contributions Individual Sewage Treatment Roadway and Systems (ISTS) Sidewalk Deicing / Unsewered Communities: Chemicals: Cropland and 8,851 kg/yr, 2,108 kg/yr, 0.8% Pasture Runoff: 3.5% 9,205 kg/yr, 3.7% Feedlots: Non-Agricultural 179kg/yr, Rural Runoff: < 0.1% 71,421 kg/yr, 28.4% Urban Runoff: 4,181 kg/yr, Atmospheric Deposition: 155,792 kg/yr,

Figure 3-40

Estimated Bioavailable P Contributions to Minnesota Surface Waters Rainy River Basin Dry, Low Flow Water Year

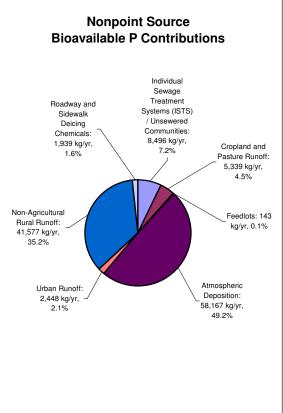
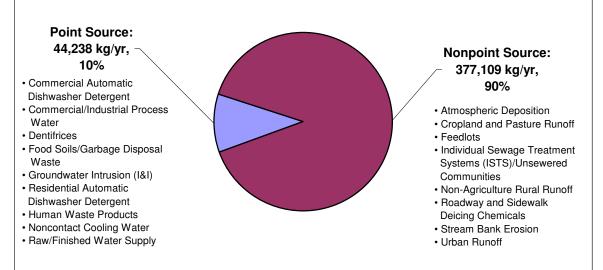
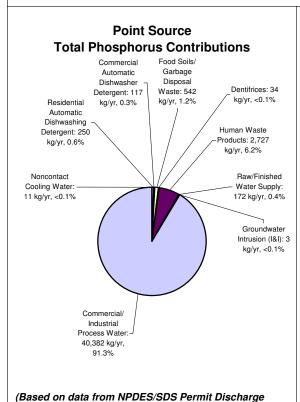
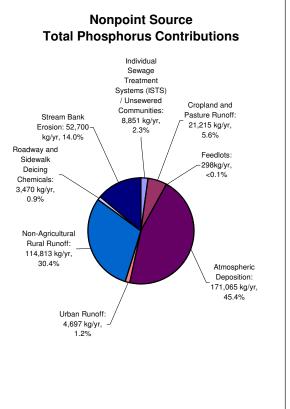





Figure 3-41

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Rainy River Basin Average Flow Water Year

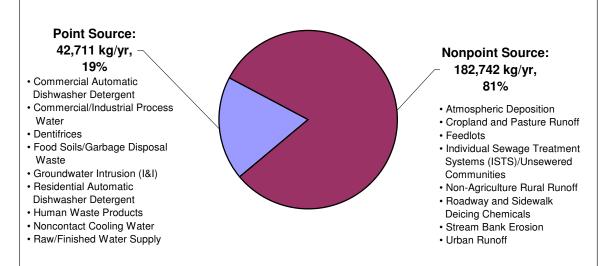
Monitoring Reports, 2001 through mid-2003.)

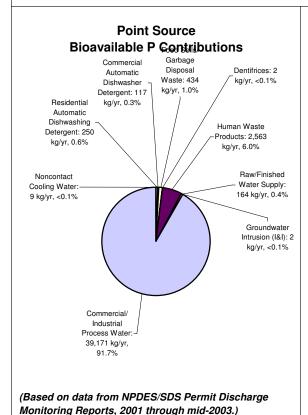
3.4.6.2.2 Bioavailable Phosphorus

Under average flow conditions, Figure 3-42 shows that the bioavailable point source phosphorus contribution drops to 19 percent, compared to 27 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-42, non-agricultural rural runoff and atmospheric deposition represent 37 and 36 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 13 percent. Compared to low flow conditions (Figure 3-40), Figure 3-42 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion and decreased significantly for atmospheric deposition.

3.4.6.3 Wet Condition (High Flow)

3.4.6.3.1 Total Phosphorus


Under high flow conditions, Figure 3-43 shows that the total point source phosphorus contribution drops to 6 percent, compared to 10 and 15 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-43, streambank erosion, atmospheric deposition and non-agricultural runoff represent 44, 27 and 22 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 6 percent. Compared to average flow conditions (Figure 3-41), Figure 3-43 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories, except cropland and pasture runoff.


3.4.6.3.2 Bioavailable Phosphorus

Under high flow conditions, Figure 3-44 shows that the bioavailable point source phosphorus contribution drops to 11 percent, compared to 19 and 27 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-44, non-agricultural rural runoff, atmospheric deposition and streambank erosion represent 27, 22 and 40 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 7 percent. Compared to average flow conditions (Figure 3-42), Figure 3-44 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories, except cropland and pasture runoff.

Figure 3-42

Estimated Bioavailable P Contributions to Minnesota Surface Waters Rainy River Basin Average Flow Water Year

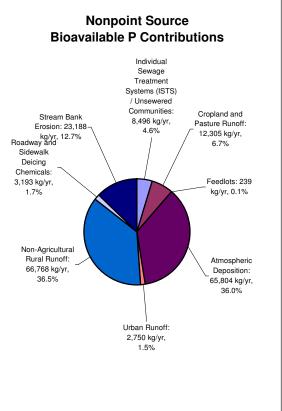
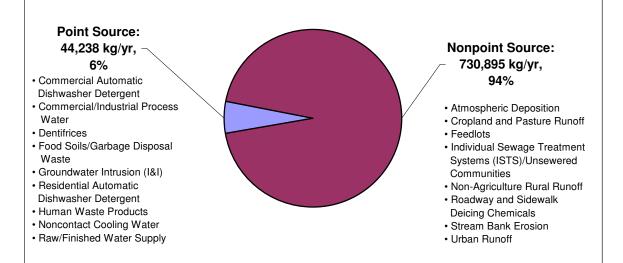
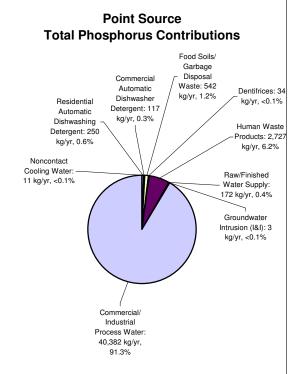




Figure 3-43

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Rainy River Basin Wet, High Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Total Phosphorus Contributions

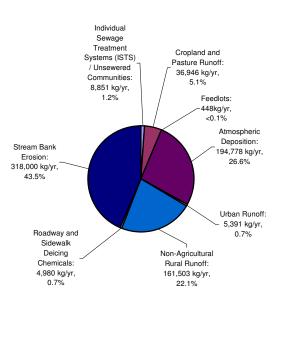
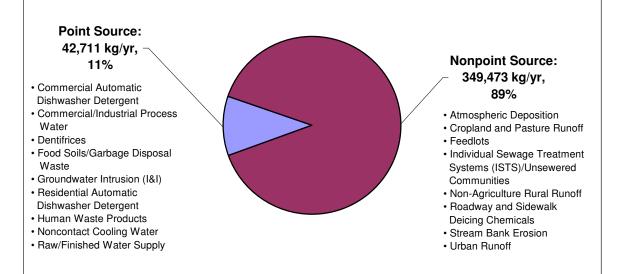
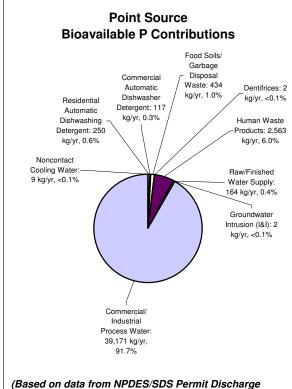




Figure 3-44

Estimated Bioavailable P Contributions to Minnesota Surface Waters Rainy River Basin Wet, High Flow Water Year

Bioavailable P Contributions Individual Sewage Treatment Systems (ISTS) Cropland and / Unsewered Pasture Runoff: Communities: 21,429 kg/yr, 8,496 kg/yr, 2.4% Feedlots: 358 kg/yr, 0.1% Stream Bank Atmospheric Erosion: 139,920 kg/yr, Deposition: 77,661 kg/yr, 40.0% 22.2% Urban Runoff: 3,155 kg/yr, 0.9% Roadway and Sidewalk Deicing Chemicals: Non-Agricultural 4,581 kg/yr, Rural Runoff: 93,873 kg/yr, 1.3% 26.9%

Nonpoint Source

Monitoring Reports, 2001 through mid-2003.)

3.4.7 Lake Superior Basin

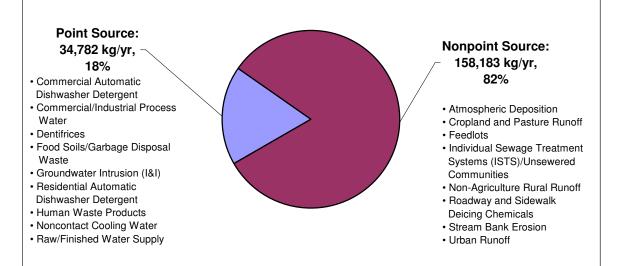
3.4.7.1 Dry Conditions (Low Flow)

3.4.7.1.1 Total Phosphorus

Figure 3-45 shows that, under low flow conditions, the total point source phosphorus contribution represents 18 percent, while nonpoint sources of phosphorus represent 82 percent of the loadings to surface waters in the Lake Superior basin. Figure 3-45 also shows that human waste products, commercial/industrial process water, and food soils represent 51, 22, and 15 percent, respectively, of the point source total phosphorus contributions. The remaining point source categories contribute less than 7 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 10 percent of the point source total phosphorus contributions. As shown in Figure 3-45, urban runoff, non-agricultural rural runoff and atmospheric deposition represent 14, 30 and 41 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 6 percent.

3.4.7.1.2 Bioavailable Phosphorus

Figure 3-46 shows that, under low flow conditions, the bioavailable point source phosphorus contribution represents 28 percent of the loadings to surface waters. Figure 3-46 also shows that human waste products, commercial/industrial process water, and food soils represent 52, 23, and 13 percent, respectively, of the point source bioavailable phosphorus contributions. The remaining point source categories contribute less than 8 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 10 percent of the point source bioavailable phosphorus contributions. As shown in Figure 3-46, urban runoff, non-agricultural rural runoff, and atmospheric deposition represent approximately 16, 34, and 30 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 10 percent.


3.4.7.2 Average Condition

3.4.7.2.1 Total Phosphorus

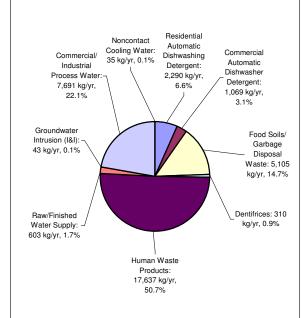

Under average flow conditions, Figure 3-47 shows that the total point source phosphorus contribution drops to 13 percent, compared to 18 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-47, non-agricultural rural runoff and atmospheric deposition represent 32 and 31 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 16 percent. Compared to low flow conditions (Figure 3-45), Figure 3-47 shows that the relative nonpoint source contributions of total phosphorus increased significantly for streambank erosion and decreased significantly for atmospheric deposition.

Figure 3-45

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Lake Superior Basin Dry, Low Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Total Phosphorus Contributions

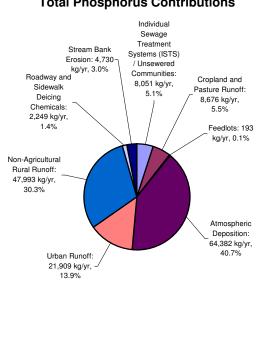
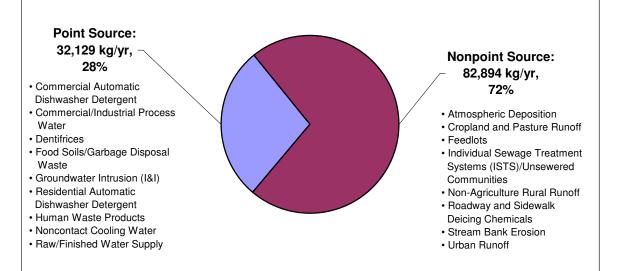
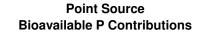
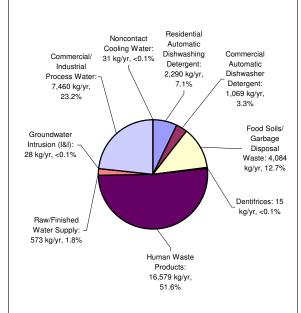





Figure 3-46

Estimated Bioavailable P Contributions to Minnesota Surface Waters Lake Superior Basin Dry, Low Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Bioavailable P Contributions

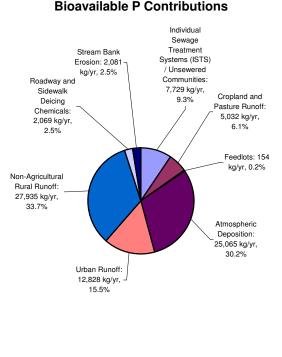
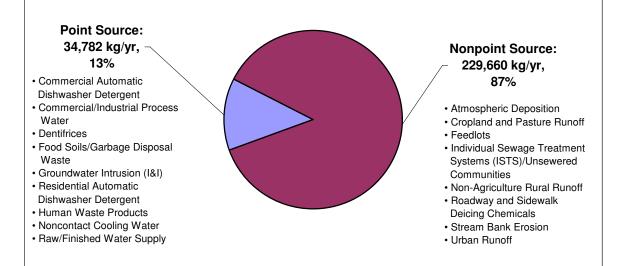
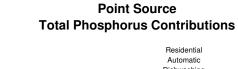
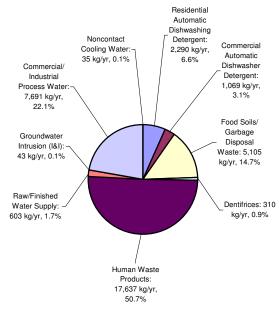
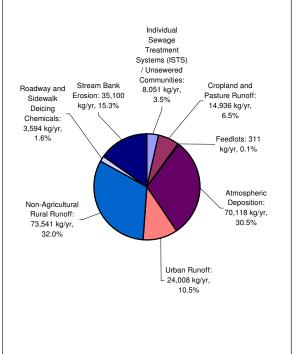





Figure 3-47

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Lake Superior Basin Average Flow Water Year



(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

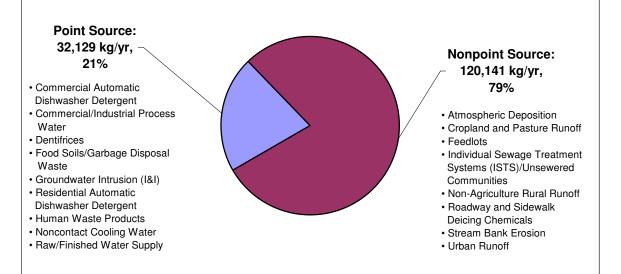
Nonpoint Source Total Phosphorus Contributions

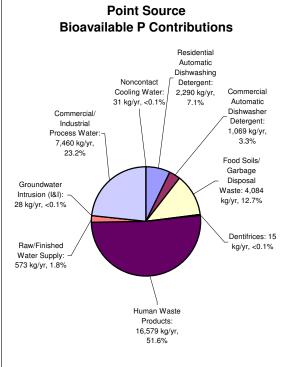
3.4.7.2.2 Bioavailable Phosphorus

Under average flow conditions, Figure 3-48 shows that the bioavailable point source phosphorus contribution drops to 21 percent, compared to 28 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-48, non-agricultural rural runoff and atmospheric deposition represent 36 and 23 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 13 percent. Compared to low flow conditions (Figure 3-46), Figure 3-48 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion and decreased significantly for atmospheric deposition and ISTS/unsewered communities.

3.4.7.3 Wet Condition (High Flow)

3.4.7.3.1 Total Phosphorus


Under high flow conditions, Figure 3-49 shows that the total point source phosphorus contribution drops to 7 percent, compared to 13 and 18 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-49, streambank erosion, atmospheric deposition and non-agricultural runoff represent 46, 18 and 22 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions at or below 6 percent. Compared to average flow conditions (Figure 3-47), Figure 3-49 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories, except cropland and pasture runoff.


3.4.7.3.2 Bioavailable Phosphorus

Under high flow conditions, Figure 3-50 shows that the bioavailable point source phosphorus contribution drops to 13 percent, compared to 21 and 28 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-50, non-agricultural rural runoff, atmospheric deposition, and streambank erosion represent 25, 15, and 41 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions at or below 7 percent. Compared to average flow conditions (Figure 3-48), Figure 3-50 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories, except cropland and pasture runoff.

Figure 3-48

Estimated Bioavailable P Contributions to Minnesota Surface Waters Lake Superior Basin Average Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Bioavailable P Contributions

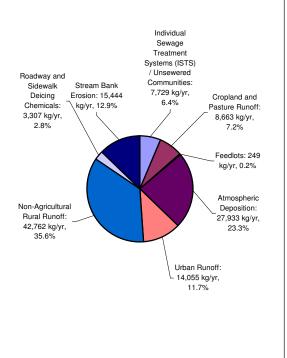
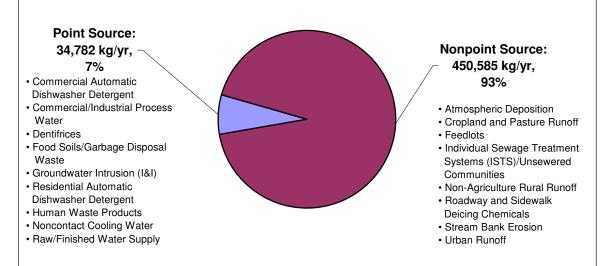
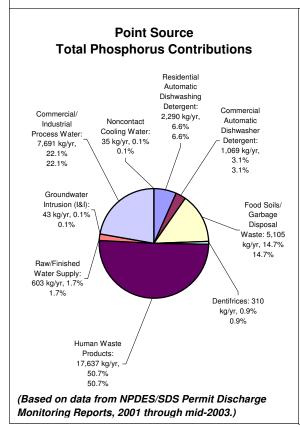




Figure 3-49

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Lake Superior Basin Wet, High Flow Water Year

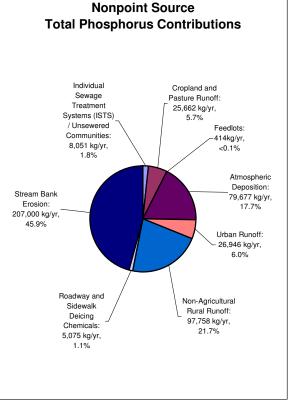
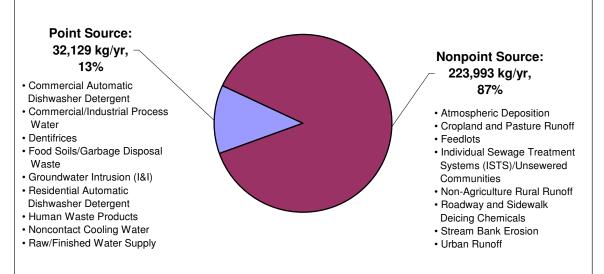
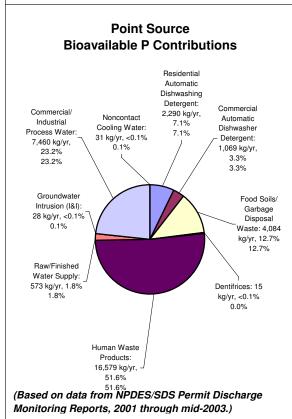
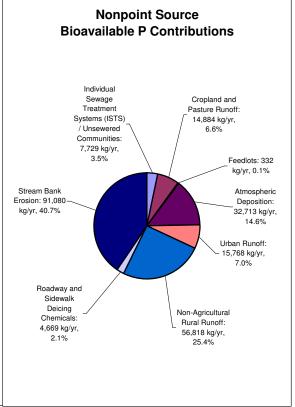





Figure 3-50

Estimated Bioavailable P Contributions to Minnesota Surface Waters Lake Superior Basin Wet, High Flow Water Year

3.4.8 Missouri River Basin

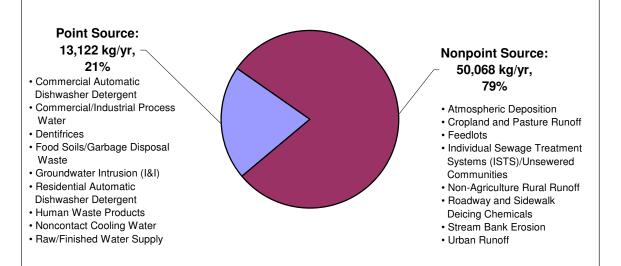
3.4.8.1 Dry Conditions (Low Flow)

3.4.8.1.1 Total Phosphorus

Figure 3-51 shows that, under low flow conditions, the total point source phosphorus contribution represents 21 percent, while nonpoint sources of phosphorus represent 79 percent of the loadings to surface waters in the Missouri River basin. Figure 3-51 also shows that human waste products, commercial/industrial process water, and food soils represent 43, 31 and 13 percent, respectively, of the point source total phosphorus contributions. The remaining point source categories contribute less than 6 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 9 percent of the point source total phosphorus contributions. As shown in Figure 3-51, cropland and pasture runoff and ISTS/unsewered communities represent 73 and 8 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions at or below 5 percent.

3.4.8.1.2 Bioavailable Phosphorus

Figure 3-52 shows that, under low flow conditions, the bioavailable point source phosphorus contribution represents 29 percent of the loadings to surface waters. Figure 3-52 also shows that human waste products, commercial/industrial process water, and food soils represent 43, 32 and 11 percent, respectively, of the point source bioavailable phosphorus contributions. The remaining point source categories contribute less than 7 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 9 percent of the point source bioavailable phosphorus contributions. As shown in Figure 3-52, cropland and pasture runoff and ISTS/unsewered communities represent approximately 70 and 12 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 5 percent.


3.4.8.2 Average Condition

3.4.8.2.1 Total Phosphorus

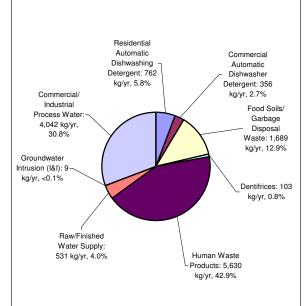

Under average flow conditions, Figure 3-53 shows that the total point source phosphorus contribution drops to 12 percent, compared to 21 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-53, cropland and pasture runoff and streambank erosion represent 64 and 17 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 5 percent. Compared to low flow conditions (Figure 3-51), Figure 3-53 shows that the relative nonpoint source contributions of total phosphorus increased significantly for streambank erosion, decreased slightly for cropland and pasture runoff, urban runoff and non-agricultural runoff, and decreased significantly for atmospheric deposition.

Figure 3-51

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Missouri River Basin Dry, Low Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Total Phosphorus Contributions

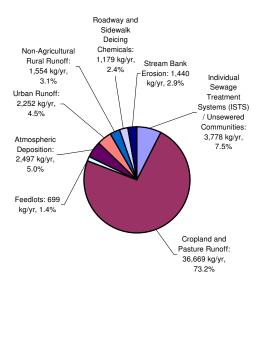
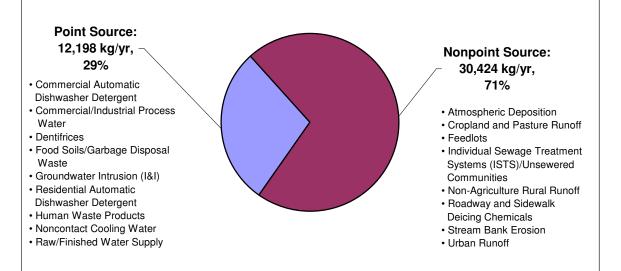
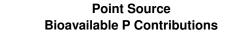
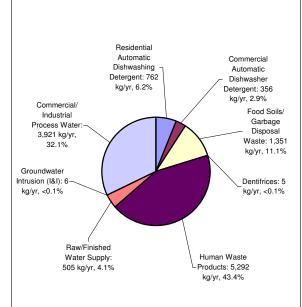





Figure 3-52

Estimated Bioavailable P Contributions to Minnesota Surface Waters Missouri River Basin Dry, Low Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Bioavailable P Contributions

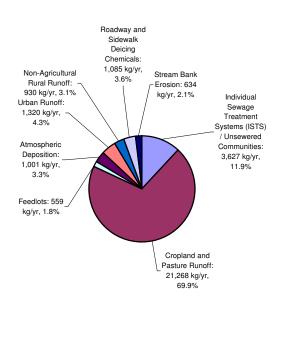
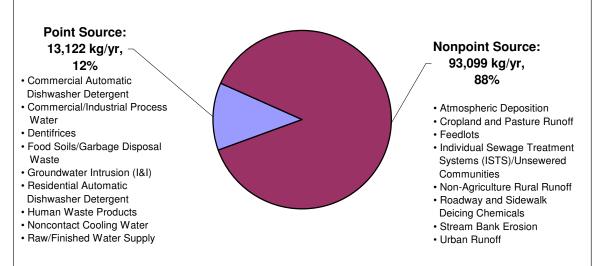
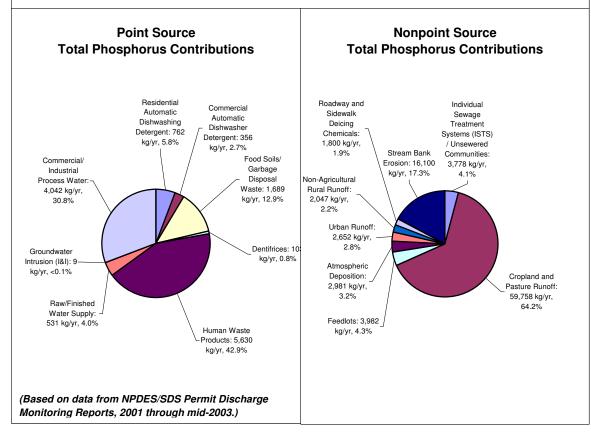




Figure 3-53

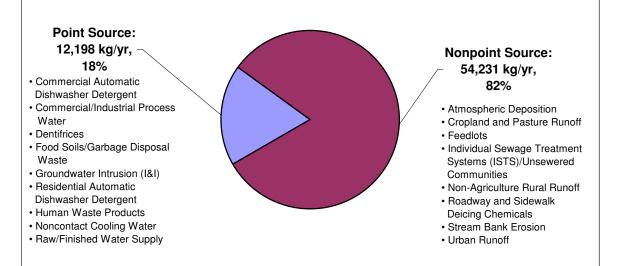
Estimated Total Phosphorus Contributions to Minnesota Surface Waters Missouri River Basin Average Flow Water Year

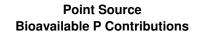
3.4.8.2.2 Bioavailable Phosphorus

Under average flow conditions, Figure 3-54 shows that the bioavailable point source phosphorus contribution drops to 18 percent, compared to 29 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-54, cropland and pasture runoff and streambank erosion represent 64 and 13 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 7 percent. Compared to low flow conditions (Figure 3-52), Figure 3-54 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion, decreased slightly for cropland and pasture runoff, urban runoff, non-agricultural runoff and atmospheric deposition.

3.4.8.3 Wet Condition (High Flow)

3.4.8.3.1 Total Phosphorus


Under high flow conditions, Figure 3-55 shows that the total point source phosphorus contribution drops to 6 percent, compared to 12 and 21 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-55, streambank erosion and cropland and pasture runoff represent 34 and 53 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 5 percent. Compared to average flow conditions (Figure 3-53), Figure 3-55 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories, except feedlots and cropland and pasture runoff.


3.4.8.3.2 Bioavailable Phosphorus

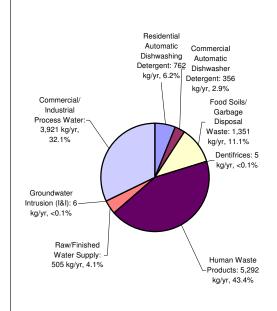

Under high flow conditions, Figure 3-56 shows that the bioavailable point source phosphorus contribution drops to 10 percent, compared to 18 and 29 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-56, cropland and pasture runoff and streambank erosion represent 56 and 28 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 7 percent. Compared to average flow conditions (Figure 3-54), Figure 3-56 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories, except feedlots and cropland and pasture runoff.

Figure 3-54

Estimated Bioavailable P Contributions to Minnesota Surface Waters Missouri River Basin Average Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Bioavailable P Contributions

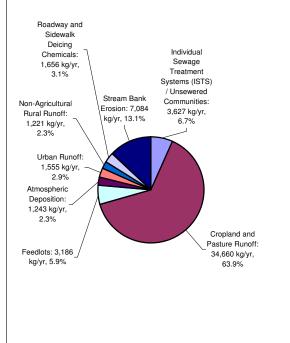
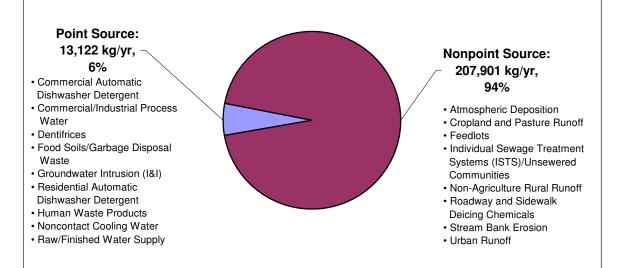
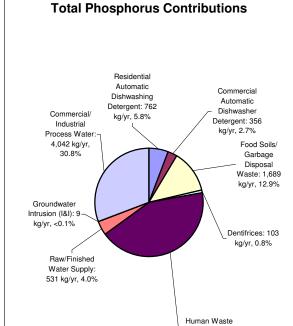




Figure 3-55

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Missouri River Basin Wet, High Flow Water Year

Point Source

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Products: 5,630 kg/yr, 42.9%

Nonpoint Source Total Phosphorus Contributions

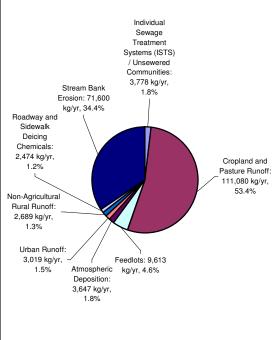
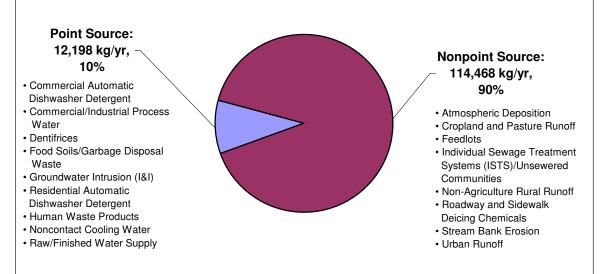
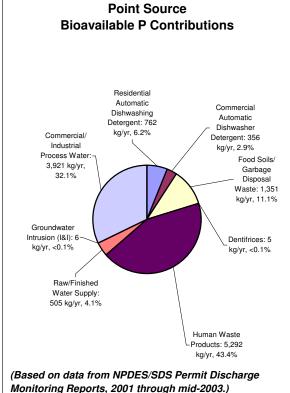
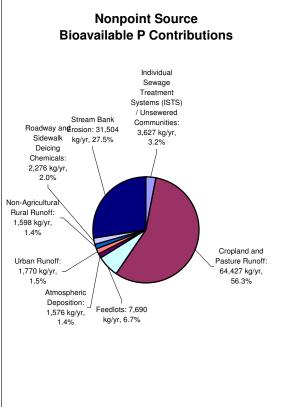





Figure 3-56

Estimated Bioavailable P Contributions to Minnesota Surface Waters Missouri River Basin Wet, High Flow Water Year

3.4.9 Minnesota River Basin

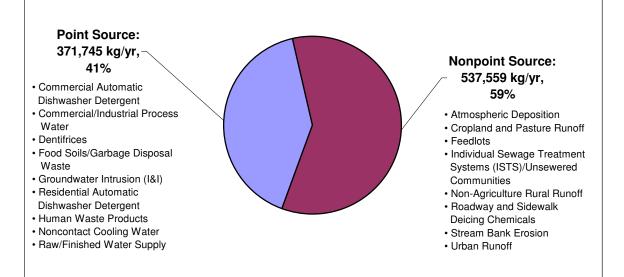
3.4.9.1 Dry Conditions (Low Flow)

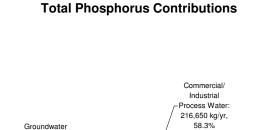
3.4.9.1.1 Total Phosphorus

Figure 3-57 shows that, under low flow conditions, the total point source phosphorus contribution represents 41 percent, while nonpoint sources of phosphorus represent 59 percent of the loadings to surface waters in the Minnesota River basin. Figure 3-57 also shows that human waste products, commercial/industrial process water, and food soils represent 23, 58 and 9 percent, respectively, of the point source total phosphorus contributions. The remaining point source categories contribute less than 5 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 6 percent of the point source total phosphorus contributions. As shown in Figure 3-57, cropland and pasture runoff, atmospheric deposition, and agricultural tile drainage represent 50, 12 and 12 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 11 percent.

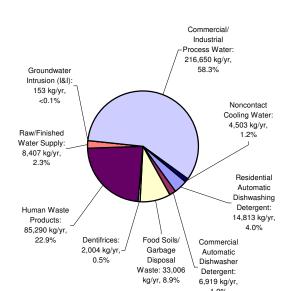
3.4.9.1.2 Bioavailable Phosphorus

Figure 3-58 shows that, under low flow conditions, the bioavailable point source phosphorus contribution represents 52 percent of the loadings to surface waters. Figure 3-58 also shows that human waste products, commercial/industrial process water, and food soils represent 23, 60 and 8 percent, respectively, of the point source bioavailable phosphorus contributions. The remaining point source categories contribute less than 5 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 6 percent of the point source bioavailable phosphorus contributions. As shown in Figure 3-58, cropland and pasture runoff, agricultural tile drainage, and ISTS/unsewered communities represent approximately 49, 12, and 13 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 11 percent.


3.4.9.2 Average Condition


3.4.9.2.1 Total Phosphorus

Under average flow conditions, Figure 3-59 shows that the total point source phosphorus contribution drops to 25 percent, compared to 41 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-59, cropland and pasture runoff and streambank erosion represent 48 and 18 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 12 percent. Compared to low flow conditions (Figure 3-57), Figure 3-59 shows that the relative nonpoint source contributions of total phosphorus increased significantly for streambank erosion, decreased slightly for cropland and pasture runoff, and decreased significantly for urban runoff and atmospheric deposition.


Figure 3-57

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Minnesota River Basin Dry, Low Flow Water Year

Point Source

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Total Phosphorus Contributions

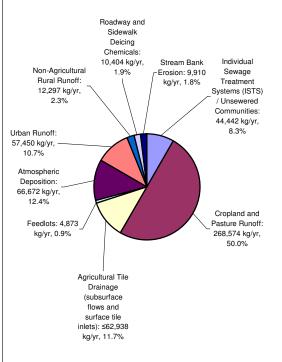
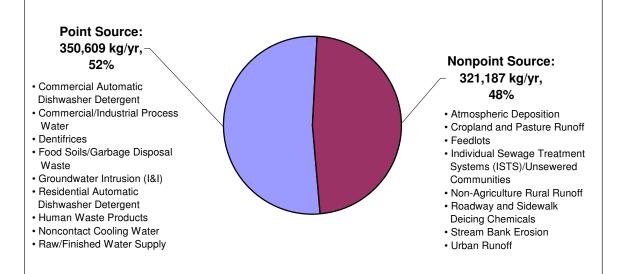
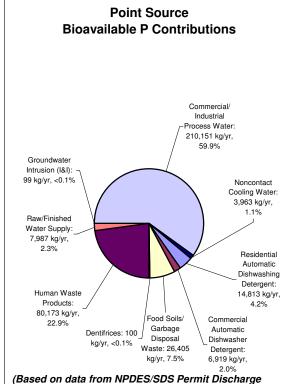
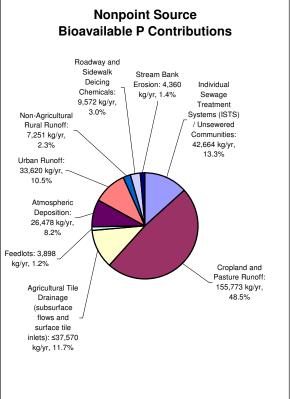
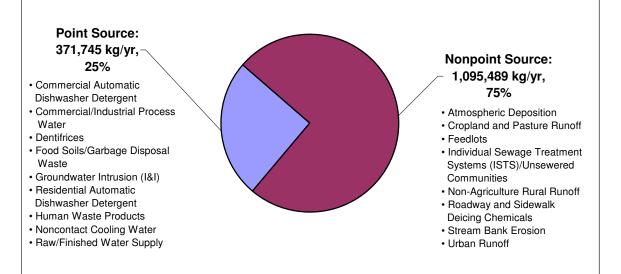
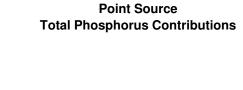





Figure 3-58

Estimated Bioavailable P Contributions to Minnesota Surface Waters Minnesota River Basin Dry, Low Flow Water Year





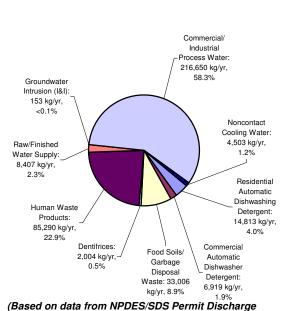
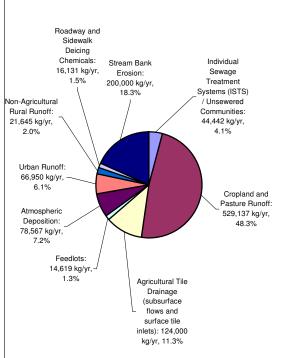

Monitoring Reports, 2001 through mid-2003.)

Figure 3-59


Estimated Total Phosphorus Contributions to Minnesota Surface Waters Minnesota River Basin Average Flow Water Year

Nonpoint Source Total Phosphorus Contributions

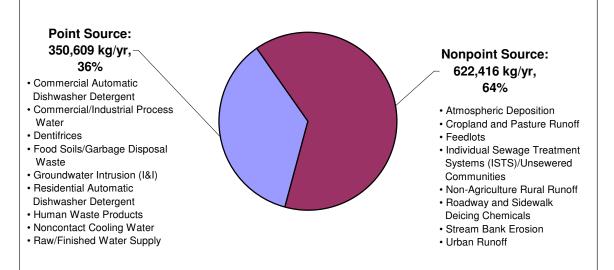
Monitoring Reports, 2001 through mid-2003.)

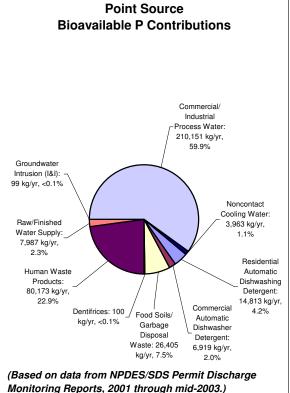
3.4.9.2.2 Bioavailable Phosphorus

Under average flow conditions, Figure 3-60 shows that the bioavailable point source phosphorus contribution drops to 36 percent, compared to 52 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-60, cropland and pasture runoff, agricultural tile drainage, and streambank erosion represent 49, 12 and 14 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 7 percent. Compared to low flow conditions (Figure 3-58), Figure 3-60 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion and decreased significantly for urban runoff and atmospheric deposition.

3.4.9.3 Wet Condition (High Flow)

3.4.9.3.1 Total Phosphorus


Under high flow conditions, Figure 3-61 shows that the total point source phosphorus contribution drops to 15 percent, compared to 25 and 41 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-61, streambank erosion and cropland and pasture runoff represent 42 and 36 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 9 percent. Compared to average flow conditions (Figure 3-59), Figure 3-61 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories, except feedlots.


3.4.9.3.2 Bioavailable Phosphorus

Under high flow conditions, Figure 3-62 shows that the bioavailable point source phosphorus contribution drops to 23 percent, compared to 36 and 52 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-62, cropland and pasture runoff and streambank erosion represent 39 and 35 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 10 percent. Compared to average flow conditions (Figure 3-60), Figure 3-62 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories, except feedlots.

Figure 3-60

Estimated Bioavailable P Contributions to Minnesota Surface Waters Minnesota River Basin Average Flow Water Year

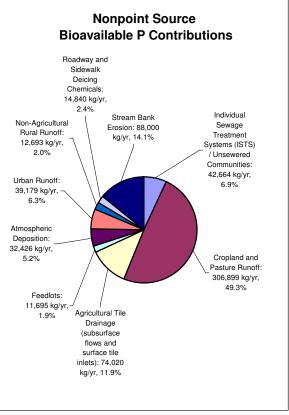
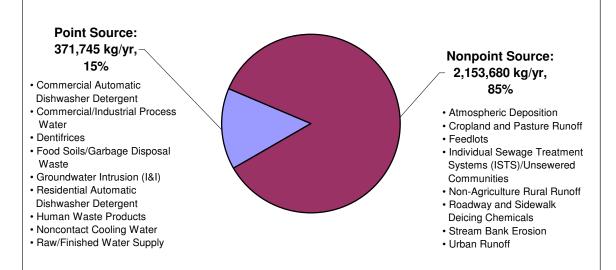
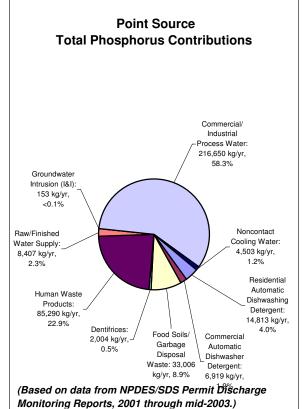




Figure 3-61

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Minnesota River Basin Wet, High Flow Water Year

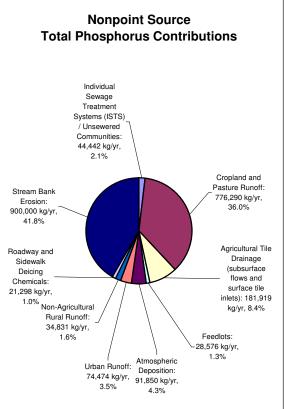
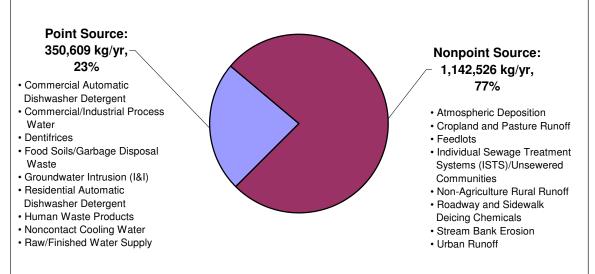
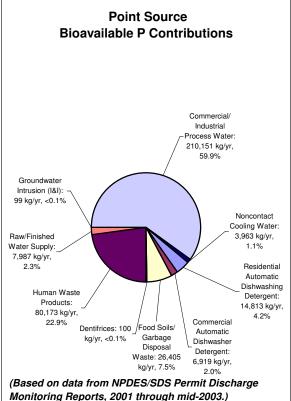
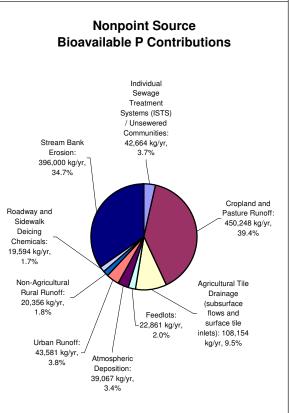





Figure 3-62

Estimated Bioavailable P Contributions to Minnesota Surface Waters Minnesota River Basin Wet, High Flow Water Year

3.4.10 Cedar River Basin

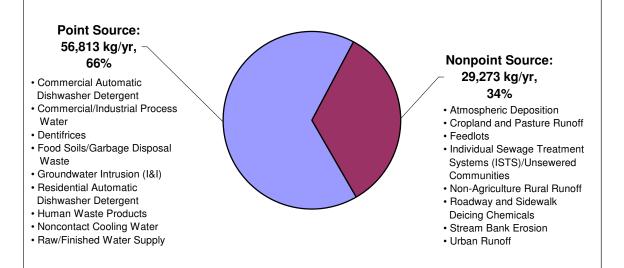
3.4.10.1 Dry Conditions (Low Flow)

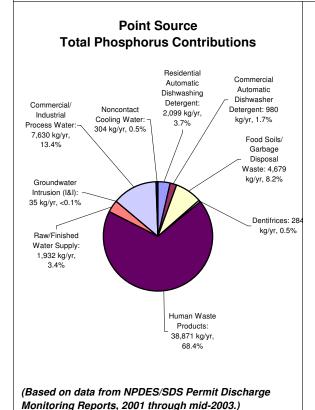
3.4.10.1.1 Total Phosphorus

Figure 3-63 shows that, under low flow conditions, the total point source phosphorus contribution represents 66 percent, while nonpoint sources of phosphorus represent 34 percent of the loadings to surface waters in the Cedar River basin. Figure 3-63 also shows that human waste products, commercial/industrial process water, and food soils represent 68, 13 and 8 percent, respectively, of the point source total phosphorus contributions. The remaining point source categories contribute less than 4 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 5 percent of the point source total phosphorus contributions. As shown in Figure 3-63, cropland and pasture runoff, atmospheric deposition, urban runoff, and ISTS/unsewered communities represent 48, 14, 14, and 13 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 6 percent.

3.4.10.1.2 Bioavailable Phosphorus

Figure 3-64 shows that, under low flow conditions, the bioavailable point source phosphorus contribution represents 75 percent of the loadings to surface waters. Figure 3-64 also shows that human waste products, commercial/industrial process water, and food soils represent 69, 14 and 7 percent, respectively, of the point source bioavailable phosphorus contributions. The remaining point source categories contribute less than 5 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 6 percent of the point source bioavailable phosphorus contributions. As shown in Figure 3-64, cropland and pasture runoff, urban runoff and ISTS/unsewered communities represent approximately 46, 14, and 21 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 8 percent.

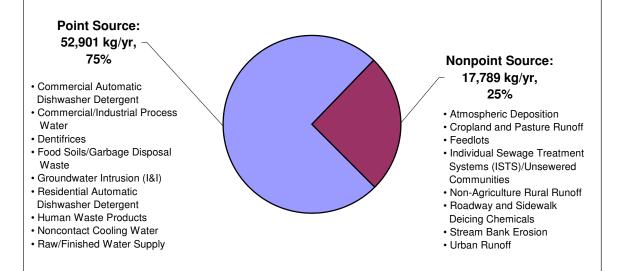

3.4.10.2 Average Condition

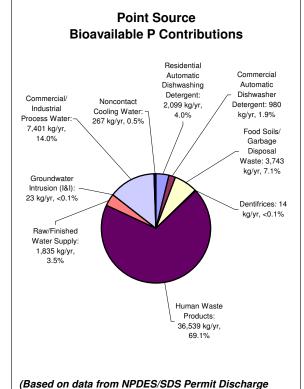

3.4.10.2.1 Total Phosphorus

Under average flow conditions, Figure 3-65 shows that the total point source phosphorus contribution drops to 47 percent, compared to 66 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-65, cropland and pasture runoff and streambank erosion represent 54 and 19 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 8 percent. Compared to low flow conditions (Figure 3-63), Figure 3-65 shows that the relative nonpoint source contributions of total phosphorus increased significantly for streambank erosion, increased slightly for cropland and pasture runoff, and decreased significantly for urban runoff and atmospheric deposition.

Figure 3-63

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Cedar River Basin Dry, Low Flow Water Year

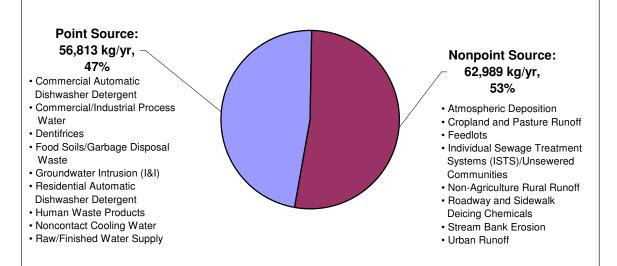


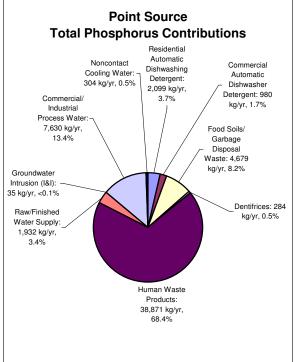


Nonpoint Source Total Phosphorus Contributions Roadway and Sidewalk Deicing Chemicals: 806 kg/yr, 2.8% Stream Bank Erosion: 140 Individual Non-Agricultural kg/yr, 0.5% Sewage Rural Runoff: Treatment 1,666 kg/yr, Systems (ISTS) 5.7% / Unsewered Communities: Urban Runoff: 4,126 kg/yr, 3,880 kg/yr, 14.1% Atmospheric Deposition: 4,191 kg/yr, 14.3% Cropland and Feedlots: 330 . Pasture Runoff: kg/yr, 1.1% 14,135 kg/yr, 48.3%

Figure 3-64

Estimated Bioavailable P Contributions to Minnesota Surface Waters Cedar River Basin Dry, Low Flow Water Year




Nonpoint Source Bioavailable P Contributions Roadway and Sidewalk Deicing Chemicals: 742 Stream Bank kg/yr, 4.2% Erosion: 62 kg/yr, 0.3% Individual Non-Agricultural Sewage Treatment Rural Runoff: 991 kg/yr, 5.6% Systems (ISTS) Urban Runoff: / Unsewered 2,430 kg/yr, Communities: 13.7% 3,724 kg/yr, 20.9% Atmospheric Deposition: 1,378 kg/yr, Feedlots: 264 kg/yr, 1.5% Cropland and Pasture Runoff: 8,198 kg/yr, 46.1%

Monitoring Reports, 2001 through mid-2003.)

Figure 3-65

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Cedar River Basin Average Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

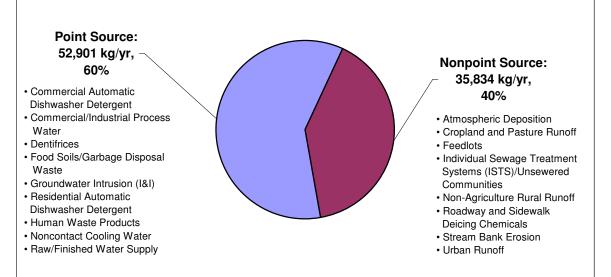
Nonpoint Source Total Phosphorus Contributions Individual Sewage Treatment Stream Bank Roadway and Systems (ISTS) Erosion: 12,200 Sidewalk kg/yr, 19.4% / Unsewered Deicing Communities: Chemicals: 3,880 kg/yr, 1,234 kg/yr, 6.2% 2.0% Non-Agricultural Rural Runoff: 1,968 kg/yr, 3.1% Cropland and Urban Runoff: Pasture Runoff: 4,375 kg/yr, 34,272 kg/yr, 6.9% 54.4% Atmospheric Deposition: 4,492 kg/yr, Feedlots: 569 7.1% kg/yr, 0.9%

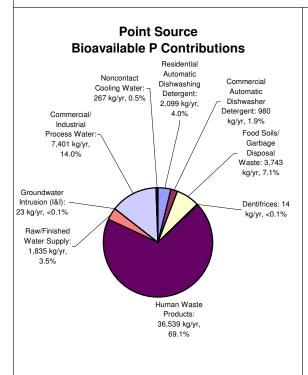
3.4.10.2.2 Bioavailable Phosphorus

Under average flow conditions, Figure 3-66 shows that the bioavailable point source phosphorus contribution drops to 60 percent, compared to 75 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-66, cropland and pasture runoff, streambank erosion and ISTS/unsewered communities represent 56, 15, and 10 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 8 percent. Compared to low flow conditions (Figure 3-64), Figure 3-66 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion and decreased significantly for urban runoff, ISTS/unsewered communities and atmospheric deposition.

3.4.10.3 Wet Condition (High Flow)

3.4.10.3.1 Total Phosphorus


Under high flow conditions, Figure 3-67 shows that the total point source phosphorus contribution drops to 32 percent, compared to 47 and 66 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-67, streambank erosion and cropland and pasture runoff represent 49 and 36 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 5 percent. Compared to average flow conditions (Figure 3-65), Figure 3-67 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories.


3.4.10.3.2 Bioavailable Phosphorus

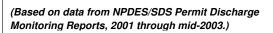

Under high flow conditions, Figure 3-68 shows that the bioavailable point source phosphorus contribution drops to 45 percent, compared to 60 and 75 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-68, cropland and pasture runoff and streambank erosion represent 40 and 41 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 6 percent. Compared to average flow conditions (Figure 3-66), Figure 3-68 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories, except feedlots.

Figure 3-66

Estimated Bioavailable P Contributions to Minnesota Surface Waters Cedar River Basin Average Flow Water Year

Nonpoint Source Bioavailable P Contributions

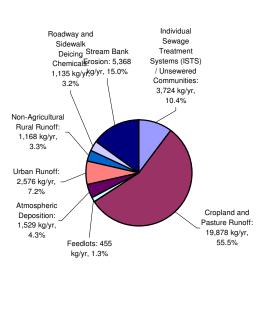
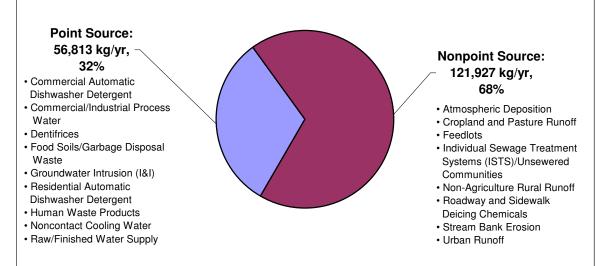
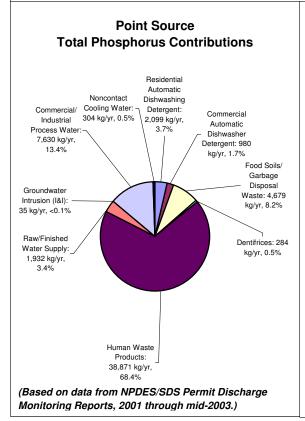




Figure 3-67

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Cedar River Basin Wet, High Flow Water Year

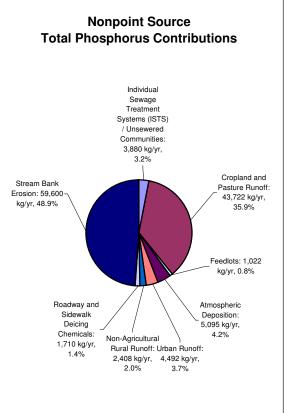
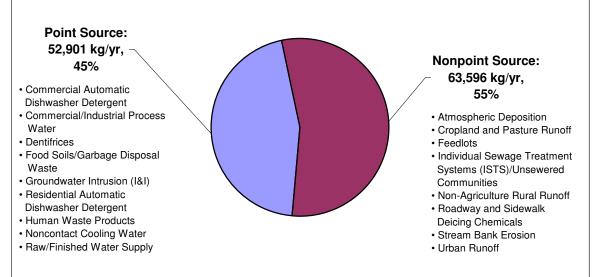
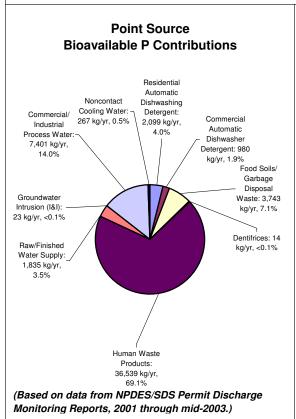
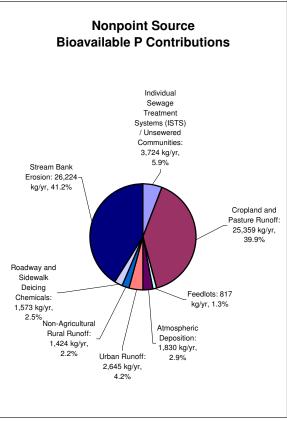





Figure 3-68

Estimated Bioavailable P Contributions to Minnesota Surface Waters Cedar River Basin Wet, High Flow Water Year

3.4.11 Des Moines River Basin

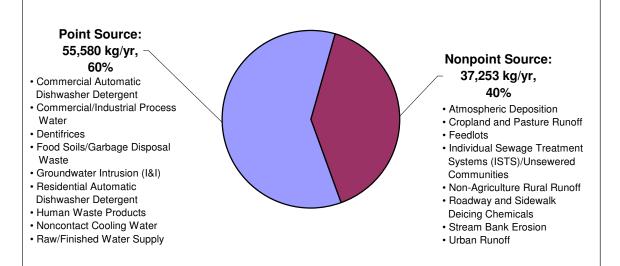
3.4.11.1 Dry Conditions (Low Flow)

3.4.11.1.1 Total Phosphorus

Figure 3-69 shows that, under low flow conditions, the total point source phosphorus contribution represents 60 percent, while nonpoint sources of phosphorus represent 40 percent of the loadings to surface waters in the Des Moines River basin. Figure 3-69 also shows that human waste products and commercial/industrial process water represent 14 and 80 percent, respectively, of the point source total phosphorus contributions. The remaining point source categories contribute less than 3 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 2 percent of the point source total phosphorus contributions. As shown in Figure 3-69, cropland and pasture runoff and atmospheric deposition represent 67 and 13 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 8 percent.

3.4.11.1.2 Bioavailable Phosphorus

Figure 3-70 shows that, under low flow conditions, the bioavailable point source phosphorus contribution represents 71 percent of the loadings to surface waters. Figure 3-70 also shows that human waste products and commercial/industrial process water represent 13 and 81 percent, respectively, of the point source bioavailable phosphorus contributions. The remaining point source categories contribute less than 3 percent of the point source loadings. The combination of residential and commercial automatic dishwasher detergent represents approximately 2 percent of the point source bioavailable phosphorus contributions. As shown in Figure 3-70, cropland and pasture runoff represents approximately 66 percent of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 9 percent.


3.4.11.2 Average Condition

3.4.11.2.1 Total Phosphorus

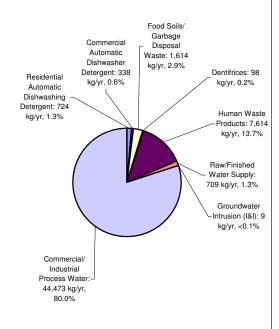

Under average flow conditions, Figure 3-71 shows that the total point source phosphorus contribution drops to 48 percent, compared to 60 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-71, cropland and pasture runoff and streambank erosion represent 62 and 12 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 10 percent. Compared to low flow conditions (Figure 3-69), Figure 3-71 shows that the relative nonpoint source contributions of total phosphorus increased significantly for feedlots and streambank erosion, and decreased significantly for urban runoff, ISTS/unsewered communities and atmospheric deposition.

Figure 3-69

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Des Moines River Basin Dry, Low Flow Water Year

Point Source Total Phosphorus Contributions

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Total Phosphorus Contributions

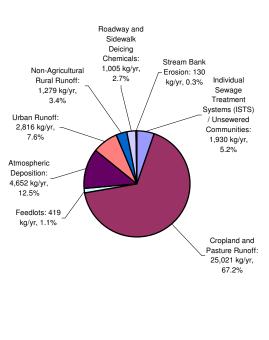
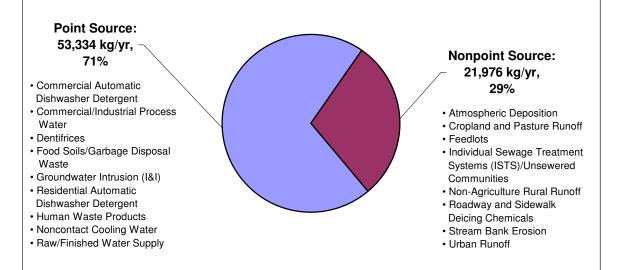
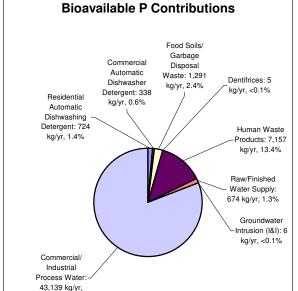
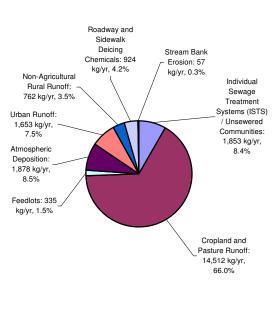




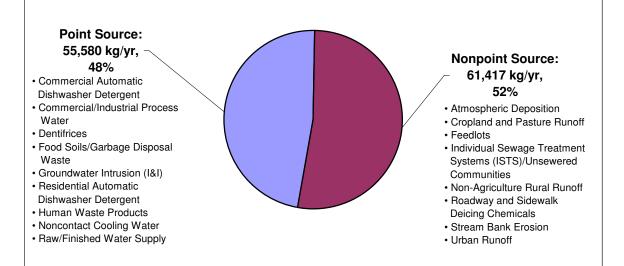
Figure 3-70

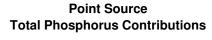
Estimated Bioavailable P Contributions to Minnesota Surface Waters Des Moines River Basin Dry, Low Flow Water Year



Point Source

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)


Nonpoint Source Bioavailable P Contributions



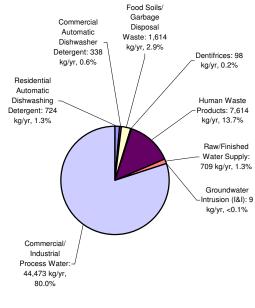
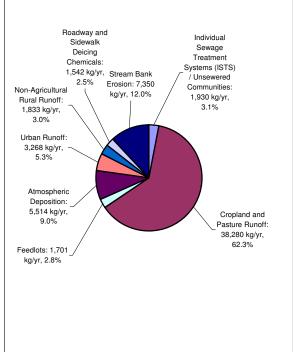

80.9%

Figure 3-71

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Des Moines River Basin Average Flow Water Year



(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

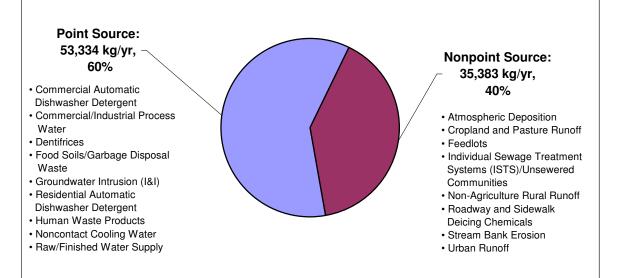
Nonpoint Source Total Phosphorus Contributions

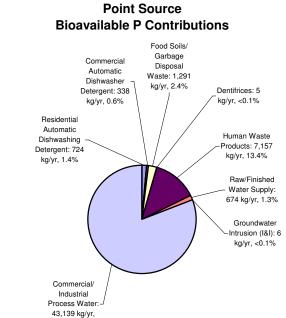
3.4.11.2.2 Bioavailable Phosphorus

Under average flow conditions, Figure 3-72 shows that the bioavailable point source phosphorus contribution drops to 60 percent, compared to 71 percent for the loadings to surface waters under low flow conditions. As presented in Figure 3-72, cropland and pasture runoff and streambank erosion represent 63 and 9 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 7 percent. Compared to low flow conditions (Figure 3-70), Figure 3-72 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for feedlots and streambank erosion, and decreased significantly for urban runoff, ISTS/unsewered communities and atmospheric deposition.

3.4.11.3 Wet Condition (High Flow)

3.4.11.3.1 Total Phosphorus


Under high flow conditions, Figure 3-73 shows that the total point source phosphorus contribution drops to 28 percent, compared to 48 and 60 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-73, streambank erosion and cropland and pasture runoff represent 33 and 52 percent, respectively, of the nonpoint source total phosphorus loadings, with the remaining nonpoint source contributions below 5 percent. Compared to average flow conditions (Figure 3-71), Figure 3-73 shows that the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories except feedlots.


3.4.11.3.2 Bioavailable Phosphorus

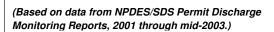
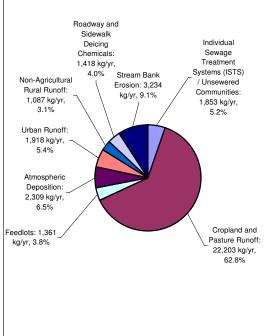
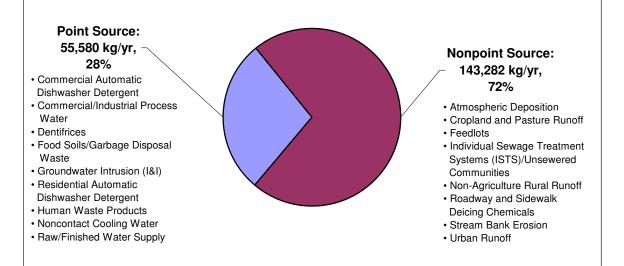

Under high flow conditions, Figure 3-74 shows that the bioavailable point source phosphorus contribution drops to 41 percent, compared to 60 and 71 percent for the loadings to surface waters under average and low flow conditions, respectively. As presented in Figure 3-74, cropland and pasture runoff and streambank erosion represent 55 and 27 percent, respectively, of the nonpoint source bioavailable phosphorus loadings, with the remaining nonpoint source contributions below 5 percent. Compared to average flow conditions (Figure 3-72), Figure 3-74 shows that the relative nonpoint source contributions of bioavailable phosphorus increased significantly for streambank erosion and decreased significantly for all of the remaining source categories, except feedlots.

Figure 3-72


Estimated Bioavailable P Contributions to Minnesota Surface Waters Des Moines River Basin Average Flow Water Year


Nonpoint Source Bioavailable P Contributions

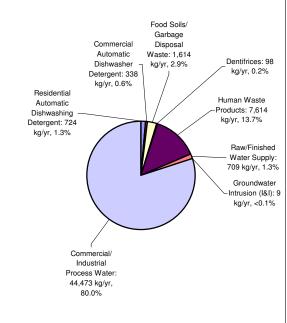

80.9%

Figure 3-73

Estimated Total Phosphorus Contributions to Minnesota Surface Waters Des Moines River Basin Wet, High Flow Water Year

(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Total Phosphorus Contributions

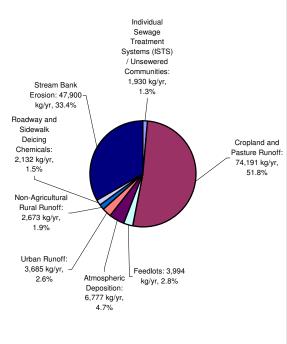
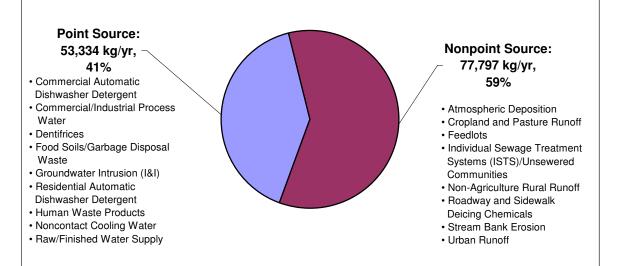
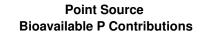
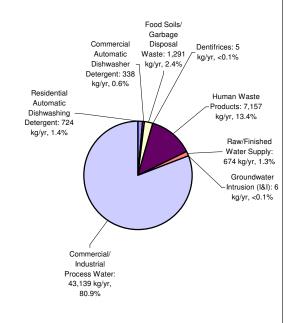
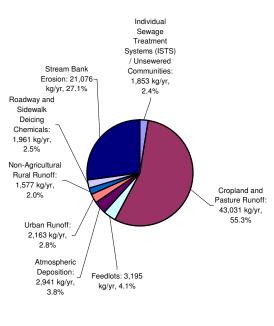





Figure 3-74

Estimated Bioavailable P Contributions to Minnesota Surface Waters Des Moines River Basin Wet, High Flow Water Year



(Based on data from NPDES/SDS Permit Discharge Monitoring Reports, 2001 through mid-2003.)

Nonpoint Source Bioavailable P Contributions

3.5 Comparison of Total Phosphorus Loadings from All Sources With Monitored Loadings in Minnesota and Upper Mississippi River Basins

The estimates of phosphorus loadings to surface waters, with the best estimates for each flow condition presented in Sections 3.2 through 3.4, were independently determined for each source category. This section is intended to provide a comparison between the total phosphorus loadings from all sources with the major basins that have no upstream basins and their watershed area primarily within Minnesota as a way of validating that the combined estimates for all of the source categories are appropriate. Also the published phosphorus loading estimates were compared with the basin loading estimates in Appendix K, completed for this study. The following discussion provides a review of monitored loads compared to loads to surface waters for the Upper Mississippi River and Minnesota Basins.

Phosphorus loads were given in the National Water-Quality Assessment Program (NWQAP) report (USGS, 2002) for the Minnesota River at Jordan and the Mississippi River at Anoka for water years 1997 and 1998 which were assumed to represent wet and average years, respectively. Loads were converted to metric tons per year and prorated to the basin total with the basin gaged area multiplier (total Minnesota basin area divided by monitored basin area; 0.992 in the Minnesota River, 1.052 in the Mississippi River). The values were compared to the water year loads listed in Appendix K as follows:

Upper Mississippi River Total Phosphorus Loads, metric tons/yr.

	<u>1997</u>	<u>1998</u>
NWQAP (USGS, 2003)	1,010	662
Appendix K	1,273	997 (average of average flow year)

Minnesota River Total Phosphorus Loads, metric tons/yr.

	<u>1997</u>	<u>1998</u>
NWQAP (USGS, 2003)	2,686	1,252
Appendix K	2,275	1,254 (average of average flow year)

The following discussion presents total estimated phosphorus loads to surface waters from all of the sources evaluated in this study for the Mississippi and Minnesota River basins. Significant downstream point source loading estimates have been subtracted from those loads so values can be compared to the loads at the basin monitoring location.

	Upper Mississippi River Basin			
	Dry	Average	Wet	
Load to Surface Waters	1,082	1,446	2,280	
Outlet Monitored Load	508	997	1,545	
	Minnesota River Basin			
	Dry	Average	Wet	
Load to Surface Waters	795	1,291	2,290	
Outlet Monitored Load	475	1,291	2,290	
units metric tons/yr.				

Comparing the USGS monitored loads to the sum of the source loadings, from this study, indicates that there is general agreement in both of the major basins. Some of the differences may be the result of water year versus calendar year and calculation method differences. The sum of the total phosphorus source loadings to surface waters in the Upper Mississippi River basin is significantly higher than the monitored load for the basin. This is likely because a significant portion of the phosphorus is retained or taken up by the lakes, wetlands and rivers present in the Upper Mississippi River basin's aquatic system. Unlike the Upper Mississippi River basin, the sum of the total phosphorus source loadings to surface waters in the Minnesota River basin is approximately the same as the monitored load for the basin. This may be due to any or all of the following factors:

- There is considerably less phosphorus retention available in the Minnesota River basin aquatic system, compared to the Upper Mississippi River basin
- Variability and differences associated with the load estimation methods and difference between water and calendar year comparisons
- Degree to which monitored loads are representative of each flow condition
- Residence time and amount of phosphorus present in aquatic system prior to monitored water year

3.6 Effluent Total Phosphorus Reduction Efforts by Wastewater Treatment Plants

As discussed in Section 2.2.4, several WWTPs were contacted regarding phosphorus treatment methods at their plant. The WWTPs were asked to identify the total flow into the plant, unit operations at the plant, phosphorus treatment method, influent and effluent phosphorus concentrations, estimated costs for phosphorus treatment, and methods used for limiting phosphorus input to the WWTPs. The WWTPs ranged in size (0.7 to 24 million gallons per day), treatment methods (chemical and/or biological phosphorus removal), and phosphorus discharge requirements (0.07 mg/L to 2.41 mg/L). All of the WWTPs surveyed were activated sludge plants. This section summarizes the findings of the WWTP surveys, for a more detailed description of each WWTP see Appendix L. Phosphorus removal performance data for each of the WWTPs surveyed are presented in Table 3-20. Average wet weather design flow (AWWDF) and additional information regarding significant industrial users (SIUs) are included in Table 3-20 and Appendix L, respectively. Pond systems were not evaluated for this study, but it should be noted that pond systems are capable of removing phosphorus by batch chemical treatment prior to controlled discharges.

Four of the eight WWTPs used chemical treatment only for phosphorus removal. The chemicals used were either alum or ferric chloride. The WWTPs are described below in order from the lowest total phosphorus discharge requirement (0.3 mg/L, Bemidji, MN) to the highest (2.41 mg/L, Mankato, MN):

• The Bemidji WWTP is the first WWTP discharge into the Mississippi River, just upstream of Lake Bemidji. A phosphorus effluent limit of 0.3 mg/L total phosphorus or less is required as part of the NPDES permit. To meet the NPDES requirements, the WWTP uses alum for phosphorus precipitation and polymer for suspended solids precipitation. The alum and polymer are added after the activated sludge aeration basin but before the secondary clarifier. The average total phosphorus concentration entering the plant is 7 mg/L and the average total phosphorus concentration discharging from the plant is 0.15 mg/L. Bemidji does not have any significant industrial users, so the phosphorus entering the plant is primarily from domestic sources. This system has an average flow of 1.15 MGD. Costs for phosphorus removal were based solely on alum costs. A treatment cost of \$3.25 per pound of total phosphorus removed was calculated using the average influent and effluent total phosphorus concentrations, the average flow, and alum costs for a year.

- The St. Croix Valley WWTP discharges into the St. Croix River/Lake St. Croix at Oak Park Heights, Minnesota and is one of the WWTPs operated by the Metropolitan Council. A phosphorus effluent limit of 0.8 mg/L total phosphorus or less is required as part of the NPDES permit. To reach the NPDES requirements, the WWTP uses alum for phosphorus precipitation. The alum is added at the inlet to the primary clarifier. The average total phosphorus concentration entering the plant is 4.8 mg/L and the average total phosphorus concentration discharging from the plant is 0.45 mg/L. This system has an average flow of 3.4 MGD. Costs for phosphorus removal were based solely on alum costs. A treatment cost of \$0.96 per pound of total phosphorus removed was calculated using the average influent and effluent total phosphorus concentrations, the average flow, and alum costs for a year.
- The Rochester WWTP discharges into the Zumbro River upstream of Lake Zumbro. A phosphorus effluent limit of 1 mg/L total phosphorus or less is required as part of the NPDES permit. To reach the NPDES requirements, the WWTP uses ferric chloride and alum for phosphorus precipitation and polymer for suspended solids precipitation. The ferric chloride is added to the primary clarifier and alum and polymer are added to the secondary clarifier. The average total phosphorus concentration entering the plant is 7.5 mg/L and the average total phosphorus concentration discharging from the plant is 0.7 mg/L. Rochester has several significant industrial users that discharge to the WWTP. Daily maximum and monthly average total phosphorus limits are set for significant industrial users to limit the phosphorus discharged to the WWTP by industry. This system has an average flow of 14 MGD. A treatment cost of \$1.76 per pound of phosphorus removed was given by the Rochester Environmental Coordinator. Since no further description of the treatment costs was given, it was assumed that treatment costs were based solely on chemical costs.
- The Mankato WWTP discharges to the Minnesota River at Mankato. A phosphorus discharge cap of 20,000 kg/yr (2.41 mg/L at 6 MGD) of total phosphorus is required as part of the NPDES permit, with a phosphorus discharge goal of 15,700 kg/yr (1.89 mg/L at 6 MGD). To achieve the NPDES effluent limits, the WWTP uses ferric chloride for phosphorus precipitation and polymer for suspended solids precipitation. The ferric chloride is added at the influent of the WWTP and is settled out in the primary clarifier. Polymer is added to the secondary clarifier for solids precipitation. The average total phosphorus concentration entering the plant is 8.0 mg/L and the average total phosphorus concentration discharging from the plant is 1.88 mg/L. This system has an average flow of 6 MGD. Mankato has several significant industrial users (SIUs) that discharge to the WWTP. SIUs are allowed to

discharge 1 kg/day of total phosphorus, which is averaged on an annual basis, at no charge. Any discharge above this loading is charged a fee. The fee is based on the treatment costs and phosphorus treatment efficiency for the year and includes chemical costs, biosolids disposal, maintenance, utilities, and lab analysis. Capital costs are not included. The treatment cost is approximately \$1.70 per pound of phosphorus removed (\$3.75 per kg). In comparison, the cost for phosphorus removal using chemical costs alone was \$0.70 per pound of phosphorus removed. The all-inclusive costs are 2.3 times greater than the chemical only costs. This was the only facility in the survey that provided more inclusive costs for chemical phosphorus removal.

Four of the eight WWTPs used enhanced biological phosphorus removal (EBPR). In addition to EBPR, three of the four plants surveyed also use chemical treatment to meet total phosphorus discharge requirements below 1 mg/L. The WWTPs are described in order from the lowest total phosphorus discharge requirement (0.07 mg/L, Durham and Rock Creek WWTPs, Oregon) to the greatest (monitoring only, St. Cloud). Listed below is a brief description of the WWTPs that used EBPR:

The Rock Creek and Durham WWTPs are located just west of Portland, Oregon in the Tualatin Watershed and have one of the lowest phosphorus discharge requirements in the United States of approximately 0.07 mg/L total phosphorus. The average flow for the Durham WWTP is approximately 20 MGD and the Rock Creek WWTP is 24 MGD. The average total phosphorus influent concentration is 7 mg/L for both plants. Each WWTP has a mass-based monthly median total phosphorus discharge of 9 lb/day (0.07 mg/L total phosphorus based on the average flow rate for each plant) during the summer (May – October). The Rock Creek and Durham WWTPs use EBPR and two-point alum addition to meet the stringent 0.07 mg/L total phosphorus discharge requirement. Pilot testing and full scale system modifications were required to reach the high level of phosphorus removal achieved by these plants. Alum is added to the primary clarifier prior to EBPR, total phosphorus concentrations after alum treatment in the primary clarifier and EBPR are approximately 0.5 mg/L. After the first alum treatment and EBPR, alum is added to the secondary clarifier; the effluent from the secondary clarifier is then filtered for an average total phosphorus effluent concentration of 0.05 mg/L. Prior to implementing EBPR, the Durham facility only used chemical treatment (alum) for phosphorus removal. Significant cost savings were observed once enhanced biological phosphorus removal was implemented at the Durham facility (i.e., the chemical costs for alum were cut by one third). Chemical

- costs for the facility are now approximately \$0.47 per pound of total phosphorus removed. The pilot test and plant modifications to achieve EBPR at the Durham facility cost approximately \$900,000. Because of the public awareness of phosphorus discharge into this sensitive watershed, industries have voluntarily reduced phosphorus discharges.
- The Ely WWTP discharges into Shagawa Lake. The NPDES discharge requirement is 0.3 mg/L total phosphorus. EBPR and chemical addition of alum are used to meet the NPDES discharge requirements. The average annual flow into the WWTP is approximately 0.7 MGD. Lime had originally been used at the Ely plant for chemical precipitation, but because of the high cost associated with lime treatment, the plant switched to alum. When EBPR does not meet the discharge requirement alum is added to the mixing zone of the secondary clarifier. The secondary clarifier effluent is then passed through sand filters; the final total phosphorus average effluent discharge concentration is 0.2 mg/L. For short periods of time, the WWTP has been able to achieve 0.05 mg/L total phosphorus discharge concentrations. It was estimated by the WWTP superintendent that the costs associated with phosphorus removal are approximately 25% of the annual operating budget. Therefore, the estimated cost for phosphorus treatment is approximately \$20 per pound of phosphorus removed. This WWTP does not have any significant industrial users discharging to the WWTP; therefore, the phosphorus source is primarily from domestic dischargers. Phosphorus influent to the plant was significantly reduced in the early 1980's by educating the public on limiting the use of phosphorus in detergents. As estimated by the WWTP superintendent, the total phosphorus influent to the WWTP was reduced from 12 to 15 mg/L prior to public education to approximately 5 mg/L after public education.
- The St. Cloud WWTP uses EBPR for phosphorus removal. The discharge from this WWTP is into the Mississippi River at St. Cloud. This WWTP was not initially designed for EBPR. In 1996 the City of St. Cloud modified the existing wastewater treatment plant to improve energy efficiency by replacing the coarse air diffusers in the aeration basin with fine air diffusers. In addition to the energy efficiency improvements, the WWTP was modified for EBPR by installing an anaerobic zone in the first pass of each aeration tank. The average flow into the WWTP in 2002 was 10.6 MGD and the average total phosphorus influent in 2002 was 5.0 mg/L; after EBPR the average effluent total phosphorus is 0.93 mg/L. The St. Cloud WWTP NPDES discharge permit requires monitoring of effluent total phosphorus and development and implementation of a phosphorus management plan. The City of St. Cloud implemented a Phosphorus Management Plan (PMP) in 2001, with a primary goal of limiting

the amount of phosphorus coming into the facility by means of pollution prevention and public outreach. The goal of the pollution prevention program is to assist non-domestic nutrient contributors (NDNC) in developing phosphorus reduction strategies that will reduce the amount of phosphorus that enters the wastewater collection system and eliminate phosphorus slug loads. The city works with industrial users to keep phosphorus discharges to the WWTP below 6 mg/L. This method is effective at reducing spike loads and the average influent phosphorus concentrations. Comparing the 95% confidence limits of the average influent phosphorus concentrations prior to implementation of the PMP (7.72 mg/L \pm 1.22 mg/L, 2000) to the 95% confidence limits of the average influent phosphorus concentrations after implementation of the PMP (5.03 mg/L \pm 0.14 mg/L, 2002), there has been a significant reduction and less variability in the average phosphorus influent concentration. The lowering and stabilization of the influent total phosphorus concentration is also credited in decreasing the average total phosphorus effluent concentration from 2.01 mg/L in 2000 to 0.93 mg/L in 2002.

The following discussion summarizes the conclusions of the aforementioned survey done to evaluate phosphorus reduction efforts by wastewater treatment plants:

- The cities implementing source reduction programs all achieved significant reduction in
 phosphorus loading on their WWTPs using a variety of methods: public outreach, phosphorus
 bans, surcharges for phosphorus treatment, and maximum limits on SIU phosphorus
 discharges.
- The St. Cloud WWTP showed that a reduction in influent phosphorus loading and phosphorus slug loads lead to a reduction in effluent phosphorus concentration.
- Chemical treatment is capable of reaching the lowest phosphorus effluent concentrations.
- The cost per unit of total phosphorus removed varied from \$0.96 to \$20.00 per pound of total phosphorus removed. Some of this variation appears to be the result of various cost calculation techniques. The cost of treating phosphorus chemically appeared to show an economy of scale.
- The cost for chemical treatment was lower for those WWTPs that used a combination of EBPR and chemical treatment.

- EBPR alone is generally effective at achieving 0.5 mg/L to 1 mg/L effluent phosphorus concentrations. Chemical addition is necessary to achieve effluent phosphorus concentrations less than 0.5 mg/L. One of the best available bio/chemical treatment facilities (Durham WWTP, OR) was able to achieve an average effluent phosphorus concentration of 0.05 mg/L. To reach this low effluent concentration, significant pilot testing was required and phosphorus removal efficiency was dependent upon wastewater characteristics.
- Once the initial capital improvements are made there are no additional costs associated with phosphorus removal using EBPR.
- In some cases EBPR can be implemented with simple process modifications (e.g., St Cloud aeration modifications) that achieve reductions in effluent phosphorus concentrations. St Cloud was able to achieve an effluent phosphorus concentration of 0.93 mg/L with this approach.

It should also be noted that the data used for this study is from the years 2001, 2002 and the first half of 2003. During that time period many POTWs (Blue Lake, Seneca and quite a few other cities) have implemented phosphorus removal or will begin to implement it in the future.

As population growth occurs, and POTW flows increase, if effluent concentrations remain constant there will be corresponding increases in total phosphorus loadings.

Table 3-20 Wastewater Treatment Plant Phosphorus Removal Summary

Treatment Plant	Treatment Method	Average WWDF (MGD)	Average Flow (MGD)	TP Influent (mg/L)	Average TP Effluent (mg/L)	Treatment Cost	Total Phosphorus NPDES Requirement
Ely	EBPR and alum after activated sludge and before secondary clarifier when necessary and sand filtration	3	0.7	5	0,2	\$20/lb All inclusive	0.3 mg/L
Bemidji	Alum & polymer after activated sludge and before secondary clarifier	2.5	1.15	7	0.15	\$3.25/lb TP Chemical only	0.3 mg/L
St. Croix Valley	Alum in primary clarifier inlet	5.8	3.4	4.8	0.45	\$0.96/lb TP Chemical only	0.8 mg/L
Mankato	Ferric chloride at influent and polymer at belt filter for sludge dewatering	11.25	6	8	1.88	\$1.70/lb TP all inclusive \$0.74/lb Chemical only	20,000 kg/yr (cap) = 2.41 mg/L TP at 6 MGD and 15,700 kg/yr (goal) = 1.89 mg/L at 6 MGD
St. Cloud	EBPR	26	10.6	5.03	0.93	NA	ND
Rochester	Ferric chloride in primary; alum & polymer in secondary	19.1	14	7.5	0.7	\$1.76/lb TP Chemical only	1 mg/L
	Alum in primary, EBPR, alum in tertiary, and filtration	NA	20	7	0.05	\$0.47/lb TP Chemical only	9 lb/day monthly median = approx. 0.07 mg/L at current flow
Rock Creek (Hillsboro, OR)	Alum in primary, EBPR, alum in tertiary, and filtration	NA	24	7	0.05	\$0.47/lb TP Chemical only	9 lb/day monthly median = approx. 0.07 mg/L at current flow

EBPR = Enhanced Biological Phosphorus Removal NA = Not Available

MGD = Million Gallons per Day TP = Total Phosphorus ND = Not Determined

4.1 Recommendations for Lowering Phosphorus and Associated Water Quality Benefits

This section provides recommendations for lowering phosphorus loadings to surface waters from each source category, along with general discussions about the associated water quality benefits, where appropriate.

4.1.1 Point Sources

The recommendations for lowering the phosphorus export are presented in two parts. The first part discusses recommendations for lowering phosphorus amounts discharged to POTWs and the second part discusses recommendations for lowering the point source phosphorus amounts discharged to basins and statewide. A more detailed discussion is included in Appendix B.

4.1.1.1 Phosphorus Loading to POTWs

The results of this study are intended to assist the MPCA in complying with MN Laws 2003, Chap. 128 Art. 1, Sec. 122., as follows:

The state goal for reducing phosphorus from non-ingested sources entering municipal wastewater treatment systems is at least a 50 percent reduction developed by the commissioner under section 166, and a reasonable estimate of the amount of phosphorus from non-ingested sources entering municipal wastewater treatment systems in calendar year 2003.

For purposes of complying with this legislation, this study has estimated that the current non-ingested phosphorus load entering POTWs is 2,573,000 kg/yr. A 50 percent reduction would require decreasing the phosphorus discharged to POTWs by least 1,286,000 kg/yr. The applicability of reduction tactics for each of the non-ingested sources entering POTWs are discussed in descending rank order, by component, below:

• Next to human wastes, a variety of industrial and commercial dischargers contribute the most phosphorus to POTW influent streams. The contribution of phosphorus from these commercial and industrial sources accounts for approximately 46 percent of the non-ingested phosphorus load discharged into POTWs. Total removal of phosphorus from commercial and industrial wastewater is not expected to be feasible. In most cases, reduction would have to come from resource/product substitution, waste minimization through recycling and reuse, improvements in technology, and through pretreatment of wastewater prior to discharge to the POTW. Reducing the commercial and industrial phosphorus contribution to POTWs by one half would reduce the total non-ingested phosphorus discharged to POTWs by almost 23 percent. Excise taxes and/or effluent strength charges may be useful in reducing this influent source of phosphorus.

- Food soils and garbage disposal wastes account for approximately 28 percent (725,000 kg/yr) of the non-ingested phosphorus discharged to POTWs. This is a substantial amount, but it is unlikely amenable to direct modification (e.g. product modification), or prohibiting discharge of food wastes into the sewer systems. Approximately 25 percent of the phosphorus from this source is discharged into the sewer system as garbage disposal waste. Garbage disposal waste could be sent elsewhere (trash, compost, etc.) but it would be more difficult to manage the phosphorus from dish rinsing and dish washing. Short of inducing the food product industries to reduce their use of phosphates or eliminating garbage disposals and discharge of food wastes down the drain, relatively little appears possible for reducing this phosphorus load to POTWs. Public education may be the best option to reduce discharge of food wastes down the drain.
- Residential ADWD detergent contributes approximately 7.3 percent or 326,000 kg/yr to the total influent phosphorus load discharged into POTWs and almost 13 percent of the noningested phosphorus load. Eliminating all phosphorus from residential ADWD detergents would reduce the non-ingested phosphorus load discharged to POTWs by almost 13 percent. Although there has been a slight decline in the consumption of phosphorus for residential ADWD detergents, SRI states that it is unlikely that detergents with much lower phosphorus contents will be available in the near future. Currently, at least one brand of ADWD does not contain phosphorus; the phosphorus content of other brands varies significantly. Advertising and prominent content labeling would help reduce this source by aiding consumers in choosing low phosphorus products. Public education about the use of ADWD based on hardness and the availability of no- and low-phosphorus content products should be encouraged.
- Commercial and institutional ADWD detergent contributes a statewide average of approximately 6 percent (152,000 kg/yr) of the influent non-ingested phosphorus load discharged into POTWs. Public education about the use of ADWD based on hardness and the availability of no- and low-phosphorus content products should be encouraged.

- The influent phosphorus loads to POTWs from water supply chemicals were estimated to average approximately 5.5 percent of the non-ingested phosphorus load to POTWs statewide. Use of phosphorus for sequestration of metals typically is an aesthetics issue. On the other hand, corrosion control of lead and copper is a human health issue and is required by law for those communities that do not pass the state corrosion tests. One option would be to substitute alternative water treatment chemicals in place of those with phosphorus.
- Dentifrices account for less than two percent of the total non-ingested phosphorus load to POTWs. Because the phosphorus load from this source is so minimal, it does not warrant major steps to reduce phosphorus discharges from toothpastes and denture cleaners.
- The results of this study indicate that inflow and infiltration contribute a negligible amount of phosphorus to POTW influent. There are reasons to limit inflow and infiltration into sewer systems, such as to prevent hydraulic overloading of treatment facilities, but the reduction of influent phosphorus is not one of them.

Given that food soils would be very difficult to reduce, and that dentifrices and I & I contribute so little to the influent phosphorus load discharged to POTWs, it is recommended that reduction efforts focus on residential ADWD, commercial and industrial process wastewater, commercial and institutional ADWD, and water treatment chemicals. A summary of the phosphorus load discharged to POTWs and the reduction potential is presented in Table 4-1.

Table 4-1 Reduction Potential for Phosphorus Loads to POTW

Summary		Portion of Total Load to POTW
Total Phosphorus Load Discharged to POTWs	4,468,000 kg/yr	
Human Waste	1,900,000 kg/yr	43
Non-ingested Waste	2,573,000 kg/yr	57
Phosphorus Source	% Reduction to Non- Ingested Phosphorus Load (%)	Cumulative Reduction to Non-Ingested Phosphorus Load (%)
Residential ADWD reduced to 0	13	13
Commercial ADWD reduced to 0	6	19
Commercial and Industrial reduced by one half	23	42
Total Reduction		42

If residential and commercial/institutional ADWD and water treatment chemicals were eliminated completely, the required commercial and industrial process wastewater reduction is estimated to be more than 64 percent. Given that it will be difficult to completely eliminate commercial/institutional ADWD and water treatment chemicals and reduce the commercial and industrial process wastewater loading by more than 64 percent, a 50 percent reduction in the total non-ingested phosphorus contribution to POTWs appears to be an ambitious goal.

4.1.1.2 Phosphorus Loading to Surface Waters

Phosphorus effluent from POTWs represents, on average, more than 80 percent of the total point source loads to waters of the state. The largest source of phosphorus is from large (> 1.0 mgd) POTWs and phosphorus reduction efforts should begin at these facilities. As discussed previously, many POTWs have implemented phosphorus removal and others will begin to implement it in the near future. The lowest effluent limits to date have been 1 mg/L with two exceptions, the Bemidji and Ely WWTPs are treating to levels at or below 0.3 mg/L.

Privately owned wastewater treatment systems account for less than 0.5 percent of the total point source phosphorus discharged to the basins and increased phosphorus removal at these facilities will not have a large impact on the statewide point source phosphorus load.

Commercial and industrial dischargers to the basins constitute approximately 18 percent of the point source phosphorus load. It was not within the scope of this study to categorize the phosphorus loading data by NAICS code number or to determine which industries are the largest contributors. However, it is recommended that industrial dischargers that make major contributions to the phosphorus loadings be evaluated in further detail.

4.1.2 Cropland and Pasture Runoff

Four alternative agricultural management scenarios were investigated and compared to a baseline scenario involving an average climatic year and existing rates of adoption of conservation tillage and existing rates of phosphorus fertilizer applications.

The potential future impacts of improved phosphorus fertilizer management can be quite significant. Reductions in phosphorus fertilizer usage could occur if University of Minnesota recommendations were followed more consistently. For instance, phosphorus fertilizer and manure is spread on significant areas of land in the Minnesota River basin even if soil test phosphorus levels exceed the threshold set by the University above which crops do not respond to additional fertilizer. This is because recommendations

made by the fertilizer industry are often based on the concept of fertilizing at a rate equivalent to crop removal, if soil test phosphorus levels are above 21 ppm. Excess applications in the past were considered cheap forms of insurance for crop yield needs and since even high soil phosphorus levels were wrongly perceived not to be released from soils the environmental impact was considered minimal. In the Minnesota River basin, reductions in the rate of phosphorus fertilizer and manure application could potentially reduce phosphorus losses to surface waters by about 81,000 kg/yr as compared to existing conditions, for a 16% reduction. Comparable levels of reduction could occur with improved phosphorus fertilizer management in the Red River, and the Upper and Lower Mississippi River basins.

The potential impact of improved manure application methods is significant in the Red River basin. Phosphorus loads to surface waters reduction estimates are about 75,000 kg/yr, for a 20% reduction in the Red River basin. Reductions are estimated to be much smaller in other basins with significant phosphorus loads from agricultural land. Improved manure application methods are estimated to reduce phosphorus loads to surface waters by 12%, 7% and 7% in the Upper Mississippi, Lower Mississippi, and Minnesota River basins. In general, the effects on phosphorus loads of improvements in method of manure application are greatest for basins that have large numbers of beef cattle, and least for basins with large numbers of hogs.

The last scenario involves decreasing or increasing the area of cropland within 100 m of surface waterbodies. Decreases in area of cropland could correspond to land retirement programs such as those promoted in the Conservation Reserve and Conservation Reserve Enhancement Programs. Increases in cropland area would correspond to putting grass or forest riparian areas into production, alternatively this could be viewed as increasing the amount for cropland areas that contribute phosphorus to surface waters. The results from this scenario indicate that retiring land in close proximity to surface waters would decrease the phosphorus loadings as expected. Retiring land farther away has diminishing returns as the distance from surface waters increases. It should be noted that throughout most of Minnesota, we believe that the risks of phosphorus transport to surface waters are greatest in the contributing corridor within about 100 m from surface waterbodies. Due to topographic variations along surface waterbodies, in some areas phosphorus contributions from overland runoff and erosion may occur from as far away as several hundreds of meters. In contrast, where berms are present along waterbodies it may be unlikely for a significant amount of surface runoff or erosion to enter surface water. Thus, the 100 m contributing corridor should be viewed as a regional average for contributions of P to surface waters from runoff and erosion on adjacent cropland.

4.1.3 Atmospheric Deposition

Soil dust is expected to be the largest source of atmospheric phosphorus. Therefore, reducing soil dust, particularly from agricultural fields, through the application of best management practices (shelterbelts, no till planting, use of cover crops, etc.) would seem to be a high priority. Another potential activity on a much smaller and local scale to reduce soil dust might include the periodic wetting of exposed soil at large construction sites during dry periods to minimize soil dust being entrained into the air due to wind erosion.

4.1.4 Deicing Agents

Efforts currently underway, as part of MnDOT's road weather information system (RWIS), use timely and accurate weather and road data in deicing application decisions to optimize the use of deicing materials. The Minnesota Legislative Auditor (1995) reported that "(M)ost counties (93 percent), cities providing their own service (91 percent), and townships providing their own service (59 percent) rely on television or radio weather reports, including the National Weather Service reports via telephone, for weather information." More accurate weather information could lead to reduced usage of deicing agents. The use of brines can also improve the effectiveness of deicing agents and thereby reduce the overall use of deicers.

The high phosphorus content of many of the agriculturally derived alternatives to road salt is noteworthy. In most cases the high phosphorus content for these alternatives is due to the corrosion inhibitor portion of the mixtures. Since concern for the environmental impacts of chlorides has increased, additional emphasis may be placed on the use of these alternatives. While this analysis does not make any attempt to quantify what those impacts would be, a review of the literature shows that many of these products have phosphorus concentrations 100 to 10,000 times greater than road salt or sand.

4.1.5 Streambank Erosion

There is the potential for substantial water quality benefits associated with lowering phosphorus export from streambank erosion; including reduced eutrophication, reduced sedimentation and improved biological habitat within reservoirs, lakes and wetlands, along with the river systems themselves. Careful land use planning that considers the potential adverse impacts associated with increased runoff volumes; well-designed stream road crossings that consider the potential hydrodynamic changes to the system; exclusion or controlled access of pastured animals and

preservation of riparian vegetation; and rotational grazing. There are opportunities to reduce streambank erosion in watersheds that have experienced flow volume increases from land use changes.

4.1.6 Individual Sewage Treatment Systems/Unsewered Communities

Many of the counties are delegated to implement the Minnesota Rules (Chapter 7080) for ISTS, which require conformance with state standards for new construction and disclosure of the state of the existing ISTS when a property transfers ownership. Several counties require ISTS upgrades at property transfer. Lack of knowledge is thought to be a major impediment to making more rapid progress toward goals and objectives for ISTS and undersewered communities (MPCA, 2003b). This includes a lack of awareness of compliance requirements, management and operational requirements, and the environmental consequences of widespread system failure. The complexity of addressing undersewered community issues tends to discourage county compliance activity in this area. The availability of financial assistance, particularly low-interest loans, is thought to be an essential catalyst to accelerating fixes of nonconforming ISTS. This and other forms of financial assistance are needed to accelerate progress with undersewered communities (MPCA, 2003b).

Owners of ISTS that pose an "Imminent Public Health Threat," through direct discharge to tile lines or surface ditches or systems seeping to the ground surface should be identified through a statewide survey to help residents determine whether their ISTS are adequately treating and disposing of sewage below grade. Programs proposed to follow up on specific problems include homeowner education on compliance requirements and financial assistance to owners needing new systems. Residents of unsewered communities should be targeted to help them understand the need for wastewater treatment and assist them through each phase of the community decision-making process, while building the capacity of local and regional government staff to provide such assistance to other communities in the future (MPCA, 2003b). LUG ISTS permitting and inspection programs should be targeted with MPCA audits to determine adequacy of performance in a number of key areas, including spot checks on conformance on new ISTS installations, level of effort on ISTS inspections and follow-through on replacement of noncompliant systems, and dealing with problem ISTS professionals (MPCA, 2003b).

Since septic system failure is a widespread problem, a basinwide approach to addressing nonconforming systems with potential for high delivery of pollutants to public waters, such as straight pipe discharges and other types of ITPHS should be given priority attention. The LUGs should work with the MPCA to develop, populate and maintain a database, similar to MPCA's feedlot database that shows where each of

the nonconforming systems, especially straight pipe discharges and other types of ITPHS are located. LUG personnel should be provided with an incentive to inventory all systems within their jurisdiction, and track system performance and maintenance.

4.1.7 Non-Agricultural Rural Runoff

The protection of natural areas is needed to insure they retain the hydrologic and ecologic functions that keep surface runoff volumes low, nutrient export low and groundwater recharge rates high. Many natural areas are under stress due to development pressures, invasion by exotic species and increased nutrient loading from adjacent land uses. While the statewide percentage of land cover represented by these natural plant communities is only 23%, they provide valuable ecologic and hydrologic value. All land use decisions should consider the loss of these functions, and provision of economic mechanisms that allow landowners to retain these functions.

Conservation easements, such as CREP and RIM, provide additional opportunities for reducing phosphorus export from contributory watershed areas. The impact of these easements on phosphorus export from converted agricultural lands is evaluated in greater detail as part of the analysis discussed in Appendix C.

4.1.8 Urban Runoff

The design, construction and maintenance of watershed BMPs will help reduce pollutant loads to surface waters. However, the current dependence of watershed managers and regulators upon "NURP-type" ponds will not prevent the degradation of surface water resources due to increased phosphorus loadings. While the NURP-style ponds can remove particulate phosphorus, they are relatively ineffective at removing soluble phosphorus (which can comprise up to 50% of the phosphorus in urban runoff). The phosphorus removal efficiency of ponds are also only in the 40 to 50 percent range, so that in many urban developments, the phosphorus load increase exceeds the removal efficiency of ponds. The ponds required by regulators to mediate the increased runoff therefore do not fully mitigate the increases in runoff loads. In essence the BMP treatment, whether ponds or otherwise, never keeps the post-development loadings at pre-development levels once impervious area surpasses 40 - 50% (Schueler, 1995). Another problem is that many urban planners assume that urban turf grass is an effective infiltrator of runoff, when in reality, most urban turf grows on highly compacted soils and can have a runoff rate of up to 45% during large storm events (Schueler, 1996a, 1996b; Legg, *et al*, 1996). Urban soils need to be protected from compaction during development/construction activities and likewise need to be actively managed to reduce

compaction and increase infiltration over the long term. Water quality protection requires that all urban development design use a water budget approach, where the preservation of the infiltration and evapotranspiration components of the hydrologic cycle are primary considerations. Site planning that reduces impervious surface area and preserves infiltration will help attain water quality protection. Caraco, et al (1998) recommends that site design in urban areas create urban spaces that:

- Reduce impervious cover
- Spread runoff over pervious areas
- Utilize open channel drainage
- Conserve forests and natural areas
- Reduce the amount of managed turf and lawn
- Create more effective stream buffers and riparian areas

A number of stormwater management and urban best management practices manuals are available that provide design guidance for controlling the impacts of urban runoff and promoting infiltration (Metropolitan Council, 2001; Schueler, 1995; Brach, 1989; US EPA. 2001).

The National Pollutant Discharge Elimination System (NPDES) permit administered by the MPCA regulates runoff from construction sites, industrial facilities and municipal separate storm sewer systems (MS4s) to reduce the pollution and ecological damage. Phase I focused on large construction sites, 11 categories of industrial facilities, and major metropolitan MS4s. Phase II broadened the program to include smaller construction sites, small municipalities (populations of less than 100,000) that were exempted from Phase I regulations, industrial activity, and MS4s. At a minimum, compliance with the stormwater pollution prevention planning requirements of this permit program is critical to minimize the phosphorus loadings associated with urban runoff.

4.2 Recommendations for Reducing Uncertainty and Error Terms in Future Refinements

This section provides recommendations for reducing uncertainty and error in the estimated phosphorus loadings to surface waters from each source category, as part of any future refinements that may be made to this analysis.

4.2.1 Point Sources

The variability and uncertainty associated with the point source data sources has been discussed throughout this report. The following paragraphs provide a discussion of the variability and uncertainty associated with each data source and recommendations for future refinements. A more detailed discussion is included in Appendix B.

Each station under each permit in the Delta database is coded to list the type of discharge: surface water, land application, spray irrigation, internal waste stream, etc. Because this information is submitted by permitees for entry into Delta by MPCA staff, there may be some error due to interpretation and it is possible that some discharge stations may have been miscategorized.

There are several areas of uncertainty associated with the influent and effluent phosphorus loading estimates. These estimates are based on the flow data discussed above and the average annual phosphorus concentration. In many cases, phosphorus concentration data was limited to a few data points or not available at all. It was necessary to estimate the phosphorus concentration for many of the permitees. In addition, there was some variability among the phosphorus data for a permit when it was available. This identified a need for good laboratory analysis of phosphorus and reporting of quality assurance data. The study used annual average flowrates multiplied by the average annual phosphorus concentration to estimate the annual phosphorus load. The load could also have been calculated on a daily basis or monthly basis and then the average annual load calculated, resulting in different values.

Many of the influent phosphorus sources are based on per capita values and there is some uncertainty associated with the available population data. Approximately 230 of the 576 POTW and privately owned treatment facilities had population data listed in the Delta database. An attempt was made to validate some of the data, but due to the number of permits, it was not possible to verify all of the population data received.

Data was collected on commercial and industrial dischargers to the MCES system and several outstate POTWs. However, not all of these facilities had phosphorus monitoring data. The phosphorus data that was available was often based on a limited number of sampling events and there was some variability between industries with similar NAICS code numbers. For the unmonitored facilities, most of the commercial and industrial process wastewater phosphorus values were estimates based on the data set collected from industrial dischargers to the MCES system and to the other

communities that monitored for phosphorus. Given the limited data set, there is likely a high level of uncertainty associated with the estimates for this source.

The information on the phosphorus contribution from water supply chemicals in municipal water treatment was based on information from the MDH. While the information received is likely valid, it was not complete. Phosphorus concentrations were provided for only 120 of the 360 facilities noted as adding phosphorus. The phosphorus residual in the remaining 240 water treatment facilities was based on an estimate using the average phosphorus concentration in the other 120 communities.

The phosphorus loading from residential ADWD detergents has some uncertainty associated with it due mainly to the population estimates. While the annual consumption of phosphorus in ADWD detergents reported (SRI, 2002) is likely an accurate number, the loading to the Minnesota basins was estimated based on a per capita value calculated from this national total. Because this estimate also relied on population data, there is some additional uncertainty associated with it due to the uncertainty in the population data discussed in a previous paragraph. The uncertainties associated with commercial and institutional ADWD detergents are similar to those discussed for the residential ADWD detergents.

The per capita value used to determine the food soils and garbage disposal waste contribution to the influent phosphorus loading to POTWs and privately owned treatment facilities was based on the average of three values obtained from studies conducted in the 1970s and 1980s, but they were in fairly good agreement. These data are more than 20 to 30 years old, which may introduce some uncertainty, since there has been a significant increase in the use of phosphorus in the food and beverage market. It follows then that there may be more phosphorus in the food disposed of down the drain. What is unknown is the trend in the amount of food and beverages disposed of down the drain. Also, because the food soils and garbage disposal wastes were based on per capita values, the loadings discharged to the treatment facilities are also based on the population served.

The method used to determine the dentifrice contribution to the influent phosphorus load to treatment facilities was based on a per capita value calculated from annual consumption in the U.S. This method assumes that Minnesota's dentifrice use is equivalent to that as the U.S. as a whole and because this is a per capita value and there is some uncertainty due to the population data.

The inflow and infiltration flow values were obtained from MCES and are estimates based on a few data points for each of their facilities. However, because the groundwater phosphorus concentration

is quite low, even large variability in the flow values will not have a large impact on the total phosphorus to the POTWs from this source.

The phosphorus loading from human waste was calculated by difference. That is, all other estimated sources of phosphorus were subtracted from the total influent phosphorus load for each facility. This method of estimating the human waste phosphorus contribution leaves some uncertainty since it is based on all of the other source estimates. Therefore, the phosphorus contribution from human waste obtained by difference was compared to literature values. Literature values for phosphorus in human waste ranged from 1.6 g/p·d (*Siegrist et al.*, 1976) to 2 g/p·d (*Strauss*, 2000). The statewide flow weighted average for phosphorus in human waste was 1.53 g/p·d.

The following recommendations are made to improve the estimates of phosphorus point source loading to the basins in Minnesota:

- 1. Since the commercial and industrial loadings are a significant portion of the phosphorus load, additional monitoring of industrial effluent discharged to POTWs would improve the precision of estimates presented in this component.
- 2. It was not within the scope of this study to present or discuss the phosphorus contribution from individual industrial contributors of phosphorus to POTWs. It is recommended that this study be expanded to determine the specific industries that constitute the major phosphorus contributors.
- 3. This study assumed that the influent components of the POTW's and privately owned treatment plant's phosphorus from various sources were in the effluent in the same proportions as in the influent. A study on the percentage removal for the various sources at the different type of treatment plants would provide a more accurate estimate of the source of phosphorus loads to the waters of the state.
- 4. Many of the phosphorus sources discharge to POTWs were based on per capita estimates. Improving the population served data for each of the POTWs would improve the accuracy of these estimates.
- 5. Phosphorus data were not available for all permits. Increased phosphorus monitoring (both influent and effluent) would improve loading estimates. Good laboratory analysis of phosphorus and good quality assurance procedures would insure more accurate load calculations.

6. Calculation of phosphorus loads on a monthly basis and then totaled rather than on an annual basis would improve the estimates.

4.2.2 Agricultural Runoff

4.2.2.1 Cropland and Pasture Runoff

There are many possible sources of uncertainty in the estimated phosphorus loadings. These can be divided into errors in input data, errors in converting phosphorus index values to phosphorus export coefficients, errors in estimating the proportion of cropland that contributes to phosphorus loadings, and errors due to a lack of consideration for impacts of surface and subsurface drainage, wind erosion or snowmelt runoff on phosphorus loadings. The primary sources of errors in input data include those due to spatial variations in farm management practices at scales smaller than watersheds or agroecoregions, errors in estimating slope length for erosion calculations, and errors due to out of date landuse information (all cropland estimates in the contributing corridor around surface water bodies are based on 1992 landuse data). Appendix C provides a more detailed discussion about uncertainties in these phosphorus loading estimates.

The assumption made about the contributing corridor represents a source of uncertainty. In most of Minnesota, it its believed that the risks of phosphorus transport to surface waters are greatest in the contributing corridor within about 100 m from surface waterbodies. This is consistent with research results from across the country, and with recommendations of the primary group of soil scientists conducting research on phosphorus transport to surface waters (the SERA-17 group). Due to topographic variations along surface waterbodies, in some areas phosphorus contributions from overland runoff and erosion may occur from as far away as several hundreds of meters. In contrast, where berms are present along waterbodies it may be unlikely for significant surface runoff or erosion to enter surface water. Thus, the 100 m contributing corridor should be viewed as a regional average for contributions of P to surface waters from runoff and erosion on adjacent cropland. Errors can also arise from improperly estimating the area of cropland within 100 m of surface water bodies. Also, the area of cropland within 100 m of surface water bodies was not varied when computing basin scale phosphorus loadings for dry, average, and wet years.

Our primary method of estimation does not consider the influence that surface tile intakes farther than 100 m may have on phosphorus loadings. To include the effects of surface tile intakes we would need to know the number of tile intakes per unit area, the area of cropland contributing to tile intake flow, and the phosphorus export coefficients for surface tile intakes. These data are not

available for Minnesota in enough detail to be confident about their representativeness. Similarly, our primary method does not consider the influence of subsurface tile drainage on phosphorus export to surface waters. Surface and subsurface tile drainage load was estimated in the Minnesota River basin, but as concluded in Appendix B, more research is needed to accurately define the mean and range in phosphorus loading from subsurface drainage tiles. Other than the Minnesota River basin, subsurface drainage phosphorus loads were not estimated. The load from other basins would be much smaller, because tile drainage is of limited extent in basins other than the Minnesota River basin. In addition, not enough research data are available to reliably estimate the phosphorus loadings from surface tile intakes or subsurface tile drains to surface waters in the Minnesota River basin during dry or wet climatic years. As described above, this approach could substantially overestimate the phosphorus loadings in dry years.

Finally, we do not explicitly account for the effects of wind erosion or snowmelt runoff on phosphorus loadings to surface waters. Wind erosion may be particularly important in the Red River basin. It is not expected that wind erosion estimates, which represents a portion of the atmospheric deposition loadings completed for this study, would adequately account for "low level" wind blown soil deposited in drainageways. Snowmelt erosion is indirectly accounted for in the regional phosphorus index through the runoff factor, as well as in the method of manure application factor, so this error may not be large.

This study provides a broad overview of the impacts of agricultural lands on phosphorus loadings to surface waters. There are many detailed questions remaining that should be studied in further detail. Some of these are listed below:

- Comparison of watershed based phosphorus loadings with agroecoregion based phosphorus loadings at the scale of major watersheds
- Development of phosphorus delivery ratios for agricultural as well as non-agricultural sources of phosphorus as a function of area of contributing watershed, area of lake and wetland storage in the watershed, and landscape characteristics
- Investigation of the impacts that farm scale variability has on estimated phosphorus loadings within watersheds
- Further study of the distance from surface waters within which the majority of phosphorus losses from cropland to surface waters originate

- Further investigation of the variable source area concept as applied to phosphorus transport during dry, average and wet climatic years
- Further investigation of the contribution of surface tile intakes and subsurface drainage to phosphorus loads
- Study of the impact that wind erosion has on phosphorus loading to surface waters

4.2.2.2 Feedlot Runoff

There are several possible sources of uncertainty in the estimated phosphorus loadings from feedlot runoff. These sources of uncertainty are discussed in more detail in Appendix D. In addition, not all potential avenues of phosphorus transport to waters from feedlots were included in this analysis. This analysis did not include runoff from:

- Manure application sites (i.e. from spreading onto cropland) and pastures. This is handled in the report under the category agricultural runoff;
- Silage leachate runoff, which has high concentrations of phosphorus, but relatively low volumes;
- Milkhouse wastewater discharges;
- Open lots that are not included in the MPCA feedlots data base, including those feedlots that
 have not yet registered or those feedlots that are too small to require registration (i.e. under
 50 animal units outside of shoreland). This would include many small farms with horses and
 livestock.
- Feedlots that do not have open lots; incidental runoff from total confinement operations is considered negligible.
- Poultry facilities and field stockpiles associated with poultry operations. Most poultry are raised in total confinement, and the relatively small number raised outside or the runoff from poultry manure stockpiles was considered negligible for basin-wide analysis.
- Runoff from pasturing animals, including animals with direct access to surface waters.

The following areas of uncertainty and variability exist in this analysis:

- Uncertainties about animal units at open lots The data base used to obtain the information is incomplete. While 29,122 feedlots exist in the data base, incomplete information is available from several counties, and also many smaller feedlots were not required to register. It is possible that the actual number of all feedlots could be several thousand more than indicated in the data base. Additionally, information about the presence of open lots at 11,574 was not available. Since the missing feedlots are mostly small lots, the added phosphorus loading would not be expected to be more than 25% greater than our current estimates.
- Uncertainties about manure P generation The amount of phosphorus generated by each
 animal type was provided from average values based on research in the Midwest. The actual
 P generated is increasingly being reduced through dietary measures. However, this source of
 variability and uncertainty is considered to be relatively minor.
- Uncertainties about the fraction of feedlots that contribute P to surface waters Areas with steeper slopes and a more pronounced drainage system will have a higher percentage of open lots with runoff problems. Unpublished county-specific information used to develop the statewide average (MDA, 2003), indicates that the percentage of open lots that may contribute runoff P to surface waters varies significantly from the statewide average for several basins, but this variability was not accounted for in the analysis. Due to a lack of basin-specific information, it was decided to use the 35 percent figure statewide. It is likely that some phosphorus is delivered to waters from feedlots that are in compliance with state feedlots rules. No feedlot runoff was accounted for from feedlots that were considered to be in compliance with state feedlot rules. Also, it was assumed that all of the animals in feedlots with open lots contribute manure to the open lot. We did not have information that would allow us to differentiate which animals used the open lot and which were kept in total confinement.
- Uncertainties about phosphorus delivery The FLEval model used to estimate the fraction of phosphorus delivery to waters is currently being upgraded by the University of Minnesota to improve estimates of annual phosphorus loading. Several assumptions were made for the FLEval modeling exercise that affected the estimated loading. The P loading results could be either half as much or twice as much as the study results, depending on modeling assumptions about the feedlot size (square feet per animal unit), the effect of downslope vegetation and cropland, and other model inputs. Another uncertainty is the effect that

holding animals in the barns or pastures will have on reducing the fraction of P delivery to waters. Where animals are held in barns or pasture for a long enough time during the day so that less than 100 percent of the feedlot area has manure on the surface, then the phosphorus loadings would be reduced. In the model we assumed that each animal unit contributed to 200 square feet of feedlot surface that was covered with 100 percent manure. Both of these assumptions are variable and affect the modeling results, causing an overestimate of P loading for this part of the loading calculation.

Based on the primary uncertainties in this analysis we see that some are expected to result in overestimates of phosphorus loading from feedlots and others contributed to underestimates of phosphorus loadings from feedlots, as summarized below:

- 1. Incomplete feedlot data base, resulting in underestimates by roughly 10 to 25 percent;
- 2. Not including milkhouse wastewater, silage leachate and spills, resulting in underestimates of P loading by roughly 5 to 20 percent;
- 3. *Not including P from feedlots in compliance with feedlot runoff regulations*, resulting in underestimates of roughly 1 to 10 percent;
- 4. Uncertainties in percent of open lots that contribute P to surface waters, potentially resulting in the Lower Mississippi basin underestimates by as much as 100 percent and overestimates in the Missouri, Des Moines basins by roughly 100 percent, with other basins being closer to statewide averages.
- 5. Uncertainties about FLEval modeling of annual loading, with unknown effects; and
- 6. Uncertainties about how much time the livestock at feedlots with open lots spent in the barn or on pasture, resulting in overestimates of roughly 10 to 30 percent.

Future refinements can be made when the MPCA data base is improved to more clearly indicate whether an open lot exists at each feedlot and when better basin-specific information can be provided about how many feedlots are out of compliance with state feedlot runoff rules and regulations. Additionally, the results can be refined after the FLEval model upgrades are completed by the University of Minnesota and when better information is available about average downslope buffer conditions at non-compliant feedlots. Also, future analyses should incorporate estimates of how livestock time in barns or pastures may reduce the overall fraction of manure P that is delivered to waters.

4.2.3 Atmospheric Deposition

The following recommendations are made to minimize uncertainty and improve the estimates of atmospheric (wet and dry) phosphorus deposition:

- 1. Additional one to two years of monitoring for [P] and [Ca] in precipitation to improve the ability to extrapolate the findings from the research sites to other locations in the state
- 2. Additional sites should be included in the wet deposition monitoring network, particularly in southwest and western Minnesota, to identify significant regional differences in the [P] and [Ca] relationship, and further improve the ability to extrapolate the findings to other locations
- 3. Assess the variability in annual dry deposition in relation to changes in annual precipitation to determine the significance of this project assuming dry deposition is constant for low, average, and high precipitation years
- 4. Determine the phosphorus deposition rate of the collected PM10 filters and verify the assumption that the [P] to [Ca] ratio in dry deposition is the same as that in precipitation
- 5. Additional particulate monitoring (TSP, P, PM10) in other areas of the state should be conducted, with a particular emphasis on rural areas, to determine whether extrapolation of the particulate filter data to larger regions or river basins is appropriate
- 6. A source apportionment study, using chemical mass balance or similar approach, for phosphorus should be conducted to determine if sources other than soil are significant, or could be significant, for phosphorus deposition

4.2.4 Deicing Agents

All of the loading estimates prepared for phosphorus from deicing agents were based upon information reported by road maintenance agencies whenever possible (see Appendix F for more discussion). MnDOT and other agencies readily acknowledge that better record keeping is needed and better measurements are needed to document the actual usage numbers. While MnDOT data is of relatively high quality, the near absence of local road agency data for use in this analysis creates concern for the accuracy of the final numbers beyond those for state maintained roads, given the amount of variability that currently exists due to year-to-year weather patterns and the resulting deicer usage patterns. To further evaluate the uncertainty, the actual MnDOT usage data was

confined to the 1996 – 2003 time period, as it includes MnDOT operations since the start of implementation for the Salt Solutions study recommendations and most accurately represents current deicer use trends for the state highway system (Vasek, 2003).

A state-wide sum of salt and sand usage for MnDOT maintained roads and the reported state-wide deicer use data from MnDOT allowed for an analysis of the loading estimate uncertainty against actual application information. The estimation methods were assessed against actual MnDOT usage levels and the results were summarized for the wet, average and dry years based upon a comparison to actual application quantities for similar years. The usage estimation for sand and salt usage, and thus the phosphorus load estimates from MnDOT uses for the three scenarios were reasonable given the limitations of the data (+/- 22%). The MnDOT salt usage estimate for the "average" year, i.e., for those years of data upon which the other scenario estimates were constructed has a smaller error than for the sand and brine. The error for Brine is about 30%, but the phosphorus loading due to brine is less than 0.001% of the total phosphorus load and thus is insignificant. Without further data for other road agencies the accuracy of the other estimates can only be assumed to be similar.

Much of the phosphorus content analysis for these deicing agents has been collected from widespread sources having differing and sometime poorly documented analysis methods. The limited number of studies and the ongoing citation of a few early studies by current investigators suggest that more analytical studies on deicing agents and phosphorus should be completed. The summary statistics for the data on salt and sand gleaned from the literature highlight the relative lack of data on the subject and the variability of concentrations. A data set that is confined to deicing agents used in Minnesota would provide a more accurate estimate of the loads.

4.2.5 Streambank Erosion

The variability and uncertainty of the phosphorus loading computations done for this analysis can be attributed to each of the following sources of error (described in more detail in Appendix G):

- The natural variability associated with the published streambank erosion and sediment yield data
- The uncertainty that is introduced in this analysis as a result of extrapolating the monitored sediment yield data to the unmonitored areas for each ecoregion
- The variation in sediment yield within each ecoregion

- The assumptions that the Simon and Hupp (1986) model of channel evolution applied to Minnesota streams and the slope of the suspended-sediment rating relationship could be used to characterize stable versus unstable streams, based on data published in Simon (1989a)
- The standard error in the regression between the slope of the suspended-sediment rating relationship and the sediment yield
- The assumption that the probability plot of Blue Earth River streambank erosion rates from Sekely et al. (2002) could be utilized to estimate the variation of streambank erosion during low and high flow conditions for the remaining streams in the state
- The variation in the total phosphorus concentration of the sediment eroding from streambank escarpments throughout the state

Many areas of the State have not been adequately sampled for definition of sediment-transport characteristics. Only a few or no sediment samples (with corresponding discharges) have been collected from most of the streams in northern and central Minnesota, with almost no samples present for the Northern Minnesota Wetlands Ecoregion (Tornes, 1986; Simon et al., 2003). Some rivers in west-central Minnesota, parts of the Red River of the North, the Rock River, and the Pomme de Terre River drain areas underlain by clayey or loess soils may have sediment yields that are similar to those in the southeast part of the State (Tornes, 1986). In addition, no sediment-transport curves or erosion assessments have been published for streams in the St. Croix River basin. The current lack of sediment-transport data and erosion assessments throughout the state make it difficult to adequately ascertain the impacts of streambank erosion, especially as it pertains to impaired biota. Collecting more data for streambank erosion assessments can be used to further refine this analysis, reduce the current level of uncertainty, and improve the understanding of the linkage between sediment and phosphorus loadings with biological impairments.

The MPCA should install continuous flow monitoring equipment, and begin developing stage-discharge-sediment transport curves, as a means of assessing erosion within some of the existing State milestone monitoring watersheds, that are not currently being monitored by the USGS. Additional streambank erosion assessments should be done in conjunction with stream water quality and biological monitoring, and channel evolution stage determinations, to develop and refine empirical models and provide a better understanding of the impacts of streambank erosion throughout the State. One such assessment, recently completed by the MPCA, was done to evaluate the relationship between suspended sediment transport, stream classification and fish index of biological integrity (IBI) scores (Magner et al., 2003). All of these assessments should also be done to evaluate streambank erosion during low and high flow conditions and address the variability and uncertainty

associated with the estimates presented here. Also, more total phosphorus data should be collected from eroding streambanks across the state to further evaluate how much of the phosphorus loading is entering the streams from upland sources versus fluvial processes. Additionally, the connection of streambank erosion with land use changes causing hydromodifications needs to be better documented.

4.2.6 Individual Sewage Treatment Systems/Unsewered Communities

The primary sources (and estimated magnitudes) of variability and uncertainty in the total phosphorus loading computations done for this assessment (see Appendix H) include:

- Percentage of phosphorus attenuation in soil absorption field for permanent and seasonal residences—(these percentages are likely to vary by 50 percent or more, depending on the proximity to surface water, soils and water table characteristics, etc.; if the all of the conforming systems from the remaining ISTS category removed 100% of the P load produced, the 140,510 kg total P load discharged to surface waters would be reduced by approximately 30%)
- Portion of undersewered communities receiving various levels of treatment, more or less than septic tank removals (as assumed)—(these percentages are likely to vary by 50 percent or more, as some of the undersewered communities may be receiving good treatment with soil absorption, while others may not even receive treatment from septic tanks)
- Population of undersewered communities—(population figures may vary significantly within each basin depending on each counties ability to determine, report or verify and update the presence and population of undersewered communities)
- Population served and portion of direct-to-tile ISTS receiving various levels of treatment,
 more or less than septic tank removals (as assumed)—(these values are likely to vary by 100
 percent or more, as the number of systems and population served are extrapolated from a
 small subset of areas studied in the MRAP which may or may not have already been counted
 with the ITPHS percentages, and some of the direct-to-tile ISTS may not even receive
 treatment from septic tanks)
- Population served and per capita P loadings for permanent versus seasonal residences—(the current P loading estimates assume that all of the population served by seasonal residences

[2.1 people per seasonal residence for 4 months each year] is in addition to all of the P loadings generated by the current permanent residents of Minnesota, which may overestimate the P load from permanent Minnesota residents that maintain seasonal residences, but helps to offset both the fact that seasonal residences may be under-represented in the databases and the fact that people from other states maintain seasonal residences; in addition, the per capita loadings for dishwashing detergents and dentifrices are based on actual nationwide consumption, while the per capita loadings for human waste and food soils are based on monitoring of permanent residences)

The following refinements are recommended to reduce the error terms or uncertainty of the phosphorus loading estimates:

- LUGs should work with the MPCA to develop, populate and maintain a geographic database, similar to MPCA's feedlot database that shows where each of the failing systems, straight pipe discharges and other types of ITPHS are located
- LUG personnel should be trained to assess the proper functioning of each type of system and be
 provided with an incentive to inventory all systems within their jurisdiction, and track system
 performance and maintenance
- The estimates for population served by conforming and nonconforming systems, as well as unsewered communities and direct-to-tile ISTS, should be refined, updated and linked to a geographic database
- Additional analyses should be done to study the treatment effectiveness of conforming and nonconforming treatment systems, throughout the state, to evaluate the variability of the estimated phosphorus loadings to surface waters under various settings

4.2.7 Non-Agricultural Rural Runoff

The variability and uncertainty of these phosphorus loading computations and assessment is currently difficult to assess due to the lack of monitoring data that would allow a rigorous evaluation of the application of the concepts of contributory area and the use of the basin runoff factor (see Section 2.2.2.6 and Appendix I).

Refinement of the application of export coefficients to Minnesota watershed will require further monitoring and research into the development and application of transmission coefficients. This work will require more detail investigation into the relationships that exist between phosphorus-flux coefficients, land use export coefficients, and transmission factors and their impact on the effective contributory area for large watersheds. As was seen in the literature review, many of the export coefficients for natural vegetation were developed on very small sites. Larger scale studies, comparable to the work by Sartz and others in the driftless area should be undertaken.

The width of the effective contributory area has major implications for water quality management. Much of the research conducted on buffer systems provides some insight into contributory watershed area functions. However, refinement of the interactions of soil type, topography and vegetative cover on the transmission of phosphorus to surface waters needs further research. Research and monitoring efforts on this topic should include GIS modeling efforts to help define these relationships and allow for state-wide spatial database development.

4.2.8 Urban Runoff

In an effort to define the accuracy of the pollutant loading estimates derived from the regression equations (see Section 2.2.2.7 and Appendix J), a comparison was completed using FLUX calculated loads for the Minneapolis Chain of Lakes watershed. This assessment was completed on the residential watersheds that had direct storm water flow from the 1991 monitoring stations. All of the sites had continuous flow measurement and flow-composite runoff samples; the data was reduced to a flow-weighted mean concentration using FLUX (MPRB, 1993; Walker, 1986). Not all of the watersheds assessed in the Chain of Lakes project were included in the assessment, as a number of them had upstream wetlands or large areas of natural land cover that attenuated the phosphorus loadings.

For purposes of this loading variability and uncertainty discussion, the loading regression equation developed for this assessment was used to calculate loads to the eight watersheds. All of the load estimates were calculated using the 1991 monitored flow volumes. The 1991 FLUX-derived loadings based upon FWMC concentrations were considered the baseline loadings. Annual loadings were also estimated using the mean 1991 EMC for each specific watershed, using a national EMC for residential watersheds of 320 μ g/L (Center for Watershed Protection, 2003), and the regression equation result of 326 μ g/L. The loads calculated with the national EMC for residential watersheds and the regression equation were 100.6% and 102.5% of the FLUX model loadings, respectively. The results of the regression equation are very similar to the monitored loads.

The regression equation developed for the urban land use loads estimation explains 19% of the variance for stormwater using precipitation and impervious percentage, which shows that there is considerable variability in the water quality of urban runoff due to several factors. Refinement of the load estimate for phosphorus in urban runoff will require that additional, long-term monitoring sites be established across the state. Most of the long-term monitoring locations used for the regression equation development were located within the Twin Cities metropolitan area or other large cities. There were some out-state sites but most lacked multiple years of data or were quite old and therefore were not appropriate for this assessment.

The results of this assessment indicate that the estimated amounts of total and bioavailable phosphorus entering surface waters within each major basin and the state vary significantly, both by source category and by flow condition. The phosphorus loadings associated with several point and nonpoint source categories can be controlled to various levels, resulting in significant water quality improvements, depending on the water resource and flow condition. The following discussion provides some overall conclusions from this assessment:

- Because of the general nature of this analysis, it can be true that sources of phosphorus which are deemed minor at the basin scale, may actually contribute the majority of phosphorus to specific surface water bodies, at a localized scale. For example, point sources typically contribute little or no phosphorus to Twin Cities Metropolitan and most outstate lakes, but can represent a significant portion of the total phosphorus load to rivers under low flow conditions. Because of this, there is still a need to complete individual assessments of specific watersheds to evaluate specific loading conditions.
- Under average conditions, the point source total phosphorus contribution represents 31 percent of the loadings to surface waters, statewide, whereas nonpoint sources contribute 69 percent. Of these nonpoint sources, cropland and pasture runoff, atmospheric deposition, streambank erosion, human waste products, and commercial/industrial process water each represent between 10 and 30 percent of the total phosphorus loading. All of the remaining source category contributions are below 6 percent. The combination of household and commercial automatic dishwasher detergent represents approximately 3 percent of the total phosphorus contributions to surface waters in the state, during an average year.
- Under low flow conditions, the total point source phosphorus contribution represents 45 percent, compared to 31 and 19 percent for the statewide loadings to surface waters under average and high flow conditions, respectively. The bioavailable low flow point source phosphorus contribution represents 57 percent of the statewide loadings, confirming that point sources of phosphorus are more bioavailable than nonpoint sources. Comparing high flow to average and low flow conditions, the relative statewide nonpoint source contributions of total phosphorus increased significantly for streambank erosion, decreased somewhat for urban runoff, and decreased significantly for atmospheric deposition and ISTS/unsewered communities.

- Nonpoint source phosphorus loadings nearly double from low to average flow conditions, and again from average to high flow conditions.
- Human waste products represent a significant portion of the total and bioavailable phosphorus loadings in the Upper Mississippi and Cedar River basins under each flow condition; and on a statewide basis, for the low and to a lesser extent average flow conditions. During low flow conditions, human waste products contribute between 10 and 20 percent of the bioavailable phosphorus loadings in the Lake Superior and St. Croix, Lower Mississippi, Red, Missouri, and Minnesota River basins.
- Commercial/industrial process water represents a significant portion of the total and bioavailable phosphorus loadings in the Upper Mississippi, Lower Mississippi, Minnesota, and Des Moines River basins under each flow condition, and on a statewide basis, for the low and to a lesser extent average flow conditions.
- Phosphorus contributions from ISTS/unsewered communities are of relative importance in the St. Croix River basin.
- Cropland and pasture runoff represents a significant portion of the total and bioavailable phosphorus loadings in the St. Croix, Lower Mississippi, Red, Missouri, Minnesota, Cedar and Des Moines River basins, and on a statewide basis, under all flow conditions. The phosphorus contribution from cropland and pasture runoff is also significant in the Upper Mississippi River basin for the average and high flow conditions.
- Atmospheric deposition represents a significant portion of the phosphorus loadings in the Lake Superior, St. Croix, Red, and Rainy River basins for each flow condition.
- Non-agricultural rural runoff contributes a significant portion of the phosphorus loadings in
 the Lake Superior and Rainy River basins for each flow condition, although the typical rate of
 total phosphorus export from each acre of non-agricultural land is approximately four times
 lower than the corresponding load from each acre of contributing cropland and pasture runoff.
- Streambank erosion is an important source of phosphorus under high flow conditions for all of
 the basins, and is fairly significant in the Lake Superior, Lower Mississippi, Rainy and
 Missouri River basins under average flow conditions. Streambank erosion can also contribute

somewhat significant amounts of total phosphorus statewide and to the Minnesota and Cedar River basins under average flow conditions.

- The concepts for lowering the phosphorus export from point sources address possible reductions of phosphorus discharged to POTWs as well as phosphorus discharged to the surface waters in each basin. Food soils would be very difficult to reduce, and dentifrices, noncontact cooling water and I & I contribute little to the influent phosphorus load discharged to POTWs. If residential and commercial/institutional ADWD and water treatment chemicals were eliminated completely, commercial and industrial process wastewater would still need to be reduced more than 64 percent to attain a 50 percent reduction in the total non-ingested phosphorus contribution to POTWs (the goal established in MN Laws 2003, Chap. 128 Art. 1, Sec. 122). Given the difficulties in completely eliminating phosphorus from commercial/institutional ADWD and water treatment chemicals, and reducing the commercial and industrial process wastewater loading by more than 64 percent, a 50 percent reduction of non-ingested influent phosphorus appears to be an ambitious goal. In addition, a 50 percent reduction in influent may not mean a 50 percent reduction in the effluent depending upon the type of wastewater treatment processes used.
- A large portion of the influent phosphorus load to POTWs is from human waste products and/or is largely uncontrollable. Continued implementation of enhanced biological phosphorus removal (EBPR) will significantly reduce effluent phosphorus concentrations.
- Public education about the use of ADWD based on hardness and the availability of no- and lowphosphorus content products should be encouraged.

Basin Hydrology

- USGS Surface-Water Data for the Nation Website. http://waterdata.usgs.gov/nwis/sw
- Minnesota Department of Natural Resources, GIS Data Deli Website. http://ftp.dnr.state.mn.us/
- Greg Spoden; Minnesota Department of Natural Resources Division of Waters State Climatology Office.
- Guidelines for Determining Flood Flow Frequency, Bulletin #17B, U.S. Water Resources Council, Sept. 1981
- USGS National Land Cover Database, 1992. http://seamless.usgs.gov, http://seamless.usgs.gov, http://seamless.usgs.gov,

Point Sources

- Boyle, W.C., Siegrist, R.L., and Saw, C.C. "Treatment of Residential Grey Water with Intermittent Sand Filtration." University of Wisconsin. D. Reidel Publishing Company, 1982.
- Ligman, K., Hutzler, N., and Boyle, W.C.. *Household Wastewater Characterization*. The Journal of the Environmental Engineering Division. ASCE Feb.1974.
- Metcalf and Eddy, Inc. 2001. *Wastewater Engineering Treatment, Disposal and Reuse*. Third Edition. McGraw-Hill Publishing Company. New York.
- Siegrist, R., Witt, M., and Boyle, W.C. "Characteristics of Rural Household Wastewater." *The Journal of the Environmental Engineering Division*. ASCE, June 1976.
- SRI, International. 2002. *Chemical Economics Handbook CEH Marketing Research Report Industrial Phosphates*. (Proprietary Information).
- Strauss, Martin. "Human Waste (Extreta and Wastewater) Reuse." EAW AG/SANDEC, August 2000.

Cropland and Pasture Runoff

- Alexander, E. C. and S. Magdalene. 1998. Final report on Minnesota River surface tile inlet research: Monitoring component. Dept. Geology and Geophysics, Univ. Minnesota. Minneapolis, MN.
- Birr, A.S., and D.J. Mulla. 2001. Evaluation of the Phosphorus Index in Watersheds at the Regional Scale. J. of Environ. Qual. 30: 2018-2025.
- Birr, A. S. and D. J. Mulla. 2002. Relationship between lake and ground water quality patterns and Minnesota agroecoregions. Hydrological Sci. Tech. 18(1-4):31-41.
- Birr, A. S., P. Bierman, D. J. Mulla, N. C. Hansen, P. Bloom, and J. F. Moncrief. Comparison of matrix and pathway versions of the phosphorus site index. Annual Meeting Soil Science Society of America. Indianapolis, IN. Nov. 13, 2002.
- Brown, J.R. 1998. Recommended Chemical Soil Test Procedures for the North Central Region. North Central Regional Research Publication No. 221 (Revised). Missouri Agric. Exp. Stn. SB 1001.

- Daniel, T. C., A. N. Sharpley, D. R. Edwards, R. Wedepohl, and J. L. Lemunyon. 1994. Minimizing surface water eutrophication from agriculture by phosphorus management. J. Soil Water Conserv. Suppl. 49: 30-38.
- Environmental Systems Research Institute, Inc (ESRI). 2000. ArcView Version 3.1. Redlands, CA.
- Gburek, W. J., A. N. Sharpley, L. Heathwaite, and G. J. Fohan. 2000. Phosphorus management at the watershed scale: A modification of the phosphorus index. J. Environ. Qual. 29(1):130-144.
- Ginting, D., J. F. Moncrief, S. C. Gupta, and S. D. Evans. 1998. Corn yield, runoff and sediment losses from manure and tillage systems. J. Environ. Qual. 27:1396-1402.
- Ginting, D., J. F. Moncrief, and S. C. Gupta. 2000. Runoff, solids and contaminant losses into surface tile inlets draining lacustrine depressions. J. Environ. Qual. 29:551-560.
- Hansen, N.C., A.Z.H. Ranaivoson, J.F. Moncrief, J.J. Xia, E. Dorsey, and S.C. Gupta. 2001. Acceleration of adoption of best management practices for reducing agricultural nonpoint source pollution using a paired watershed technique to support an educational effort. Metropolitan Council, Natural Resource Division, St. Paul, MN.
- Hatch, L. K., A. P. Mallawatantri, D. Wheeler, A. Gleason, D. J. Mulla, J. A. Perry, K. W. Easter, P. Brezonik, R. Smith, and L. Gerlach. 2001. Land management at the major watershed agroecoregion intersection. J. Soil Water Conservation 56:44-51.
- Heiskary, S. A. and C. B. Wilson. 1994. Phosphorus export coefficients and the Reckhow-Simpson spreadsheet: Use and application in routine assessments of Minnesota Lakes. Minnesota Pollution Control Agency Nonpoint Source Section. St. Paul, MN
- Heiskary, S.A., and C.B. Wilson. 2000. Minnesota Lake Water Quality Assessment Data: 2000 Minnesota Pollution Control Agency Environmental Outcomes Division Environmental Monitoring and Analysis Section. St. Paul, MN.
- Lemunyon, J.L., and R.G. Gilbert. 1993. The concept and need for a phosphorus assessment tool. J. Prod. Agric. 6:483-486.
- Lorenz, D.L., G.H. Carlson, and C.A. Sanocki. 1997. Techniques for estimating peak flow on small streams in Minnesota. Water-Resources Investigations Report 97-4249. USGS, Denver, CO.
- Midwest Planning Service-Livestock Waste Subcommittee. 1985. Livestock waste facilities handbook. Midwest Planning Serv. Rep. MWPS-18. 2nd ed. Iowa State Univ., Ames.
- Minnesota Department of Transportation. 1999. State of Minnesota base map. Office of Land Management Surveying and Mapping Section, St. Paul, MN.
- Minnesota Department of Agriculture. 1997. Total fertilizer and nutrients by county. Agronomy and Plant Protection Division. St. Paul, MN.
- Minnesota Pollution Control Agency. 1994. Minnesota River Assessment Project Report. Vol. IV. Land Use Assessment. MPCA, St. Paul, MN
- Mulla, D.J. 2003. Unpublished.
- Munyankusi, Emmanuel. 1999. Tillage and timing of manure application impacts on water quality in karst terrains. Thesis (Ph. D.)--University of Minnesota, St. Paul, MN.
- National Agricultural Statistics Service. 1999. 1997 Census of Agriculture: Minnesota state and county data [Online]. Vol. 1, Geographic Area Series Part 23. Available at http://usda.mannlib.cornell.edureports/census/ac97amn.pdf (verified 16 May 2001).

- Randall, G. W., T. K. Iragavarapu, and M. A. Schmitt. 2000. Nutrient losses in subsurface drainage water from dairy manure and urea applied for corn. J. Environ. Qual. 29: 1244-1252.
- Renard, K. G. and J. R. Freimund. 1994. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 157(1-4): 287-306.
- Schmitt, M.A. 1999. Manure management in Minnesota. Minn. Ext. Serv. FO-3553-C, Revised 1999. Univ. of Minn College of Agric., St. Paul.
- SERA-17. 2004. Threshold Soil Phosphorus Levels: Important for Water Quality, Nutrient Management Planning, and Permitting. http://www.soil.ncsu.edu/sera17/issues.htm
- Sharpley, A. N., S. C. Chapra, R. Wedepohl, J. T. Sims, T. C. Daniel, and K. R. Reddy. 1994. Managing agricultural phosphorus for protection of surface waters: Issues and options. J. Environ. Qual. 23: 437-451.
- Soranno, P. A., S. L. Hubler, S. R. Carpenter and R. C. Lathrop. 1996. Phosphorus loads to surface waters: A simple model to account for spatial pattern of land use. Ecol. Appl. 6(3): 865-878.
- Sharpley, A.N., T.C. Daniel, and D.R. Edwards. 1993. Phosphorus movement in the landscape. J. Prod. Agric. 6:492-500.
- U.S. Department of Agriculture (USDA). 1975. Minnesota Field Office Technical Guide. Section III. Natural Resources Conserv. Serv., St. Paul, MN.
- U.S. Department of Agriculture (USDA). 1991. State soil geographic data base (STATSGO): Data users guide. Natural Resources Conserv. Serv. Miscellaneous Publication No. 1492, Natural Resources Conserv. Serv., Fort Worth, TX.
- U.S. Environmental Protection Agency (USEPA). 1994. 1:250,000 Scale quadrangles of landuse/landcover GIRAS spatial data in the conterminous United States [Online]. Available at http://www.epa.gov/ngispgm3/nsdi/projects/giras.htm (verified 16 May 2001).
- U.S. Geological Survey (USGS). 1999. National atlas of the United States: Streams and waterbodies [Online]. Available at http://www-atlas.usgs.gov/hydrom.html (verified 16 May 2001).
- Wischmeier, W.H., and D.D. Smith. 1978. Predicting rainfall erosion losses. USDA-Sci and Educ. Admin. Agric. Handbook No. 537, Washington, DC.

Feedlot Runoff

- Midwest Plan Service. 2000. Manure Characteristics. MWPS-18 Section 1. Iowa State University. 23 pp.
- Minnesota Department of Agriculture. 2003. Feedlot financial needs assessment report for 2004. Minnesota Dept. of Agriculture, St. Paul, MN. Draft December 17, 2003.
- Mulla, D.J., A.S. Birr, G. Randall, J. Moncrief, M. Schmitt, A. Sekely, and E. Kerre. 2001. Technical Work Paper Impacts of Animal Agriculture on Water Quality. University of Minnesota Dept. of Soil, Water and Climate. Prepared for the Environmental Quality Board and the Citizen Advisory Committee for the Generic Environmental Impact Statement on Animal Agriculture. 171 pp.
- Young, Robert A., Michael A. Otterby, and Amos Roos. 1982. An Evaluation System to Rate Feedlot Pollution Potential. Agricultural Research Service ARM-NC-17. 78 pp.

Atmospheric Deposition

- Axler, R.P., Rose, C. and C.A. Tikkanen. 1994. *Phytoplankton nutrient deficiency as related to atmospheric nitrogen deposition in northern Minnesota acid-sensitive lakes*. Canadian Journal of Fisheries and Aquatic Science: 51:1281-1296.
- Brook, J.R., Dann, T.F. and R.T. Burnett. 1997. The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations. Journal of the Air & Waste Management Association: 47:2-19.
- Brunner, U. and R. Bachofen. 2000. *Phosphorus cycle: Significance of atmospheric inputs*. Scope Newsletter, N°37-06/2000. 2p.
- Dixon, L.K., Heyl, M.G. and S.Murray. 1998. *Interpretation of bulk atmospheric deposition and stormwater quality data in the Tampa Bay region*. Tampa Bay Regional Planning Council, St. Petersburg, Fl 33702. Tampa Bay Estuary Program Report No. 04-98. Mote Marine Laboratory Technical Report No. 602. 70 p. + appendices.
- Engstrom, D.R. 2003. *Phosphorus in precipitation study, 1999 2001. Unpublished data.* St. Croix Watershed Research Station, Science Museum of Minnesota.
- Likens, G.E., Bormann, F.H., Hedin, L.O., Driscoll, C.T. and J.S. Eaton. 1990. *Dry deposition of sulfur: a 23-yr record for the Hubbard Brook Forest Ecosystem.* Tellus. 42B: 319-329.
- Lindbergh, S.E., Lovett, G.M., Richter, D.D. and D.W. Johnson. 1986. *Atmospheric deposition and canopy interaction of major ions in a forest*. Science 231:141-145
- Mau, D.P. and V.G. Christensen. 2001. Reservoir sedimentation studies to determine variability of phosphorus deposition in selected Kansas watersheds. U.S. Geological Survey, Water Resources Investigations Report. 9 p.
- Meyers, T.P. 2003. Personal communication regarding particle size fractions and associated deposition velocities, based on a recent study in Florida. September 15, 2003.
- Miller, S.M., Sweet, C.W., DePinto, J.V. and K.C. Hornbuckle. 2000. Atrazine and nutrients in precipitation: Results from the Lake Michigan Mass Balance Study. Environmental Science and Technology: 34:55-61.
- NOAA-ARL (National Oceanic and Atmospheric Administration, Air Resources Laboratory). 2003. *The atmospheric integrated monitoring network (AIRMon)*. Fact Sheet. 4 p.
- Pratt, G.C., Orr, E.J., Bock, D.C., Strassman, R.L., Fundine, D.W., Twaroski, C.J., Thornton, J.D. and T.P. Meyers. 1996. *Estimation of dry deposition of inorganics using filter pack data and inferred deposition velocity*. Environmental Science and Technology: 30:2168-2177.
- Robertson, D.M. 1996. Sources and transport of phosphorus in the western Lake Michigan drainages. U.S. Geological Survey, Fact Sheet FS-208-96. 4 p.
- Rose, W.J. 1993. Water and phosphorus budgets and trophic state, Balsam Lake, northwestern Wisconsin. U.S. Geological Survey Water-Resources Investigations Report 91-4125. 28 p.
- Swain, E. 2003. Personal communication regarding sample-by-sample regression using total phosphorus from the special phosphorus in precipitation study and NADP calcium.
- Vermont Agency of Natural Resources and New York State Department of Environmental Conservation. 2002. *Lake Champlain phosphorus TMDL*. Vermont Agency of Natural Resources, Dept. of Environmental Conservation, Waterbury VT. September 2002.
- Verry, E.S. and D.R. Timmons. 1977. *Precipitation nutrients in the open and under two forests in Minnesota*. Canadian Journal of Forest Research: 7:112-119.

Wilson, B. 2003. Personal communication on atmospheric deposition estimates used by the Minnesota Pollution Control Agency in previous watershed modeling. Sept. 4, 2003.

Northern one-half to one-third of MN: 15 kg/km²·yr⁻¹ Central: 30+ kg/km²·yr⁻¹ Southern part of MN with wind erosion: 30 – 40 kg/km²·yr⁻¹

Deicing Agents

- Alger, R.G., Adams, E.E. and Beckwith, J.P. 1993. Development of Anti-Icing Technology Chemical Treatment Controlled Access Highway, Strategic Highway Research Program National Research Council.
- Barr Engineering Company. 1993. Phosphorus Reduction Study for the Twin Cities Metropolitan Area. Prepared for the Minnesota Pollution Control Agency.
- Biesboer, David and Robert Jacobson. 1993. Screening and Selection of Salt Tolerance in Native Warm Season Grasses. Minnesota Department of Transportation, Report 94-11.
- City of Minneapolis and Minneapolis Park and Recreation Board. 2003. NPDES Stormwater Management Program and Annual Report. Prepared by Minneapolis Public Works Department in compliance with NPDES Permit No. MN0061018
- Duluth Streams.org. 2003. Road Salt: Can we have safe roads and healthy streams? http://www.duluthstreams.org/understanding/impact_salt.html
- Environment Canada and Health Canada. 2001. Priority Substances List Assessment Report Road Salts. Environment Canada and Health Canada, Hull, Québec. http://www.ec.gc.ca/substances/ese/eng/psap/final/roadsalts.cfm
- Fischel, Marion. 2001. Evaluation of Selected Deicers Based on a Review of the Literature. Report No. CDOT-DTD-R-2001-15. Prepared for Colorado Department of Transportation. The SeaCrest Group, Louisville, CO. http://www.dot.state.co.us/Publications/PDFFiles/deicers.pdf
- Goldman, C.R. and Hoffman, R.W. 1975. A study of the influence of highway deicing agents on the aquatic environment in the Lake Tahoe basin and drainages along Interstate 80. Ecological Associates Report, California Department of Transportation. Cited in: Environment Canada and Health Canada, 2001.
- Hanes, R.E., L.W. Zelazny and R.E. Blaser. 1970. Effects of deicing salts on water quality and biota; literature review and recommended research. National Cooperative Highway Research Program, Report 91.
- Levelton Engineering Ltd. 2000. Anti Icers Chemical Analysis and Toxicity Test Results. Prepared for the Insurance Corporation of British Columbia, Kamloops, BC.
- Levelton Engineering Ltd. 1999. Freezgard Zero Chemical and Toxicity Testing. Prepared for the Insurance Corporation of British Columbia, Kamloops, BC.
- Levelton Engineering Ltd. 1998. Liquid Road deicing Environmental Impact. Prepared for the Insurance Corporation of British Columbia, Kamloops, BC.
- Lewis, W.M., Jr. 1999. Studies of environmental effects of magnesium chloride deicer in Colorado. Prepared for the Colorado Department of Transportation, Denver, CO.
- Lord, B.N. 1988. Program to Reduce Deicing Chemical Usage. Design of Urban Runoff Quality Controls.

- Mangold, T. 2000. Road Salt Use for Winter Maintenance: A Review of Impacts, Alternatives, and Recommendations for the St. Paul Campus Stormwater Management Plan. Prepared for NRES5061, St. Paul MN.
- Minnesota Legislative Auditor. 1995. Snow and Ice Control: A Best Practices Review. Report #95-06. Office of the Legislative Auditor, State of Minnesota. St. Paul, MN.
- MnDOT. Undated. How does Mn/DOT set targets for snow & ice removal? http://www.dot.state.mn.us/dashboards/snowandice.html
- MnDOT, 2003a. Sand, Salt and Brine Usage Coverage Rates by Lane Miles Only. Work Management System Report PS1A6.
- MnDOT Office of Maintenance, 2003, Winter Maintenance Material Usage Reports for 2000-2001, 2001-2002, and 2002-2003. Electronic worksheets provided by Steve (Rocky) Haider, Maintenance Business Planning Administrator.
- MnDOT Office of Transportation Data & Analysis. 2002. Statewide Mileage and Lane Miles.
 - Report 1: By County / Route System and by Route System Only
- Report 2: By Construction District / Metro Division and Route System (Trunk Highways)
- Report 3: —By County/City/Route System —By City only —By Route System Only
- Report 4: By County / Surface Type and by Surface Type only
- http://www.dot.state.mn.us/tda/reports/mileage lanemiles.html
- Oberts, G.L. 1986. Pollutants Associated with Sand and Salt Applied to Roads in Minnesota. Water Resources Bulletin, 22(3):479-483.
- Ohrel, R.L. 2000. Rating deicing agents: salt still stands firm. (Watershed Protection Techniques 1(4):217-220). In: Schueler, T.R. and H.K. Holland. 2000. The Practice of Watershed Protection. The Center for Watershed Protection.
- Pacific Northwest Snowfighters. 2002. Snow and ice control chemical products specifications and testing protocols for the PNS Association of British Columbia, Idaho, Montana, Oregon and Washington. http://www.wsdot.wa.gov/partners/pns/pdf/PNS_SPECS_2002_FINAL.pdf
- Public Sector Consultants. 1993. The Use of Selected Deicing Materials on Michigan Roads: Environmental and Economic Impacts. Prepared for the Michigan Department of Transportation. http://www.michigan.gov/documents/toc-deice_51451_7.pdf
- Ramsey-Washington Metro Watershed District. 1999. RWMWD City Street Management Database Fall 1999. Electronic graphic file document.
- SRF Consulting Group, 1998. Salt Solutions Statewide Salt and Sand Reduction. Prepared for the Minnesota Department of Transportation Evaluation Report MN/RC 1988-20. St. Paul, MN. Trost, S.E., Heng, F.J., and Cussler, E.L., 1988, Chemistry of Deicing Roads Penetrating the Ice. Minnesota Department of Transportation UM-TOC-25; MN/RC-88/6.
- Tierney, J. and Silver, C. 2002. Scientific Guidance on Lower-Phosphorus Roadway De-icers. New York State Attorney General's Office, Albany NY.
- Trost, S.E., Heng, F.J., and Cussler, E.L., 1988, Chemistry of Deicing Roads Penetrating the Ice. Minnesota Department of Transportation UM-TOC-25; MN/RC-88/6.
- U.S. Department of Transportation Federal Highway Administration, 1996. Manual of Practice for Effective Anti-icing Program: A Guide for Highway Winter Maintenance Personnel. Electronic

- Version of Publication No. FHWA-RD-95-202. http://www.fhwa.dot.gov/reports/mopeap/mop0296a.zip
- U.S. Environmental Protection Agency. 2002. Managing Highway Deicing to Prevent Contamination of Drinking Water. Source Water Protection Practices Bulletin. EPA 816-F-02-019. US EPA Office of Water, Washington, D.C.
- U.S. Environmental Protection Agency. 1999. Storm Water Management Fact Sheet Minimizing Effects from Highway Deicing. EPA 832-F-99-016. US EPA Office of Water, Washington, D.C. http://www.epa.gov/owm/mtb/ice.pdf
- University of New Hampshire, 1996. Manual of practice for Anti-icing of Local Roads. Technology Transfer Center, University of New Hampshire, Durham NH.
- Vasek, R. 2003. Personal communication. October 21, 2003.
- Warrington, P. D., 1998. Roadsalt and Winter Maintenance for British Columbia Municipalities. British Columbia Ministry of Water, Land and Air Protection, Water Quality Section, Vancouver, BC. http://wlapwww.gov.bc.ca/wat/wq/bmps/roadsalt.html#table%202
- Watson, L. 2003. Street management literature review, analysis and BMP recommendations report. Ramsey-Washington Metro Watershed District Report for the Development of a District-wide Street Management for Water Quality Program Plan.
- Weber, A. 2003. Personal communication. October 2003.

Streambank Erosion

- Bauer, D.W. 1998. *Streambank erosion and slumping along the Blue Earth River*. M.S. Thesis. University of Minnesota. St. Paul, MN.
- Colby, B.R. 1964. *Discharge of sands and mean-velocity relationships in sand-bed streams*. U.S. Geological Survey Professional Paper 462-A.
- Environmental Quality Board (EQB). 2002. FINAL Animal Agriculture Generic Environmental Impact Statement (GEIS). Minnesota Planning Agency.
- Federal Emergency Management Agency (FEMA). 1999. Riverine Erosion Hazard Areas—Mapping Feasibility Study. Technical Services Division. Hazards Study Branch.
- Federal Interagency Stream Restoration Working Group (FISRWG). 2001. *Stream Corridor Restoration: Principles, Processes, and Practices*. GPO Item No. 0120-A; SuDocs No. A 57.6/2:EN3/PT.653.
- Glysson, G.D. 1987. *Sediment-Transport Curves*. Technical Services Division. Hazards Study Branch. U.S. Geological Survey. Open-File Report 87-218. Reston, Virginia.
- Lane, E.W. 1955. *The importance of fluvial morphology in hydraulic engineering*. ASCE Proceedings. 81(745):1-17.
- Luttenegger, A.J. 1987. In Situ Shear Strength of Friable Loess. *In:* Loess and Environment. M. Pesci (Editor). Catena Supplement 9:27-34.
- Magner, J., Feist, M. and S. Niemela. 2003. *The USDA clean sediment TMDL procedure applied in southern Minnesota*. 2003 Proceedings of AWRA Agricultural Hydrology and Water Quality.
- Mulla, D.J. 2003. Personal Communication.

- Natural Resources Conservation Service. 1996. Erosion Sedimentation Sediment Yield Report, Thief and Red Lake Rivers Basin, Minnesota.
- Natural Resources Conservation Service and U.S. Forest Service. 1998a. *Erosion and Sedimentation in the Nemadji River Basin*. Nemadji River Basin Project.
- Natural Resources Conservation Service and U.S. Forest Service. 1998b. *Bear Creek Watershed*, Watershed Plan and Environmental Assessment. Public Law 83-566.
- Natural Resources Conservation Service, U.S. Forest Service and Minnesota Pollution Control Agency. 1996. *Watershed Plan and Environmental Assessment*. Whitewater River Watershed Project.
- Odgaard, A.J. 1984. *Bank Erosion Contribution to Stream Sediment Load*. Iowa Institute of Hydraulic Research. The University of Iowa. IIHR Report No. 280.
- Riedel, M.S., Verry, E.S. and K.N. Brooks. 2002. *Land use impacts on fluvial processes in the Nemadji River watershed*. Hydrological Science and Technology. 18(1-4):197-205.
- Sekely, A.C., Mulla, D.J. and D.W. Bauer. 2002. Streambank slumping and its contribution to the phosphorus and suspended sediment loads of the Blue Earth River, Minnesota. Journal of Soil and Water Conservation. 57(5):243-250.
- Simon, A. 1989a. *The discharge of sediment in channelized alluvial streams*. Water Resources Bulletin. 25(6): 1177-1188.
- Simon, A. 1994. Gradation Processes and Channel Evolution in Modified West Tennessee Streams: Process, Response, and Form. U.S. Geological Survey Professional Paper 1470.
- Simon, A., Dickerson, W., and A. Heins. 2003. Suspended-sediment transport rates at the 1.5-year recurrence interval for ecoregions of the United States: transport conditions at the bankfull and effective discharge? Geomorphology: Article in Press.
- Simon, A., and C.R. Hupp. 1986. *Channel evolution in modified Tennessee channels*. Fourth Federal Interagency Sedimentation Conference. Las Vegas, Nevada. March 24-27, 1986. Vol.2, pp. 5-71 to 5-82.
- Simon, A., R. Kuhnle, S. Knight, and W. Dickerson. 2001. "Reference" and enhanced rates of suspended-sediment transport for use in developing clean-sediment TMDL's: Examples from Mississippi and the Southeastern United States. USDA-Agricultural Research Service, National Sedimentation Laboratory.
- Simon, A., and M. Rinaldi. 2000. *Channel instability in the loess area of the Midwestern U.S.*Journal of the American Water Resources Association. 36(1): 133-150.
- Syvitski, J.P., Morehead, M.D., Bahr, D.B. and T. Mulder. 2000. *Estimating fluvial sediment transport: The rating parameters*. Water Resources Research. 36(9):2747-2760.
- Tetra Tech, Inc. 2002. Minnesota River Basin Model: Model Calibration and Validation Report (Revised Draft). Prepared for the Minnesota Pollution Control Agency.
- Thoma, D.P. 2003. Management impacts and remote sensing applications for water quality assessment. PhD Thesis. University of Minnesota, Minneapolis, Minnesota.
- Tornes, L.H. 1986. *Suspended sediment in Minnesota streams*. U.S. Geological Survey. Water-Resources Investigations Report 85-4312. St. Paul, MN.
- Turcios, L.M. and J.R. Gray. 2001. *U.S. Geological Survey sediment and ancillary data on the world wide web.* Seventh Federal Interagency Sedimentation Conference. Reno, NV.

Wolman, M.G. and J.P. Miller. 1960. *Magnitude and frequency of forces in geomorphic processes*. Journal of Geology. 68(1):54-74.

ISTS/Unsewered Communities

- Barr Engineering Company (Barr). 2003. Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Point Sources Technical Memorandum. Prepared for Minnesota Pollution Control Agency.
- ENSR. 2003. Inputs of phosphorus to aquatic systems from machine dishwashing detergents: an analysis of measured and potential loading. Prepared for the Soap and Detergent Association.
- Kellogg, D.Q., L. Joubert, and A. Gold. 1995. MANAGE: a Method for Assessment, Nutrient-loading, and Geographic Evaluation of nonpoint pollution. Draft Nutrient Loading Component. University of Rhode Island, Kingston, RI.
- Metropolitan Council, 1997. Boundaries of the sewersheds for the Twin Cities metropolitan area. Downloaded from http://www.datafinder.org/
- Minnesota Department of Transportation, Basemap. Civil Townships, Municipalities. Downloaded from http://www.dot.state.mn.us/tda/basemap/index.html
- MPCA. 1994. *Minnesota River Assessment Project (MRAP) Report*. Report to the Legislative Commission on Minnesota Resources.
- MPCA. 2002a. Regional Total Maximum Daily Load Evaluation of Fecal Coliform Bacteria Impairments in the Lower Mississippi River Basin in Minnesota.
- MPCA. 2002b. Spreadsheet showing 2002 reported values for ISTS for all LUGs which have an ISTS ordinance.
- MPCA. 2003a. Spreadsheet listing unsewered communities in Minnesota.
- MPCA. 2003b. Implementation Plan. Regional Total Maximum Daily Load Study of Fecal Coliform Bacteria Impairments in the Lower Mississippi River Basin of Southeast Minnesota.
- Reckhow, K.H. and J.T. Simpson. 1980. A procedure using modeling and error analysis for the prediction of lake phosphorus concentration from land use information. Can.J.Fish.Aq.Sci. 37(9): 1439-1448.
- Tetra Tech, Inc. 2002. *Minnesota River Basin Model, Model Calibration and Validation Report*. Prepared for Minnesota Pollution Control Agency.
- Unites States Census Bureau. 1990. Census of Population and Housing.
- Unites States Census Bureau. 2000. Census of Population and Housing.
- United States Environmental Protection Agency (EPA). 2002. *Oniste Wastewater Treatment Systems Manual*. Office of Water, Office of Research and Development. EPA/625/R-00/008.
- Viraraghavan, T. and R.G. Warnock. 1975. *Treatment efficiency of a septic tile system.* In Proc. National Home Sewage Disposal Symposium, ASAE., St. Joseph, MI. pp. 48-57.

Non-Agricultural Rural Runoff

- Almendinger, J.E., Schottler, S.P. and Thommes, K.E. 1999. Monitoring and modeling Valley Creek Watershed: 3. Surface-water hydrology. Final project Report to the Legislative Commission on Minnesota Reosurces. St. Croix Watershed Research Station, Science Museum of Minnesota.
- Bailey, R.G. 1980. Description of ecoregions of the United States. U.S. Department of Agriculture, Miscellaneous Publication No. 1391.
- Bannerman, R.T. 2003. Personal communications, October 7, 2003.
- Barr Engineering Company. 2003a. Draft Detailed Assessment of Phosphorus Sources to Minnesota Watersheds Urban Runoff. Prepared for the Minnesota Pollution Control Agency.
- Barr Engineering Company. 2003b. Draft Basin Hydrology Technical Memorandum. Prepared for the Minnesota Pollution Control Agency
- Beaulac, M. N., and Reckhow, K. H. 1982. An examination of land use-nutrient export relationships. Water Resour. Bull. 18(6):1013-24.
- Binkley, D. 2001. Patterns and processes of variation in nitrogen and phosphorus concentrations in forested streams. National Council for Air and Stream Improvement, Technical Bulletin #836. Research Triangle Park, NC.
- Birr, A.S. and Mulla, D.J. 2001. Evaluation of the phosphorus index in watersheds at the regional scale. J. Environ. Qual. 30:2018-2025.
- Boelter, D.H. and Verry, E.S. 1977. Peatland and water in the northern Lake States. General Technical Report NC-31, US Department of Agriculture Forest Service, St. Paul, MN.
- Borkholder, B.D., A.J. Edwards, and D.J. Vogt. 1999. Biological, physical, and chemical characteristics of the Cloquet River from the Island Lake Dam to the St. Louis River, 1996 1998. Fond du Lac Reservation Resource Management Technical Report, No. 26. Cloquet, MN.
- Bourne, A., N. Armstrong, and G. Jones. 2002. A preliminary estimate of total nitrogen and total phosphorus loading to streams in Manitoba, Canada. Water Quality Management Section. Manitoba Conservation Report No. 2002 04.
- Brooks, K.N., Ffolliott, P.F., Gregersen, H.M. and DeBano. L.F. 2003. *Hydrology and the Management of Watersheds, Third Edition*. Iowa Sate Press, Ames. IA.
- Bundy, L.G. 1998. A Phosphorus Budget for Wisconsin Cropland. A report submitted to The Wisconsin Department of Natural Resources & the Wisconsin Department of Agriculture, Trade & Consumer Protection. Prepared by the Department of Soil Science, University of Wisconsin. http://ipcm.wisc.edu/pubs/pdf/pbudget.pdf
- Brye, K.R., Norman, J.M., and Gower, S.T. 2002. The fate of nutrients following three- and six-year burn intervals in a tallgrass prairie restoration in Wisconsin. Am. Midl. Nat. 148:28-42.
- Brye, K.R., Andraski, T.W., Jarrell, W.M., Bundy, L.G. and Norman, J.M. 2002. Phosphorus leaching from a restored tallgrass prairie and corn agroecosystems. J. Environ. Qual. 31:769-781
- Brye, K.R., Norman, J.M., Bundy, L.G. and Gower, S.T. 2000. Water-budget evaluation of prairie and maize ecosystems. Soil. Sci. Soc. Am. J. 64:715-724.
- Burke, I. C., Schimel, D. S., Yonker, C. M., Parton, W. J., Joyce, L. A. and Lauenroth, W.K. 1990. Regional modeling of grassland biogeochemistry using GIS. Landscape Ecology 4:45-54.

- Cammermeyer. J., Conrecode, P., Hansen, J., Kwan, P. and Maupin, M., 1999. Phosphorus Flux Spatial Model Group. Student Paper Urbanization, Water Resources & Lake Water Quality in the Seattle area. University of Washington CEWA 599/ZOO 572. http://courses.washington.edu/cewa599c/paper2.html
- Chambers, P. A and A. R. Dale. 1997. Contribution of industrial, municipal, agricultural and groundwater sources to nutrient export, Athabasca, Wapiti and Smoky rivers, 1980 to 1993. Northern River Basins Study, Edmonton AB.
- Clark, G. M., Mueller, D. K. and Mast, M.A. 2000. Nutrient concentrations and yields in undeveloped stream basins of the United States. *Journal of the American Water Resources Association* 36(4):849-860. http://water.usgs.gov/nawqa/nutrients/pubs/awra_v36_no4/report.pdf
- Cleseri N. L., S. J. Curran, and R. I. Sedlak 1986a. Nutrient loads to Wisconsin lakes: Part I. Nitrogen and P-export coefficients. Water Resour. Bull. 22(6):983-990.
- Cleseri N. L., S. J. Curran, and R. I. Sedlak 1986b. Nutrient loads to Wisconsin lakes: Part II. Relative importance of nutrient sources. Water Resour. Bull. 22(6):991-1000.
- Cole, J.T., Baird, J.H., Basta, N.T., Huhnke, R.L., Strom, D.E., Johnson, G.V., Payton, M.D., Smolen, M.D., Martin, D.L., and Cole, J.C. 1997. Influence of buffers on pesticide and nutrient runoff from Bermudagrass turf. J. Environ. Qual. 26:1589-1598.
- Correll, D. L., Jordan, T.E. and Weller, D.E. 1999. Transport of nitrogen and phosphorus from Rhode River watersheds during storm events. Wat. Res. Research 35(8):2513–2521.
- Corsi, S.R., Graczyk, D.J., Owens, D.W. and Bannerman, R.T. 1997. Unit-area loads of suspended sediment, suspended solids, and total phosphorus from small watersheds in Wisconsin. USGS Fact Sheet FS-195-97.
- Devito, K.J., I.F. Creed. R.L. Rothwell and E.E. Prepas. 2000. Landscape controls on phosphorus loading to boreal lakes: implications for future impacts of forest harvesting. Canadian Journal of Fisheries and Aquatic Sciences 57(10):1977-1984.
- Dodds, W.K., Blair, J.M., Henebry, G.M., Koelliker, J.K., Ramundo, R., Tate, C.M. 1996. Nitrogen transport from tallgrass prairie watersheds. Journal of Environmental Quality 25:973-981.
- Dunne, T., J. Agee, S. Beissinger, W. Dietrich, D. Gray, M. Power, V. Resh, and D. Rodrigues. 2001. A scientific basis for the prediction of cumulative watershed effects. University of California, Wildland Resources Center, Berkeley, CA.
- Fallon, J.D. and McNellis, R.P. 2000. Nutrients and suspended sediment in snowmelt runoff from part of the Upper Mississippi River Basin, Minnesota and Wisconsin, 1997. USGS Water Resource Investigation Report 00-4165. Mounds View, MN.
- Fisher, T.R., Lee, K.Y., Berndt, H., Benitez, J.A. and Norton, M.M., 1998. Hydrology and chemistry of the Choptank river basin. Water Air and Soil Pollution 105: 387–397.
- Frink, C.R. 1991. Estimating nutrient exports to estuaries. Journal of Environmental Quality 20:717-724.
- Heiskary, S.A., Wilson, C.B. and Larsen, D.P. 1987. Analysis of regional patterns in lake water quality: Using ecoregions for lake management in Minnesota. Lake and Reservoir Management 3:337-344.
- Hernandez, M., W.G. Kepner, D.J. Semmens, D.W. Ebert, D.C. Goodrich and S.N. Miller. 2003. Integrating a landscape/hydrologic analysis for watershed assessment. The First Interagency conference on Research in the Watersheds. October 2003, Benson, AZ.

- Hewlett, J.D. and J.D. Helvey. 1975. Effects of forest clear-felling on the storm hydrograph. Water Resources Research 6(3):768-782.
- Holechek, J.L., R.D. Piper and C.H. Herbal. 1995. Range management: principles and practices. 2nd edition. Prentice Hall, Englewood Cliffs, New Jersey.
- Johnes, P.J. 1996. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modeling approach. Journal of Hydrology 183:323-349.
- Johnson, L.B. and Gage, S.H., 1997. Landscape approaches to the analysis of aquatic ecosystems. Freshwater Biology 37:113-132. http://colargol.ibg.uit.no/biologi/botanikk/lennart/GIS-kurs/pdf/Artkl9.pdf
- Johnson, L.B., Richards, C., Host, G. and Arthur, J.W., 1997. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology 37:193-208. http://landscape.forest.wisc.edu/courses/readings/Johnson_etal1997.pdf
- Jones, K.B., Neale, A.C., Nash, M.S., van Remortel, R.D., Wickham, J.D., Riitters, K.H. and O'Neill, R.V. 2001. Predicting nutrient and sediment loadings to streams from landscape metrics: A multiple watershed study from the United States Mid-Atlantic Region. Landscape Ecology 16: 301-312.
- Knighton, M.D and Steigler, J.H. 1980. Phosphorus releases following clearcutting of a black spruce fen and a black spruce bog. In: 6th International Peat Congress. 577-583.
- Lassevils, J.F. and Berrux, D. 2000. Sources of phosphorus to surface waters: comparing calculated with measured P loadings for three French Rivers. Prepared for CEEP by Geoplus Consultants, Drome, France.
- Leach, M.K. and Givnish, T.J. 1999. Gradients in the composition, structure, and diversity of remnant oak savannas in southern Wisconsin. Ecological Monographs 69(3):353-374.
- Leete, J.H. (1986). Sediment and phosphorus load to streamflow from natural and disturbed watersheds in northeastern Minnesota. Ph.D. Thesis, University of Minnesota, Minneapolis, MN.
- Martin, C.W. J.W. Hornbeck, G.E. Likens and D.C. Buso. 2000. Impacts of intensive harvesting on hydrology and nutrient dynamics of northern hardwood forests. Canadian Journal of Fisheries and Aquatic Sciences 57(S2):19-29.
- Mattson, M.D. and R.A. Isaac. 1999. Calibration of phosphorus export coefficients for total maximum daily loads of Massachusetts lakes. Journal of Lake and Reservoir Management 15(3):209-219.
- McCollor, S. and Heiskary, S. 1993. Selected water quality characteristics of minimally impacted streams from Minnesota's seven ecoregions. Minnesota Pollution control Agency, Water Quality Division, St. Paul, MN.
- McDowell, R., Sharpley, A., and Folmar, G., 2001. Phosphorus export from an agricultural watershed: Linking source and transport mechanisms, J. Environ. Qual. 30:1587-1595. http://jeq.scijournals.org/cgi/reprint/30/5/1587.pdf
- McFarland, A.M.S. and L.M. Hauck. 2001. Determining nutrient export coefficients and source loading uncertainty using in-stream monitoring data. Journal of the American Water Resources Association. 37:223-236.
- McFarland, A.M.S. and L.M. Hauck. 1998. Determining nutrient contribution by land use for the Upper North Bosque River Watershed. Texas Institute foe Applied Environmental Research, Stephenville, TX.

- McMahon, G., Gregonis, S.M., Waltman, S.W., Omernik, J.M., Thorson, T.D., Freeouf, J.A., Rorick, A.H., and Keys, J.E. 2001. Developing a spatial framework of common ecological regions for the conterminous United States. Environmental Management. 28:3, 293-316.
- Meeuwig, J.J. and R.H. Peters Circumventing phosphorus in lake management: a comparison of chlorophyll *a* predictions from land-use and phosphorus-loading models. Canadian Journal of Fisheries and Aquatic Sciences (53):1795-1806
- Menzel, R.G., Rhoades, E.D., Olness, A.E. and Smith, S.J. 1978. Variability of annual nutrient and sediment discharges in runoff from Oklahoma cropland and rangeland. J. Environ. Qual. 7:401-406.
- Metcalfe, R.A. and Butle, J.M. 1999. Semi-disturbed water balance dynamics in a small boreal forest basin. Journal of Hydrology 226:66-87.
- Metropolitan Council Environmental Services. 2003. Metropolitan Council Environmental Services 2001 Stream Monitoring Report. Metropolitan Council Environmental Services, Environmental Quality Assurance Department, St. Paul MN.
- Meyer, J.L. and G.E. Likens. 1979. Transport and transformation of phosphorus in a forest stream ecosystem. Ecology 60(6):1255-1269.
- Minnesota Department of Natural Resources. 1993. Minnesota's Native Vegetation: A Key to Natural Communities (Version 1.5). MN DNR, Natural Heritage Program. St. Paul, MN. http://files.dnr.state.mn.us/ecological_services/nhnrp/nckey.pdf
- Minnesota Pollution Control Agency. 2003. Comparison of typical Minnesota water quality conditions. Water Quality/Surface Water #1.02, July 2003. Minnesota Pollution Control Agency, St. Paul, MN. http://www.pca.state.mn.us/publications/wq-s1-02.pdf
- Minnesota Pollution Control Agency. 2003a. An assessment of representative Lake Superior basin tributaries 2002. Minnesota Pollution Control Agency, St. Paul, MN
- Naiman, R.J. and Descamps, H. 1997. The ecology of interfaces: Riparian zones. Annual Review of ecology and Systematics 28:621-658.
- National Council for Air and Stream Improvement, Inc. (NCASI). 1994. Forests as non-point sources of pollution and effectiveness of best management practices. Technical Bulletin No. 672. Research Triangle Park, NC: National Council for Air and Stream Improvement, Inc. http://www.ncasi.org/forestry/research/watershed/tb672.pdf
- Novotny, V. and G. Chesters. 1989. Delivery of sediment and pollutants from nonpoint sources: A water quality perspective. Journal of Soil and Water Conservation 44:568-576.
- Olness A., Rhodes, E.D., Smith S.J. and Menzel, R.G. 1980. Fertilizer nutrient losses from rangeland watersheds in central Oklahoma. J. Environ. Quality 9(1):81-85.
- Omernik, J. M. 1977. The influence of land use on stream nutrient levels. United States Environmental Protection Agency, Ecol. Res. Series. EPA-600/3-7-104.
- Omernik, J. M. 1977. Nonpoint source-stream nutrient level relationships: a nationwide study. U.S. United States Environmental Protection Agency, Ecol. Res. Series. EPA-600/3-77-105.
- Omernik, J. M. 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77:118-125.
- Omernik, J. M. 1995. Ecoregions: A spatial framework for environmental management. In: Davis, W.S. and Simon, T.P. 1995. Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. CRC Press, Inc. Boca Raton, Florida.

- Omernik, J.M., 2000, Draft aggregations of Level III eco-regions for the National Nutrient Strategy. National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency. http://www.epa.gov/ost/standards/ecomap.html.
- Omernik, J.M. and Bailey, R.G. 1997. Distinguishing between watersheds and ecoregions. Journal of the American Water Resources Association. 33:5. pp. 935-949.
- Omernik, J.M. and A.L. Gallant. 1988. Ecoregions of the upper Midwest States. USEPA, ERL, Corvallis, OR. EPA/ 600/3-88/037
- Osborne, L.L. and Kovacic, D.D. 1993. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology 29:243-258.
- Panuska, John C. and Richard A. Lillie. 1995. Phosphorus loadings from Wisconsin watersheds: Recommended phosphorus export coefficients for agricultural and forested watersheds. Research Management Findings, Number 38. Wisconsin Department of Natural Resources.
- Perkins, W. W., Welch, E. B., Frodge, J. and Hubbard, T. 1997. A zero degree of freedom total phosphorus model; 2. Application to Lake Sammamish, Washington. Lake and Reservoir Management Volume 13(2):131-141.
- Peterjohn, W.T. and D.L. Correll. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65(5):1466-1475.
- Reckhow, K.H., M.N. Beaulac, and J.T. Simpson. 1980. Modeling phosphorus loading and lake response under uncertainty: A manual and compilation of export coefficients. U.S. Environmental Protection Agency, Washington, D.C. EPA 440/5-80-011.
- Richards, C., Johnson, L.B. and Host, G.E. 1996. Landscape-scale influences on stream habitats and biota. Canadian Journal of Fish. Agaut. Sci. 53(Suppl. 1):295-311.
- Richards, C., White, M., Axler, R., Hershey, A. and Schomberg, J. 2001. Simulating effects of landscape composition and structure on stream water quality in forested watersheds. Verh. Internat. Limnol. 27:3561-3565.
- Roberson, T., L.G. Bundy, and T. W. Andraski, 2003. Phosphorus runoff losses from alfalfa. 2003 Wisconsin Fertilizer, Aglime, and Pest Management Conference. http://www.soils.wisc.edu/extension/FAPM/2003proceedings/Bundy-2.pdf
- Robertson, D. M. and E. D. Roerish, Influence of various water quality sampling strategies on load estimates for small streams, Water Resour. Res., 35(12), 3747-3759, 1999.
- Robertson, D. M. and Richards, K. D., 2000. Influence of different temporal sampling strategies on estimating loads and maximum concentrations in small streams. Conference Proceedings NWQMC National Monitoring Conference. http://www.nwqmc.org/2000proceeding/papers/pap_porterfield.pdf
- Roth, N.E., Allan, J.D. and Erickson, D.L. 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11(3):141-156.
- Sartz, R.S. 1969. Effects of watershed cover on overland flow from a major storm in southwestern Wisconsin. Research Note NC-82, US Department of Agriculture Forest Service, St. Paul, MN.
- Sartz, R.S. 1971. Storm flow form dual-use watersheds in south-western Wisconsin. Research Paper NC-69, US Department of Agriculture Forest Service, St. Paul, MN. http://www.ncrs.fs.fed.us/pubs/rp/rp_nc069.pdf
- Sartz, R.S., Curtis, W.R. and Tolsted, D.N. 1977. Hydrology of small watersheds in Wisconsin's Driftless Area. Water Resourc. Res. 13(3):524-530.

- Sartz, R.S. and Tolsted, D.N. 1976. Snowmelt runoff from planted conifers in southwestern Wisconsin. Research Note NC-205, US Department of Agriculture Forest Service, St. Paul, MN.
- Schmitt, T.J., Dosskey, M.G. and Hoaglund, K.D. 1999. Filter Strip performance and processes for different vegetation, widths, and contaminants. J. Environ. Quality 28:1479-1489.
- Scott, C.A., Walter, M.F., Nagle, G.N., Walter, M.T., Sierra, N.V. and Brooks, E.S. 2001. Residual phosphorus in runoff from successional forest on abandoned agricultural land: 1. Biogeochemical and hydrologic process. Biogeochemistry 55:293-309.
- Sharpley, A.N., T.C. Daniel, and D.R. Edwards. 1993. Phosphorus movement in the landscape. J. Prod. Agric.6:492-500.
- Seltzer, N. and D. Wang. 2000. The importance of hydric soils and near-lake areas as phosphorus source areas in the Lake Champlain Basin: Evidence from a landscape-scale model. University of Vermont, School of Natural Reosurces.
- Shjeflo, J.B. 1968. Evapotranspiration and the water budget of prairie potholes in North Dakota. Geological Survey Professional Paper 585-B.
- Singer, M.J., and R.H. Rust. 1975. Phosphorus in surface runoff from a deciduous forest. J. Environ. Qual. 4:307-311.
- Soil Conservation Service, 1986. Urban Hydrology for Small Watersheds. Technical Release 55. US Department of Agriculture, Soil Conservation Service Engineering Division.
- Soranno, P.A., S.L. Hubler, S.R. Carpenter, and R.C. Lathrop. 1996. Phosphorus loads to surface waters: a simple model to account for spatial pattern. Ecological Applications 6(3):865-878.
- St. Onge, P.D., J. Klaff, R. Carignan and R.H. Peters. (in press). The forest is more than trees: The effect of clear cutting on whole-lake hypolimnetic oxygen deficits in remote Canadian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences. Manuscript submission.
- Stark, J.R., P.E. Hanson, R.M. Goldstein, J.D. Fallon, A.L. Fong, K.E. Lee, S.E. Kroening, and W.J. Andrews. 1999. Water quality in the Upper Mississippi River Basin, Minnesota, Wisconsin, South Dakota, Iowa, and North Dakota, 1995–98. USGS Water Resources Circular 1211. http://water.usgs.gov/pubs/circ/circ1211/pdf/circular1211.pdf
- Steegen, A., Govers, G., Takken, I. Nachtergaele, J., Poesen, J. and Merckx, R. 2001. Factors controlling sediment and phosphorus export from two Belgian agricultural catchments. J. Environ. Qual. 30:1249-1258.
- Tester, J.R. 1995. Minnesota's Natural Heritage. University of Minnesota Press, Minneapolis, MN.
- Timmons, D.R., and Holt, R.F. 1977. Nutrient losses in surface runoff from a native prairie. Journal of Environmental Quality 4(6): 369-73.
- Tornes, L.H., Brigham, M.E. and Lorenz, D.L. 1997. Nutrients, suspended sediment, and pesticides in streams of the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1993-1995. U.S. Geological Survey Water-Resources Investigations Report 97-4053. Mounds View, MN.
- Tufford, D.L., H.N. McKellar, Jr., and J.R. Hussey. 1998. In-stream nonpoint source nutrient prediction with land-use proximity and seasonality. Journal of Environmental Quality 27:100-111.

- US Army Corps of Engineers. 2001. The WES handbook on water quality enhancement techniques for reservoirs and tailwaters. US Army Engineer Research and Development Center, Waterways Experiment Station Vicksburg, MS.
- US EPA. 2000a. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria: Lakes and Reservoirs in Nutrient Ecoregion VI Corn Belt and Northern Great Plains. United States Environmental Protection Agency, Office of Water. EPA 822-B-00-008.
- US EPA. 2000b. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria: Lakes and Reservoirs in Nutrient Ecoregion VII Mostly Glaciated Dairy Region. United States Environmental Protection Agency, Office of Water. EPA 822-B-00-009.
- US EPA. 2000c. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria: Lakes and Reservoirs in Nutrient Ecoregion VIII Nutrient Poor Largely Glaciated Upper Midwest and Northeast. United States Environmental Protection Agency, Office of Water. EPA 822-B-00-010.
- U.S. EPA. 2000d. Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs, U.S. Environmental Protection Agency, Washington, DC. EPA-822-B00-001.
- U.S. EPA. 2000e. Nutrient Criteria Technical Guidance Manual: Rivers and Streams, U.S. Environmental Protection Agency, Washington, DC. EPA-822-B00-002.
- Vaithiyanathan, P., and D.L. Correll. 1992. The Rhode River Watershed: Phosphorus distribution and export in forest and agricultural soils. J. Environ. Qual. 21:280-288.
- Valley Branch Watershed District. 2002. Valley Creek Subwatershed Plan. Developed by the Valley Branch Subwatershed Advisory Committee.
- Verry, E.S. 1976. Estimating water yield difference between hardwood and pine forests: an application of net precipitation data. Research Paper NC-128, US Department of Agriculture Forest Service, St. Paul, MN.
- Verry, E.S. 1969. Water storage and related physical characteristics of four mineral soils in north central Minnesota. Research Note NC-78, US Department of Agriculture Forest Service, St. Paul, MN.
- Vogelmann, J.E., S.M. Howard, L. Yang, C.R. Larson, B.K. Wylie, N. Van Driel, 2001. Completion of the 1990s National Land Cover Data Set for the Conterminous United States from Landsat Thematic Mapper Data and Ancillary Data Sources. Photogrammetric Engineering and Remote Sensing, 67:650-652. http://landcover.usgs.gov/nationallandcover.asp
- Wickham, James D.; Wade, Timothy G.; Riitters, Kurt H.; O'Neill, R.V.; Smith, Jonathan H.; Smith, Elizabeth R.; Jones, K.B.; Neale, A.C, 2003. Upstream-to-downstream changes in nutrient export risk. Landscape Ecology 18:195-208. http://www.srs.fs.usda.gov/pubs/ja/ja_wickham003.pdf
- Wilson, C.B. 2003. Personal communications, various dates October 2003. Minnesota Pollution Control Agency.
- Wilson, C.B. and Walker, Jr., W.W. 1989. Development of lake assessment methods based upon the aquatic ecoregion concept. Lake and Reservoir Management 5(2):11-22.
- Winter, T.C., and Carr, M.R., 1980, Hydrologic setting of wetlands in the Cottonwood Lake area, Stutsman County, North Dakota: U.S. Geological Survey Water-Resources Investigations 80-99
- Winter, T.C., Rosenberry, D.O., Buso, D.C. and Merk, D.A. 2001. Water source to four U.S. wetlands: Implications for wetland management. Wetlands 21(4):462-473.

- Winter, T.C. and Rosenberry, D.O. 1995. The interaction of ground water with prairie pothole wetlands in the Cottonwood Lake area, east-central North Dakota. Wetlands 15(3):193-211.
- Winter, T.C. and Rosenberry, D.O. 1998. Hydrology of prairie pothole wetlands during drought and deluge: a 17-year study of the Cottonwood Lake wetland complex in North Dakota in the perspective of longer term measured and proxy hydrologic records. Climatic Change 40:189-209.
- Wotzka, P.J. 2003. Personal communications, various dates October 2003. Minnesota Department of Agriculture.
- Worrall, F. and T.P. Burt. 1999. The impact of land-use change on water quality at the catchment scale: the use of export coefficient and structural models. *Journal of Hydrology*. 221(1): 5-90.
- York M. T. Auer, S. M. Doeer, S. W. Effler and E. M. Owens, 1997. A zero degree of freedom total phosphorus model; 1. Development for Onondaga Lake, New York. Lake and Reservoir Management Volume 13(2):118-130.
- Zapp, M.J. and Almendinger, J.E. 2001. Nutrient dynamics and water quality of Valley Creek, a high-quality trout stream in southeastern Washington County. Final Project Report to the Valley Branch Watershed District.
- Zielinski, J. 2002. Watershed Vulnerability Analysis. Center for Watershed Protection, Ellicott City, MD.

Urban Runoff

- Bannerman, R.T., A.D. Legg, and S.R. Greb, 1996. Quality of Wisconsin Stormwater, 1991-94. Open-File Report 96-458. . US Geological Survey, Madison, WI.
- Bannerman, R.T., K. Baun, and M. Bohn, 1983. Evaluation of urban nonpoint source pollution management in Milwaukee County, Wisconsin. Prepared for US EPA Region V by the Wisconsin Department of Natural Resources, Madison, WI.
- Bannerman, R.T., R. Dodds, D. Owens, and P. Hughes, 1992. Sources of pollutants in Wisconsin stormwater. Wisconsin Department of Natural Resources, Madison, WI.
- Barr Engineering Company. 1992. Minneapolis Chain of Lakes Clean Water Partnership Project Stormwater Monitoring Study. Prepared for the Minneapolis Park and Recreation Board.
- Barr Engineering Company. 2003a. Detailed Assessment of Phosphorus Sources to Minnesota Watersheds Non-Agricultural Rural Runoff. Prepared for the Minnesota Pollution Control Agency.
- Barr Engineering Company. 2003b. Basin Hydrology Technical Memorandum. Prepared for the Minnesota Pollution Control Agency
- Barr Engineering Company. 2003d. Water quality and sediment composition study of the Lake Madison Watershed and Bourne Slough. Prepared for the Lake County Watershed Improvement Project, Madison, SD.
- Barr Engineering Company. 2003e. Tanners Lake CIP Performance Evaluation. Prepared for Ramsey-Washington Metro Watershed District.

- Barr Engineering Company. 1993. Diagnostic/feasibility study of water quality problems and restorative measures for Tanner's Lake. Prepared for the Ramsey Washington Metro Watershed District.
- Barten, J. 1995. Quantity and quality of runoff from four golf courses in the twin cities metropolitan area. Suburban Hennepin Regional Park District. Report to the Legislative Commission on Minnesota Resources.
- Barten, J., 1994. Fish Lake Pond monitoring results. Report prepared for the Elm Creek Watershed Management Commission. Hennepin Parks, Maple Plain, MN.
- Barth, C.A., 1995. Nutrient movement from the lawn to the stream. Watershed Protection Techniques 2(1):239-246
- Barth, C.A., 1995a. The peculiarities of perviousness. Watershed Protection Techniques 2(1):233-238
- Beaulac, M. N., and Reckhow, K. H. 1982. An examination of land use-nutrient export relationships. Water Resour. Bull. 18(6):1013-24.
- Booth, D. B. 2000. Forest cover, impervious surface are, and the mitigation of urbanization impacts in King County, Washington. Center for Urban Water Resources Management, University of Washington, Seattle, WA.
- Brach, J., 1989. Protecting Water Quality in Urban Areas. Report prepared for the Minnesota Pollution Control Agency.
- Brezonik, P.L., R.A. Osgood, L. Olmanson, E. Day, L. Hatch, J. Doyle, J.A. Perry, M. Bauer, E. MacBeth, and T. Anderle. 2002. Cumulative Impacts of Development on Lakes in the North Central Hardwood Forest Ecoregion of Minnesota: An Exploratory Study. University of Minnesota, Water Resources Center Technical Report 144.
- Brooks, K.N., Ffolliott, P.F., Gregersen, H.M. and DeBano. L.F. 2003. Hydrology and the Management of Watersheds, Third Edition. Iowa Sate Press, Ames. IA.
- Brush, S.W., M.E. Jennings, P.J. Young and H.C. McWreath, 1994. NPDES monitoring -- Dallas-Fort Worth, Texas Area. In: B. Urbonas, 1994. Stormwater NPDES Related Monitoring Needs Conference Proceedings. Engineering Foundation Conference, Crested Butte, CO.
- Brye, K.R., Norman, J.M., and Gower, S.T. 2002. The fate of nutrients following three- and six-year burn intervals in a tallgrass prairie restoration in Wisconsin. Am. Midl. Nat. 148:28-42.
- Brye, K.R., Norman, J.M., Bundy, L.G. and Gower, S.T. 2000. Water-budget evaluation of prairie and maize ecosystems. Soil. Sci. Soc. Am. J. 64:715-724.
- Cammermeyer. J., Conrecode, P., Hansen, J., Kwan, P. and Maupin, M., 1999. Phosphorus Flux Spatial Model Group. Student Paper Urbanization, Water Resources & Lake Water Quality in the Seattle area. University of Washington CEWA 599/ZOO 572. http://courses.washington.edu/cewa599c/paper2.html
- Caraco, D., Claytor, R. and Zielinski, J. 1998. Nutrient Loading from Conventional and Innovative Site Development. Prepared for Chesapeake Research Consortium. Center for Watershed Protection, Ellicott City, MD.
- Cave, K.A. and L.A. Roesner, 1994. Overview of stormwater monitoring needs. In: B. Urbonas, 1994. Stormwater NPDES Related Monitoring Needs Conference Proceedings. Engineering Foundation Conference, Crested Butte, CO.

- Center for Watershed Protection. 2003. Impacts of Impervious Cover on Aquatic Systems. Watershed Protection Research Monograph No. 1. Center for Watershed Protection, Ellicott City, MD.
- Central Iowa Committee. 2002. Iowa Statewide Urban Design Standards Manual. Iowa State University, Center for Transportation Research, Ames, IA.
- City of Eagan. 1995. Diagnostic/feasibility study of Fish Lake, Eagan, MN.
- City of Minneapolis, 1992. NPDES Permit Application for discharges from Municipal Separate Storm Sewer Systems Part 2. Prepared By Minneapolis Public Works Department for the Minnesota Pollution Control Agency.
- Clesceri N. L., S. J. Curran, and R. I. Sedlak 1986a. Nutrient loads to Wisconsin lakes: Part I. Nitrogen and P-export coefficients. Water Resour. Bull. 22(6):983-990.
- Clesceri N. L., S. J. Curran, and R. I. Sedlak 1986b. Nutrient loads to Wisconsin lakes: Part II. Relative importance of nutrient sources. Water Resour. Bull. 22(6):991-1000.
- Cole, J.T., Baird, J.H., Basta, N.T., Huhnke, R.L., Strom, D.E., Johnson, G.V., Payton, M.D., Smolen, M.D., Martin, D.L., and Cole, J.C. 1997. Influence of buffers on pesticide and nutrient runoff from Bermudagrass turf. J. Environ. Qual. 26:1589-1598.
- Correll, D. L., Jordan, T.E. and Weller, D.E. 1999. Transport of nitrogen and phosphorus from Rhode River watersheds during storm events. Wat. Res. Research 35(8):2513–2521.
- Corsi, S.R., Graczyk, D.J., Owens, D.W. and Bannerman, R.T. 1997. Unit-area loads of suspended sediment, suspended solids, and total phosphorus from small watersheds in Wisconsin. USGS Fact Sheet FS-195-97. US Geological Survey, Middleton, WI.
- Dane County Regional Planning Commission, 1992. Yahara-Monona Priority Watershed Plan. Madison, WI.
- Dindorf, C.J., 1992. Toxic and Hazardous Substances in Urban Runoff. Hennepin Conservation District, Minnetonka, MN.
- Driver, N.E. and Tasker, G.D. 1990. Techniques for estimation of storm-runoff loads, volumes, and selected constituent concentrations in urban watersheds in the United States. USGS Water-Supply Paper 2363.
- Dunne, T., J. Agee, S. Beissinger, W. Dietrich, D. Gray, M. Power, V. Resh, and D. Rodrigues. 2001. A scientific basis for the prediction of cumulative watershed effects. University of California, Wildland Resources Center, Berkeley, CA.
- Erdich, L.P. 1991. Characterization of urban runoff in the Fargo-Moorhead area. Masters Thesis, North Dakota State University, Fargo, ND.
- Fallon, J.D. and McNellis, R.P. 2000. Nutrients and suspended sediment in snowmelt runoff from part of the Upper Mississippi River Basin, Minnesota and Wisconsin, 1997. USGS Water Resource Investigation Report 00-4165. Mounds View, MN.
- Fossum, K.D. and McDoniel, D.S. 1998. Comparison of NPDES program findings for selected cites in the United States. USGS Fact Sheet FS-192-97.
- Frink, C.R. 1991. Estimating nutrient exports to estuaries. Journal of Environmental Quality 20:717-724.
- Heiskary, S.A., Wilson, C.B. and Larsen, D.P. 1987. Analysis of regional patterns in lake water quality: Using ecoregions for lake management in Minnesota. Lake and Reservoir Management 3:337-344.

- Hensel, M. 2003. Personal communication. Barr Engineering Company.
- Holechek, J.L., R.D. Piper and C.H. Herbal. 1995. Range management: principles and practices. 2nd edition. Prentice Hall, Englewood Cliffs, New Jersey. 526p.
- Horner, R.R., 1992. Water quality criteria/pollutant loading estimation/treatment effectiveness estimation. In: R.W. Beck and Associates. Covington Master Drainage Plan. King County Surface Water Management Division, Seattle, WA.
- Johnson, L.B. and Gage, S.H., 1997. Landscape approaches to the analysis of aquatic ecosystems. Freshwater Biology 37:113-132. http://colargol.ibg.uit.no/biologi/botanikk/lennart/GIS-kurs/pdf/Artkl9.pdf
- Lassevils, J.F. and Berrux, D. 2000. Sources of phosphorus to surface waters: comparing calculated with measured P loadings for three French Rivers. Prepared for CEEP by Geoplus Consultants, Drome, France.
- Leete, J.H. 1986. Sediment and phosphorus load to streamflow from natural and disturbed watersheds in northeastern Minnesota. Ph.D. Thesis, University of Minnesota, Minneapolis, MN.
- Legg, A.D., R.T. Bannerman, and J. Panuska. 1996. Variation in the relation of rainfall to runoff from residential lawns in Madison, Wisconsin, July and August 1995. USGS Water-Resources Investigations Report 96-9194.
- Loehr, R.C., 1974. Characteristics and comparative magnitude of nonpoint sources. J. Water Pollution Control Fed. 46(8):1849-1872. (reported in Mulcahy, 1990).
- Marsalek, J., 1990. Evaluation of pollutant loads from urban nonpoint sources. Water Sci. Tech., 22(10/11):23-30.
- Marsalek, J., 1991. Pollutant loads in urban stormwater: Review of methods for planning level estimates. Water Resources Bulletin, 27(2):283-291.
- Mattson, M.D. and R.A. Isaac. 1999. Calibration of phosphorus export coefficients for total maximum daily loads of Massachusetts lakes. Journal of Lake and Reservoir Management 15(3):209-219.
- McFarland, A.M.S. and L.M. Hauck. 1998. Determining nutrient contribution by land use for the Upper North Bosque River Watershed. Texas Institute foe Applied Environmental Research, Stephenville, TX.
- McFarland, A.M.S. and L.M. Hauck. 2001. Determining nutrient export coefficients and source loading uncertainty using in-stream monitoring data. Journal of the American Water Resources Association. 37:223-236.
- Metropolitan Council. 2001. Minnesota Urban Small Sites BMP Manual. Prepared by Barr Engineering for Metropolitan Council Environmental Services. St. Paul, MN
- Metropolitan Council Environmental Services. 2003. Metropolitan Council Environmental Services 2001 Stream Monitoring Report. Metropolitan Council Environmental Services, Environmental Quality Assurance Department, St. Paul MN.
- Minneapolis Park and Recreation Board, 1993. Minneapolis Chain of Lakes Clean Water Partnership Project Phase I Diagnostic Report. Minneapolis Park & Recreation Board, Minneapolis, MN.
- Minneapolis Park and Recreation Board, 1997. Unpublished data.
- Minneapolis Park and Recreation Board, 2002. National Pollutant Discharge Elimination System (NPDES) Monitoring. In: 2001 Water Resources Report. Minneapolis Park & Recreation Board Environmental Operations, Minneapolis, MN.

- Minneapolis Park and Recreation Board, 2003a. National Pollutant Discharge Elimination System (NPDES) Monitoring. In: 2002 Water Resources Report. Minneapolis Park & Recreation Board Environmental Operations, Minneapolis, MN.
- Minneapolis Park and Recreation Board, 2003b. Unpublished monitoring data for the 2003 NPDES permit.
- Minnesota Pollution Control Agency. 2003. Comparison of typical Minnesota water quality conditions. Water Quality/Surface Water #1.02, July 2003. Minnesota Pollution Control Agency, St. Paul, MN. http://www.pca.state.mn.us/publications/wq-s1-02.pdf
- Minnesota Pollution Control Agency. 2003a. An assessment of representative Lake Superior basin tributaries 2002. Minnesota Pollution Control Agency, St. Paul, MN
- Mulcahy, J.P., 1990. Phosphorus Export in the Twin Cities Metropolitan Area. Prepared for the Minnesota Pollution Control Agency by the Metropolitan Council of the Twin Cities Area, St. Paul, MN.
- Mulla, D. 2003. Detailed Assessment of Phosphorus Sources to Minnesota Watersheds Agricultural Runoff. Prepared for Barr Engineering Company and the Minnesota Pollution Control Agency.
- Naiman, R.J. and Descamps, H. 1997. The ecology of interfaces: Riparian zones. Annual Review of ecology and Systematics 28:621-658.
- Noonan, T., 1990. Personal communication. Ramsey County Department of Public Works. (reported in Mulcahy, 1990).
- Novotny, V., 1992. Unit pollutant loads. Water Environment & Technology, Jan. 92: 40-43.
- Novotny, V., and G. Chesters, 1989. Delivery of sediment and pollutants from nonpoint sources: A water quality perspective. Journal of Soil and Water Conservation, Nov/Dec 1989: 568-576.
- Oberts, G., 1983. Surface water management: Evaluation of Nationwide Urban Runoff Program. Metropolitan Council of the Twin Cities Area, St. Paul, MN.
- Oberts, G., 1990. Design considerations for management of urban runoff in wintry conditions. Proceedings: international conference on urban Hydrology Under Wintry Conditions. Narvik, Norway.
- Oberts, G., 1994. Influence of snowmelt dynamics on stormwater runoff quality. Watershed Protection Techniques 1(2):55-61.
- Oberts, G.L., 1985. Magnitude and problems of nonpoint pollution from urban and urbanizing areas. Symposium presentation Nonpoint Pollution Abatement Technical, Managerial and Institutional Problems and Solutions. Milwaukee, WI April 1985.
- Ohrel, R.L. 1995. Simple and complex stormwater pollutant load models compared. Watershed Protection Techniques 2(2):364-368.
- Omernik, J. M. 1977. Nonpoint source-stream nutrient level relationships: a nationwide study. U.S. United States Environmental Protection Agency, Ecol. Res. Series. EPA-600/3-77-105.
- Omernik, J. M. 1977. The influence of land use on stream nutrient levels. United States Environmental Protection Agency, Ecol. Res. Series. EPA-600/3-7-104.
- Omernik, J.M. and A.L. Gallant. 1988. Ecoregions of the upper Midwest States. USEPA, ERL, Corvallis, OR. EPA/ 600/3-88/037
- Omernik, J.M. and Bailey, R.G. 1997. Distinguishing between watersheds and ecoregions. Journal of the American Water Resources Association. 33:5. pp. 935-949.

- Omernik, J.M., 2000, Draft aggregations of level III eco-regions for the National Nutrient Strategy. National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency. http://www.epa.gov/ost/standards/ecomap.html.
- Osborne, L.L. and Kovacic, D.D. 1993. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology 29:243-258.
- Panuska, J.C. and Lillie, R.A. 1995. Phosphorus loadings from Wisconsin watersheds: Recommended phosphorus export coefficients for agricultural and forested watersheds. Research Management Findings, Number 38. Wisconsin Department of Natural Resources.
- Perkins, W. W., Welch, E. B., Frodge, J. and Hubbard, T. 1997. A zero degree of freedom total phosphorus model; 2. Application to Lake Sammamish, Washington. Lake and Reservoir Management Volume 13(2):131-141.
- Pitt, R., 1997. Storm water quality management through the use of detention basins. Class materials Earle Brown Center, University of Minnesota.
- Pitt, R., and J. McLean, 1986. Toronto area watershed management strategy study: Humber River pilot watershed project. Ontario Ministry of the Environment, Toronto, Ontario.
- Ponce, S.L., 1980. Statistical Methods Commonly Used in Water Quality Data Analysis. Watershed Systems Development Group Technical Paper WSDG-TP-00001. USDA, Fort Collins, CO.
- Ramsey County Public Works. Unpublished data.
- Ramsey Washington Metro Watershed Distinct. 2002. Unpublished Data.
- Ramsey Washington Metro Watershed District. 2003. Unpublished data.
- Rast, W. and G.F. Lee, 1983. Nutrient loading estimates for lakes. J. Env. Eng. Div. ASCE 109(2):502-517. (reported in Mulcahy, 1990).
- Reckhow, K.H., M.N. Beaulac, and J.T. Simpson. 1980. Modeling phosphorus loading and lake response under uncertainty: A manual and compilation of export coefficients. U.S. Environmental Protection Agency, Washington, D.C. EPA 440/5-80-011.
- Richards, C., Johnson, L.B. and Host, G.E. 1996. Landscape-scale influences on stream habitats and biota. Canadian Journal of Fish. Aquat. Sci. 53(Suppl. 1):295-311.
- Robertson, D. M. and E. D. Roerish, Influence of various water quality sampling strategies on load estimates for small streams, Water Resour. Res., 35(12), 3747-3759, 1999.
- Robertson, D. M. and Richards, K. D., 2000. Influence of different temporal sampling strategies on estimating loads and maximum concentrations in small streams. Conference Proceedings NWQMC National Monitoring Conference. http://www.nwqmc.org/2000proceeding/papers/pap_porterfield.pdf
- Roth, N.E., Allan, J.D. and Erickson, D.L. 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11(3):141-156.
- Sartz, R.S. 1969. Effects of watershed cover on overland flow from a major storm in southwestern Wisconsin. Research Note NC-82, US Department of Agriculture Forest Service, St. Paul, MN.
- Sartz, R.S., Curtis, W.R. and Tolsted, D.N. 1977. Hydrology of small watersheds in Wisconsin's Driftless Area. Water Resourc. Res. 13(3):524-530.
- Schmitt, T.J., Dosskey, M.G. and Hoaglund, K.D. 1999. Filter Strip performance and processes for different vegetation, widths, and contaminants. J. Environ. Quality 28:1479-1489.
- Schueler, T. R. 1996a. The compaction of urban soils: Watershed Protection Techniques 3(2):661-665.

- Schueler, T. R. 1996b. Can Urban soil compaction be reversed: Watershed Protection Techniques 3(2):666-669.
- Schueler, T. R. 1995. The peculiarities of perviousness: Watershed Protection Techniques 2(1):233-238.
- Schueler, T. R. 1994. Controlling urban runoff: A practical manual for planning and designing urban BMPs. Prepared for the Washington Metropolitan Council of Governments. Washington, DC.
- Schueler, T. R. 1994. The importance of imperviousness: Watershed Protection Techniques 1(3):100-111.
- Schueler, T.R. 1995. Site planning for urban stream protection. Prepared for the Washington Metropolitan Council of Governments. Washington, DC. Center for Watershed Protection, Ellicott City, MD.
- Schwartz, S.S. and Naiman, D.Q. 1999. Bias and variance of planning level estimates of pollutant loads. Water Resour. Res. 35(11):3475-3487.
- Scott, C.A., Walter, M.F., Nagle, G.N., Walter, M.T., Sierra, N.V. and Brooks, E.S. 2001. Residual phosphorus in runoff from successional forest on abandoned agricultural land: 1. Biogeochemical and hydrologic process. Biogeochemistry 55:293-309.
- Sharpley, A.N., T.C. Daniel, and D.R. Edwards. 1993. Phosphorus movement in the landscape. J. Prod. Agric.6:492-500.
- Singer, M.J., and R.H. Rust. 1975. Phosphorus in surface runoff from a deciduous forest. J. Environ. Qual. 4:307-311.
- Soil Conservation Service, 1986. Urban Hydrology for Small Watersheds. Technical Release 55. US Department of Agriculture, Soil Conservation Service Engineering Division.
- Soranno, P.A., S.L. Hubler, S.R. Carpenter, and R.C. Lathrop. 1996. Phosphorus loads to surface waters: a simple model to account for spatial pattern. Ecological Applications 6(3):865-878.
- Stark, J.R., P.E. Hanson, R.M. Goldstein, J.D. Fallon, A.L. Fong, K.E. Lee, S.E. Kroening, and W.J. Andrews. 1999. Water quality in the Upper Mississippi River Basin, Minnesota, Wisconsin, South Dakota, Iowa, and North Dakota, 1995–98. USGS Water Resources Circular 1211. http://water.usgs.gov/pubs/circ/circ1211/pdf/circular1211.pdf
- Steuer, J., W. Selbig, N. Hornewer, and J. Prey, 1997. Sources of contamination in an Urban Basin in Marquette, Michigan and an Analysis of Concentrations, Loads, and Data Quality. Water-Resources Investigation Report 97-4242. US Geological Survey, Middleton, WI.
- Swenson, J. 1998. Urban landscapes as a source of phosphorus in surface waters. Prepared for Metropolitan Council Environmental Services Division.
- Three River Park District, 2003. Unpublished data.
- Timmons, D.R., and Holt, R.F. 1977. Nutrient losses in surface runoff from a native prairie. Journal of Environmental Quality 4(6): 369-73.
- Tornes, L.H., Brigham, M.E. and Lorenz, D.L. 1997. Nutrients, suspended sediment, and pesticides in streams of the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1993-1995. U.S. Geological Survey Water-Resources Investigations Report 97-4053. Mounds View, MN.
- United States Geological Survey, 1982. Quality of Runoff from Small Watersheds in the Twin Cities Metropolitan Area, Minnesota Hydrologic Data for 1980. Open File Report 82-504. St. Paul, MN.

- US Army Corps of Engineers. 2001. The WES handbook on water quality enhancement techniques for reservoirs and tailwaters. US Army Engineer Research and Development Center, Waterways Experiment Station Vicksburg, MS.
- US EPA, 1996. Protecting Natural Wetlands: A Guide to Stormwater Best Management Practices. United States Environmental Protection Agency, Office of Water, Washington, DC. EPA-843-B-96-001. http://www.epa.gov/owow/wetlands/pdf/protecti.pdf
- US EPA. 1986. Methodology for analysis of detention basins for control of urban runoff quality. Environmental Protection Agency, Office of Water. EPA-440-5-87-001.
- US EPA. 1997. Linear regression for nonpoint source pollution analyses. Environmental Protection Agency, Office of Water. EPA-841-B-97-007.
- US EPA. 2000a. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria: Lakes and Reservoirs in Nutrient Ecoregion VI Corn Belt and Northern Great Plains. United States Environmental Protection Agency, Office of Water. EPA 822-B-00-008.
- US EPA. 2000b. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria: Lakes and Reservoirs in Nutrient Ecoregion VII Mostly Glaciated Dairy Region. United States Environmental Protection Agency, Office of Water. EPA 822-B-00-009.
- US EPA. 2000c. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria: Lakes and Reservoirs in Nutrient Ecoregion VIII Nutrient Poor Largely Glaciated Upper Midwest and Northeast. United States Environmental Protection Agency, Office of Water. EPA 822-B-00-010.
- US EPA. 2000d. Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs, U.S. Environmental Protection Agency, Washington, DC. EPA-822-B00-001.
- US EPA. 2000e. Nutrient Criteria Technical Guidance Manual: Rivers and Streams, U.S. Environmental Protection Agency, Washington, DC. EPA-822-B00-002.
- US EPA. 2001. National Menu of Best Management Practices for Storm Water Phase II. http://cfpub1.epa.gov/npdes/stormwater/menuofbmps/pdf/small_files/Main.pdf
- USGS. 1996. Water resources data Wisconsin Water Year 1996. U.S. Geological Survey Water-Data Report WI-96-1.
- Uttormark, P.D., J.D. Chapin, and K.M. Green, 1974. Estimating nutrient loadings of lakes from nonpoint sources. EPA-660/3/74-020. (reported in Mulcahy, 1990).
- Vaithiyanathan, P., and D.L. Correll. 1992. The Rhode River Watershed: Phosphorus distribution and export in forest and agricultural soils. J. Environ. Qual. 21: 280-288.
- Valley Branch Watershed District. 2002. Valley Creek Subwatershed Plan. Developed by the Valley Branch Subwatershed Advisory Committee.
- Vellanki, V.R. 1994. . Characterization of residential runoff in the Fargo. Masters Thesis, North Dakota State University, Fargo, ND.
- Vogelmann, J.E., S.M. Howard, L. Yang, C.R. Larson, B.K. Wylie, N. Van Driel, 2001. Completion of the 1990s National Land Cover Data Set for the Conterminous United States from Landsat Thematic Mapper Data and Ancillary Data Sources. Photogrammetric Engineering and Remote Sensing, 67:650-652. http://landcover.usgs.gov/nationallandcover.asp

- Walker, W.W. 1992. Analysis of 1990-1992 monitoring data from the Vadnais lakes diagnostic study. Prepared for the Board of Water Commissioners, St. Paul, MN.
- Walker, W.W. 1987. Phosphorus removal by urban detention basins. Proc. Lake and Reservoir Management Conference: Influence on Nonpoint Source Pollutants, Volume III.
- Walker, W. W. 1986. Empirical Methods for Predicting Eutrophication in Impoundments; Report 3, Phase III: Applications Manual. Technical Report E-81-9, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Walker, W.W. 1985. Analysis of 1984 monitoring data from the Vadnais lakes diagnostic study. Prepared for the Board of Water Commissioners, St. Paul, MN. (reported in Mulcahy, 1990).
- Walker, W.W. 1984. Watershed monitoring data from the Twin cities Area. Appendix A. Prepared for St. Paul Water Utility.
- Waschbusch, R.J., Selbig, W.R. and Bannerman, R.T. 1999. Sources of phosphorus in stormwater and street dirt from two urban residential basins in Madison, Wisconsin. 1994-95. USGS Water-Resources Investigation Report 99-4021.
- Wenck Associates, 1998. Lake Nokomis and Hiawatha Diagnostic-Feasibility Study; Diagnostic Study. Prepared for the Minnehaha Creek Watershed District.
- Wickham, James D.; Wade, Timothy G.; Riitters, Kurt H.; O'Neill, R.V.; Smith, Jonathan H.; Smith, Elizabeth R.; Jones, K.B.; Neale, A.C, 2003. Upstream-to-downstream changes in nutrient export risk. Landscape Ecology 18:195-208. http://www.srs.fs.usda.gov/pubs/ja/ja_wickham003.pdf
- Wilson, C.B. 2003. Personal communications, various dates October 2003. Minnesota Pollution Control Agency.
- Wilson, C.B. and Walker, Jr., W.W. 1989. Development of lake assessment methods based upon the aquatic ecoregion concept. Lake and Reservoir Management 5(2):11-22.
- Wilson, G.J., & P. Brezonik (1998). An analysis of urban stormwater quality from the Minneapolis Chain of Lakes watershed. In: E. Derby, J. Lee & D. Pilger (Eds.) Minneapolis Lakes and Parks—Special Session Proceedings. Sixteenth Annual North American Lakes Management Society International Symposium. Minneapolis, MN.
- Winter, J.G. and Duthie, H.C. 2000. Export coefficient modeling to assess phosphorus loading in an urban watershed. Journal of the American Water Resources Assn. 36(5):1053-1061.
- Worrall, F. and T.P. Burt. 1999. The impact of land-use change on water quality at the catchment scale: the use of export coefficient and structural models. Journal of Hydrology. 221(1): 5-90.
- Wotzka, P.J. 2003. Personal communications, various dates October 2003. Minnesota Department of Agriculture.
- York M. T. Auer, S. M. Doeer, S. W. Effler and E. M. Owens, 1997. A zero degree of freedom total phosphorus model; 1. Development for Onondaga Lake, New York. Lake and Reservoir Management Volume 13(2):118-130.
- Zapp, M.J. and Almendinger, J.E. 2001. Nutrient dynamics and water quality of Valley Creek, a high-quality trout stream in southeastern Washington County. Final Project Report to the Valley Branch Watershed District.
- Zielinski, J. 2002. Watershed Vulnerability Analysis. Center for Watershed Protection, Ellicott City, MD.

Bioavailability of Phosphorus

- Andraski, B.J., Mueller, D.H., and Daniel, T.C. 1985. Phosphorus losses in runoff as affected by tillage. *Soil Sci. Soc. Am. J.* 49:1523-1527.
- Asselman, N.E.W. 2000. Fitting and interpretation of sediment rating curves. *Journal of Hydrology*, 234; 228-248.
- Bannerman, R.T., Armstrong, D.E., Harris, R.F., and Holdren, C.C. 1975. Phosphorus release and uptake by Lake Ontario sediments. Ecol. Res. Ser. USEPA Rep. 660/3-750-066. U.S. Gov. Print. Office, Washington, DC.
- Breeuwsma A. and Silva, S. 1992. Phosphorus fertilization and environmental effects in the Netherlands and the Po region (Italy). Rep. 57. Agric. Res. Dep. The Winand Staring Center for Integrated Land, soil and Water Res., Wageningen, the Netherlands.
- Bierman, V.J. Jr., Dolan, D.M., Stoermer, E.F., Gannon, J.E., and Smith, V.E. 1980. The development and calibration of a spatially simplified multi-class phytoplankton model for Saginaw Bay, Lake Huron. Great Lakes Environmental Planning Study, Contribution No. 33.
- Caraco, N.F. 1995. Chapter 14: Influence Of Human Populations On Phosphorus Transfers To Aquatic Systems: A Regional Scale Study Using Large Rivers. In SCOPE 54: Phosphorus in the Global Environment Transfers, Cycles and Management. H. Tiessen (ed.), 1995, 480 pp, Wiley, U.K.
- Carignan, R. and Kalff, J. 1980. Phosphorus sources for aquatic weeds: Water or sediments? *Science*. 207:987-989.
- Carlisle, A., Brown, A.H.F. and White, E.J. 1966. The organic matter and nutrient elements in precipitation beneath sessile oak (Quercus petraea) canopy. *J. Ecol.* 54:87-98.
- Cowen, W.F. and Lee, G.F. 1976. Phosphorus available in particulate materials transported by urban runoff. *J. Wat. Pollu. Control. Fed.* 48:580-591.
- DePinto, J.V., Young, T.C., Martin. S.C. 1981. Algal-Availability of Phosphorus in Suspended Sediments from Lower Great Lakes Tributaries. *J. Great Lakes Res.* 7(3):311-325.
- DePinto, J.V., Young, T.C. and Salisbury, D.K. 1986. Impact of phosphorus availability on modeling phytoplankton dynamics. *Dutch Hydrobiological Bulletin* 20(1/2):225-243.
- DePinto, J.V., Young, T.C., Bonner, J.S., Rodgers, P.W. 1986. Microbial recycle of phytoplankton phosphorus. Can. *J. Fish. Aquat. Sci.* 43(2):336-342.
- Dolan, D.M., Yui, A.K., and Geist, R.D. 1981. Evaluation of River Load Estimation Methods for Total Phosphorus. *J. Great Lakes Res.* 7(3):207-214.
- Dorich, R.A., Nelson, D.W., and Sommers, L.E. 1980. Algal bioavailability of sediment phosphorus in drainage water of the Black creek watershed. *J. Environ. Qual.* 9:557-563.
- Dorich, R.A., Nelson, D.W., and Sommers, L.E. 1984. Algal availability of phosphorus in suspended stream sediments of varying particle size. *J. Environ. Qual.* 13:82-86.
- Dorich, R.A., Nelson, D.W., and Sommers, L.E. 1985. Estimating algal available phosphorus in suspended sediments by chemical extraction. *J. Environ. Qual.* 14:400-405.
- Engle, D.L. and Sarnelle, O. 1990. Algal use of sedimentary phosphorus from an Amazon floodplain lake: Implications for total phosphorus analysis in turbid waters. *Limnol. Oceanogr.* 35:483-490.
- Ekholm P. and Krogerus, K. 2003. Determining algal-available phosphorus of differing origin: routine phosphorus analyses versus algal assays. *Hydrobiolgia* 492: 29-42.

- Gaynor, J.D. and W.I. and Findlay. 1995. Soil and phosphorus loss from conservation and conventional tillage in corn production. *J. Environ. Qual.* 24:734-741.
- Golterman, H.L. 1977. Sediments as a source of phosphate for algal growth. In: Golterman, H.L. (Ed.) *Interactions Between Sediments and Fresh Water*. Symposium at Amsterdam, The Netherlands, 1976, pp. 286-293.
- Hanna, M. 1989. Biologically available phosphorus: Estimation and prediction using an anion-exchange resin. *Can. J. Fish. Aquat. Sci.* 46:638-643.
- Haygarth, P.M. and Jarvis, S.C. 1997. Soil derived phosphorus in surface runoff from grazed grassland lysimeters. *Water Res.* 11:140-148.
- Haygarth, P.M., Hepworth, L. and Jarvis, S.C. 1998. Forms of phosphorus transfer in hydrological pathways from soil under grazed pasture. *European J. Soil Sci.* 49:65-72.
- Haygarth, P.M. and Sharpley, A.N. 2000. Terminology for phosphorus transfer. *J. Environ. Qual.* 29:10-15.
- Hedley, M.J., Mortvedt, J.J., Bolan, N.S., and Syer, J.K. 1995. Chapter 5: Phosphorus Fertility Management in Agroecosystems. In SCOPE 54: Phosphorus in the Global Environment Transfers, Cycles and Management. H. Tiessen ed., 1995, 480 pp, Wiley, U.K.
- Horowitz, A.J. 2002. The use of rating (transport) curves to predict suspended sediment concentration: A matter of temporal resolution. Turbidity and Other Sediment Surrogates Workshop, April 30-May 2, 2002, Reno, Nevada.
- Huettl, P.J., Wendt, R.C. and Corey, R.B. 1979. Prediction of algal-available phosphorus in runoff suspensions. *J. Environ. Qual.* 8:130-132.
- Jacoby, J.M., Lynch, D.D., Welch, E.B., and Perkins, M.S. 1982. Internal phosphorus loading in a shallow eutrophic lake. *Water Res.* 16:911-919.
- James, W.F., Barko, J.W., and Eakin, H.L. 2002. Labile and refractory forms of phosphorus in runoff of the Redwood River basin, Minnesota. *J. Freshwater Ecology*. 17(2):297-304.
- Kamprath, E.J. 1991. Appropriate measurements of phosphorus availability in soils of the semi-arid tropics. In: Johansen, C., Lee, K.K. and Saharwat, KL (Eds.) Phosphorus nutrition of grain legumines in the semi arid tropics. ICRISAT, India. pp. 23-31.
- Klapwijk, S.P., Kroon, J.M.W. and Meijer, M.L. 1982. Available phosphorus in lake sediments in the Netherlands. *Hydrobiologia*. 92:491-500.
- Larsen. D.P., Shults, D.W. and Malueg, K.W. 1981. Summer internal phosphorus supplies in Shagawa Lake, Minnesota. *Limnol. Oceanogr.* 26:740-753.
- Lee, G.F. 1973. Role of phosphorus in eutrophication and diffuse source control. Water Res. 7: 111-128.
- Lee, G.F., Jones, R.A., and Rast, W. 1980. Availability of phosphorus to phytoplankton and its implications for phosphorus management strategies, pp. 259-308. In Phosphorus Management Strategies for Lakes, R. C. Loehr, C. S. Martin, W. Rast (eds.), Ann Arbor Science Publ., Inc.
- Lennox, S.D., Foy, R.H., Smith, R.V. and Jordan, C. 1997. Estimating the contribution from agriculture to the phosphorus load in surface water. P. 55-75. In H. Tunney, O.T. Carton, P.C. Brookes, and A.E. Johnston (ed.) Phosphorus loss from soil to water. CAB Int. Press, Cambridge, UK.
- Lenz, B.N. 2001. Nutrient and Suspended-Sediment Concentrations and Loads, and Benthic-Invertebrate Data for Tributaries to the St. Croix River, Wisconsin and Minnesota, 1997-99. USGS Water-Resources Investigations Report 01-4162.

- Lenz, B.N. and Robertson, D.M. 2002. Response of the St. Croix River Pools, Wisconsin and Minnesota, to Various Phoshorus-Loading Scenarios. USGS Water-Resources Investigations Report 02-4181.
- Li, W.C., Armstrong, D.E., Williams, J.D., Harris, R.F. and Syers, J.K. (1972). Rate and extent of phosphate exchange in lake sediments. *Soil Sci. Soc. Am. Proc.* 36:279-285.
- Logan, T.J. 1977. Levels of plant available phosphorus in agricultural soils in the Lake Erie Drainage Basin. Lake Erie Wastewater Management Study Report. U.S. Army Engineer District, Buffalo.
- Logan, T.J. 1978. Chemical extraction as an index of bioavailability of phosphorus in Lake Erie basin suspended sediments. Lake Erie Wastewater Management Study Report. U.S. Army Engineer District, Buffalo.
- Logan, T.J., Oloya, T.O., and Yaksich, S.M. 1979. Phosphate characteristics and bioavailability of suspended sediments from streams draining into Lake Erie. *J. Great Lakes Res.* 5:112-123.
- Logan, T.J., Verhoff, F.H., and DePinto, J.V. 1979a. Biological availability of total phosphorus. Lake Erie Wastewater Management Study, U. S. Army Engineer District, Buffalo.
- Martin, Scott C., 1983. Bioavailability of Sediment Phosphorus Inputs to the Lower Great Lakes, Ph.D., Department of Civil and Environmental Engineering, Clarkson College of Technology (December, 1983).
- McDowell, R.W., Sharpley, A.N., Kleinman, P.J.A., and Gburek, W.J. 2001. Hydrological and source management of pollutants at the soil profile scale. In P.M. Haygarth and S.C. Jarvis (ed.) Agriculture, hydrology and water quality. CAB Int. Press, Oxon, England.
- McDowell, L.L., and McGregor, K.C. 1980. Nitrogen and phosphorus losses in runoff from no-till soybeans. *Trans. ASAE* 23:643-648.
- Miller, R.B. 1961. Chemical composition of rainwater at Taita, New Zealand, 1956-1958. *N.Z. J. Sci.* 4:844-853.
- Mueller, D.H., Wendt, R.C., and Daniel, T.C. 1984. Phosphorus losses as affected by tillage and manure application. *Soil Sci. Am. J.* 48:901-905.
- Murphy, T.J. and Doskey, P.V. 1975. Inputs of phosphorus from precipitation to Lake Michigan. U.S. EPA Report No. 600/3-75-005. Duluth, Minnesota.
- Murphy, J. and Riley, J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. *Anal. Chim. Acta.* 27:31-36.
- Nurnberg, G.K., Dillon, P.J. and McQueen, D.J. 1986. Internal phosphorus load in an oligotrophic precambrian shield lake with an anoxic hypolimnion. *Can. J. Fish. Aquat. Sci.*, 43:574-580.
- Nurnberg, G. and Peters, R.H. 1984. Biological availability of soluble reactive phosphorus in anoxic and oxic freshwaters. *Can. J. Fish. Aquat. Sci.* 41:757-765.
- O'Connor, G.A., Sarkar, D., Graetz, D.A., and Elliott, H.A. 2002. Characterizing forms, solubility, bioavailabilities, and mineralization rates of phosphorous in biosolids, commercial fertilizers, and manures (Phase I). Water Environment Research Federation.
- Omerink, J.M. 1976. The influence of land use on stream nutrient levels. USEPA Ecological Research Series, EPA-600/3-76-014.
- Peters, R.H. 1977. Availability of atmospheric orthophosphate. J. Fish. Res. Bd. Can. 34:918-924.
- Pietilainen, O.P. and Rekolainen, S. 1991. Dissolved reactive and total phosphorus load from agricultural and forested basins to surface waters in Finland. *Aqua Fennica* 21, 127-136.

- Porcella, D.B., Kumazar, J.S. and Middlebrooks, E.J. 1970. Biological effects on sediment-water nutrient interchange. J. Sanit. Eng. Div., *Proc. Am. Soc. Civil Eng.* 96:911-926.
- Pote, D.H., Danile, T.C., Sharpley, A.N., Moore, P.A., Edwards, D.R., and Nichols, D.J. 1996. Relating extractable phosphorus to phosphorus losses in runoff. *Soil Sc. Sco. Am. J.* 60:855-859.
- Rigler, F.H. 1966. Radiobiological analysis of inorganic phosphorus in lake water. *Tech. Internat. Verein. Limnol.* 16:456-470.
- Rigler, F.H. 1968. Further observations inconsistent with the hypothesis that the molybdenum blue method measures orthophosphate in lake waters. *Limnol. Oceanogr.* 13:7-13.
- Ryszkowski, L. and Bartoszewicz, A. 1989. Impact of agricultural landscape structure on cycling of inorganic nutrients. In: Clarholm, M. and Bergstrom, L. (Eds.) Ecology of arable land. Kluwer Academic Publ., Dordrecht. pp. 241-246.
- Sagher, A., Harris, R.F., and Armstrong, D.E. 1975. Availability of sediment phosphorus to microorganisms. Water Res. Cent. Tech. Rep. WIS WRC 74-01. Univ. of Wisconsin, Madison.
- Sagher, A. 1976. Availability of soil runoff phosphorus to algae. Ph.D. dissertation, University of Wisc. Madison.
- Schindler, D.W. and Nighswander, J.E. 1970. Nutrient supply and primary production in Clear Lake, eastern Ontario. *J. Fish. Res. Board Can.* 27:260-262.
- Sharpley, A.N., Menzel, R.G., Smith, S.J., Rhoades, E.D., and Olness, A.E. 1981. The sorption of soluble phosphorus by soil material during transport in runoff from cropped and grassed watersheds. *J. Environ. Qual.* 10:211-215.
- Sharpley, A.N., Jones, C.A., Grey, C. and Cole, C.V. 1984. A simplified soil and plant phosphorus model II: Predication of labile, organic and sorbed phosphorus. *Soil Sci. Soc. Am. J.* 48:805-809.
- Sharpley, A.N., Smith, S.J., Menzel, R.G. and Westerman, R.L. 1985. The chemical composition of rain in the Southern Plains and its impact on soil and water quality. Oklahoma State Univ. Agric. Expt. Station Tech. Bull. T162.
- Sharpley, A.N., Smith, S.J., Jones, O.R., Berg, W.A., and Coleman, G.A. 1992. The transport of bioavailable phosphorus in agricultural runoff. *J. Environ. Qual.* 21:30-35.
- Sharpley, A.N., Hedley, M.J., Sibbesen, E., Hillbricht-Ilkowska, A., House, W.A., and Ryszkowski, L. 1995. Chapter 11: Phosphorus Transfers From Terrestrial To Aquatic Ecosystems. In SCOPE 54: Phosphorus in the Global Environment Transfers, Cycles and Management. H. Tiessen ed., 1995, 480 pp, Wiley, U.K.
- Sharpley, A.N., T.C. Daniel, J.T. Sims, and D.H. Pote. 1996. Determining environmentally sound soil phosphorus levels. *J. Soil Wat. Conserv.* 51:160-165.
- Sharpley, A.N., Beegle, D.G., Gburek., W.J., Weld, J. and Folmar, G. 1998. Modification and application of the phosphorus index screening tool it identify critical sources of phosphorus in the Upper Chesapeake Bay Watershed. Final Rep. To the Scientific and Technical Advisory Committee to the Chesapeake Bay Program. Chesapeake Bay Program. Annapolis, MD.
- Sharpley, A.N. and Tunney, H. 2000. Phosphorus research strategies to meet agricultural and environmental challenges of the 21st century. *J. Environ Qual.* 29:176-181.
- Simrad, R.R., Beauchemin, S. and Haygarth, P.M. 2000. Potential for preferential pathways for phosphorus transport. *J. Environ. Qual.* 29:97-105.
- Sonzogni, W.C., Chesters, G., Coote, D.R., Jeffs, D.N., Konard, J.C., Ostrry, R.C., and Robinson, J.B. 1980. Pollution from land runoff. *Environ. Sci. Technol.* 14:148-153.

- Syers, J.K., Harris, R.F., and Armstrong, D.E. 1973. Phosphate chemistry in lake sediments. *J. Environ. Qual.* 2:1-14.
- Szpakowska, B. and Zyczynska-Baloniak, I. 1989. The effect of environmental pollution on the migration of chemical compounds in water in a agricultural landscape. *Ecology International Bulletin*. 17:41-52.
- Tarapchak. S.J. and Rubitschum, C. 1981. Comparisons of soluble reactive phosphorus and orthophosphorus concentrations at an offshore station in southern Lake Michigan. *J. Great Lakes Res.* 7:290-298.
- Theis, T.L. and McCabe, P.J. 1978. Phosphorus dynamics in hypereutrophic lake sediments. *Water Res.*, 12:677-685.
- Vaithiyanathan, P. and Correll, D.L. 1992. The Rhode River watershed: Phosphorus distribution and export in forest and agricultural soils. *J. Environ. Qual.* 21:280-288.
- Walton, C.P. and Lee, G.F. 1972. A biological evaluation of the molybdenum blue method for orthophosphate analysis. *Tech. Int. Ver. Limnol.* 18:676-684.
- Wendt, R.C. and Corey, R.B. 1980. Phosphorus variations in surface runoff from agricultural lands as a function of land use. *J. Environ. Qual.* 9:130-136.
- Williams, J.D.H., Syers, J.K., Harris, R.F., and Armstrong, D.E. 1971. Fractionation of inorganic phosphate in calcareous lake sediments. *Soil Sci. Soc. Amer. Proc.* 35:250-255.
- Williams, J.D.H., Shear, H., and Thomas, R.L. 1980. Availability to Scenedesmus quadricanda of different forms of phosphorus in sedimentary materials in the Great Lakes. *Limnol. Oceanogr.* 25:1-11.
- Withers, P.J.A., R.M. Dils, and R.A. Hodginson. 1999. Transfer of phosphorus from small agricultural basins with variable soil types and land use. P. 20-29. In Impact of land-use change on nutrient loads from diffuse sources. International Association of Hydrological Sciences Symp., Birmingham, England. 19-20 July 1999. IAHS, Wallingford, UK.
- Young, T.C., J.V. DePinto, Flint, S.E., Switzenbaum, M.S., and Edzwald, J.K. 1982. Algal Availability of Phosphorus in Municipal Wastewaters. *Jour. Water Pollut. Control Fed.* 54, 1505-1516.
- Young, T.C. and DePinto., J.V. 1981. Algal-Availability of Particulate Phosphorus from Diffuse and Point Sources in the Lower Great Lakes Basin," in Sediment/Freshwater Interaction, Proceedings of 2nd International Symposium on the Interactions Between Sediments and Freshwater, Kingston, Ontario. Developments in Hydrobiology, V. 9, P.G. Sly (ed.), 111-119 (1982).
- Young, T.C., DePinto, J.V., and Hughes, B.J. 1988. Comparative study of methods for estimating bioavailable particulate phosphorus. Chemical and Biological characterization of sludges, sediments, dredge spoils, and drilling muds. ASTM STP 976. J.J. Lichtenberg, J.A. Winter, C.I. Weber, and L. Fradkin (ed.). American Society for Testing and Materials, Philadelphia, 1988, pp. 69-80.
- Young, T.C., DePinto, J.V., Martin, S.C., Bonner, J.S. 1995. Algal-available Particulate Phosphorus in the Great Lakes Basin. *J. Great Lakes Res.* 111(5):434-446.
- U.S. Geological Survey (USGS). 2002. National Water-Quality Assessment Program. Water-Quality Assessment of Part of the Upper Mississippi River Basin Study Unit, Minnesota and Wisconsin—Nutrients, Chlorophyll *a*, Phytoplankton, and Suspended Sediment in Streams, 1996-98. Water-Resources Investigations Report 02-4287.

Detailed Assessment

of

Phosphorus Sources to Minnesota Watersheds

Volume 2: Appendices

Prepared by Barr Engineering Company
February 2004

Technical Memorandum

To: Marvin Hora, Doug Hall and Mark Tomasek, Minnesota Pollution Control Agency

From: Tim Anderson, Barr Engineering Co.

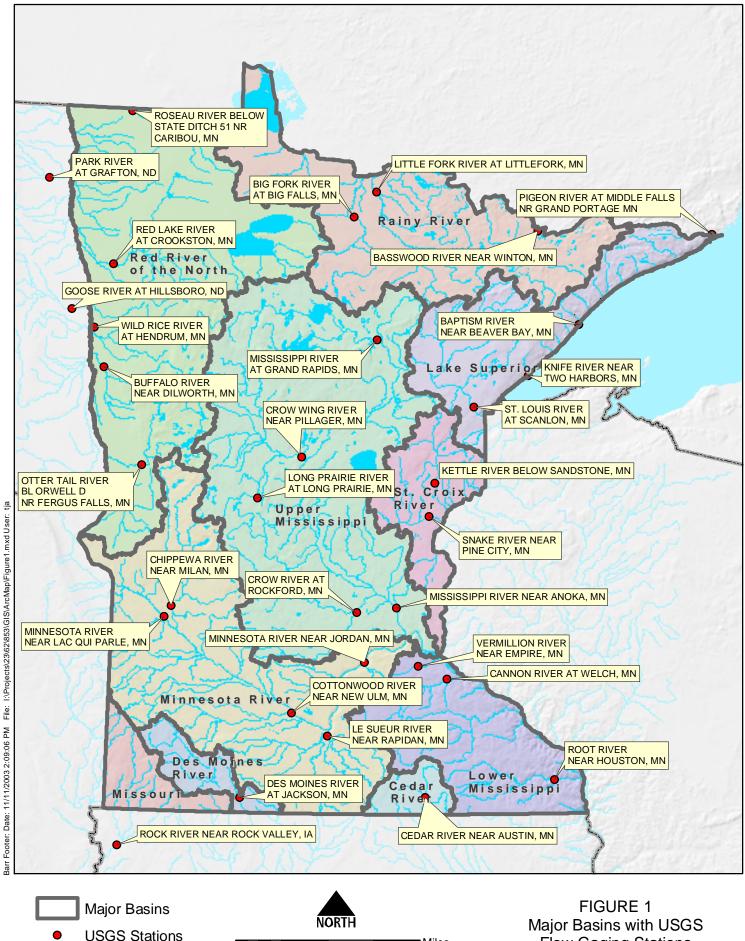
Subject: Final Basin Hydrology Technical Memorandum

Date: December 17, 2003

Project: 23/62-853 BASN 008

c: Greg Wilson, Hal Runke

Overview and Introduction to Basin Hydrology


The objective of the Detailed Phosphorus Assessment Study is to estimate the sources of phosphorus for the 10 major basins for three flow scenarios within the State of Minnesota. These basins are shown in Figure 1. The flow scenarios are:

- Dry year
- Average year
- Wet year

The estimate of phosphorus loading, especially from non-point sources, requires the estimate of flows and rainfall that correspond to each of the three flow scenarios. The identification of three flow conditions will allow for the comparison of point and non-point phosphorus sources during the varied climatic and flow conditions that occur across Minnesota. The mass of phosphorus from non-point sources is generally higher during high runoff years than for average or dry years. Therefore, the proportion of the total phosphorus mass in the drainage system originating from point sources (e.g. waste water treatment plants) should be lower in wet years due to greater mass originating from non-point sources.

The Basin Hydrology portion of this study has two objectives:

- The identification of dry, average and wet years conditions for each basin, including the estimation of flow and precipitation
- Selecting years that are representative of these conditions

Major Basins with USGS Flow Gaging Stations Miles 0 12.5 25 50 75 100

From: Tim Anderson, Barr Engineering Co.

Subject: Final Basin Hydrology Technical Memorandum

Date: December 17, 2003

Page: 3

The methods used for each of these objectives are discussed below.

Watershed Basin Characteristics

The ten major drainage basins within Minnesota vary greatly in their characteristics. Table 1 provides a summary of some of the characteristics of each basin. As shown in the table, there is a significant variability of runoff and precipitation across the state. There is also a significant difference in land cover between basins, particularly between the southwest and northeast parts of the state. Each basin is described in more detail below.

Cedar River

The Cedar River basin in Minnesota consists of approximately 1000 square miles and is drained by the Winnebago, Shell Rock and Cedar Rivers, all of which flow into the State of Iowa and ultimately to the Mississippi River. The major cities in this Basin are Albert Lea and Austin and the dominate land use is tilled agriculture. The USGS gage near Austin, on the Cedar River measures flow for 399 square miles of this Basin.

Des Moines River

The Des Moines River Basin consists of the headwater areas of both the East and West Fork of the Des Moines River in southwest Minnesota. The Basin is about 1500 square miles, mostly made up of row crops. The cities of Jackson and Windom are within this Basin along with the northern ½ of the City of Worthington. The USGS gage at Jackson, on the West Fork of the Des Moines River, measures flow for 1250 square miles of this Basin.

Lake Superior

The Lake Superior Basin drains about 6,150 square miles of northeast Minnesota. Approximately 3646 square miles of the basin drain to the St. Louis River, which enters Lake Superior at Duluth. The Nemadji River drains 278 square miles of Minnesota, south of Duluth before it enters Wisconsin and ultimately reaches Lake Superior at Superior, Wisconsin. The remaining 2,226 square miles of the Minnesota's Lake Superior Basin drains via many small streams and rivers along the North Shore of Lake Superior. The major land cover types within this basin are forest, lakes and wetlands. Duluth, Two Harbors, and many of the Iron Range cities are located in this Basin. The Lake Superior Basin produces the most runoff (12.44 inches annually, on average) even though three of

TABLE 1 Basin Characteristics

				Land Cover	Percentages [*]	**			
Basin	Area (Sq Miles)*	Average Precipitation (1979-2002)	Average Runoff (1979-2002)	Urban	Forested	Tilled Agricultural	Pasture/ Grassland	Wetland/Open Water	Other
Cedar River	1,028	32.06	9.80	3.4%	3.3%	83.4%	6.2%	3.7%	0.0%
Des Moines River	1,535	27.98	5.68	1.8%	1.8%	79.9%	11.0%	5.5%	0.0%
Lake Superior	6,149	29.11	12.44	1.4%	57.1%	2.6%	3.5%	33.3%	2.1%
Lower Mississippi	6,317	33.29	10.28	2.4%	15.4%	52.2%	24.8%	5.1%	0.1%
Minnesota River	14,943	28.14	5.61	2.2%	4.6%	72.7%	12.6%	7.8%	0.1%
Missouri	1,782	27.16	5.25	1.5%	1.0%	78.9%	16.0%	2.6%	0.0%
Rainy River	11,236	26.20	8.01	0.4%	41.4%	2.0%	2.3%	52.5%	1.3%
Red River	17,741	23.29	3.42	0.7%	12.0%	54.6%	8.8%	23.8%	0.2%
St. Croix River	3,528	30.61	9.71	1.3%	36.8%	10.8%	20.6%	30.1%	0.2%
Upper Mississippi	20,100	28.07	6.87	3.5%	29.1%	20.2%	16.7%	29.7%	0.7%
State Wide	79,202	27.39	6.83	1.9%	22.7%	38.1%	12.0%	24.7%	0.6%

^{*}Drainage area within Minnesota

^{**}Based on USGS National Land Cover Database (1992)

From: Tim Anderson, Barr Engineering Co.

Subject: Final Basin Hydrology Technical Memorandum

Date: December 17, 2003

Page: 5

the other basins receive more precipitation. Flow data from four USGS gage locations were used to

assess runoff from this area.

Lower Mississippi

The Lower Mississippi consists of approximately 6,300 square miles of area draining to the Mississippi River below the River's confluence with the St. Croix River. The Lower Mississippi is the only non-headwaters basin. The Upper Mississippi, Minnesota and St. Croix Basins flow into the Mississippi River above the Lower Mississippi. Rivers that drain the Lower Mississippi Basin include the Zumbro, Root, Cannon and Vermillion Rivers. The major land cover is agricultural, although there are significant forest areas in the hilly bluff lands along the major river systems. The Cities of Rochester, Winona, Owatonna, Faribault and Red Wing are in this Basin. The southern suburbs of the Metropolitan area, including most of Lakeville are also in this Basin. This Basin receives the greatest annual average precipitation. During the period of 1979-2002, the basin received an average 33.3 inches annually. Flow data from three USGS gage locations were used to assess direct runoff from this area.

Minnesota River

The Minnesota River Basin is composed of 16,950 square miles, of which 1,668 are in South Dakota, 5 in North Dakota and 338 are in Iowa. The USGS gage near Jordan measures flow from about 16,200 square miles (or 96 percent) of the Basin. The Minnesota River drains into the Mississippi River upstream of St. Paul. Major tributaries of the Minnesota include the Pomme De Terre, Chippewa, Lac Qui Parle, Yellow Medicine, Redwood, Cottonwood, Watonwan, Blue Earth and Le Sueur Rivers. The vast majority of the land is in agricultural land uses. Cities included in this basin are Mankato, Redwood Falls, St. Peter, Morris, Marshall, Fairmont and the southwest suburbs of the Twin Cities. Flow data from five USGS gage locations were use to assess runoff from this area.

Missouri River

The Missouri River Basin is composed of 1,782 square miles in extreme southwestern Minnesota. The main rivers draining this Basin are the Little Sioux, Rock, and Pipestone. These river systems flow into Iowa and South Dakota. The only long term gaging record in this watershed is on the Rock River near Rock Valley, Iowa. Approximately 95 percent of this basin has agricultural land uses. Cities within this basin include Pipestone, Luverne and part of Worthington.

From: Tim Anderson, Barr Engineering Co.

Subject: Final Basin Hydrology Technical Memorandum

Date: December 17, 2003

Page: 6

Rainy River

The Rainy River Basin consists of approximately 11,240 square miles of area in Minnesota draining to the Rainy River and Lake of the Woods on the Canadian border. Much of the Boundary Waters Canoe Area Wilderness is within this Basin. A significant part of the area tributary to Rainy River and Lake of the Woods are in Canada. Major land cover types within this basin include forest, lakes and wetlands. Rivers that drain this basin include the Little Fork, Big Fork and Basswood Rivers. Cities within this basin include Ely, International Falls, Warroad and Baudette. Flow data from three USGS gage locations were used to assess runoff from this area.

Red River of the North

The Red River of the North Basin in Minnesota consists of 17,741 square miles of area. The Red River of the North Basin receives the least amount of rainfall on average and also produces the least runoff of the ten basins. The Red River of the North flows north along the western boundary of the state. Approxmately one-half of the watershed area to the Red River of the North at the Canadian border is in North Dakota.

Major river systems that flow to the Red River in Minnesota include the Bois De Sioux, Ottertail, Buffalo, Wild Rice, Sandhill, Red Lake, Snake, Tamarac and Roseau Rivers. The land cover of the eastern portions of the basin includes significant lake, wetland and forested areas while the western portion is mostly tilled farm land. Cities in the basin include Moorhead, East Grand Forks, Crookston, Roseau, Detroit Lakes, Fergus Falls and Thief River Falls. Flow data from seven USGS gage locations were used to assess runoff from this area.

St. Croix River

The St. Croix River Basin in Minnesota drains a 3,528 square mile area of mixed land use in the east central part of the state. An additional 4,200 square miles of watershed to the St. Croix River is in Wisconsin. Rivers that drain this basin include the Kettle, Snake and Sunrise Rivers. The St. Croix watershed includes the extreme eastern portions of the Twin City area. Other cites in this basin include Moose Lake, Sandstone, Hinckley, North Branch, Taylors Falls and Stillwater. Flow data from two USGS gage locations were used to assess runoff from this area.

From: Tim Anderson, Barr Engineering Co.

Subject: Final Basin Hydrology Technical Memorandum

Date: December 17, 2003

Page: 7

Upper Mississippi River

The Upper Mississippi River Basin consists of the area tributary to the Mississippi River upstream of the confluence of the St. Croix River, not including the area tributary to the Minnesota River. This basin is 20,100 square miles and is a transition zone between agricultural areas to the south and west and forest and open water/wetland areas to the north. Major river systems that are tributary to the Upper Mississippi include the Crow, Sauk, Rum, Long Prairie, Red Eye, Crow Wing and Pine rivers. This basin also contains the majority of the Minneapolis-St. Paul Metropolitan area. Other cities in this basin include St. Cloud, Little Falls, Brainerd, Hutchinson, Alexandria, Grand Rapids and Bemidji. Flow data from five USGS gage locations were used to assess runoff from this area.

Available River Discharge and Precipitation Data

Precipitation and river discharge data were collected and analyzed as part of this portion of the project.

River Discharge Data

Mean monthly discharge data were collected from the USGS for 32 gaging stations across Minnesota and neighboring states. Figure 1 shows the location of the gages where data was collected. The stations were selected based on their length of record and the location of the gage within each of the ten basins. The Mississippi River near Anoka gage and Minnesota near Jordan gage are included in Figure 1 but were not directly used in deriving the flow values related to the dry, wet and average years. Measurements at these gages represent flow from nearly the entire Upper Mississippi and Minnesota basins, respectively. Because of the large size of these basins, USGS data from smaller watersheds within these basins were used so that regional runoff patterns could be better estimated.

Precipitation Data

Basin-wide precipitation data were made available from the State Climatology Office of the Minnesota Department of Natural Resources. The data consisted of monthly values calculated from a grid-based archive of historical monthly precipitation totals for the period of 1892 - 2002. These data consisted of estimated monthly total precipitation over each watershed, in inches, for each of the ten basins. The data were totaled by water-year (October – September) for use in this study. Data for the period of 1979 - 2002 water years were used in this study. Table 2 provides the minimum,

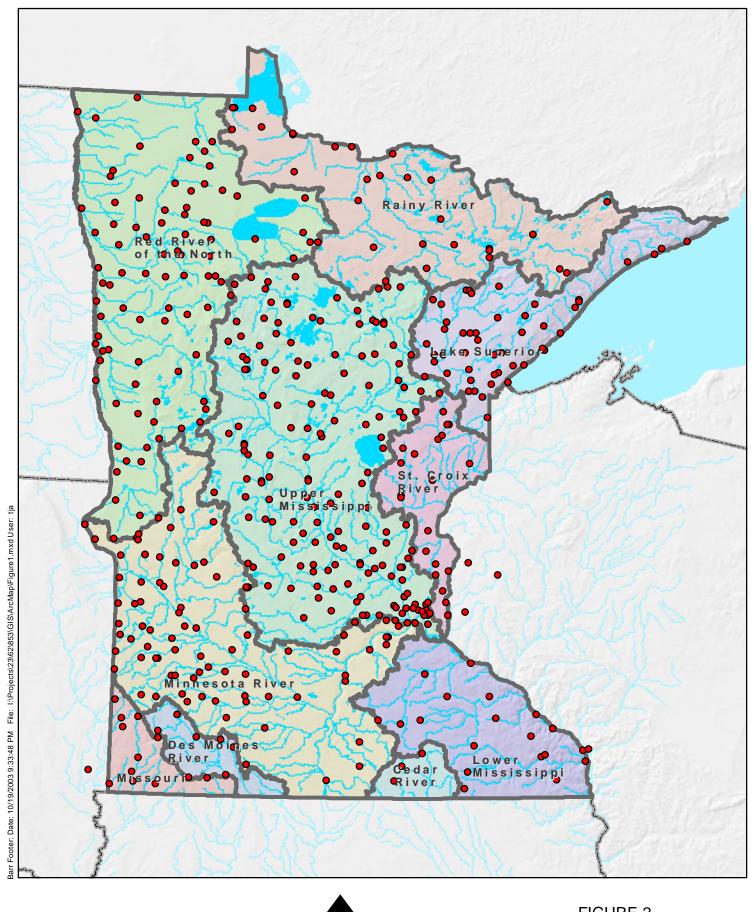
From: Tim Anderson, Barr Engineering Co.

Subject: Final Basin Hydrology Technical Memorandum

Date: December 17, 2003

Page: 8

maximum and average number of precipitation gages used to develop the grids for the 1979-2002 period. Figures 2 and 3 show the distribution of precipitation gages for the months with the minimum and maximum number, respectively, of gages used to develop the grids.


Table 2

	Cedar River	Des Moines River	Lower Miss- issippi	Minne- sota River	Mis- souri River	Rainy River	Red River of the North	St. Croix River	Lake Super -ior	Upper Miss- issippi	Total
Average Min-	15	22	83	226	22	44	142	64	56	339	1014
iumum Max-	2	2	18	65	3	25	36	21	40	165	480
imum	39	49	150	416	41	66	246	118	71	591	1632

Number of Precipitation Gages

Approach and Methodology for Calculation of Basin Runoff Volumes

The phosphorus load estimates in this study were determined for low, average and high flow conditions, for each of the ten basins. A characteristic of most of the basins is that water is received from upstream basins (such as the Lower Mississippi which receives flow from the Minnesota, St. Croix and Upper Mississippi basins) or water flows into the basin from neighboring states or provinces. Therefore, flow and phosphorus data measured at the "outlet" of the basin will include both water and phosphorus originating from outside of Minnesota or from other upstream Minnesota basins. For example, 53 percent of the watershed area of the Red River of the North (which is the border between North Dakota and Minnesota), at the Manitoba border, is in the State of North Dakota. The Lake Superior and Rainy River basins do not have a defined single outlet point at all, since both discharge from lakes that share a boundary with multiple states and/or provinces. Since this study is only concerned with phosphorus contributions from Minnesota, a methodology was developed to estimate only Minnesota's contribution of water.

Rain Gage LocationsMajor Basins

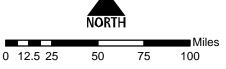
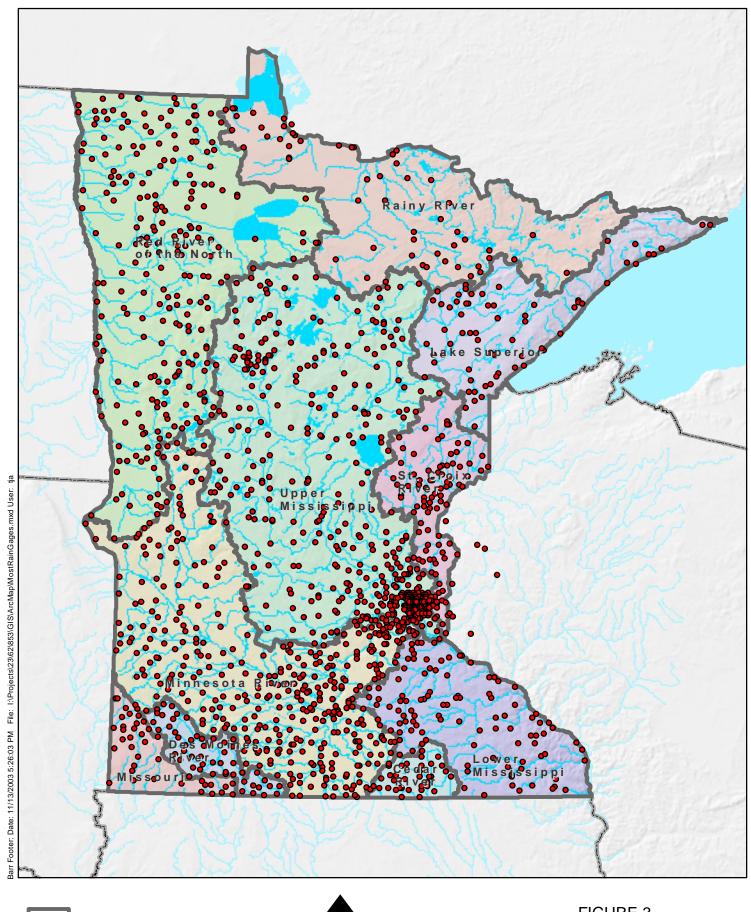



FIGURE 2 Minimum Number of Rain Gages Used for Rainfall Analysis (480 Total, February, 1987)

Major BasinsRain Gage Locations

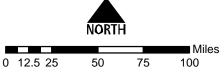


FIGURE 3 Maximum Number of Rain Gages Used for Rainfall Analysis (1632 Total, June, 1994)

From: Tim Anderson, Barr Engineering Co.

Subject: Final Basin Hydrology Technical Memorandum

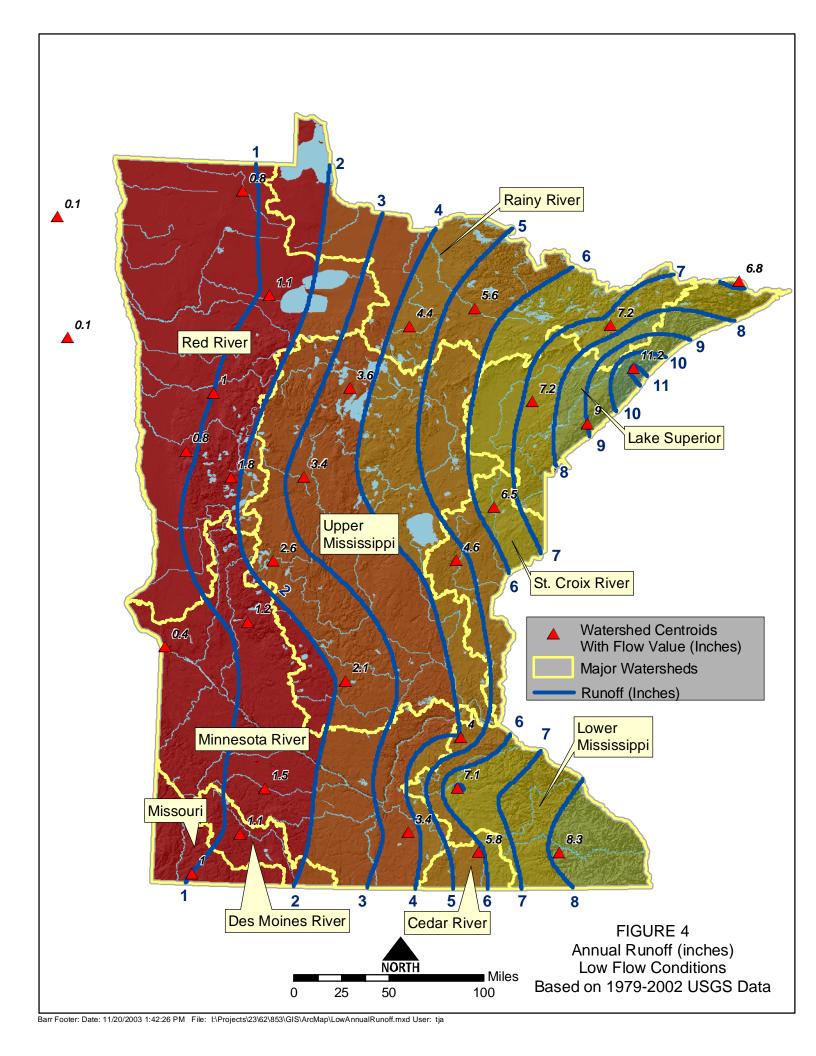
Date: December 17, 2003

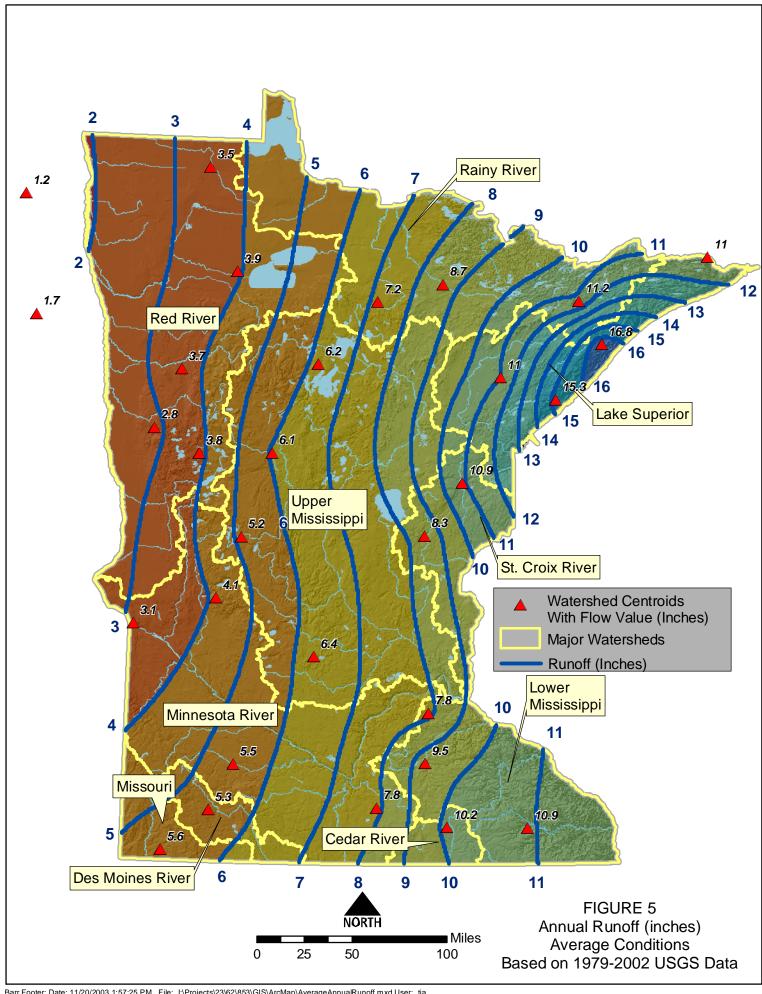
Page: 11

Runoff from the Minnesota portions of the ten basins were calculated using state-wide flow maps for the three flow conditions. Each map consists of a state-wide 1 km x km grid of values representing runoff in inches. The resulting maps are shown in Figures 4, 5 and 6. Using these grids, runoff averages over the basins were determined. The methods used to develop these maps are described below.

River Discharge Data

Monthly mean stream flow data were collected from the United States Geologic Survey for 27 gaging stations in Minnesota, two in North Dakota and one in Iowa for a total of 30 gages. Annual runoff in inches, for each gage was determined by summing the monthly mean flows for each water year (October – September) and dividing by the contributing watershed area to arrive at runoff in inches per year. The watershed areas were delineated using the Minnesota Department of Natural Resources Division of Waters Watershed Basin (1995) GIS Layer. This layer was developed using data from USGS 1:24,000 Quadrangle Maps. The percent of the area of the major basins that drain to the gages used are summarized in Table 3.


Development of Frequency Curves


The result of these computations was a table of annual runoff values, in inches over each of the 30 watersheds. These data were used to develop two frequency curves for each of the 30 gages and were based on these following periods of record:

- 1. Using all water years data were available
- 2. Using water years 1979 2002

For curve one, the time period of available flow data varied greatly. Some gages had data available for up to 100 years and others only a dozen or so years. The second curve was developed to reflect current climatic and drainage conditions. During the 1979-2002 period, a complete record of data was available for most of the gages used. This shorter period also reflected current watershed drainage characteristics and climatic trends. Because of these reasons, the 1979-2002 record was used to develop the runoff maps. Table 4 provides general statistics on the gages used, including the length of record.

The frequency curves were developed using a statistical analysis of the annual basin flows adopted from *Guidelines for Determining Flood Flow Frequency*, Bulletin #17B, U.S. Water Resources

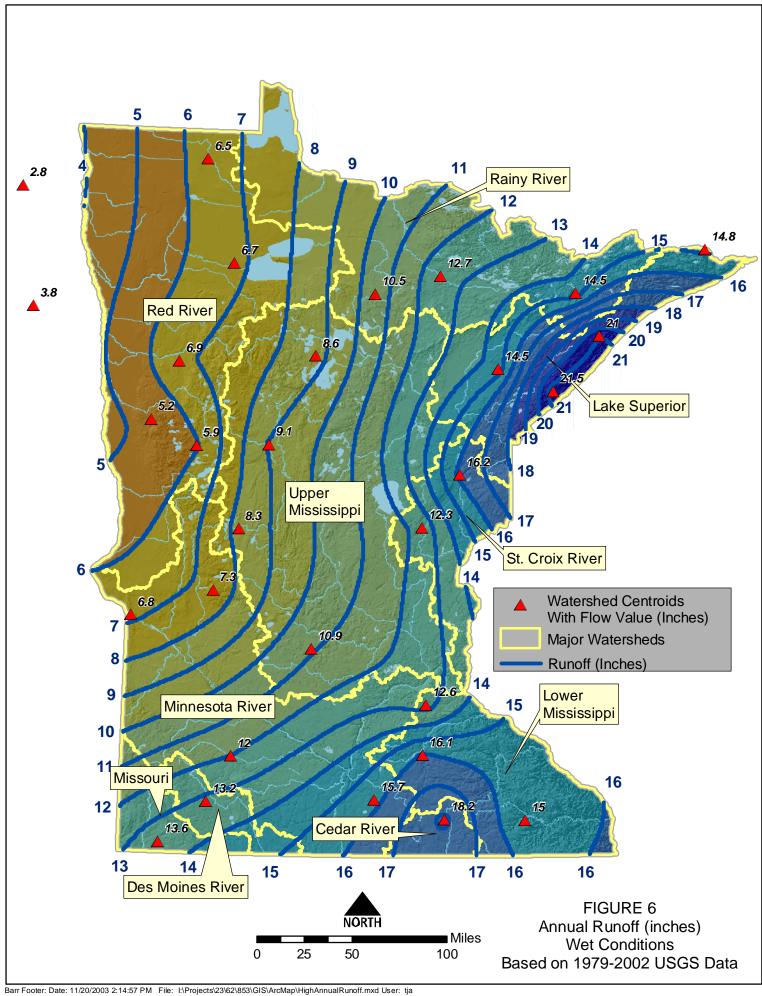


Table 3
Gage Watershed Summary

Gage Water	shed Summary		1	1
USGS Gage	Major Basin		Contributi ng Watershed Area Within Minnesota (Sq. Miles)	Percent of Total Basin Area
CEDAR RIVER NEAR AUSTIN	Cedar River	1,028		38.8%
TOTAL CEDAR RIVER BASIN GAGES		1,028	399	38.8%
DES MOINES RIVER AT JACKSON	Des Moines River	1,536	1,250	81.4%
TOTAL OF DES MOINES RIVER BASIN GAGES	Des Moines Rivei	1,536		81.4%
TOTAL OF DES MOINES RIVER BASIN GAGES		1,550	1,230	01.7 /0
BAPTISM RIVER NEAR BEAVER BAY	Lake Superior	6,149	140	2.3%
KNIFE RIVER NEAR TWO HARBORS	Lake Superior	6,149		1.4%
PIGEON RIVER AT MIDDLE FALLS NR GRAND PORT.		6,149		3.9%
ST. LOUIS RIVER AT SCANLON	Lake Superior	6,149		55.8%
TOTAL OF LAKE SUPERIOR BASIN GAGES		6,149	3,895	63.3%
CANNON RIVER AT WELCH	Lower Mississippi	6,317		21.2%
ROOT RIVER NEAR HOUSTON	Lower Mississippi	6,317		19.8%
VERMILLION RIVER NEAR EMPIRE, MN	Lower Mississippi	6,317	129	2.0%
TOTAL OF LOWER MISSISSIPPI BASIN GAGES		6,317	2,719	43.0%
CHIPPEWA RIVER NEAR MILAN, MN	Minnesota River	14,933	1,880	12.6%
COTTONWOOD RIVER NEAR NEW ULM, MN	Minnesota River	14,933		8.7%
LE SUEUR RIVER NEAR RAPIDAN, MN	Minnesota River	14,933		7.4%
MINNESOTA RIVER NEAR LAC QUI PARLE, MN*	Minnesota River	14,933		16.1%
TOTAL OF MINNESOTA RIVER BASIN GAGES		14,933		44.8%
		,	.,	
ROCK RIVER NEAR ROCK VALLEY, IA*	Missouri River	1,782	917	51.5%
TOTAL OF MISSOURI RIVER BASIN GAGES		1,782	917	51.5%
BASSWOOD RIVER NEAR WINTON	Rainy River	11,236		15.5%
BIG FORK RIVER AT BIG FALLS	Rainy River	11,236		13.2%
LITTLE FORK RIVER AT LITTLEFORK	Rainy River	11,236		15.0%
TOTAL OF RAINY RIVER BASIN GAGES		11,236	4,900	43.6%
BUFFALO RIVER NEAR DILWORTH	Red River of the North	17,741	975	5.5%
OTTER TAIL RIVER BL ORWELL D NR FERGUS FALL		17,741	1,740	
RED LAKE RIVER AT CROOKSTON	Red River of the North	17,741		29.7%
ROSEAU RIVER BELOW STATE DITCH 51 NR CARIBO	Red River of the North	17,741		8.0%
WILD RICE RIVER AT HENDRUM	Red River of the North	17,741	1,560	8.8%
GOOSE RIVER AT HILLSBORO, ND**	Red River of the North*	17,741	0	0.0%
PARK RIVER AT GRAFTON, ND**	Red River of the North*	17,741	0	0.0%
TOTAL OF RED RIVER OF THE NORTH BASIN GA	GES	17,741	10,965	61.8%
VICTOR E DIVIED DEL CIVI CALLES	a. a. i. ni	2.75-		
KETTLE RIVER BELOW SANDSTONE	St. Croix River	3,528		24.6%
SNAKE RIVER NEAR PINE CITY	St. Croix River	3,528		27.2%
TOTAL OF ST. CROIX RIVER BASIN GAGES		3,528	1,826	51.8%
CROW RIVER AT ROCKFORD, MN	Upper Mississippi	20,100	2,640	13.1%
CROW WING RIVER NEAR PILLAGER, MN	Upper Mississippi	20,100		16.4%
LONG PRAIRIE RIVER AT LONG PRAIRIE, MN	Upper Mississippi	20,100		2.2%
MISSISSIPPI RIVER AT GRAND RAPIDS, MN	Upper Mississippi	20,100		16.8%
TOTAL OF UPPER MISSISSIPPI GAGES	11	20,100		

^{*}Portion of Watershed is outside of Minnesota

^{**}Watershed is not in Minnesota

Table 4 USGS Gages Used in Analysis

		NUMBER OF	
		YEARS DATA	
STATION NAME	STATION NUMBER	AVAILABLE	WATER YEARS FLOW DATA AVAILABLE
BAPTISM RIVER NEAR BEAVER BAY, MN	4014500	61	1931-1947, 1950-1993
BASSWOOD RIVER NEAR WINTON, MN	5127500	70	1932-1987,1939-2002
BIG FORK RIVER AT BIG FALLS, MN	5132000	67	1929-1979, 1983-1993, 1998-2002
BUFFALO RIVER NEAR DILWORTH, MN	5062000	71	1932-2002
CANNON RIVER AT WELCH, MN	5355200	53	1912-1913, 1932-1971, 1992-2002
CEDAR RIVER NEAR AUSTIN, MN	5457000	63	1910-1914, 1945-2002
CHIPPEWA RIVER NEAR MILAN, MN	5304500	65	1938-2002
COTTONWOOD RIVER NEAR NEW ULM, MN	5317000	68	1912-1913, 1936-1937, 1939-2002
CROW RIVER AT ROCKFORD, MN	5280000	76	1910-1911, 1913-1917, 1931,1935-2002
CROW WING RIVER NEAR PILLAGER, MN	5247500	33	1969-1986, 1988-2002
DES MOINES RIVER AT JACKSON, MN	5476000	67	1936-2002
GOOSE RIVER AT HILLSBORO, ND	5066500	69	1932, 1935-2002
KETTLE RIVER BELOW SANDSTONE, MN	53367000	35	1968-2002
KNIFE RIVER NEAR TWO HARBORS, MN	4015330	28	1975-2002
LE SUEUR RIVER NEAR RAPIDAN, MN	5320500	59	1940-1945, 1950-2002
LITTLE FORK RIVER AT LITTLEFORK, MN	5131500	79	1912-1916, 1929-2002
LONG PRAIRIE RIVER AT LONG PRAIRIE, MN	5245100	31	1972-2002
MINNESOTA RIVER NEAR JORDAN, MN	5330000	68	1935-2002
MINNESOTA RIVER NEAR LAC QUI PARLE, MN	5301000	56	1943-1994, 1999-2002
MISSISSIPPI RIVER AT GRAND RAPIDS, MN	52110000	105	1884-1888, 1901-1909, 1912-2002
MISSISSIPPI RIVER NEAR ANOKA, MN	5288500	71	1932-2002
OTTER TAIL RIVER BL ORWELL D NR FERGUS FALLS, MN	5046000	72	1931-2002
PARK RIVER AT GRAFTON, ND	5090000	71	1932-2002
PIGEON RIVER AT MIDDLE FALLS NR GRAND PORTAGE MN	4010500	79	1924-2002
RED LAKE RIVER AT CROOKSTON, MN	5079000	101	1902-2002
Rock River near Rock Valley, IA	6483500	54	1949-2002
ROOT RIVER NEAR HOUSTON, MN	5385000	71	1910-1917,1931-1983,1991-2000
ROSEAU RIVER BELOW STATE DITCH 51 NR CARIBOU, MN	5112000	45	1921-1930, 1933, 1937, 1941-1943, 1973-2002
SNAKE RIVER NEAR PINE CITY, MN	5338500	41	1914-1917, 1952-1981, 1992-2002
ST. LOUIS RIVER AT SCANLON, MN	4024000	94	1909-2002
VERMILLION RIVER NEAR EMPIRE, MN	5345000	30	1943, 1974-2002
WILD RICE RIVER AT HENDRUM, MN	5064000	58	1945-2002

From: Tim Anderson, Barr Engineering Co.

Subject: Final Basin Hydrology Technical Memorandum

Date: December 17, 2003

Page: 17

Council, Sept. 1981. The Weibull plotting position method, described in this reference, were implemented to assign an exceedence probability (the probability of the flow being greater than or equal to a value) to every annual flow record in the time series. The probabilities were then plotted on semi-log paper to fit a trend line to the data. Different statistical equations were analyzed to determine which equation best describes the data. The frequency curves were then based on the best-fit equation, typically a Pearson Type III distribution.

Typically, frequency analysis using the methodology described above, is used for annual flood peaks rather than total annual runoff. Another statistical technique described in Bulletin #17B is the development of flow duration curves to define flow conditions. This method is commonly used in the analysis of low flow conditions. Flow duration curves are usually developed using a time step of less than a year (in this study, a year time step was used), frequently using a one day time step. A comparison between using flow-duration curves and frequency analysis was made and is shown in Table 5. The results presented in the table show only a small difference between the values derived from the two methods. Since flow-duration curves are usually fit by eye rather than a statistical distribution it was decided to use the frequency analysis which would provide objectivity in the selection of runoff values for the low, average and high runoff years.

The frequency curves for each of the watersheds are in Appendix A. The curves show that for gages in the south and west portions of the state, the period of 1979-2002 flows were consistently above the long-term period of record. The frequency curves for much of Northeast Minnesota, particularly the Rainy River, the North Shore of Lake Superior, and St. Croix River basins did not show this trend. The curves indicate that there is a general trend of decreasing runoff from east to west. Lake Superior Basin has the highest runoff in the state of Minnesota, with the Baptism River watershed having the highest values within that basin, with average runoff of 15.3 inches. Runoff in the Red River of the North Basin had the least runoff, with the Buffalo River Watershed having 2.8 inches of runoff in an average year which is lowest of the Minnesota gages used in this analysis. However, the two watersheds in the North Dakota portions of the Red River Watershed have average runoff of less than 2 inches. Decreasing runoff from east to west also occurs in southern Minnesota, but the trend is less dramatic than in the north. The Root River in extreme southeast Minnesota has nearly 11 inches of runoff for the period of 1979-2002, The Rock River in southwest Minnesota and

Table 5
Comparison of Frequency and Duration Analysis on Runoff Values

Watershed		Values f	rom Freque (inches) Average	ncy Plots	Values fi	rom Duratio (inches) Average		Difference (inches) Average			
vv atersneu	Major Basin	Low Flow	Flow	High Flow	Low Flow	Flow	High Flow	Low Flow	Flow	High Flow	
CEDAR RIVER NEAR AUSTIN	Cedar River	5.8	10.2	18.2	5.2	10.3	16.7	0.6	-0.1	1.5	
DES MOINES RIVER AT JACKSON	Des Moines River	1.1	5.3	13.2	0.6	5.9	10.7	0.5	-0.1		
BAPTISM RIVER NEAR BEAVER BAY	Lake Superior	11.2	16.8	21.0	10.0	17.2	20.6	1.2			
KNIFE RIVER NEAR TWO HARBORS	Lake Superior	9.0		21.5	9.0	15.8	19.7	0.0			
PIGEON RIVER AT MIDDLE FALLS NR GRAND	Eure Superior	7.0	10.0	21.3	7.0	15.0	17.7	0.0	0.5	1.0	
PORTAGE MN	Lake Superior	6.8	11.0	14.8	6.5	10.9	14.3	0.3	0.1	0.5	
ST. LOUIS RIVER AT SCANLON	Lake Superior	7.2	11.0	14.5	6.9	11.1	15.1	0.3	-0.1	-0.6	
CANNON RIVER AT WELCH	Lower Mississippi River	7.1	9.5	16.1	7.0	9.8	13.7	0.1	-0.3	2.4	
ROOT RIVER NEAR HOUSTON	Lower Mississippi River	8.3	10.9	15.0	8.8	10.5	16.5	-0.5	0.4		
VERMILLION RIVER NEAR EMPIRE, MN	Lower Mississippi River	4.0	7.8	12.6	3.9	7.5	12.0	0.1	0.3	0.6	
CHIPPEWA RIVER NEAR MILAN, MN	Minnesota River	1.2		7.3	1.1	3.7	7.2	0.1	0.4		
COTTONWOOD RIVER NEAR NEW ULM, MN	Minnesota River	1.5	5.5	12.0	1.1	5.4	11.1	0.4	0.1	0.9	
LE SUEUR RIVER NEAR RAPIDAN, MN	Minnesota River	3.4	7.8	15.7	2.5	8.1	14.0	0.9	-0.3	1.7	
MINNESOTA RIVER NEAR LAC QUI PARLE, MN	Minnesota River	0.4	3.1	6.8	0.7	2.6	7.1	-0.3	0.5	-0.3	
ROCK RIVER NEAR ROCK VALLEY, IA	Missouri River	1.0	5.6	13.6	1.0	5.6	12.5	0.0	0.0	1.1	
BASSWOOD RIVER NEAR WINTON	Rainy River	7.2	11.2	14.5	6.5	11.2	14.0	0.7	0.0	0.5	
BIG FORK RIVER AT BIG FALLS	Rainy River	4.4	7.2	10.5	4.3	6.8	10.9	0.1	0.4	-0.4	
LITTLE FORK RIVER AT LITTLEFORK	Rainy River	5.6	8.7	12.7	5.6	8.8	12.5	0.0	-0.1	0.2	
BUFFALO RIVER NEAR DILWORTH	Red River of the North	0.8	2.8	5.2	0.9	2.5	5.2	-0.1	0.3	0.0	
GOOSE RIVER AT HILLSBORO, ND	Red River of the North	0.1	1.7	3.8	0.1	1.3	3.9	0.0	0.4	-0.1	
OTTER TAIL RIVER BL ORWELL D NR FERGUS F	Red River of the North	1.8	3.8	5.9	1.8	3.9	5.9	0.0	-0.1	0.0	
PARK RIVER AT GRAFTON, ND	Red River of the North	0.1	1.2	2.8	0.1	1.1	2.7	0.0	0.1	0.1	
RED LAKE RIVER AT CROOKSTON	Red River of the North	1.1	3.9	6.7	0.7	4.1	6.6	0.4	-0.2	0.1	
ROSEAU RIVER BELOW STATE DITCH 51 NR											
CARIBOU, MN	Red River of the North	0.8	3.5	6.5	0.7	3.5		0.1	0.0		
WILD RICE RIVER AT HENDRUM	Red River of the North	1.0	3.7	6.9	1.0	3.5	7.4	0.0	0.2	-0.5	
KETTLE RIVER BELOW SANDSTONE	St. Croix River	6.5	10.9	16.2	6.0	11.2	15.1	0.5	-0.3		
SNAKE RIVER NEAR PINE CITY	St. Croix River	4.6	8.3	12.3	4.3	7.5	12.3	0.3	0.8	0.0	
CROW WING RIVER NEAR PILLAGER, MN	Upper Mississippi River	3.4	6.1	9.1	3.3	6.0	9.0	0.1	0.1	0.1	
CROW RIVER AT ROCKFORD, MN	Upper Mississippi River	2.1	6.4	10.9	1.1	7.0		1.0	-0.6		
LONG PRAIRIE RIVER AT LONG PRAIRIE, MN	Upper Mississippi River	2.6		8.3	2.3		8.2	0.3	0.0		
MISSISSIPPI RIVER AT GRAND RAPIDS, MN	Upper Mississippi River	3.6	6.2	8.6	3.2	5.6	8.7	0.4	0.6	-0.1	
Average Standard Deviation		3.8	7.2	11.4	3.5	7.1	11.0	0.250 0.370			

From: Tim Anderson, Barr Engineering Co.

Subject: Final Basin Hydrology Technical Memorandum

Date: December 17, 2003

Page: 19

Northwest Iowa has an average runoff of 5.6 inches. Increases in runoff are more dramatic moving

south as flows approach high flow conditions.

From the frequency curves developed for the 1979-2002 water year period, runoff values from the 90 (dry year), 50 (average year) and 10 (wet year) percent probability were determined. The 90 percent value means that, on average, 90 percent of the years will have runoff exceeding this value. The 50 percent value shows the runoff amount that would be exceeded one-half the years on average. The 10 percent value is the flow which would be exceeded only 10 percent of the years. The 90 and 10 percent probabilities were selected because they do not represent extreme events; rather they

represent typical dry and wet periods for the basins (a 1 in 10 chance of occurring on any given year).

Development of Runoff Maps from Frequency Data

The centroid of the watershed for each of the 30 USGS gages was determined. The resulting X and Y coordinates of the centroid (in UTM Coordinates) were determined and were assigned the runoff values for the watershed. The centroid (essentially, the center of the watershed) was used rather than the gage location since the centroid best represents the average characteristics of the watershed. The gage is most often at an extreme point in the watershed and its location would not necessarily best represent the watershed upstream.

A table was constructed with the UTM coordinates and ruoff values. This table was imported into Surfer Software and interpolated using the Kriging routine to create three state-wide 1 kilometer x 1 kilometer grids representing the dry, average and wet condition runoff values. The resulting Surfer grid files were imported into ArcView Spatial Analyst extension and were overlain with the boundaries of the major basins. The result was an estimation of the wet, average and dry condition flow volumes based on the 10, 50 and 90 percentile frequencies, respectively.

One of the benefits of using runoff grids is that average runoff for smaller ungaged watersheds within each of the larger basins could be estimated. Runoff from smaller watersheds is a necessary input for some of the non-point source phosphorus computations. Because of the differences in rainfall and land cover across Minnesota, runoff characteristics are likely to be different for smaller watersheds compared to runoff recorded for the larger basin gages.

From: Tim Anderson, Barr Engineering Co.

Subject: Final Basin Hydrology Technical Memorandum

Date: December 17, 2003

Page: 20

Precipitation Frequency Curves

Frequency curves were also developed for the basin-wide precipitation data. The data were summarized by water year and the same methodology used to develop the flow – frequency curves were also used for the precipitation. The curves are shown in Appendix B.

Results of Flow and Precipitation Computations

Maps showing the state-wide runoff values are shown in Figures 4, 5 and 6. Table 6 shows the 10 basin-wide averages develop from these maps for the wet, average and dry conditions. The averages were estimated by using ArcView Spatial Analyst to overlay the basin boundaries with the runoff grids discussed in the previous section. The average of the grid (cell) values within each basin was used as the basin-wide average for each condition. Table 6 also provides a summary of basin wide average precipitation for the wet, average and dry years based on the frequency determinations. Also shown in Table 6 is the percent runoff calculated using the ratio of runoff to rainfall.

Note that, in general, the year in which the 10th percentile wet year flow volume occurred will not necessary coincide with the year in which the 10th percentile wet year precipitation amount was observed. River discharge is not only a function of precipitation, but is affected by a number of hydrologic conditions such as drought and floods occurring in preceding years. For example, if the preceding year was much dryer than normal, much of the current year's rainfall (even though above average) may be used in refilling lake and wetland basins and replenishing soil moisture. The intensity of rainfall is another factor in the generation of runoff. For a given amount of precipitation, more of it will runoff if the precipitation occurs during a heavy thunderstorms rather than rain falling during a gentle day-long shower.

Therefore, there may be below-normal flow in years where precipitation is above-average. In this study it was assumed that the 10th percentile flow does occur in the same year that the 10 percentile rainfall occurs. The same assumption was made for the 50 and 90th percentile years. This simplifying assumption had to be made to facilitate a direct comparison between the three flow scenarios examined.

TABLE 6
Basin-Wide Runoff and Precipitation

	D	ry Condition	S	Ave	erage Condition	Wet Conditions			
Basin	Rainfall (inches)	Runoff (inches)	Percent Runoff	Rainfall (inches)	Runoff (inches)	Percent Runoff	Rainfall (inches)	Runoff (inches)	Percent Runoff
Cedar River	27.5	5.6	20.4%	32.1	9.8	30.6%	41.3	17.5	42.4%
DesMoines River	22.0	1.4	6.4%	28.0	5.7	20.3%	36.8	13.4	36.4%
Lake Superior	25.5	7.9	30.8%	29.1	12.4	42.7%	35.1	16.7	47.7%
Lower Mississippi	27.0	7.1	26.5%	33.3	10.3	30.9%	39.8	15.6	39.1%
Minnesota River	22.1	1.9	8.7%	28.1	5.6	19.9%	34.8	11.2	32.2%
Missouri River	21.1	1.0	4.6%	27.2	5.3	19.3%	35.6	12.8	36.0%
Rainy River	22.4	4.8	21.4%	26.2	8.0	30.6%	32.1	11.4	35.6%
Red River	18.6	1.1	5.7%	23.3	3.4	14.7%	28.9	6.1	21.1%
St. Croix River	23.7	5.6	23.7%	30.6	9.7	31.7%	37.6	14.3	38.1%
Upper Mississippi River	22.6	3.6	15.8%	28.1	6.9	24.5%	34.3	10.4	30.5%

From: Tim Anderson, Barr Engineering Co.

Subject: Final Basin Hydrology Technical Memorandum

Date: December 17, 2003

Page: 22

The representative years for low, average and high flows for each basin are summarized in Table 7. The years selected typically had annual flow volumes within ½ inch of the 90, 50 and 10th percentile frequency values for representative gages in each Basin However, there were cases, especially in the Lower Mississippi basin, where the volume differences exceed the ½ inch value. These representative years were used to select the time frame when phosphorus and TSS data collected would best reflect the wet, average and dry flow conditions.

From: Tim Anderson, Barr Engineering Co.

Subject: Final Basin Hydrology Technical Memorandum

Date: December 17, 2003

Page: 23

Representative Years

Major Watershed	Low Flow	Average Flow	High Flow		
			1983, 1999,		
Cedar River	1988, 1989, 1990, 2002	1995, 1997, 1998	2001		
			1983, 1984,		
Des Moines River	1988, 1989, 1990, 2000	1985, 1987, 1991, 1999	1994		
			1978, 1983,		
Lake Superior	1988, 1990, 1998	1985, 1991, 1993, 1995	1996		
			1973, 1974,		
Lower Mississippi River	1996, 2002	1994, 1998	1993		
			1986, 1997,		
Minnesota River	1981, 1990, 2000	1985, 1998, 1999	2001		
			1983, 1984,		
Missouri River	1989, 1990, 1991, 2000	1980, 1987, 1992, 1999	1997		
			1974, 1975,		
Rainy River	1977, 1980, 2002	1992, 1993, 1997	1996, 2001		
			1997, 1998,		
Red River of the North	1988, 1989, 1990, 1991	1993, 1994, 1995, 2002	2001		
			1978, 2001,		
St. Croix River	1980, 1987, 1988, 1998	1994, 1995, 1999	2002		
			1985, 1997,		
Upper Mississippi	1989, 1990, 2000	1982, 1995, 2002	2001		
	I	1			

Flow Variability and Uncertainty

As part of the frequency analysis, the 95 percent confidence intervals for the curves were developed. For example, the confidence intervals indicate that there is a 95 percent probability the 10 percent (wet year) flow falls between the range shown on the curves (see curves in Appendix A and Appendix B). In general, when the period of record is longer, the confidence interval becomes narrower.

 $P:\c 23\c 285\c Basin\ Hydrology_Mass\ Balance\c BASN\ Tech\ Memo\c Updated\ Memo\c Final\ BASN\ Technical\ Memorandum. doc Memo\c Basin\ Me$

From: Tim Anderson, Barr Engineering Co.

Subject: Final Basin Hydrology Technical Memorandum

Date: December 17, 2003

Page: 24

A comparison was also made of the interpolated grid data for the three runoff conditions with actual values for the watersheds that are entirely within the state of Minnesota. This comparison is shown in Table 8. The last three columns represent the difference between the value from the frequency curves and that predicted from the grid. The difference in high flows had the highest standard deviation and also the highest absolute difference (-1.2 inches for the St. Louis River). The average flows had the best overall match. The Big Fork River Watershed had the best fit, with nearly identical values for all three flow conditions.

Recommendations for Future Refinements

One of the problems encountered when developing this flow analysis is that some of the USGS gages were discontinued. The collection of current data at some locations would provide valuable flow data for calculation of phosphorus loadings and also more accurate estimation of annual flows. Gages where reestablishment of continuous flow monitoring is recommended are listed below:

- Baptism River near Beaver Bay
- Big Fork River at Big Falls
- Root River near Houston
- Zumbro River at Zumbro Falls

It is also recommended that one or two smaller watersheds within the metropolitan area be continuously gaged. Currently only the Vermillion River in the south suburbs has a long-term, unintrupted record.

Literature Cited

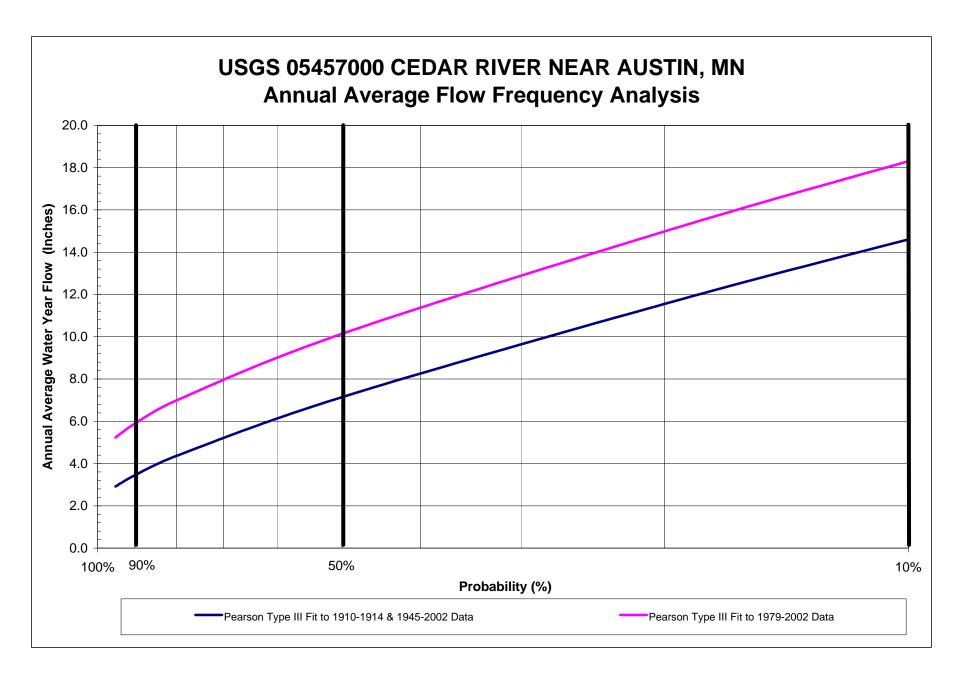
USGS Surface-Water Data for the Nation Website. http://waterdata.usgs.gov/nwis/sw

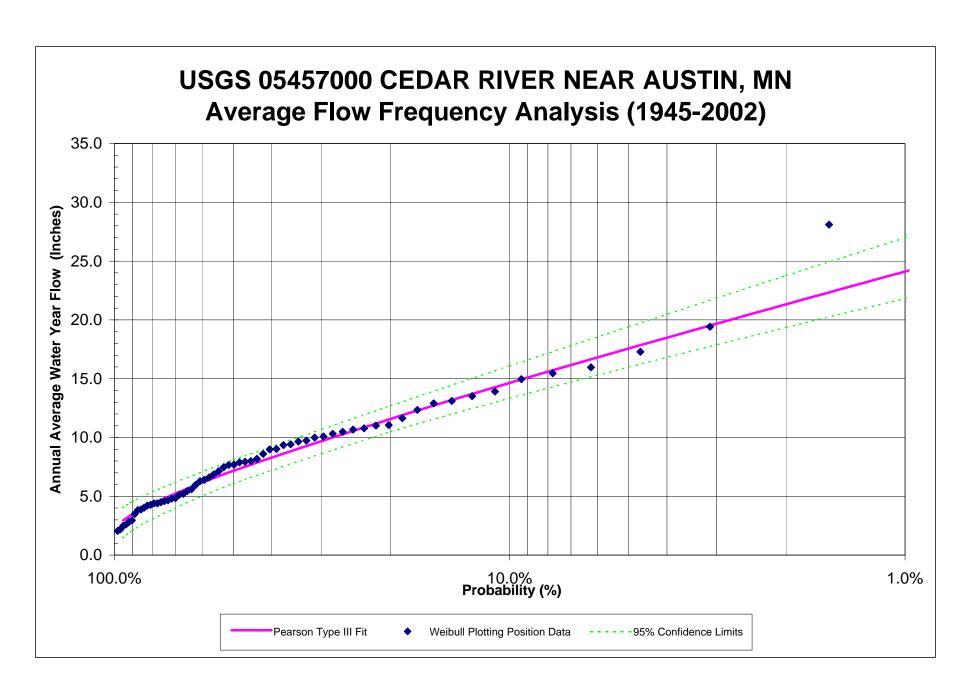
Minnesota Department of Natural Resources, GIS Data Deli Website. http://ftp.dnr.state.mn.us/

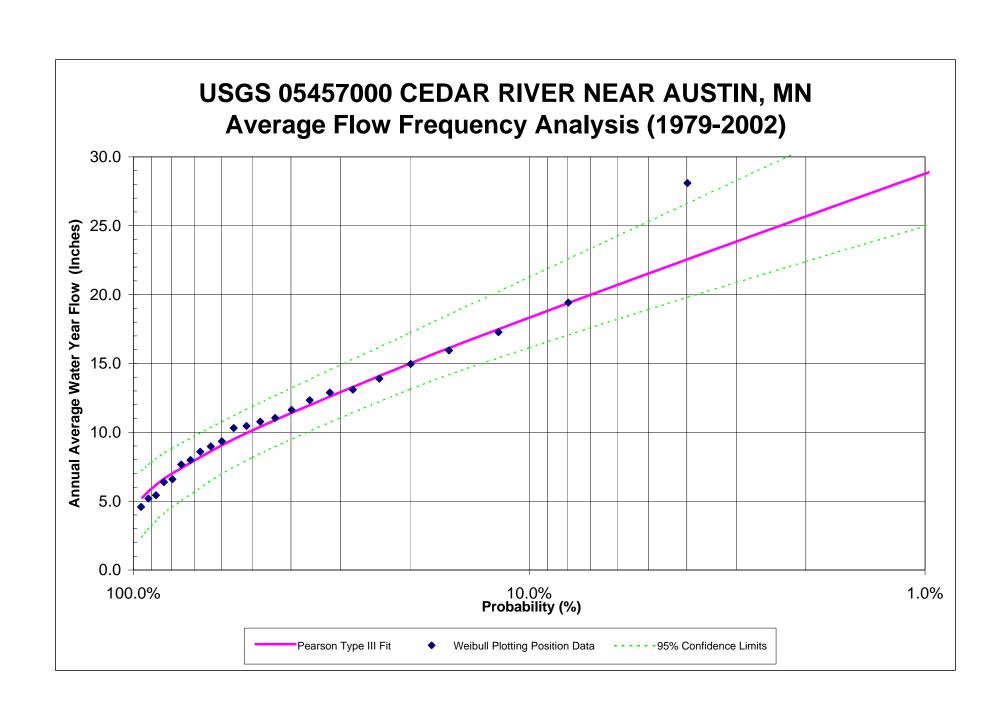
Greg Spoden; Minnesota Department of Natural Resources Division of Waters State Climatology Office.

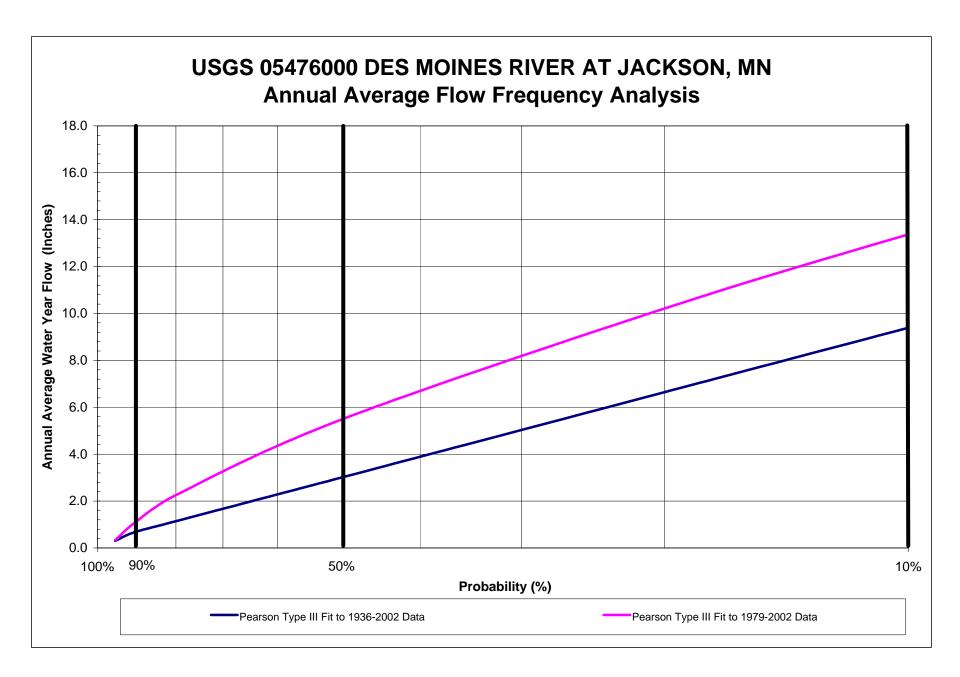
Guidelines for Determining Flood Flow Frequency, Bulletin #17B, U.S. Water Resources Council, Sept. 1981

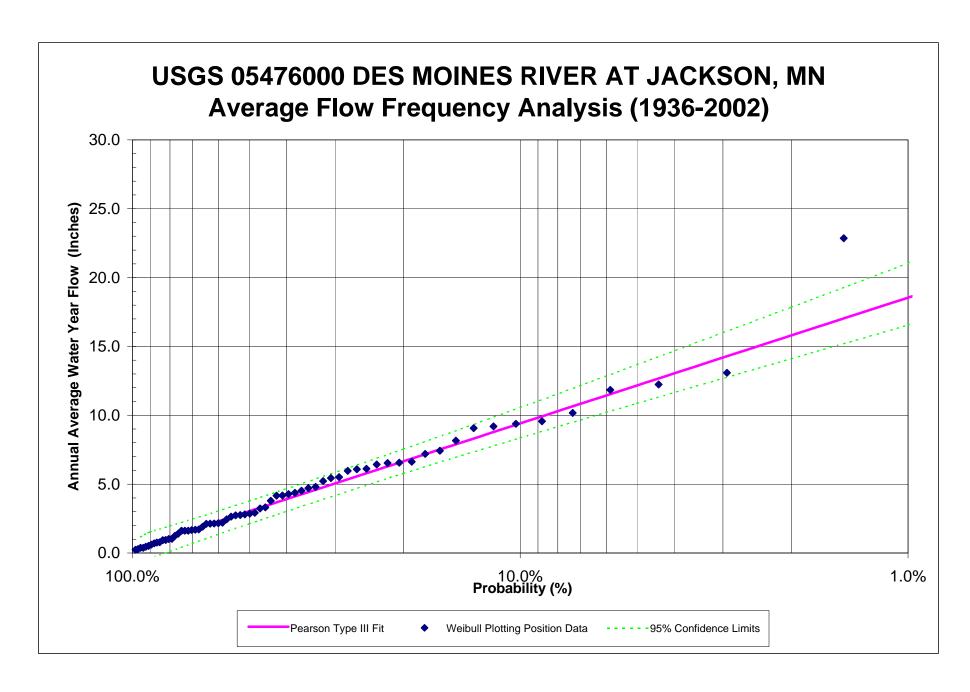
USGS National Land Cover Database, 1992. http://seamless.usgs.gov, http://seamless.usgs.gov/natllandcover.html

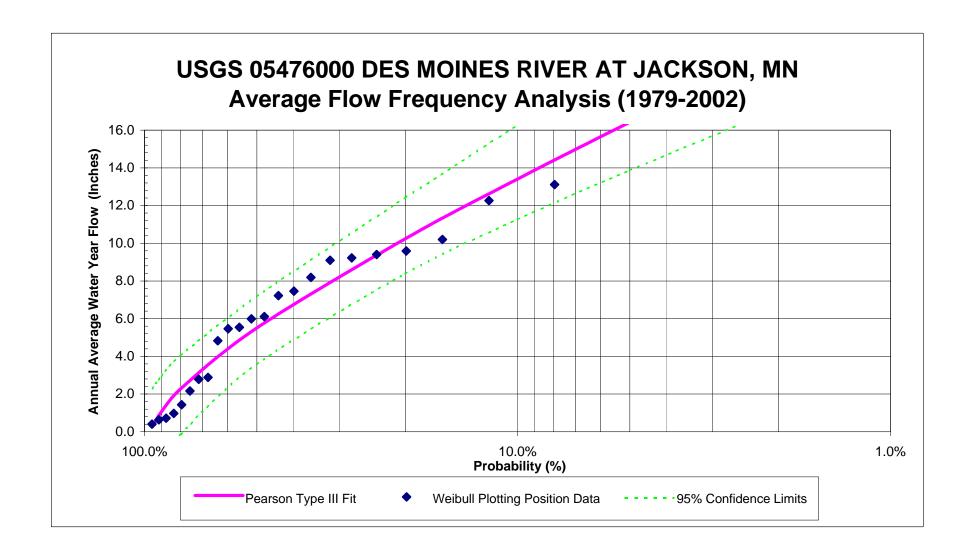

Table 8

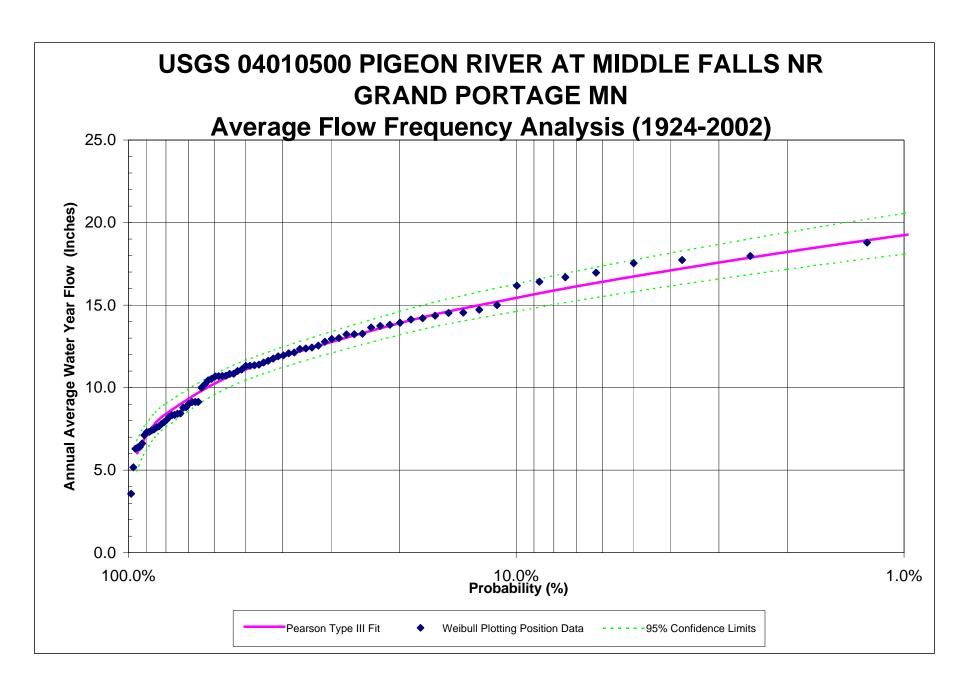

Comparison of Runoff Calculated from State-Wide Grids and Frequency Curves for Watersheds Entirely Within Minnesota (Runoff in Inches)

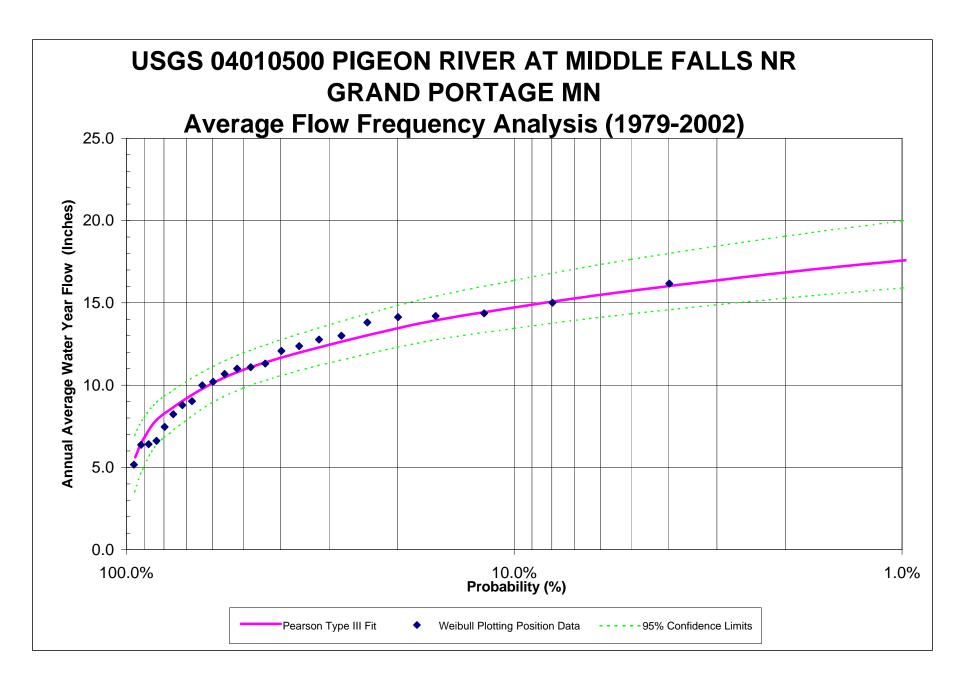

			Values from State-Wide Runoff Map (inches) Average			rom Freque (inches) Average	ency Plots	Difference (inches) Average			
Watershed	Major Basin	Low Flow		High Flow	Low Flow		High Flow	Low Flow		High Flow	
CEDAR RIVER NEAR AUSTIN	Cedar River	5.9	10.0	17.7	5.8	10.2	18.2	-0.115	0.183	0.520	
DES MOINES RIVER AT JACKSON	Des Moines River	1.2	5.5	13.1	1.1	5.3	13.2	-0.131	-0.153	0.120	
BAPTISM RIVER NEAR BEAVER BAY	Lake Superior	10.7	16.2	20.5	11.2	16.8	21.0	0.470	0.608	0.535	
KNIFE RIVER NEAR TWO HARBORS	Lake Superior	9.0	15.1	21.1	9.0	15.3	21.5	-0.027	0.159	0.354	
ST. LOUIS RIVER AT SCANLON	Lake Superior	7.3	11.6	5 15.7	7.2	11.0	14.5	-0.137	-0.580	-1.235	
ROOT RIVER NEAR HOUSTON	Lower Mississippi River	7.9	10.9	15.8	8.3	10.9	15.0	0.390	-0.028	-0.783	
VERMILLION RIVER NEAR EMPIRE, MN	Lower Mississippi River	4.3	8.0	13.0	4.0	7.8	12.6	-0.320	-0.219	-0.374	
CHIPPEWA RIVER NEAR MILAN, MN	Minnesota River	1.4	4.3	7.8	1.2	4.1	7.3	-0.191	-0.236	-0.480	
COTTONWOOD RIVER NEAR NEW ULM	Minnesota River	1.5	5.5	12.1	1.5	5.5	12.0	0.037	0.018	-0.110	
CROW WING RIVER NEAR PILLAGER, MN	Minnesota River	3.1	5.8	8.7	3.4	6.1	9.1	0.280	0.314	0.400	
LE SUEUR RIVER NEAR RAPIDAN, MN	Minnesota River	3.8	8.0	15.8	3.4	7.8	15.7	-0.425	-0.249	-0.103	
BASSWOOD RIVER NEAR WINTON	Rainy River	7.8	12.0	15.6	7.2	11.2	14.5	-0.581	-0.831	-1.098	
BIG FORK RIVER AT BIG FALLS	Rainy River	4.4	7.2	10.5	4.4	7.2	10.5	0.025	-0.015	-0.018	
LITTLE FORK RIVER AT LITTLEFORK	Rainy River	5.5	8.6	12.3	5.6	8.7	12.7	0.134	0.096	0.378	
BUFFALO RIVER NEAR DILWORTH	Red River of the North	0.9	3.0	5.5	0.8	2.8	5.2	-0.118	-0.194	-0.293	
OTTER TAIL RIVER BL ORWELL D NR FERGUS FALLS	Red River of the North	1.8	3.9	6.4	1.8	3.8	5.9	0.030	-0.148	-0.483	
RED LAKE RIVER AT CROOKSTON	Red River of the North	1.5	5 4.1	7.0	1.1	3.9	6.7	-0.386	-0.242	-0.287	
ROSEAU RIVER BELOW STATE DITCH 51 NR CARIBOU	Red River of the North	0.9	3.5	6.4	0.8	3.5	6.5	-0.120	-0.009	0.072	
WILD RICE RIVER AT HENDRUM	Red River of the North	1.1	3.6	6.5	1.0	3.7	6.9	-0.109	0.098	0.415	
KETTLE RIVER BELOW SANDSTONE	St. Croix River	6.4	10.7	15.7	6.5	10.9	16.2	0.138	0.229	0.515	
SNAKE RIVER NEAR PINE CITY	St. Croix River	4.8	8.6	12.8	4.6	8.3	12.3	-0.209	-0.310	-0.486	
CANNON RIVER AT WELCH	Upper Mississippi River	5.8	9.1	15.5	7.1	9.5	16.1	1.294	0.446	0.572	
CROW RIVER AT ROCKFORD	Upper Mississippi River	2.3	6.3	10.8	2.1	6.4	10.9	-0.214	0.122	0.087	
LONG PRAIRIE RIVER AT LONG PRAIRIE	Upper Mississippi River	2.4	5.1	8.2	2.6	5.2	8.3	0.157	0.103	0.128	
MISSISSIPPI RIVER AT GRAND RAPIDS	Upper Mississippi River	3.6	6.3	9.1	3.6	6.2	8.6	0.048	-0.093	-0.495	
MISSISSIPPI RIVER NEAR ANOKA**	Upper Mississippi River	3.5	6.8	10.4	4.4	7.0	9.9	0.862	0.198	-0.452	
Average Standard Deviation		4,2	2 7.7	12.1	4.2	7.7	12.0	0.030 0.395			

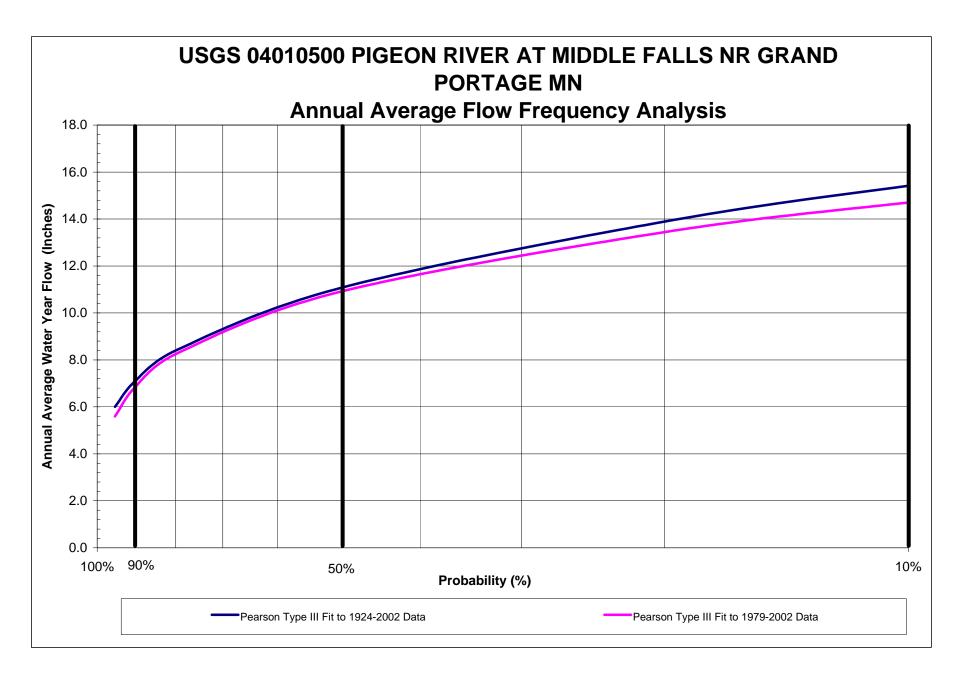

**Data not used in the development of state-wide runoff maps

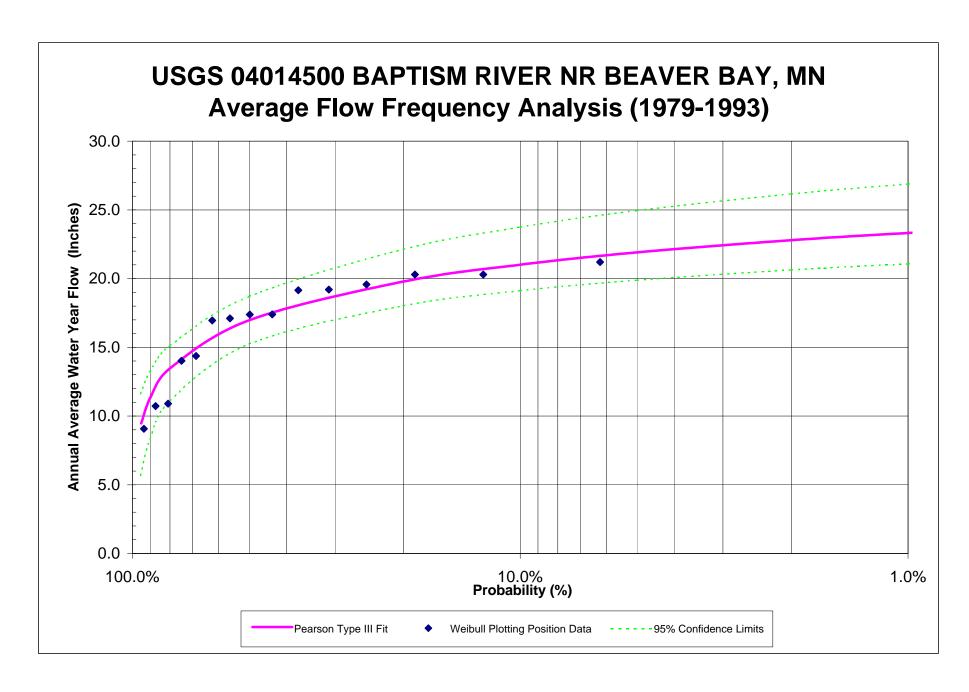


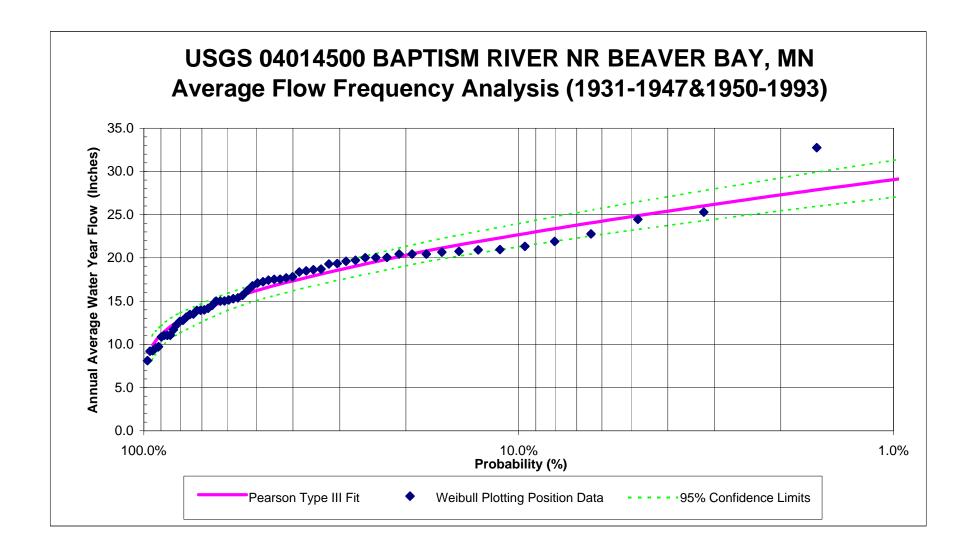


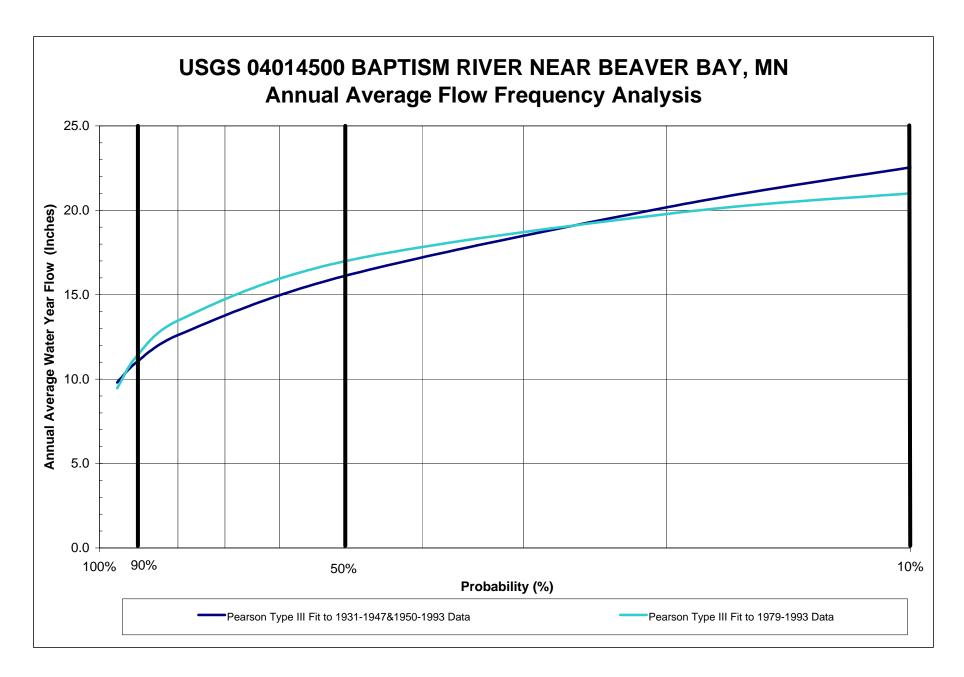


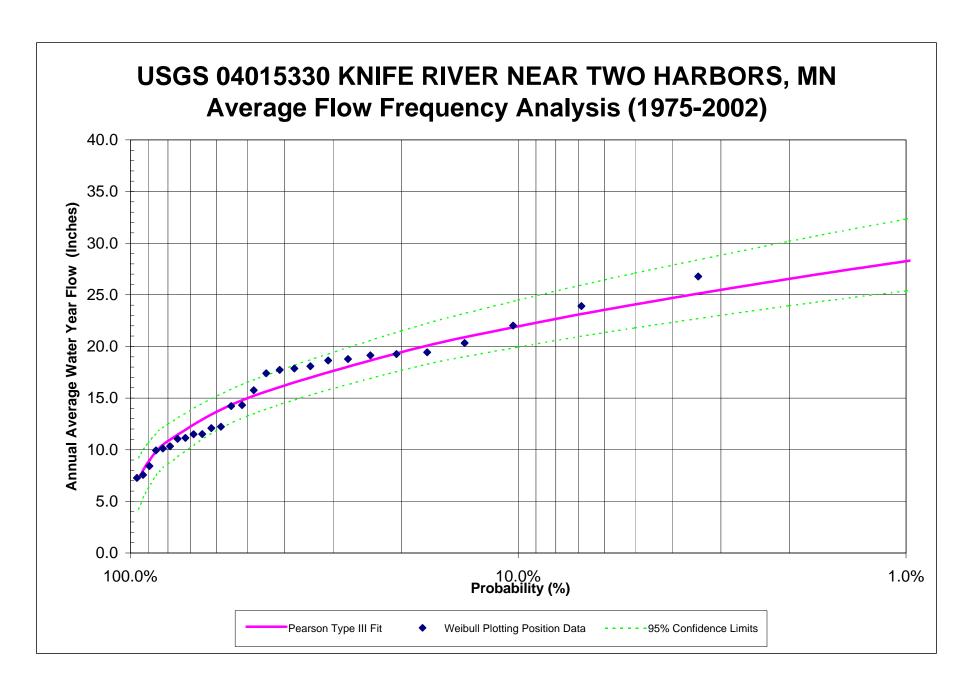




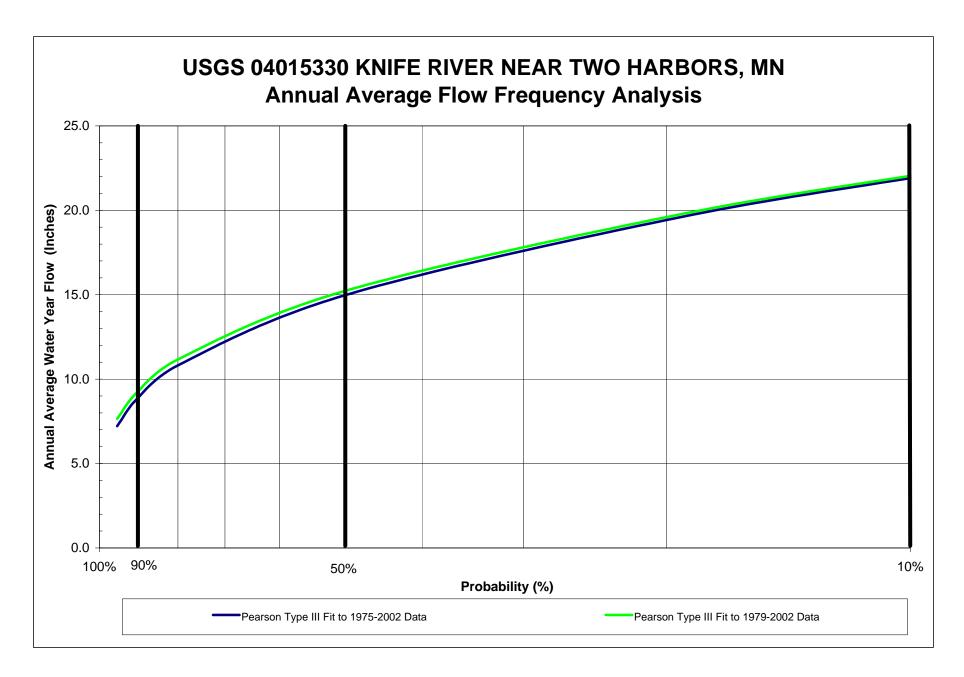


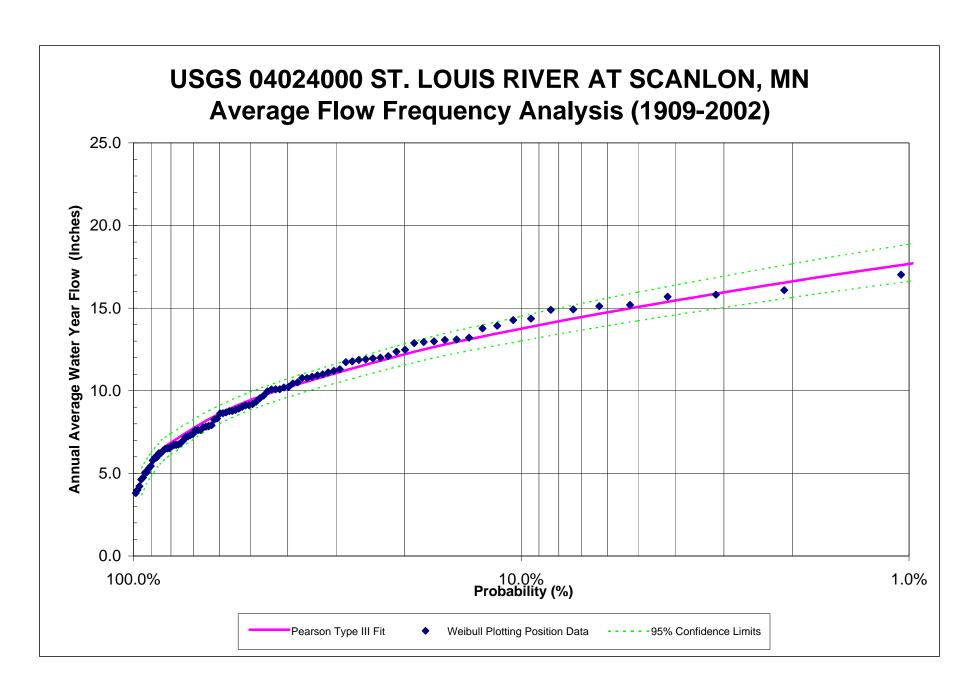


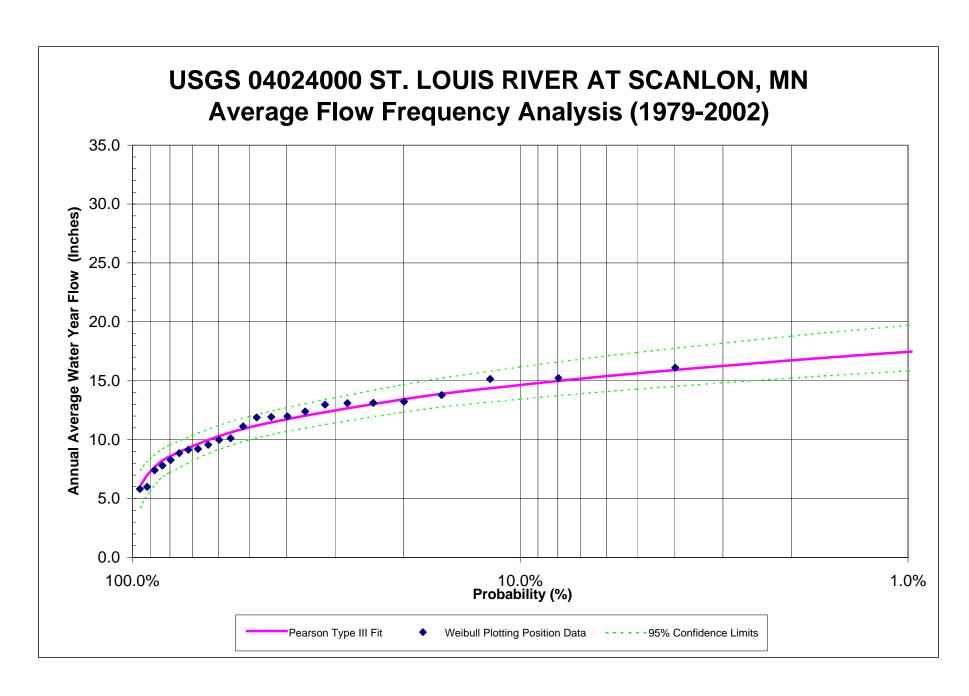


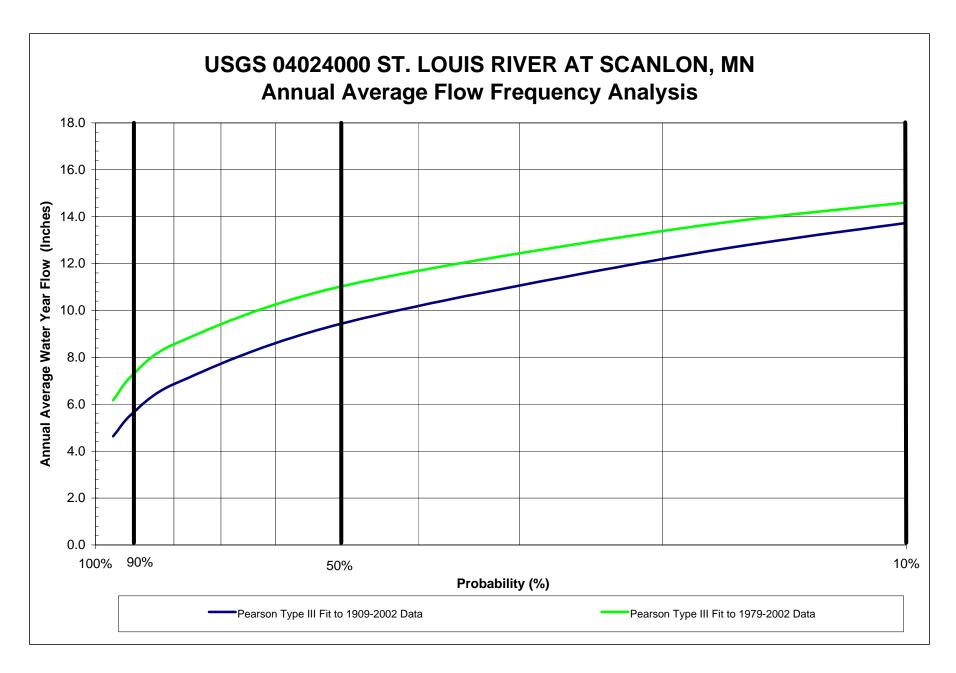


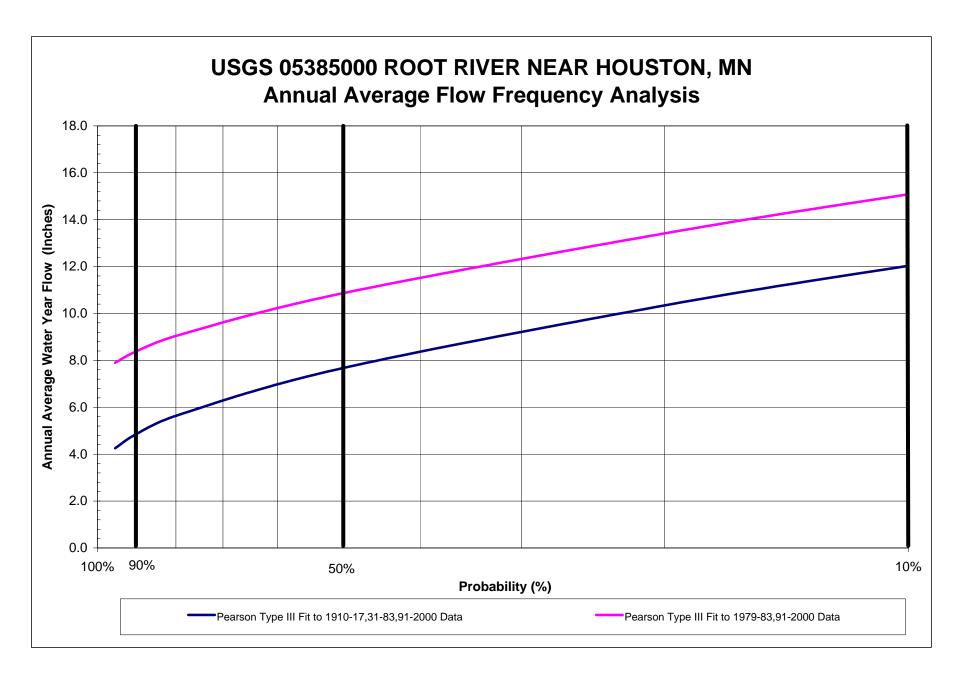


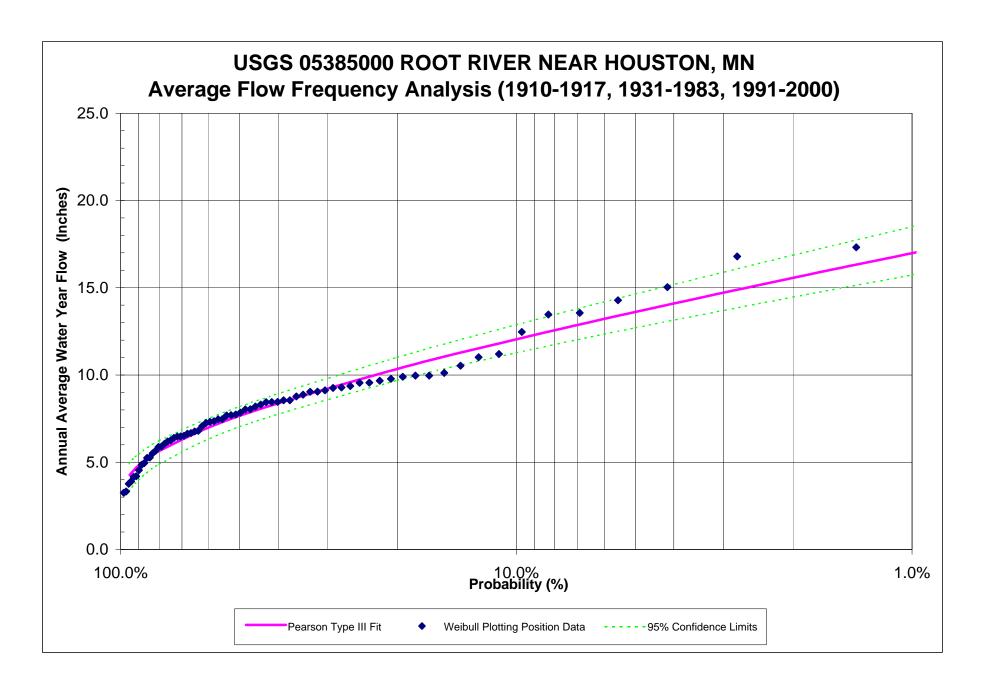


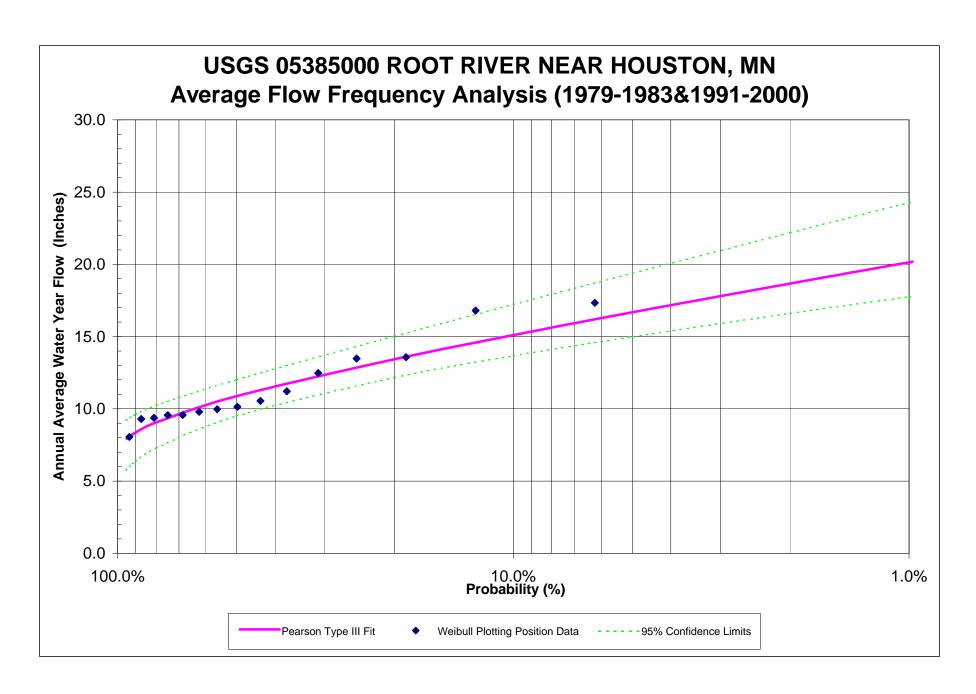


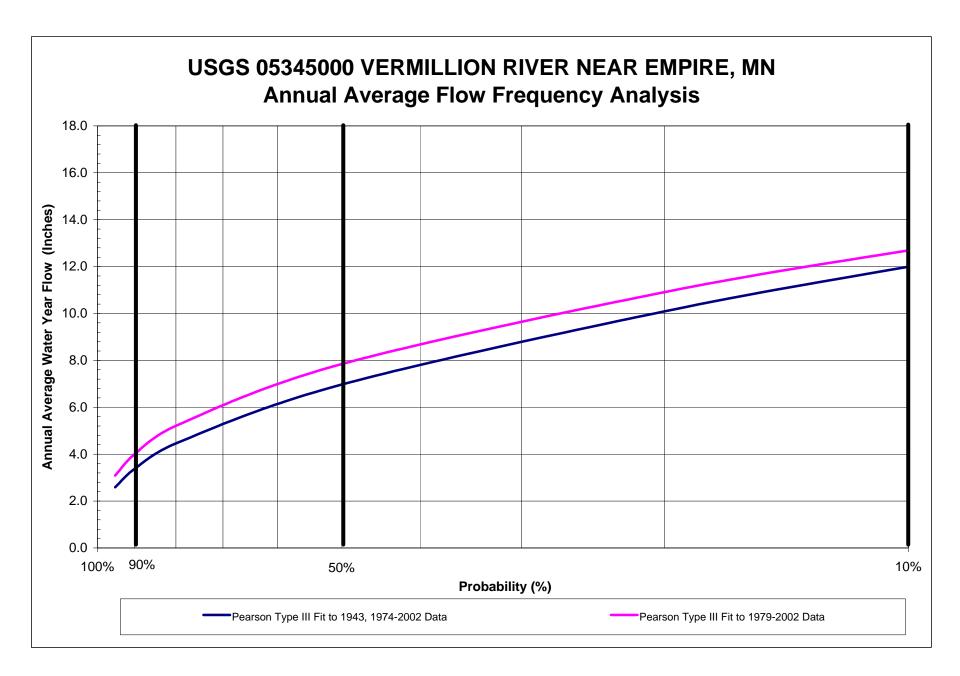


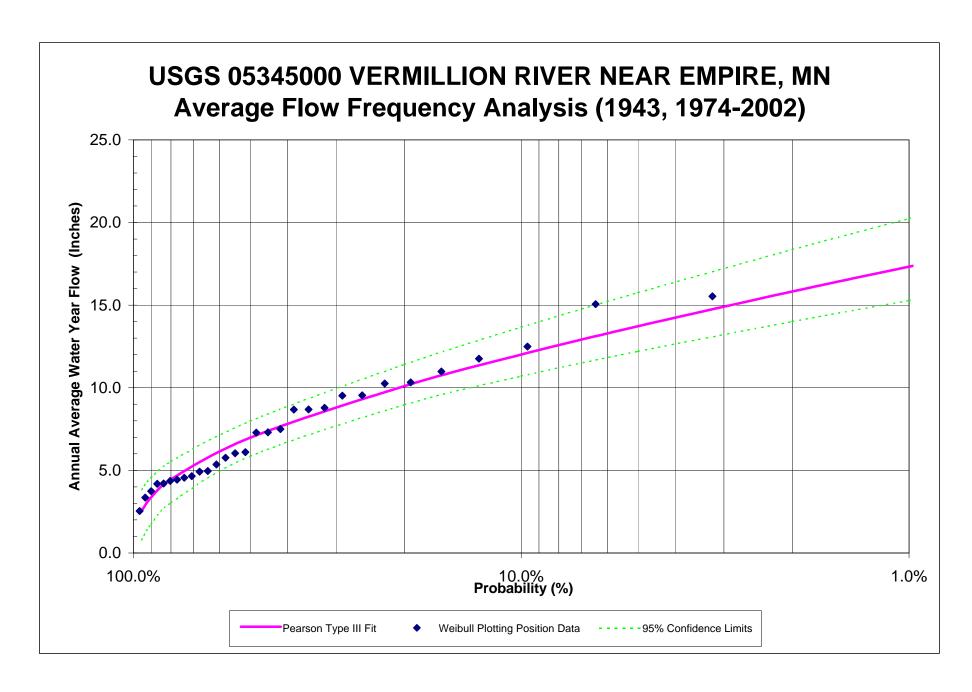


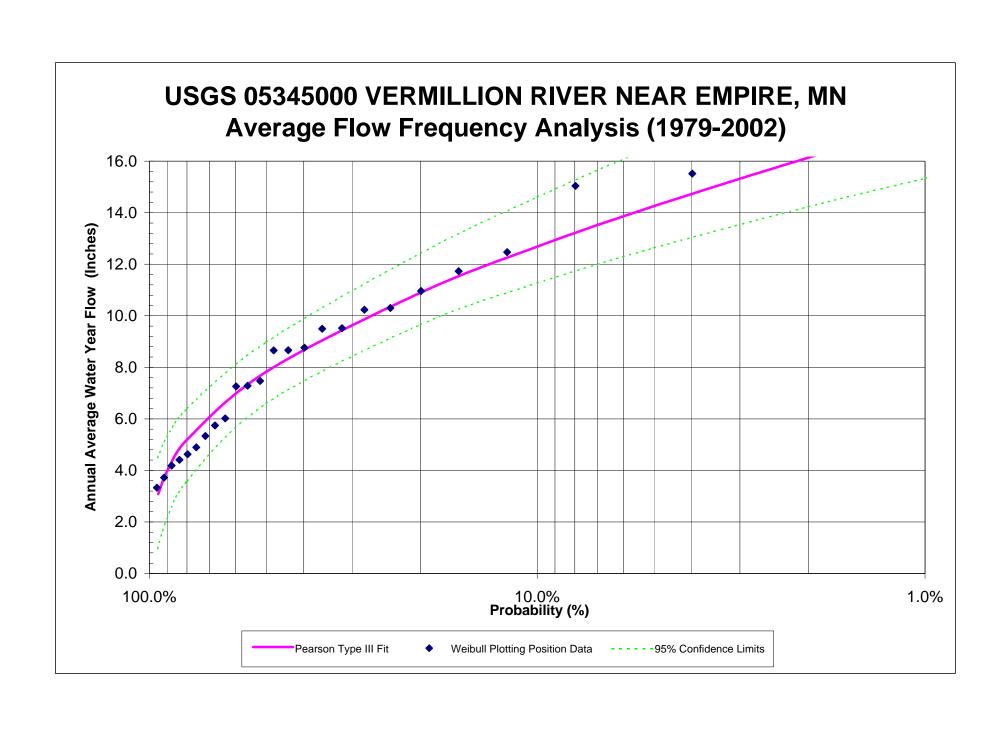


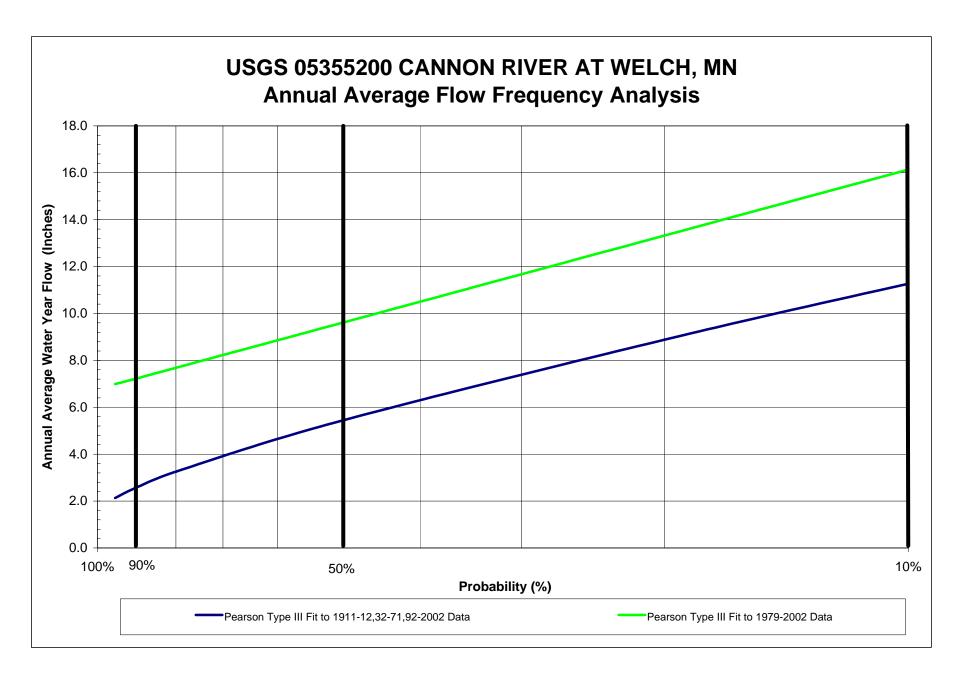


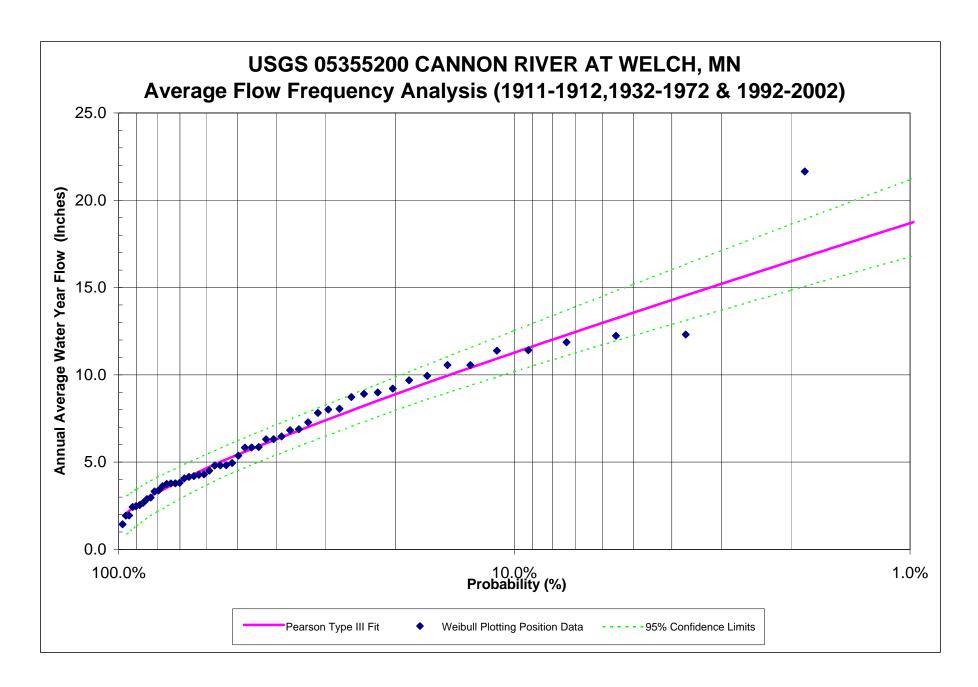


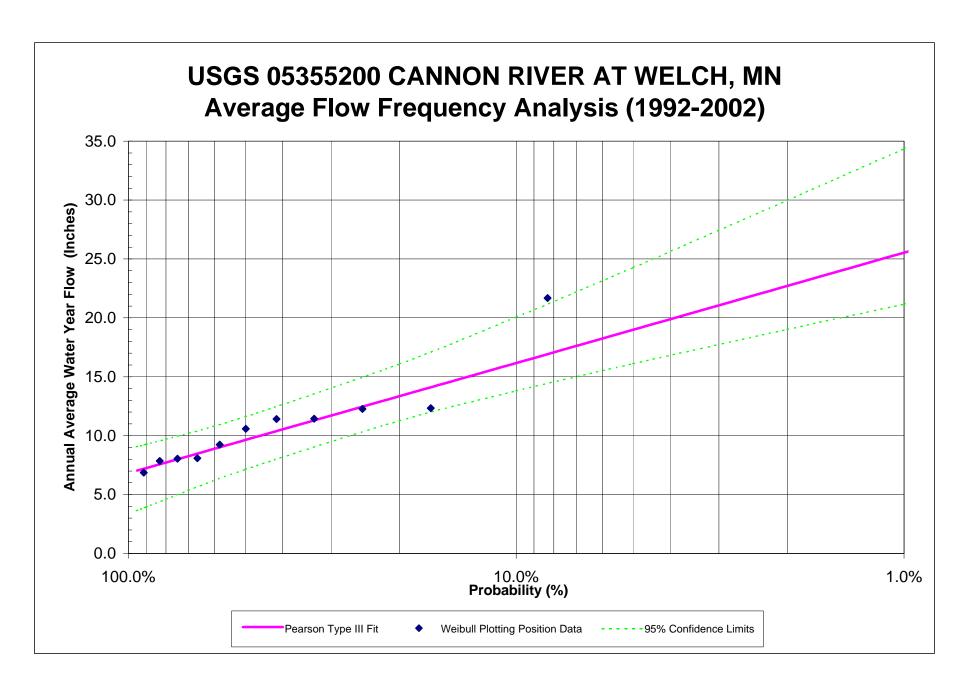


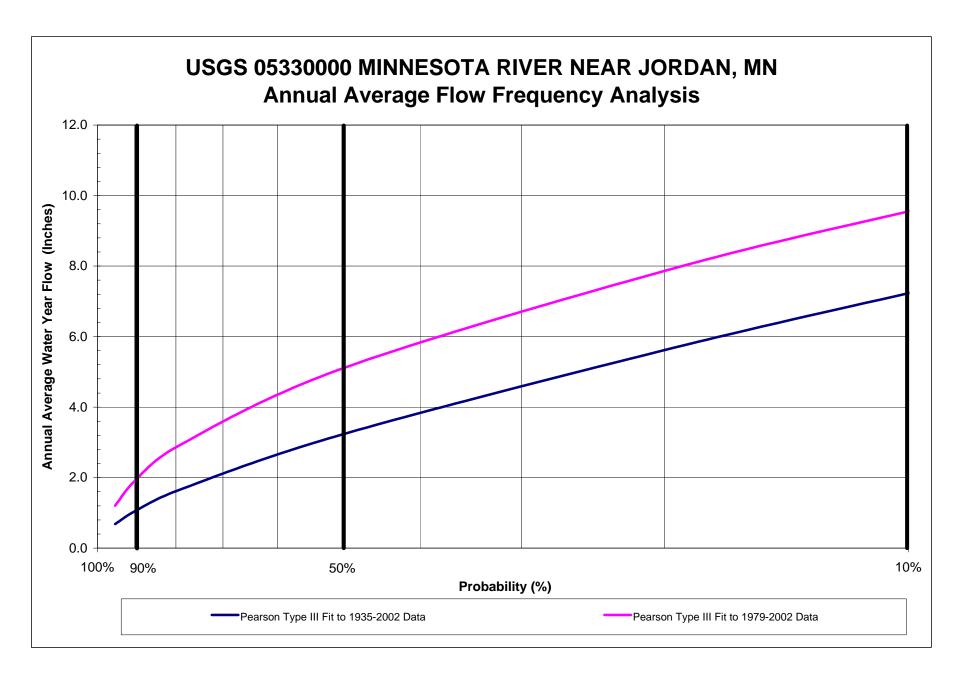


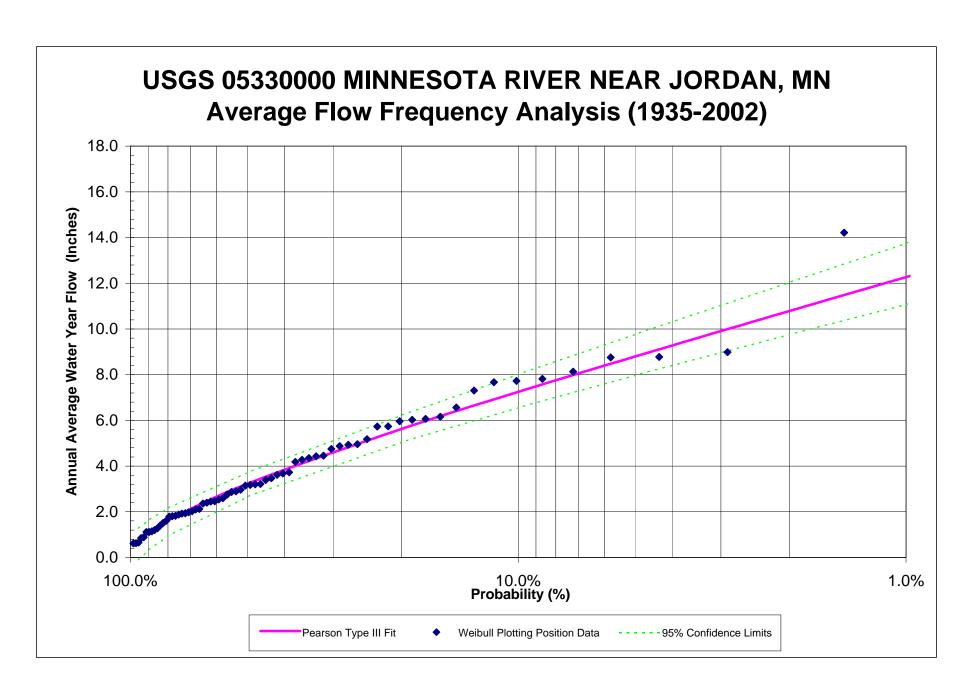


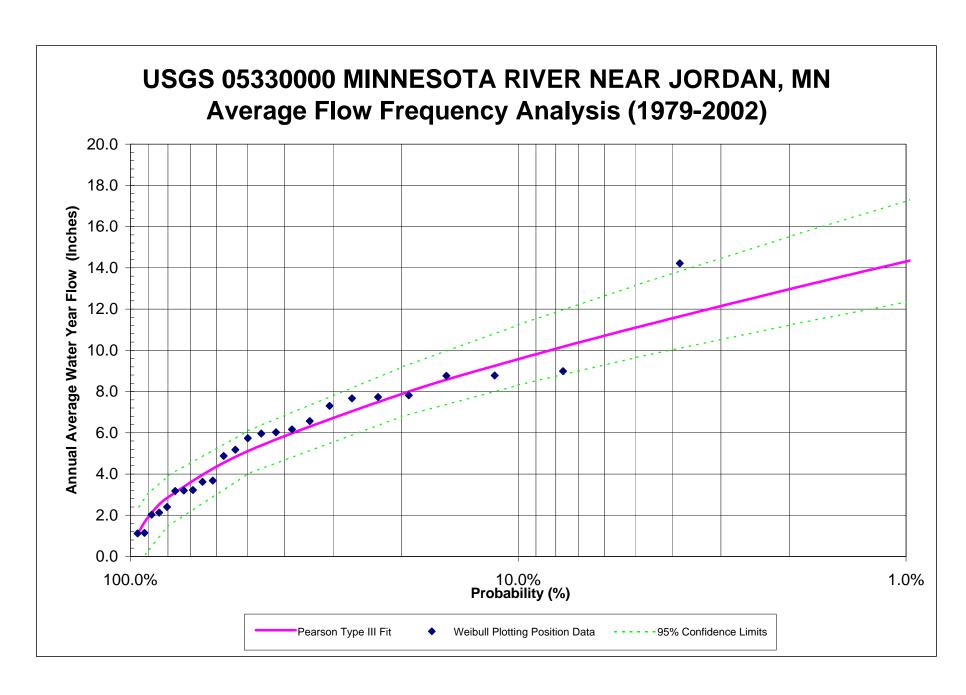


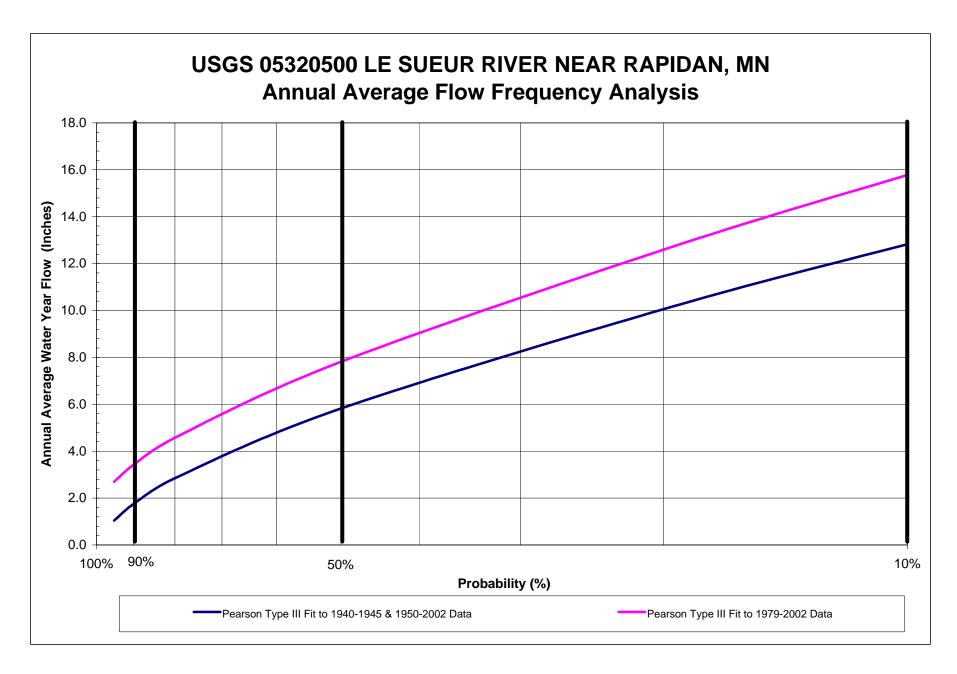


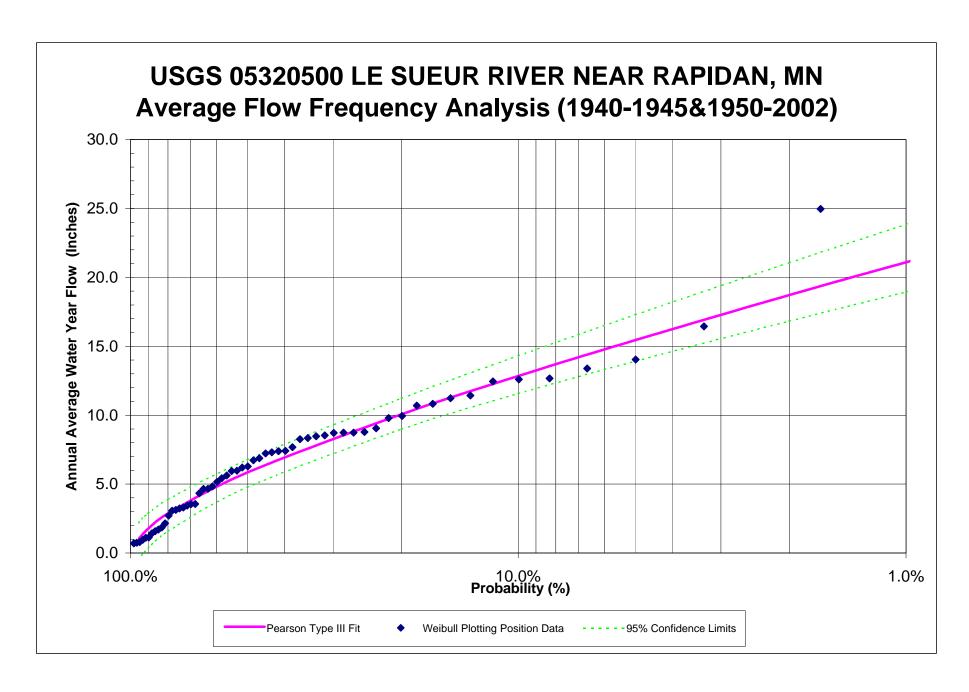


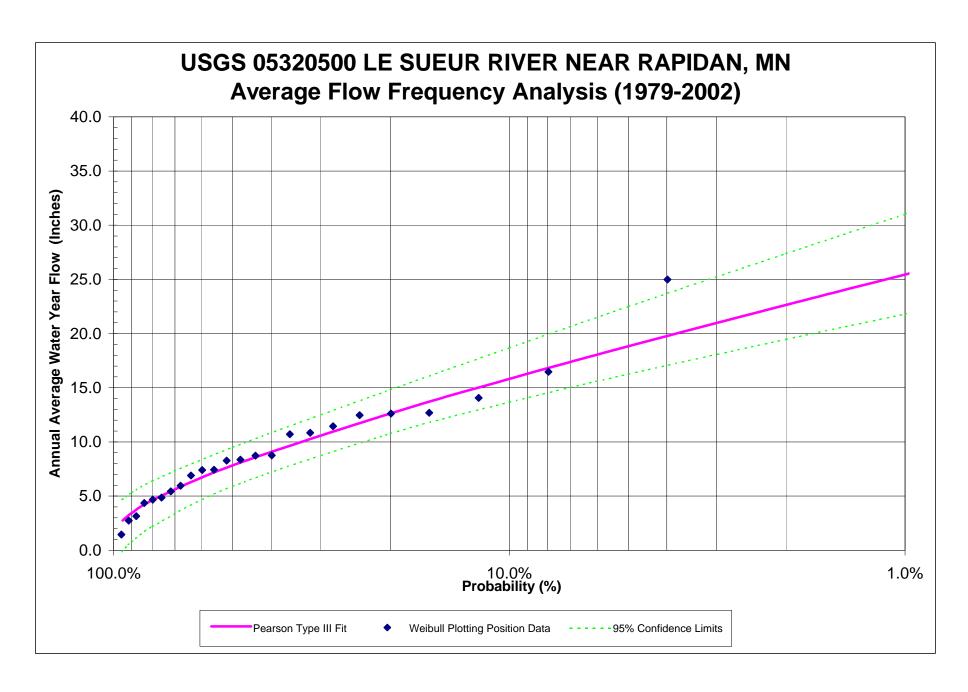


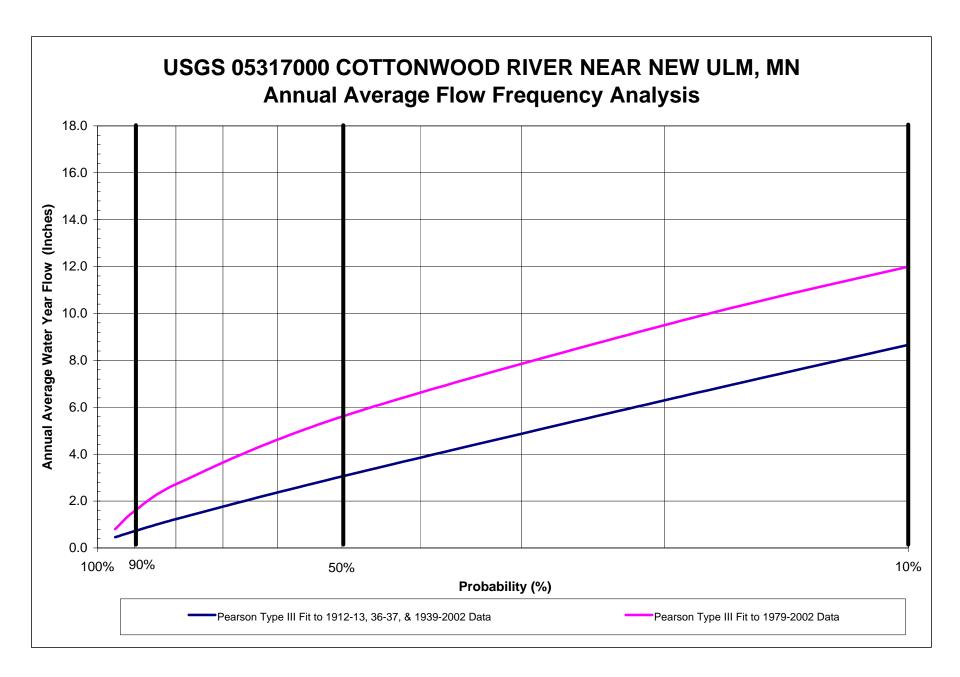


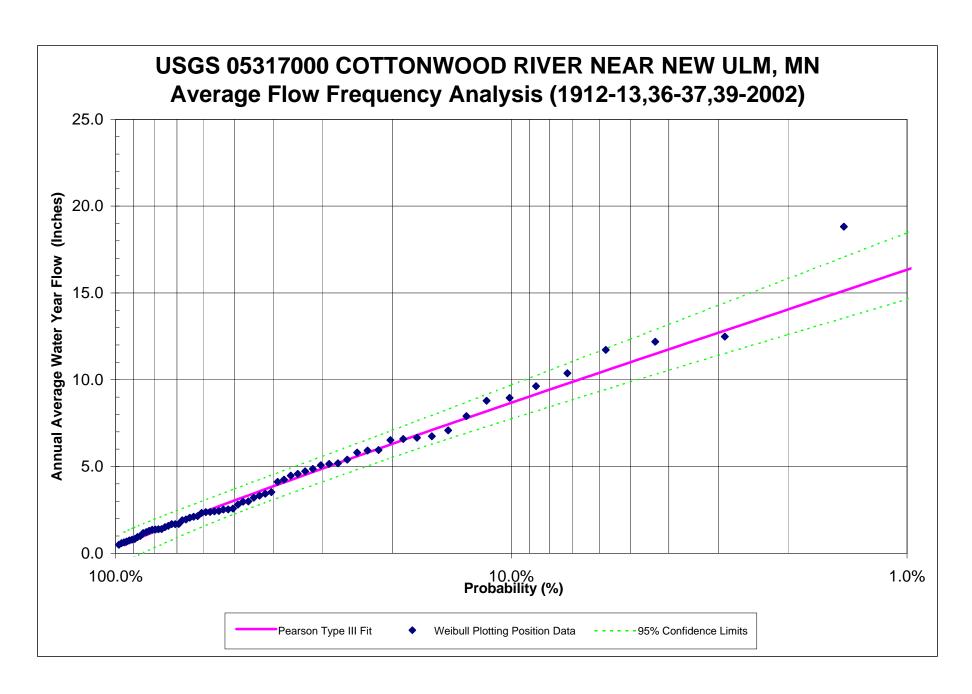


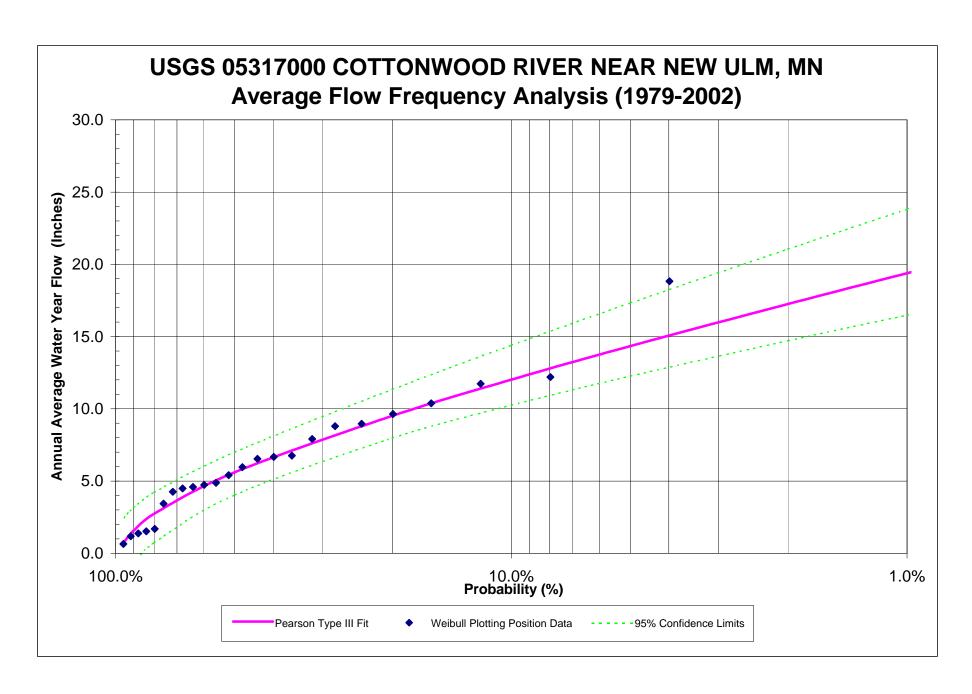


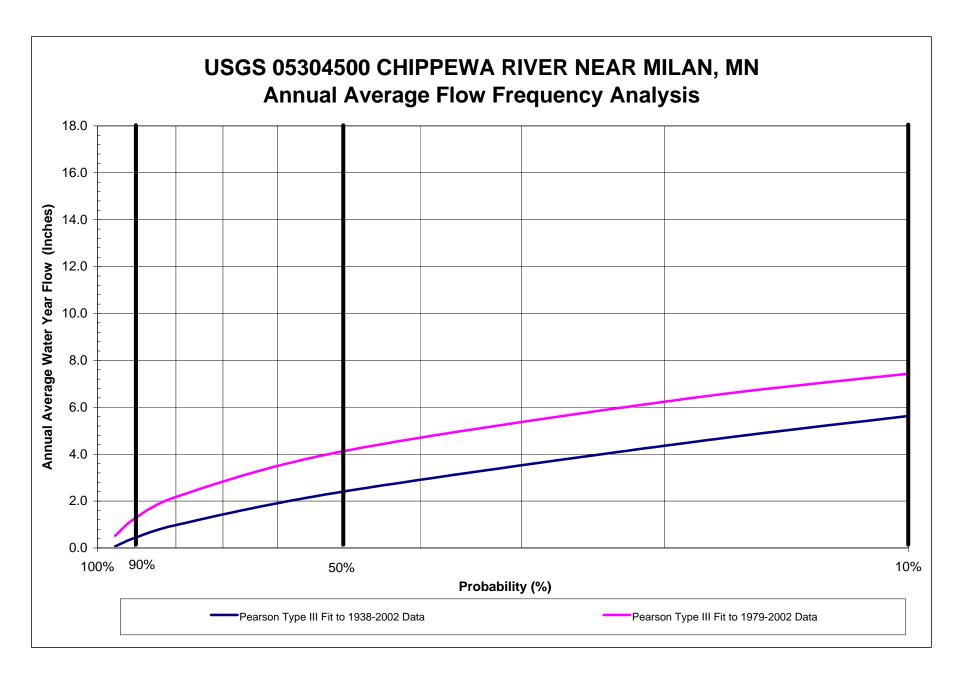


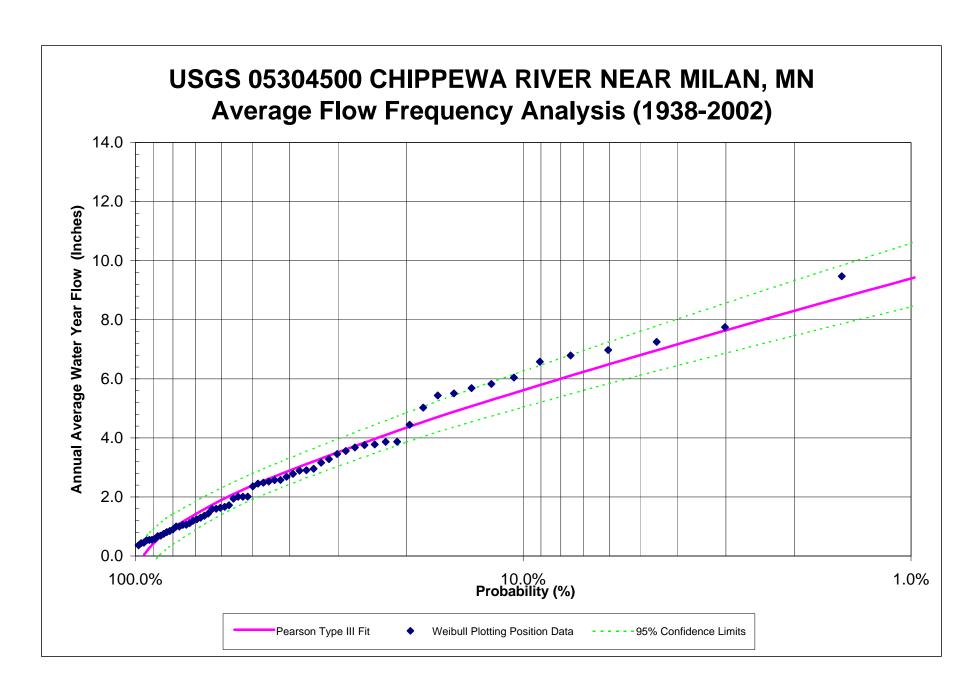


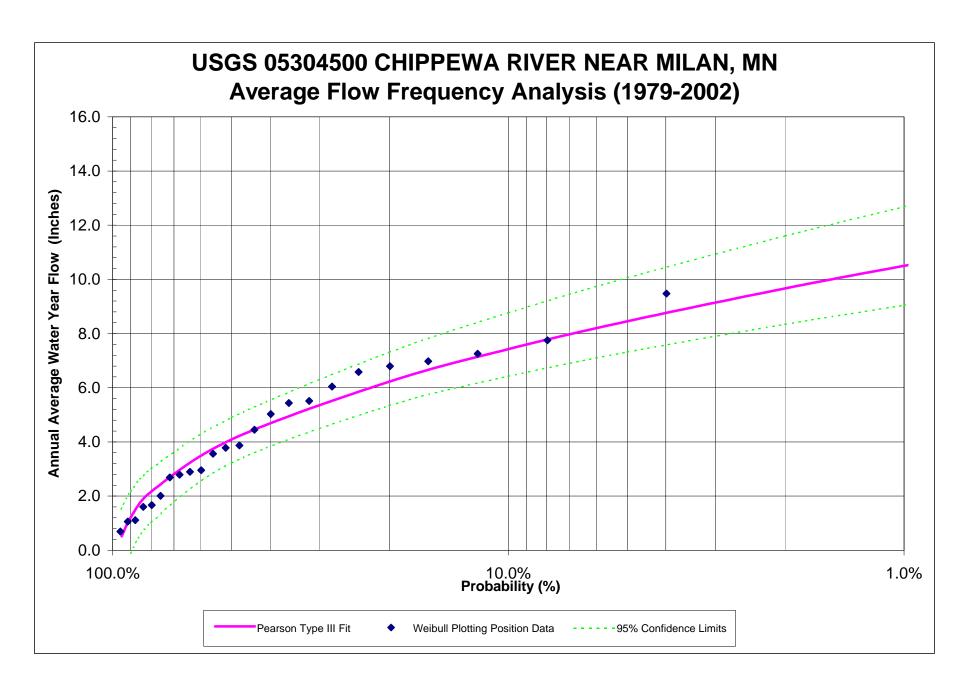


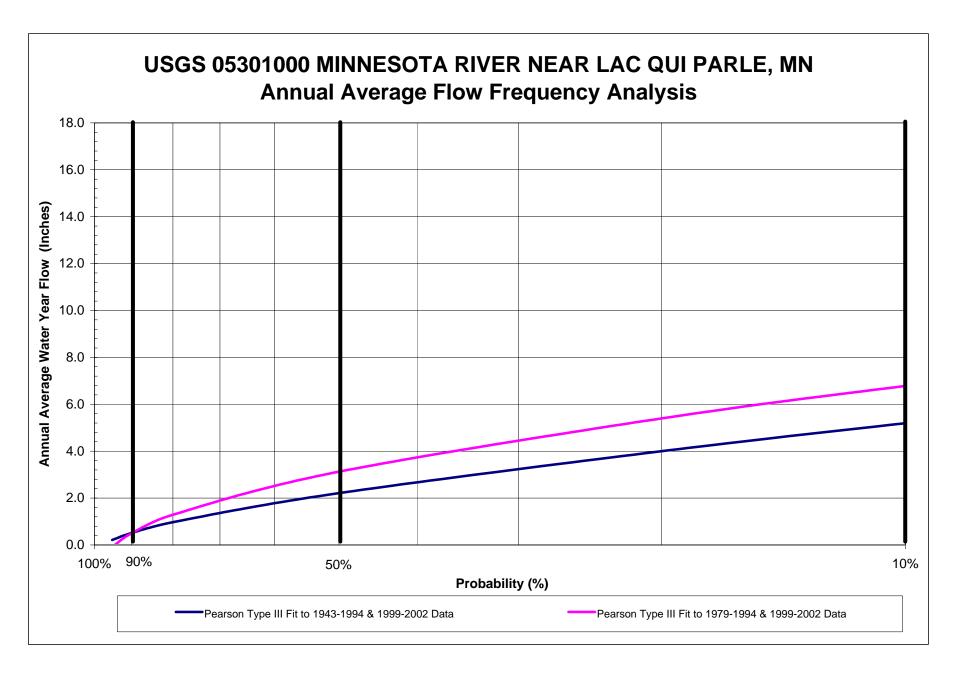


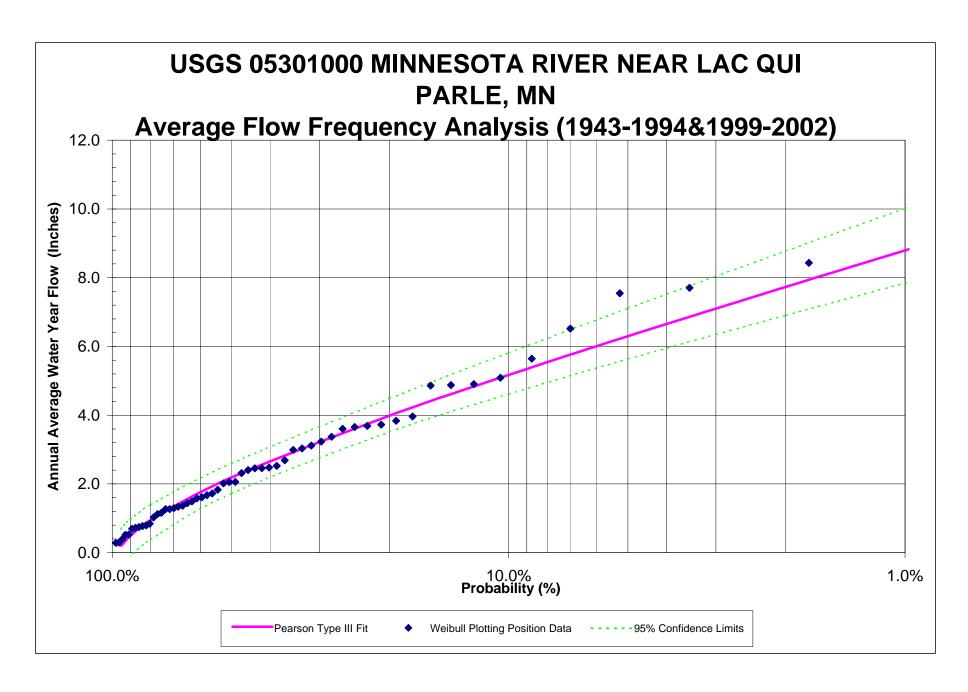


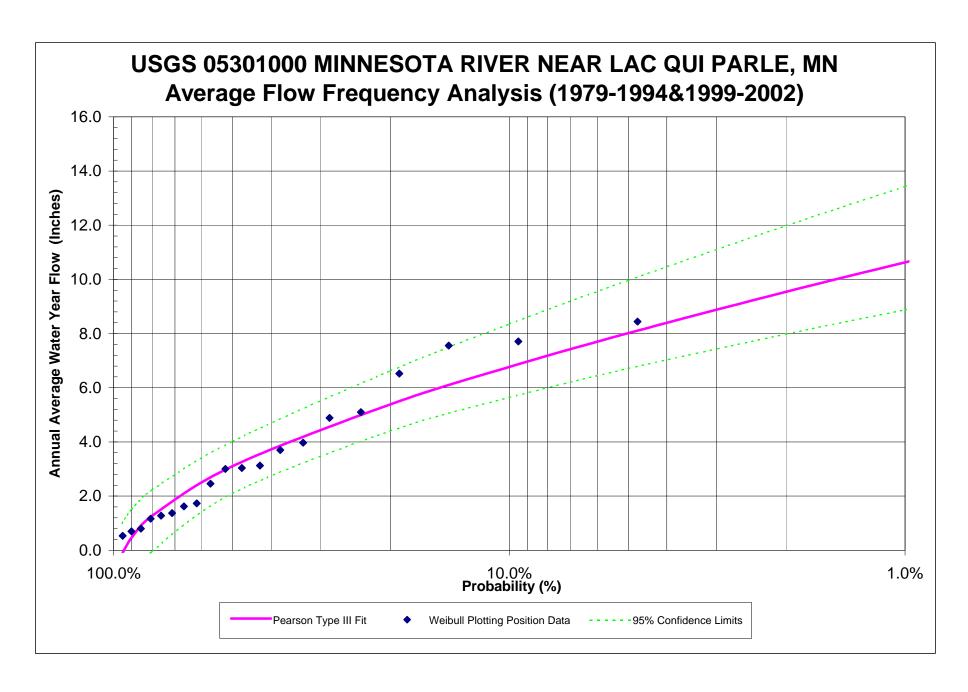


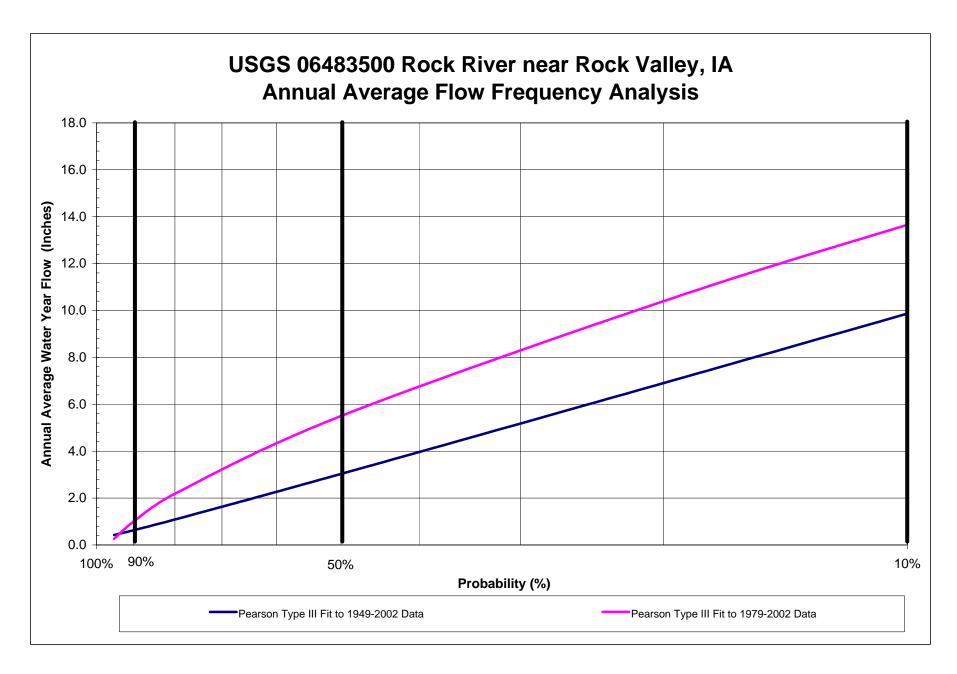


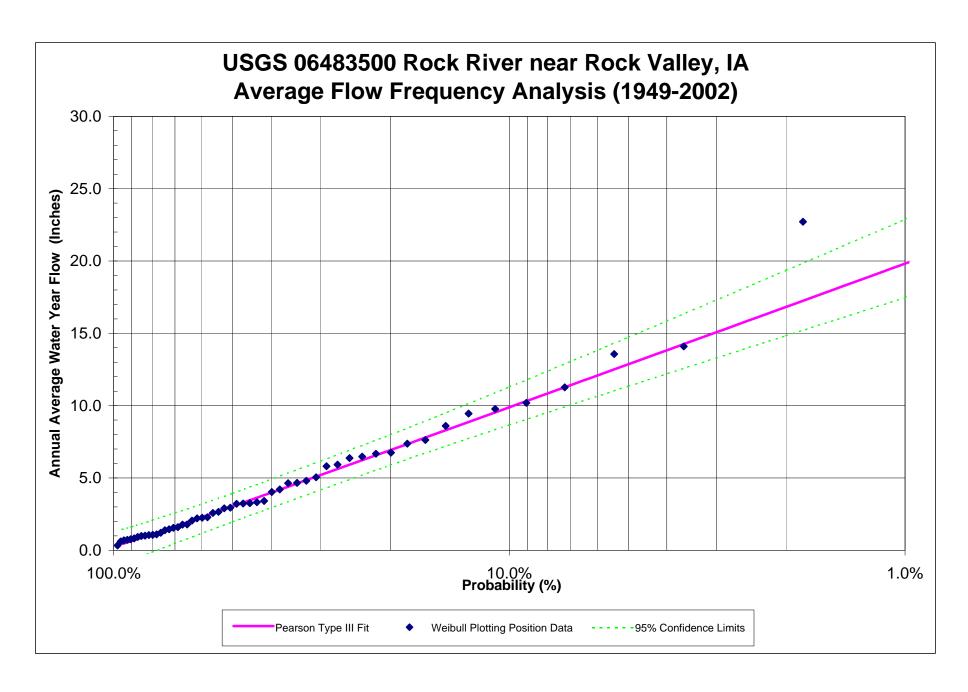


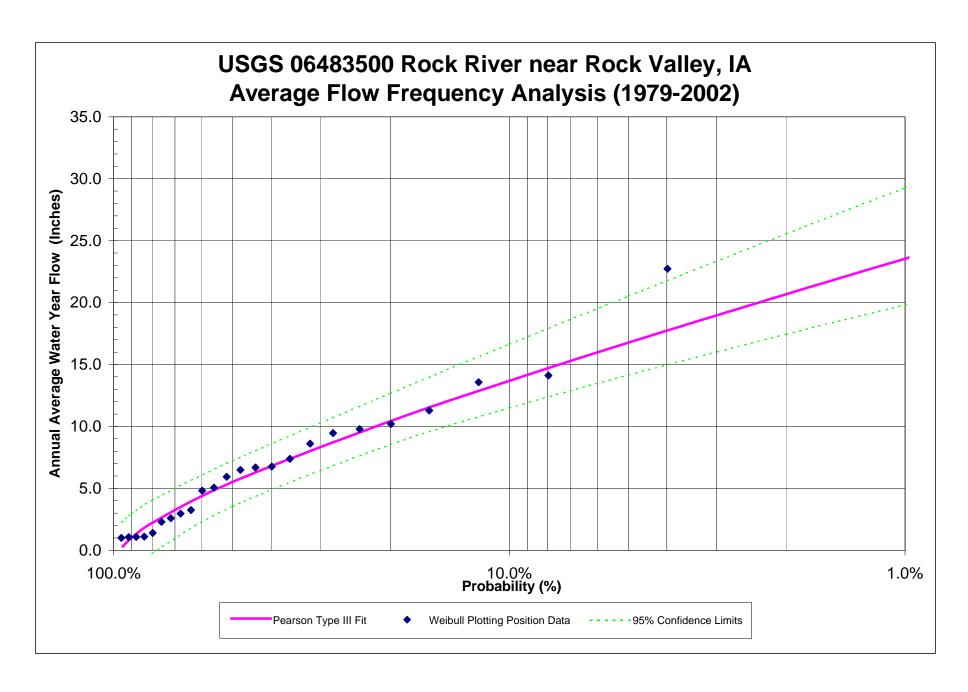


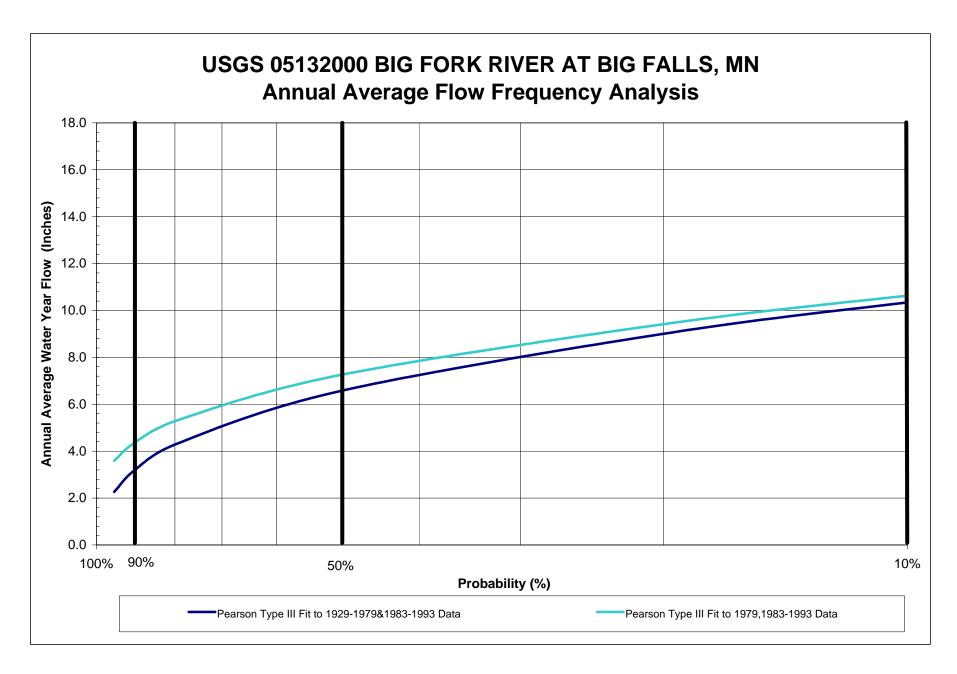


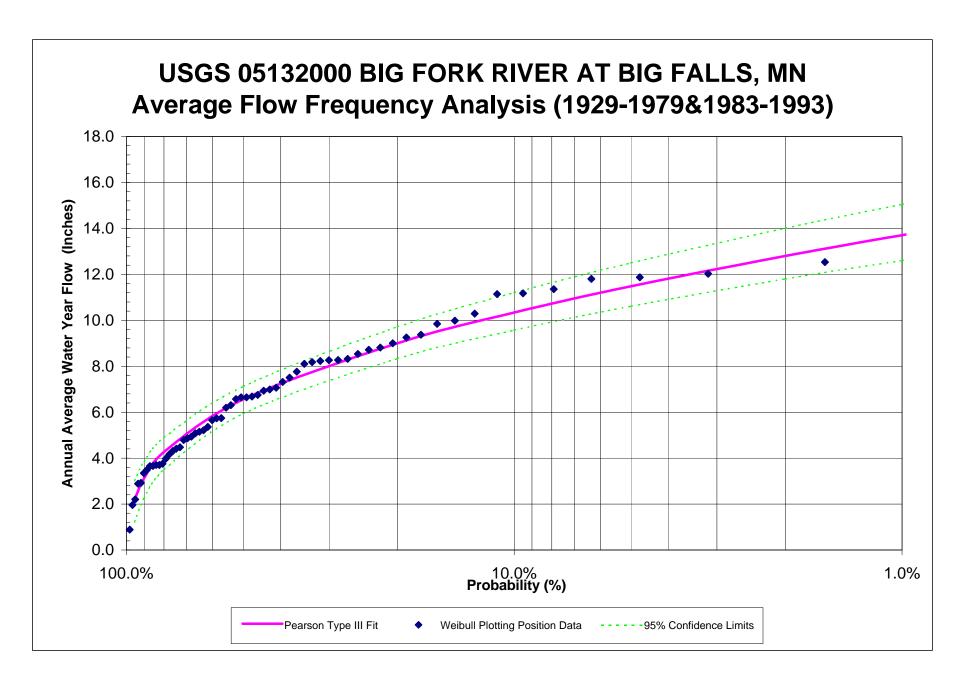


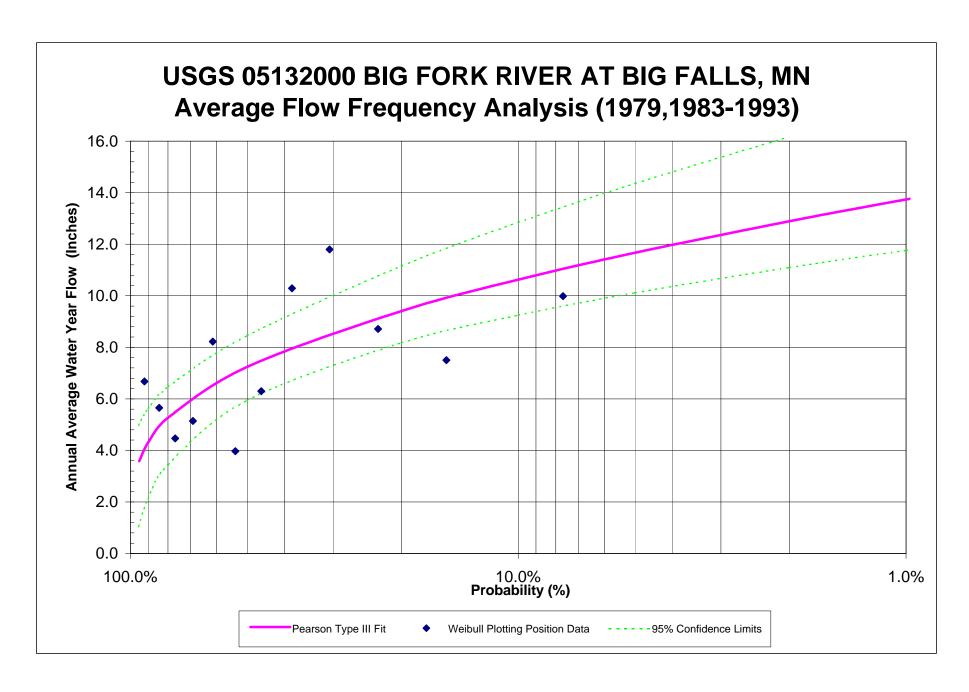


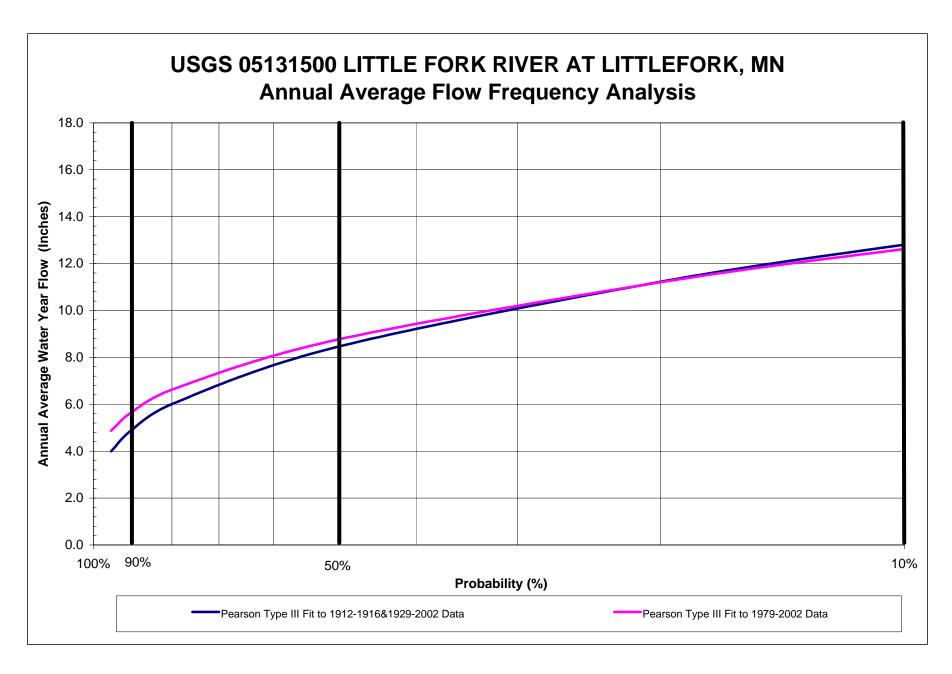


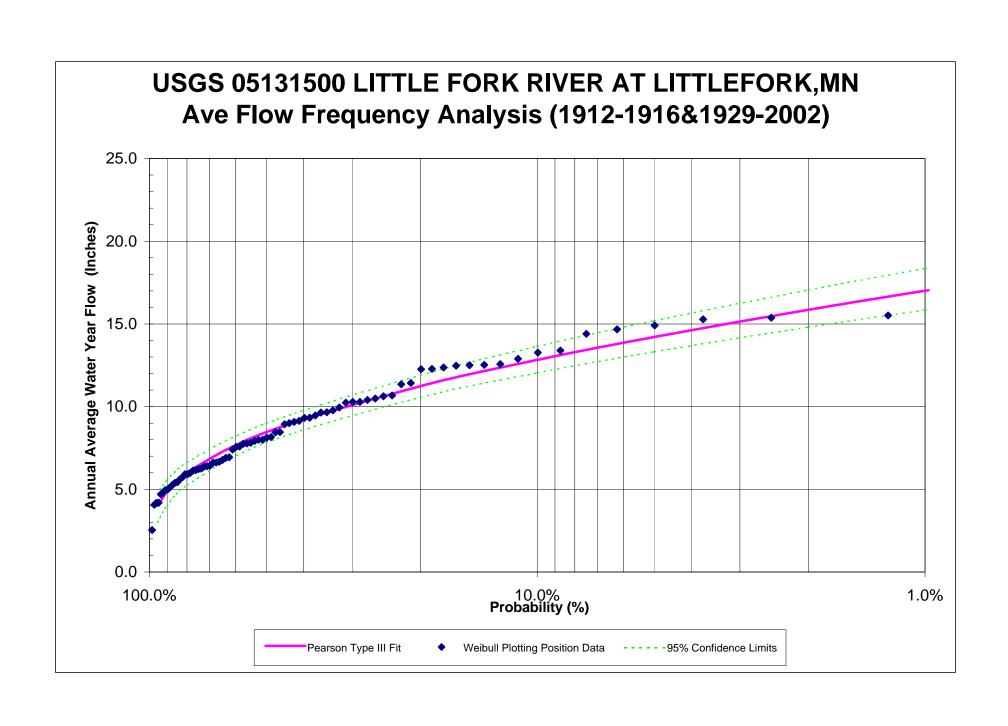


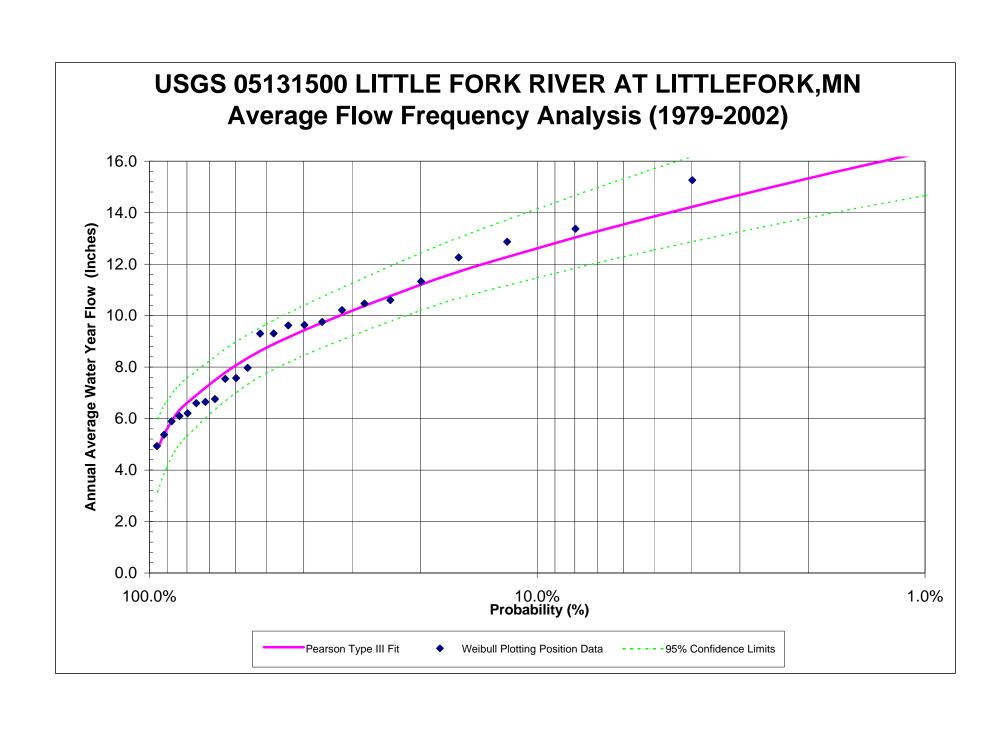


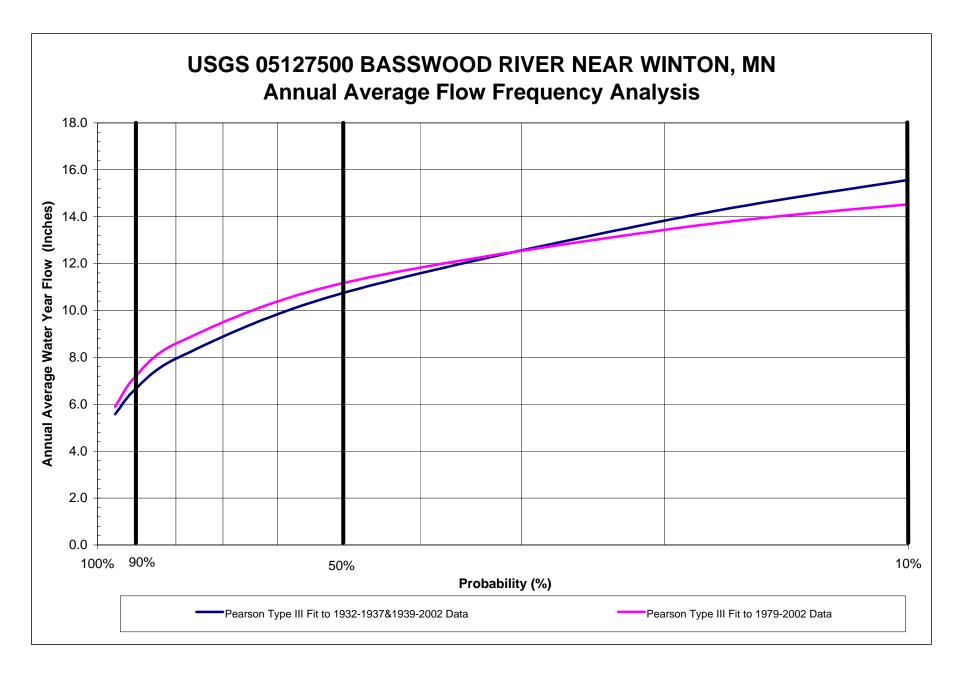


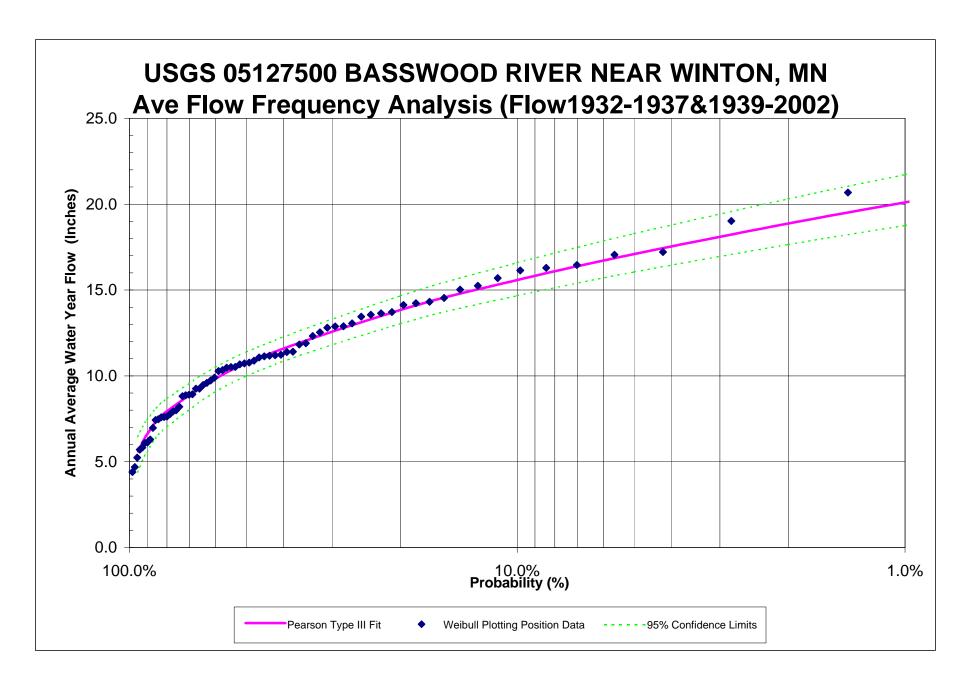


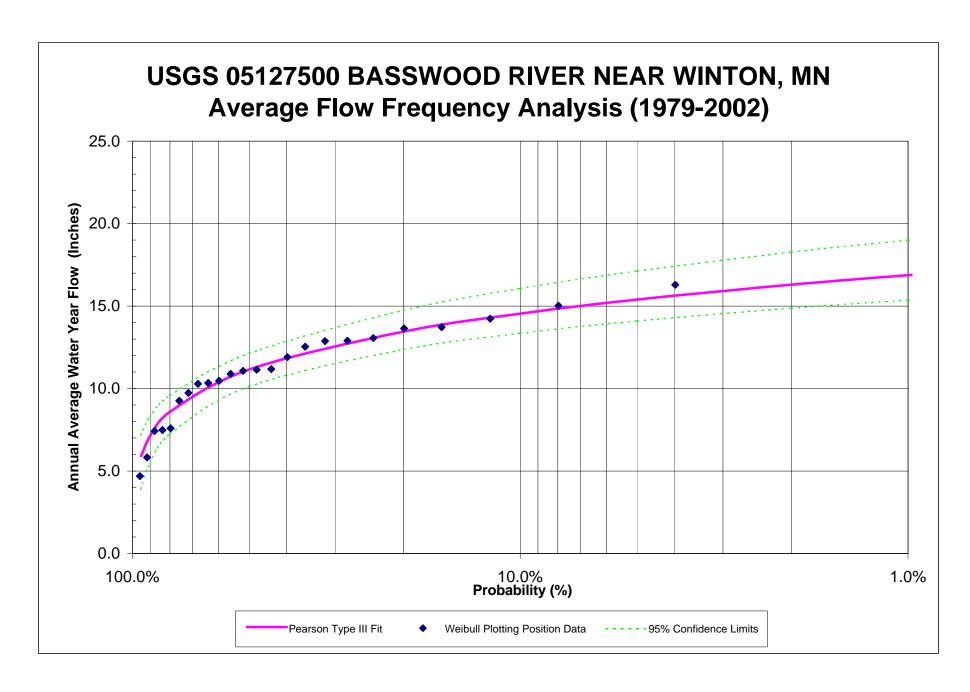


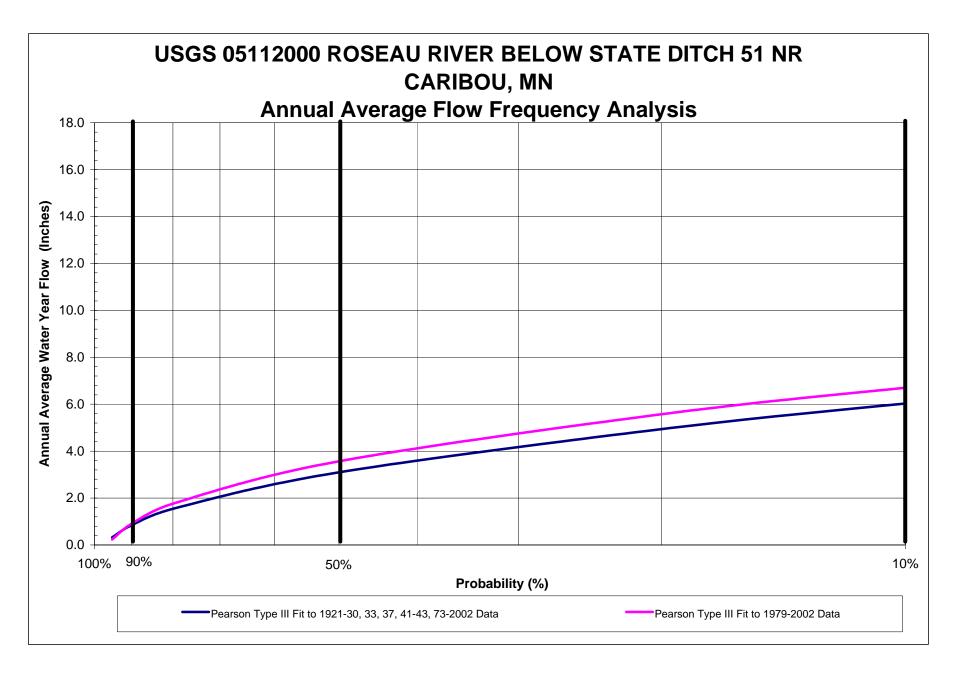


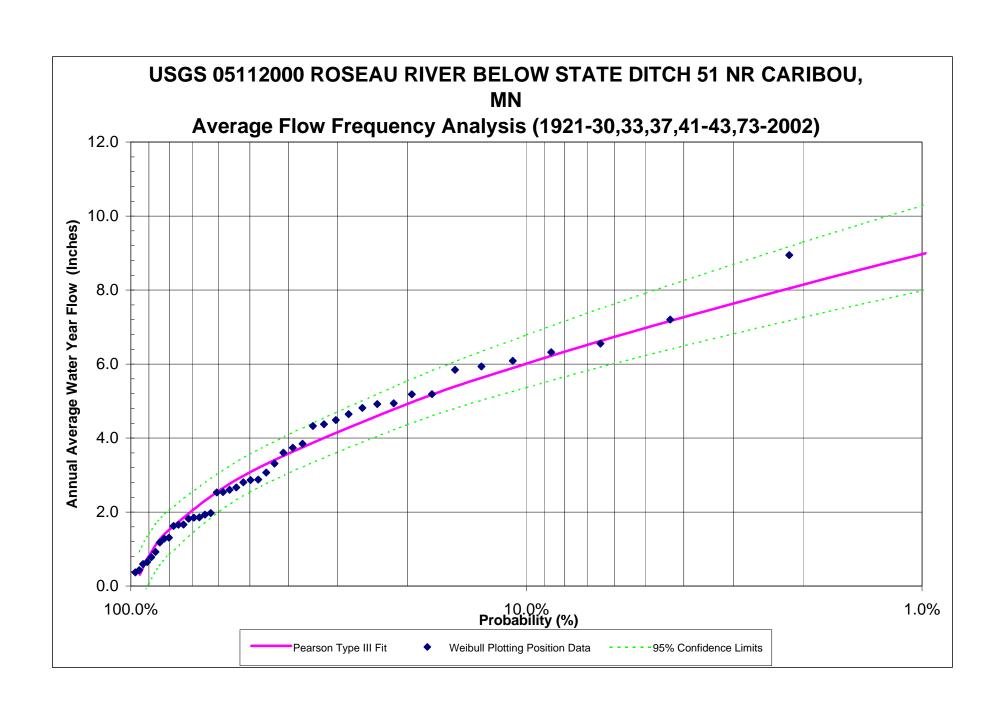


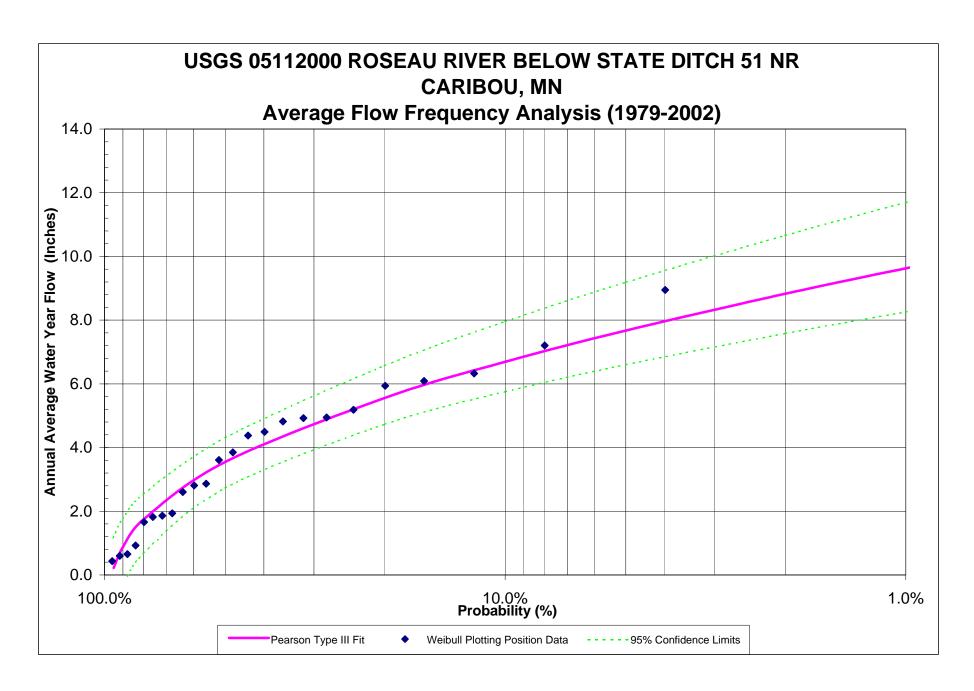


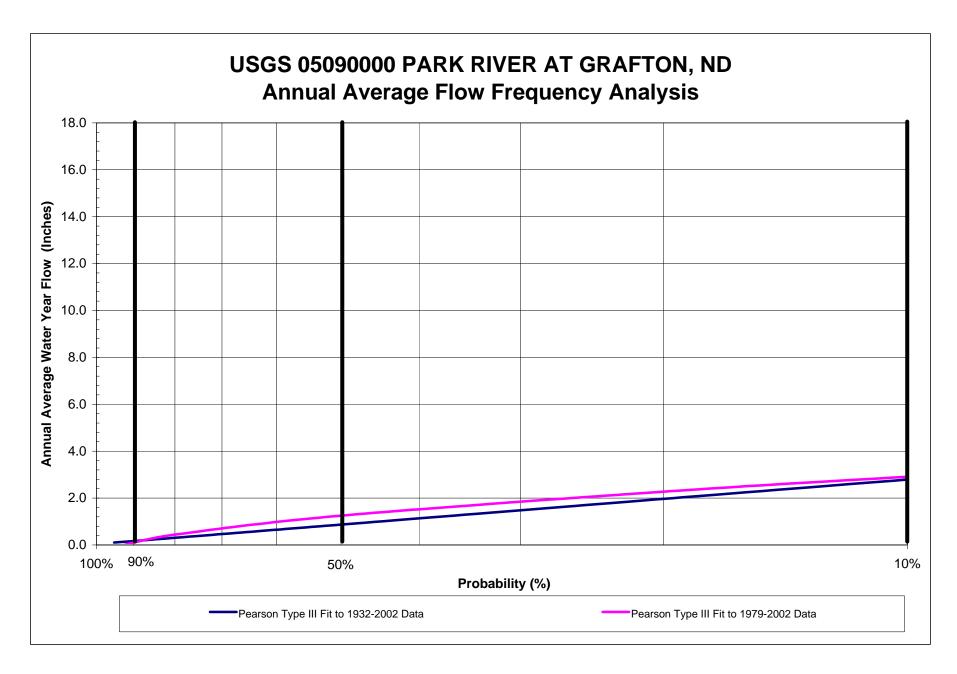


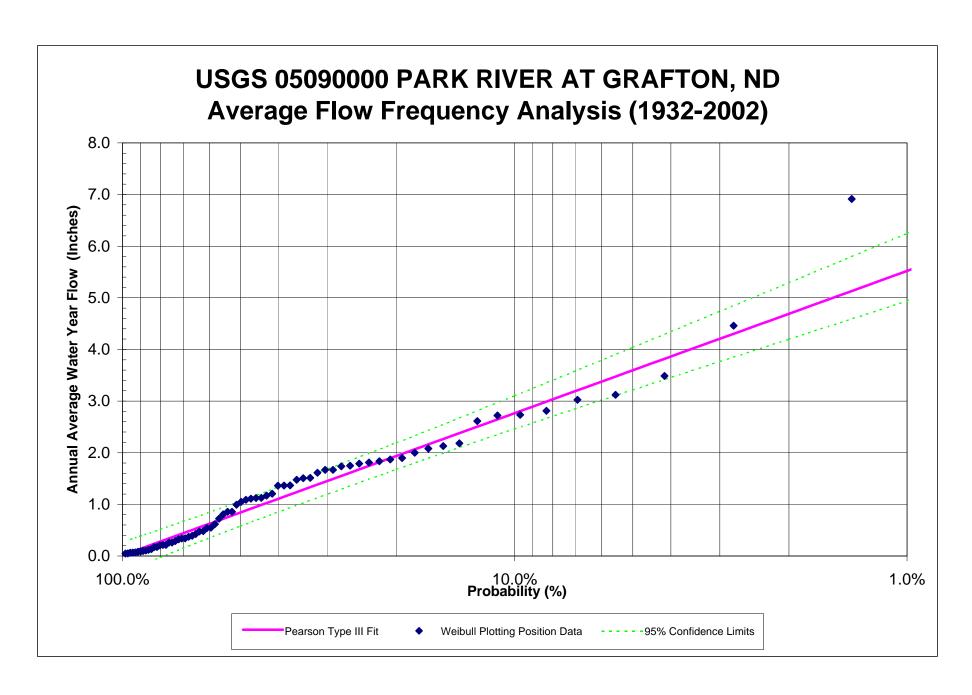


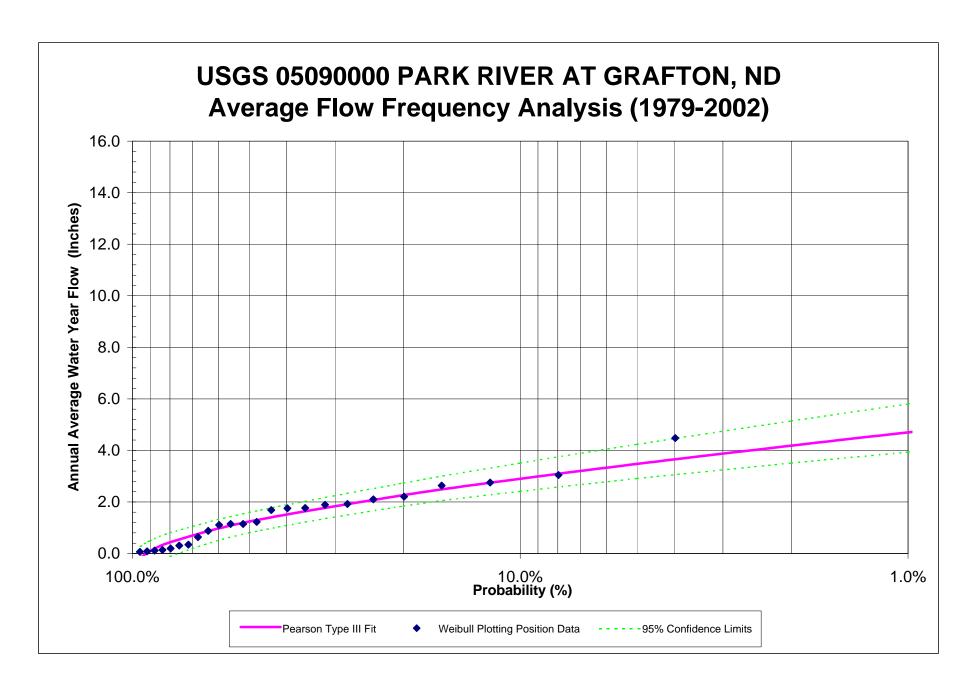


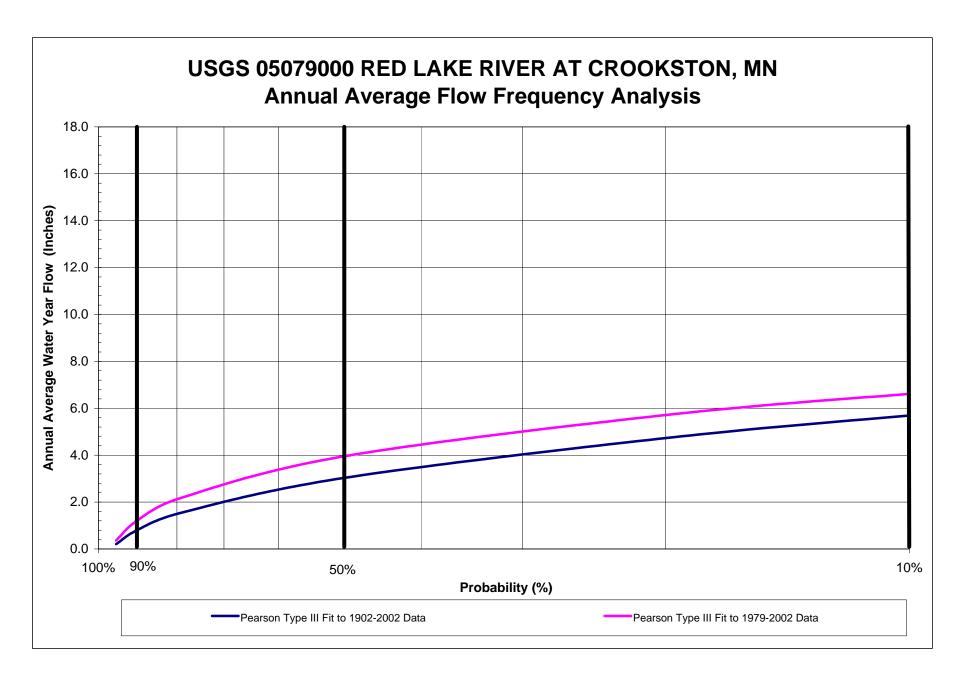


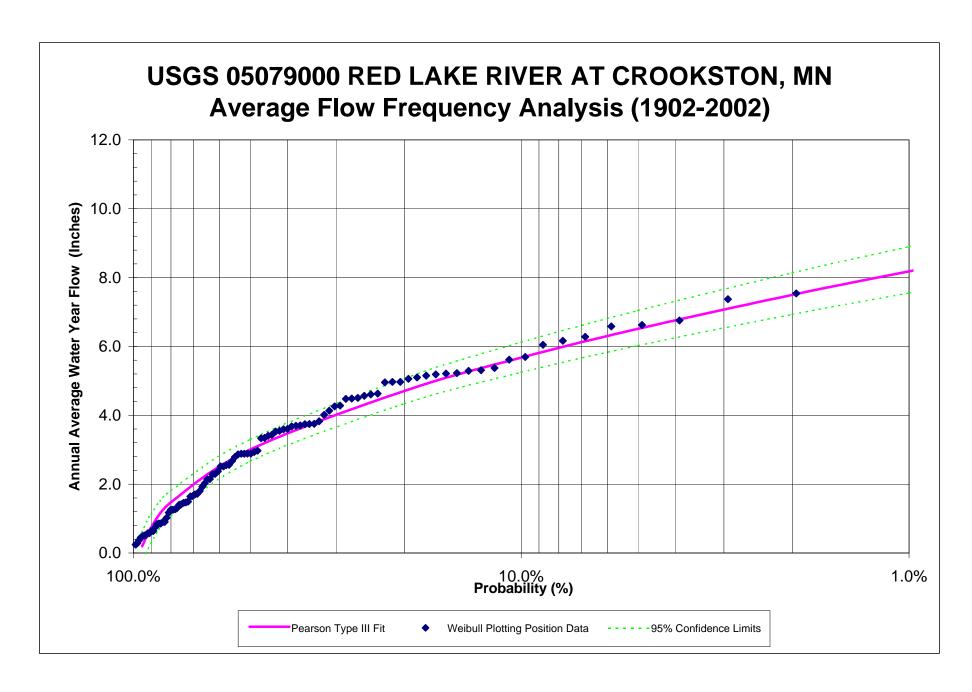


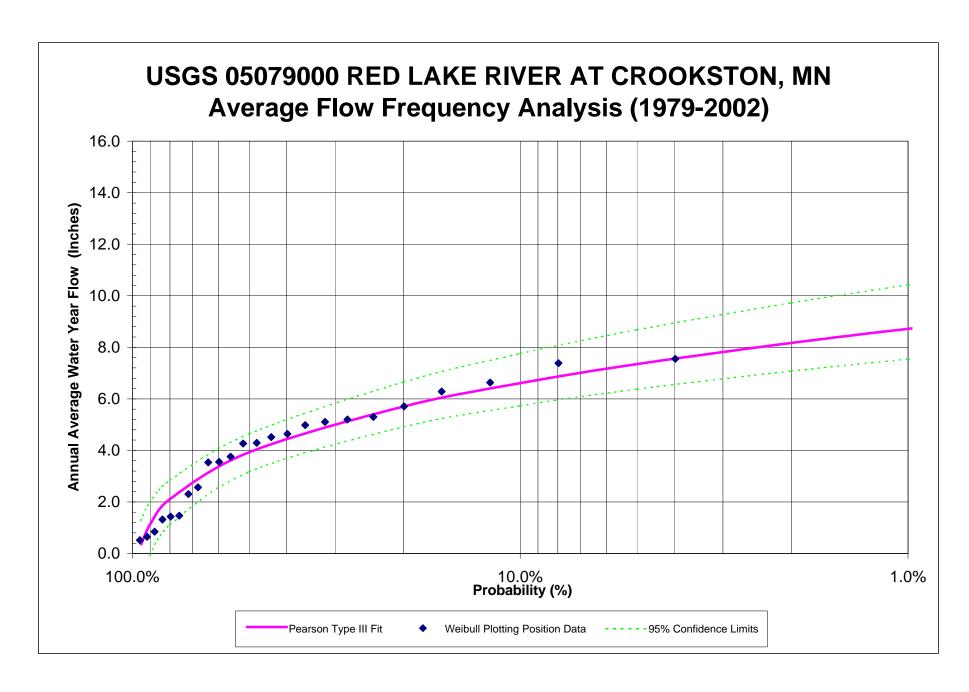


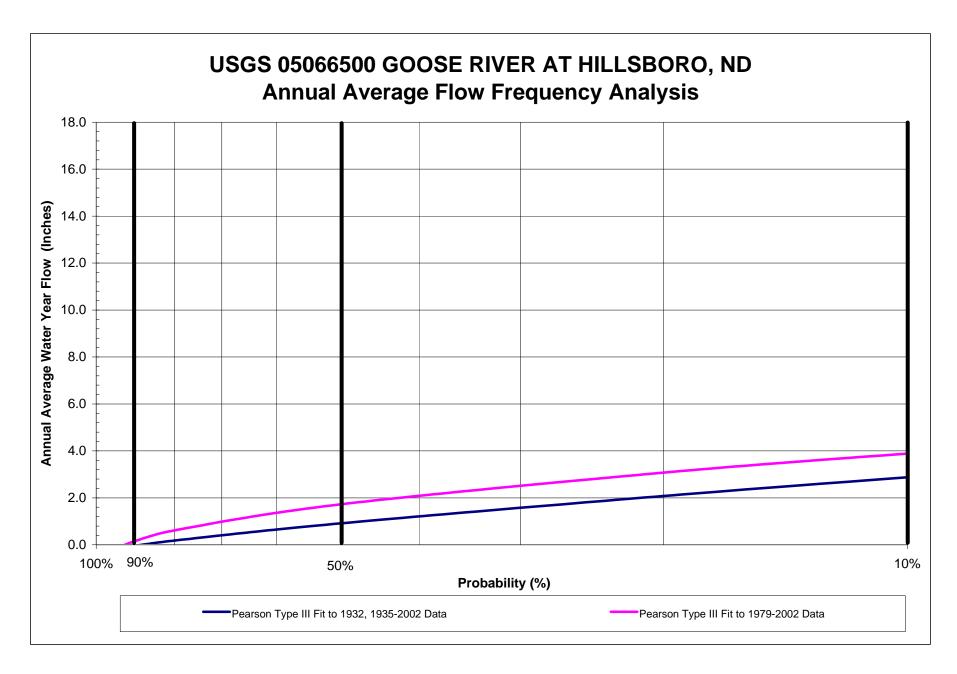


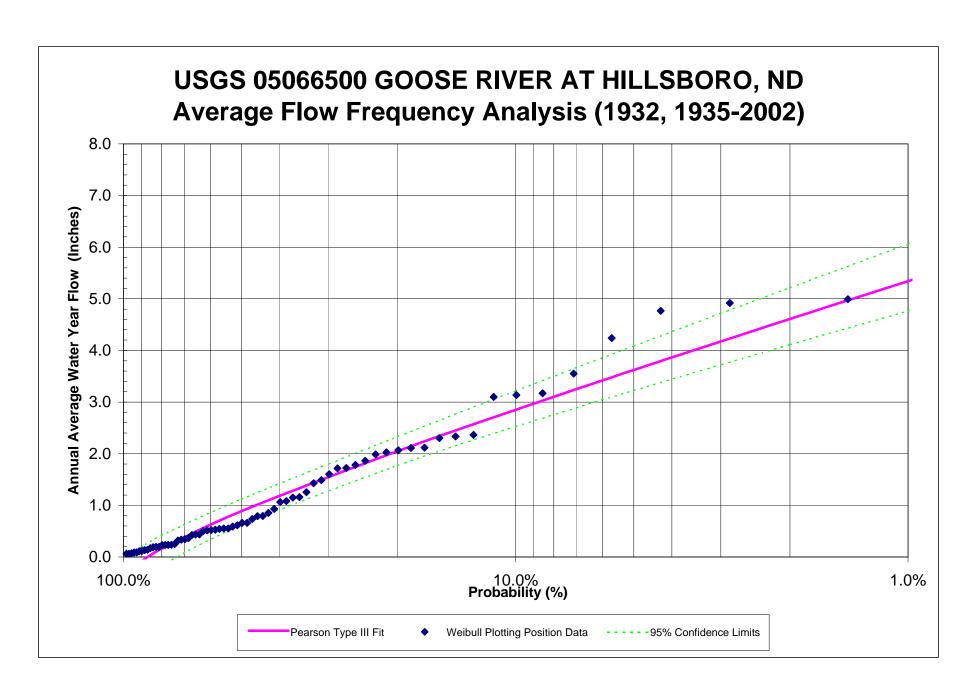


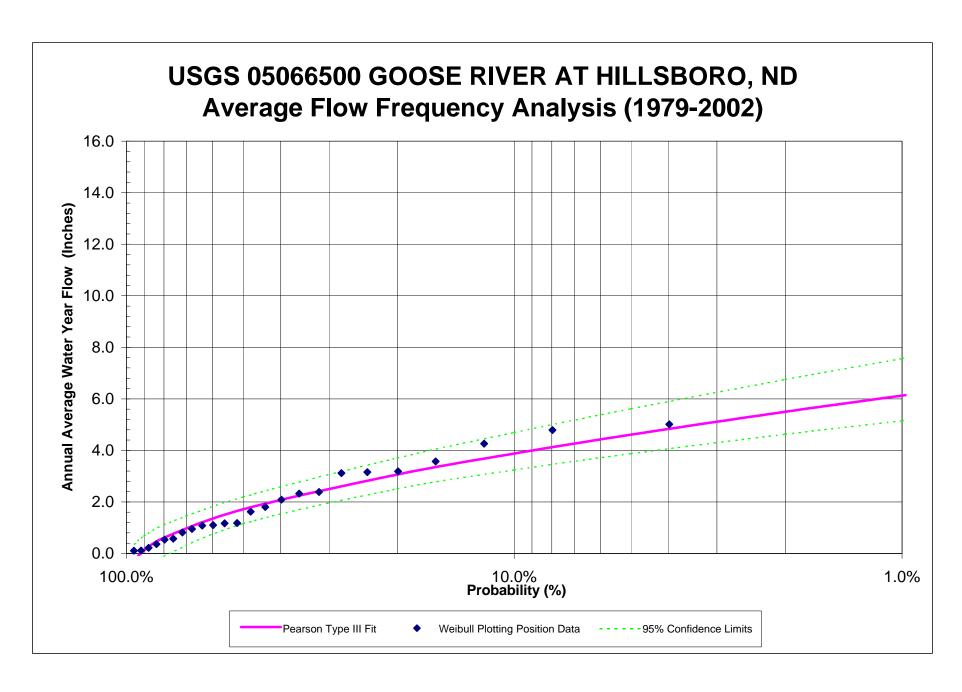


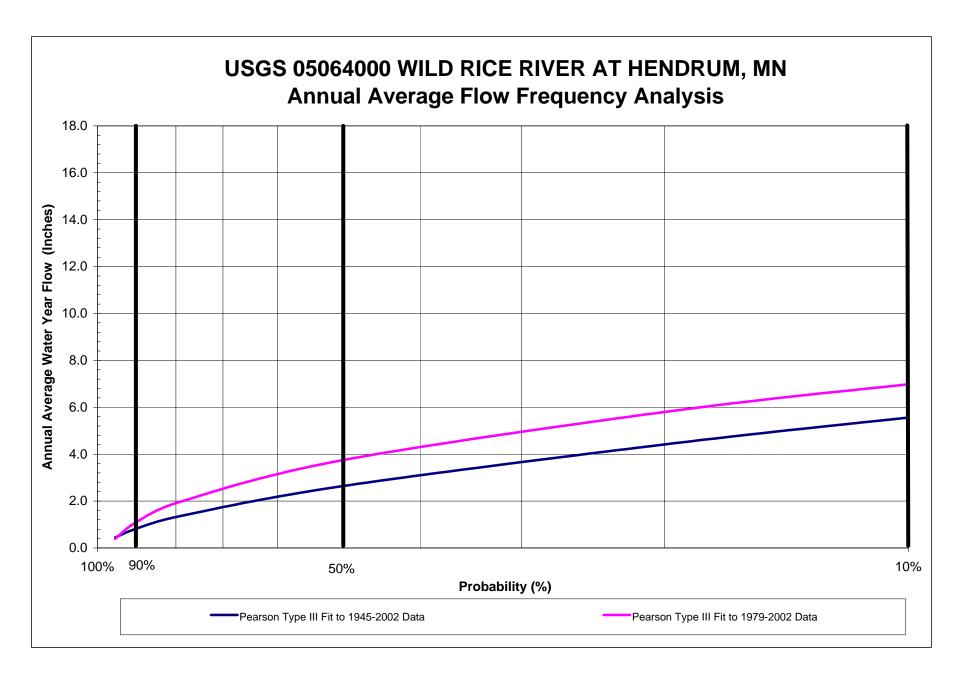


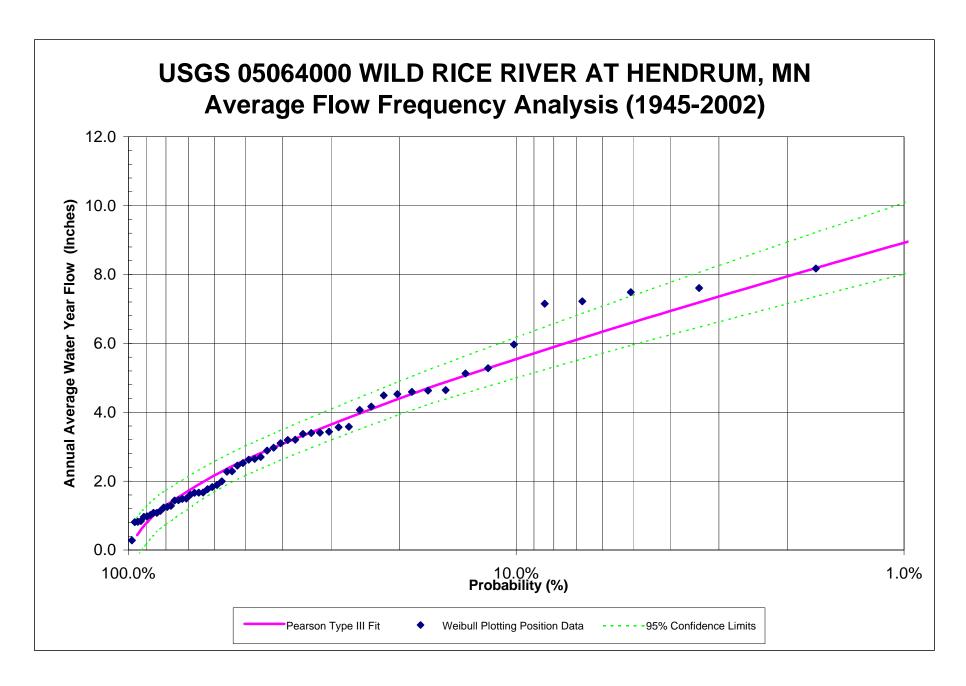


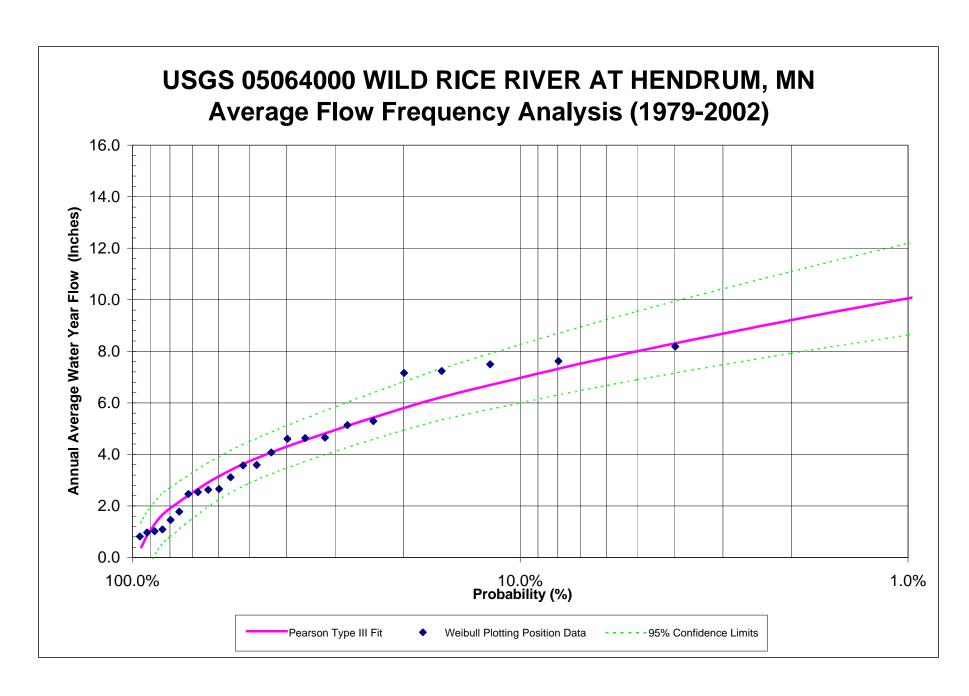


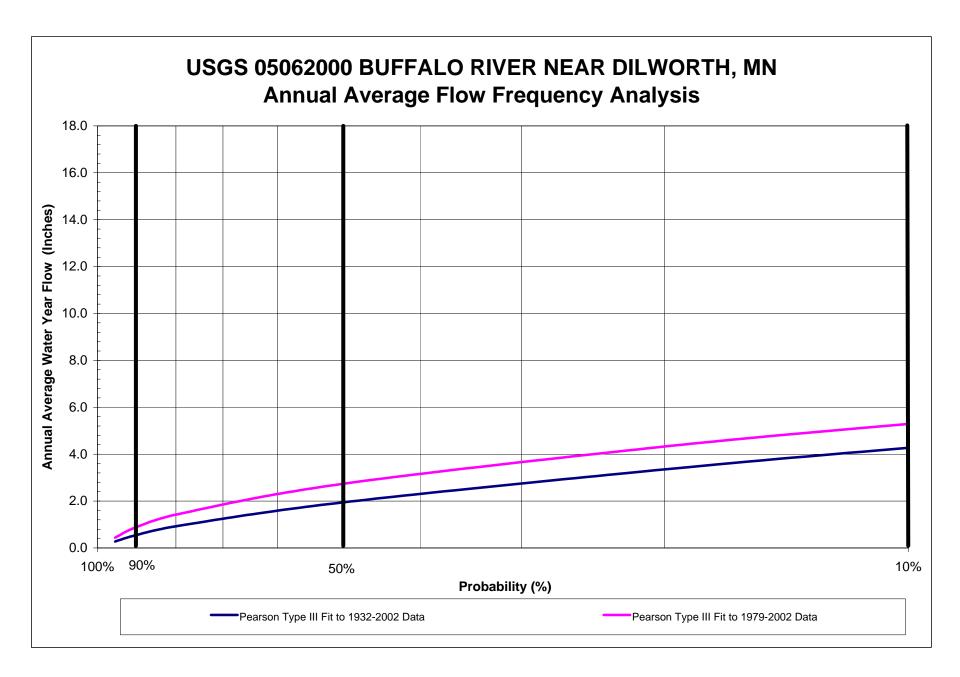


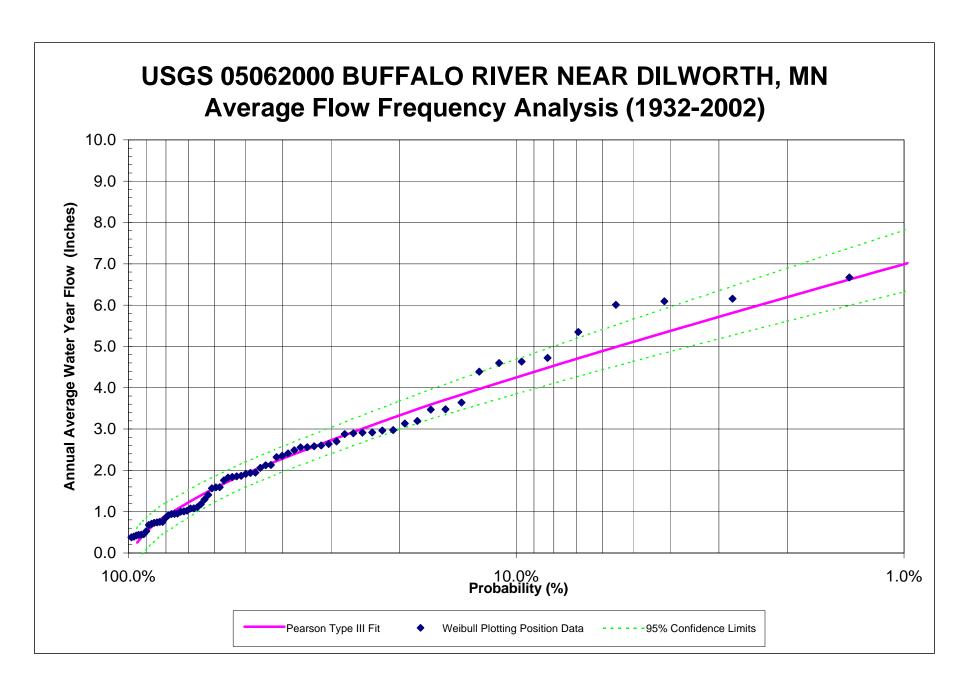


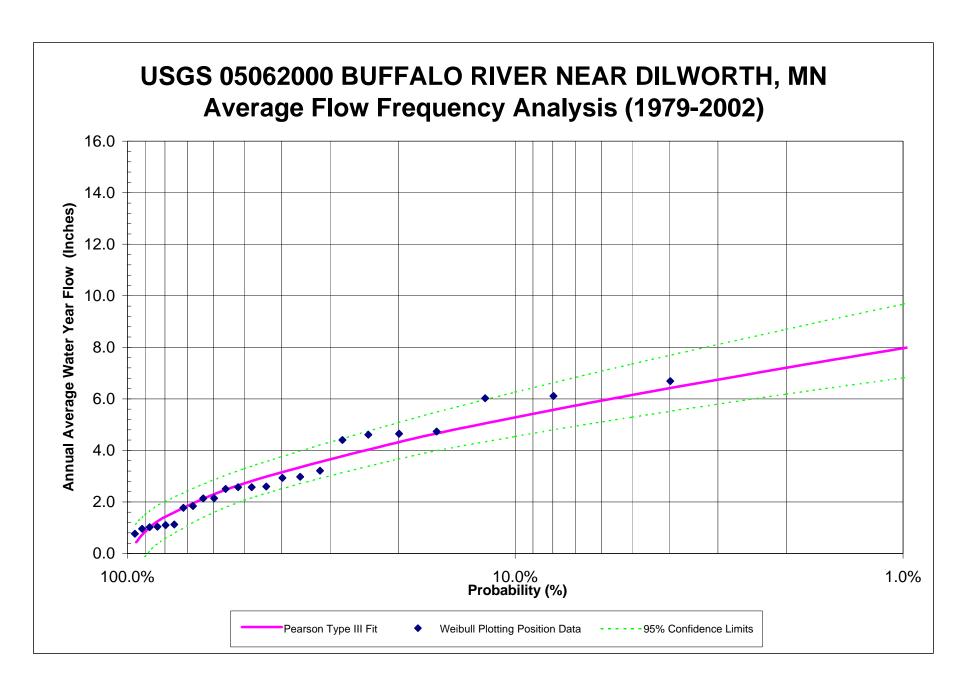


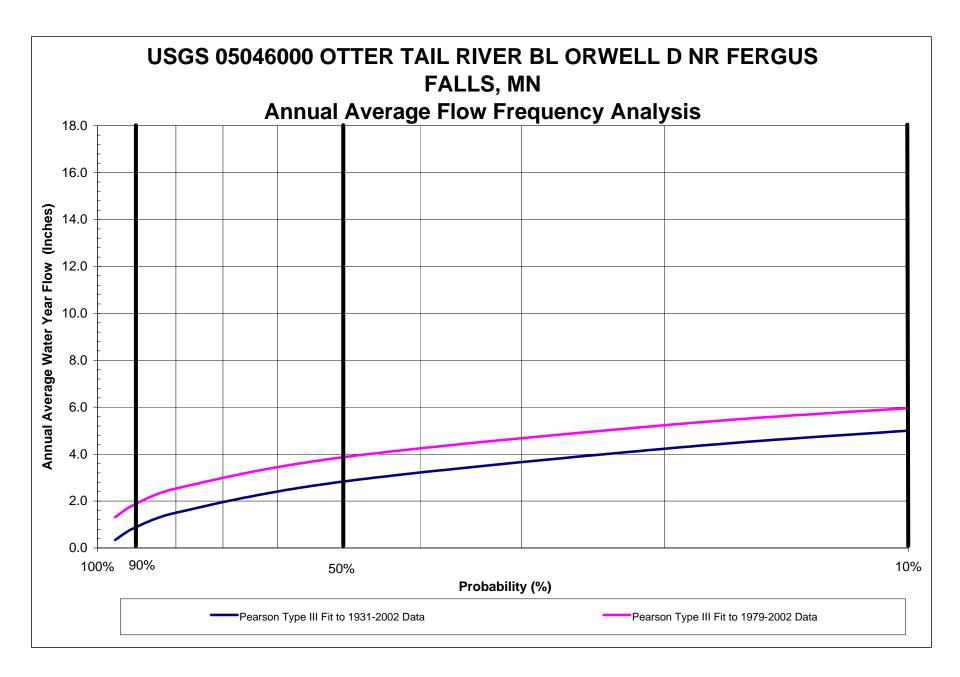


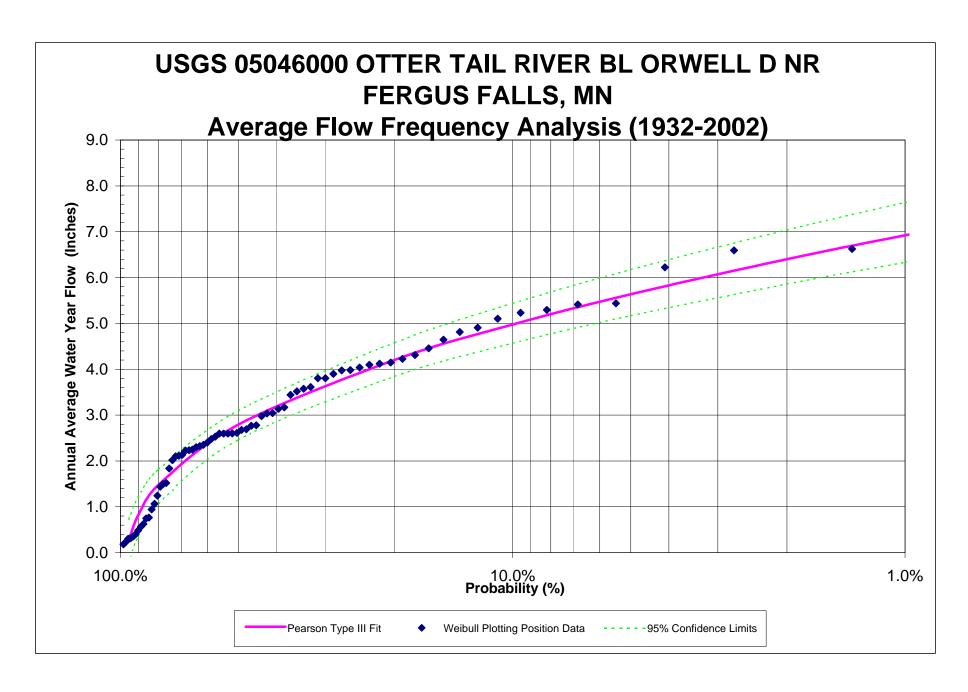


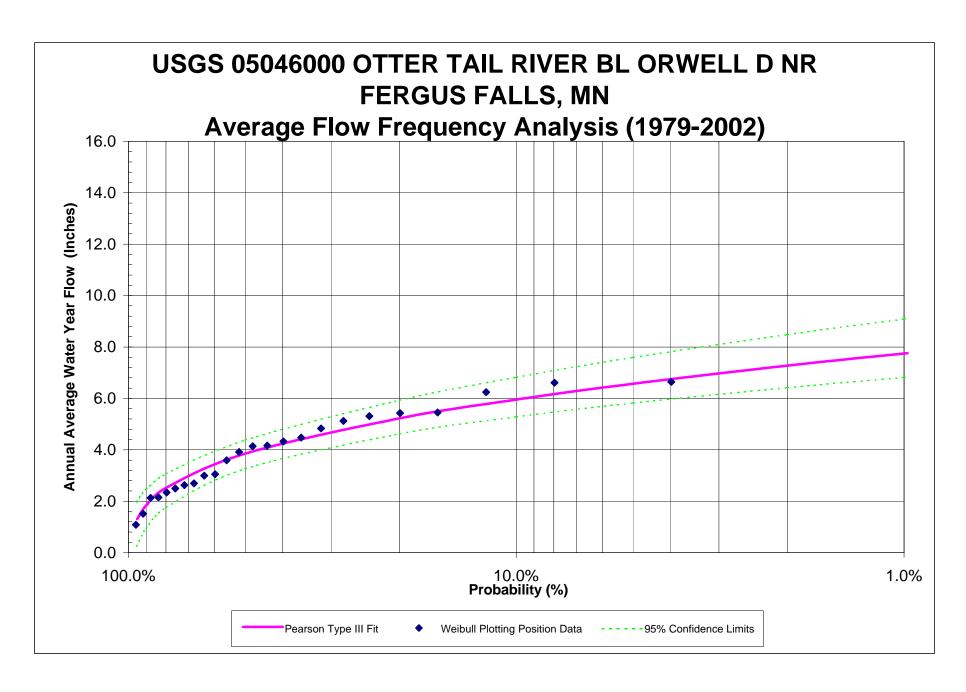


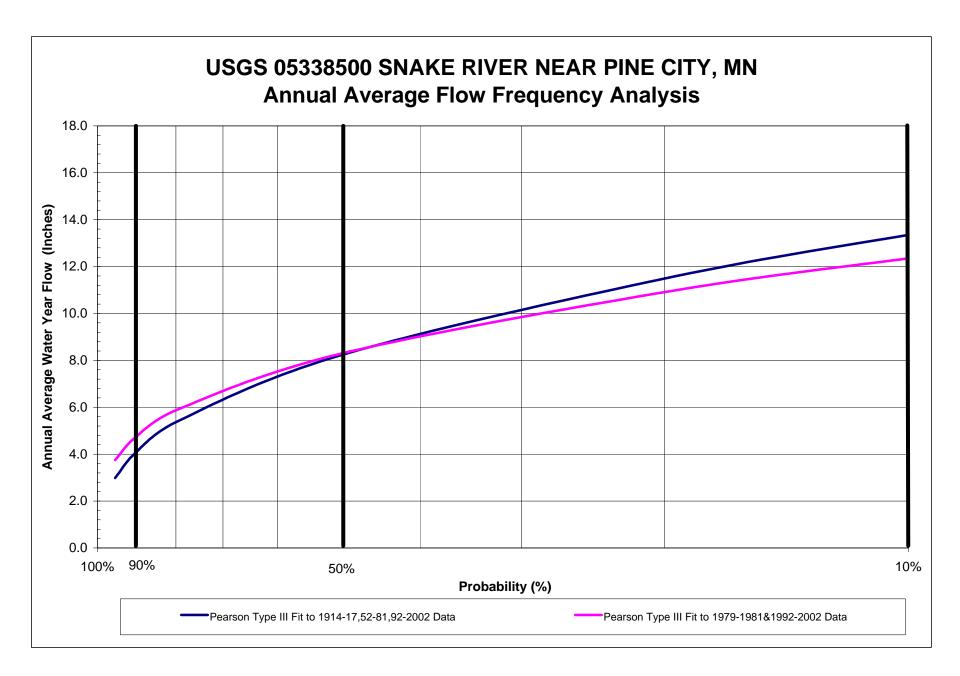


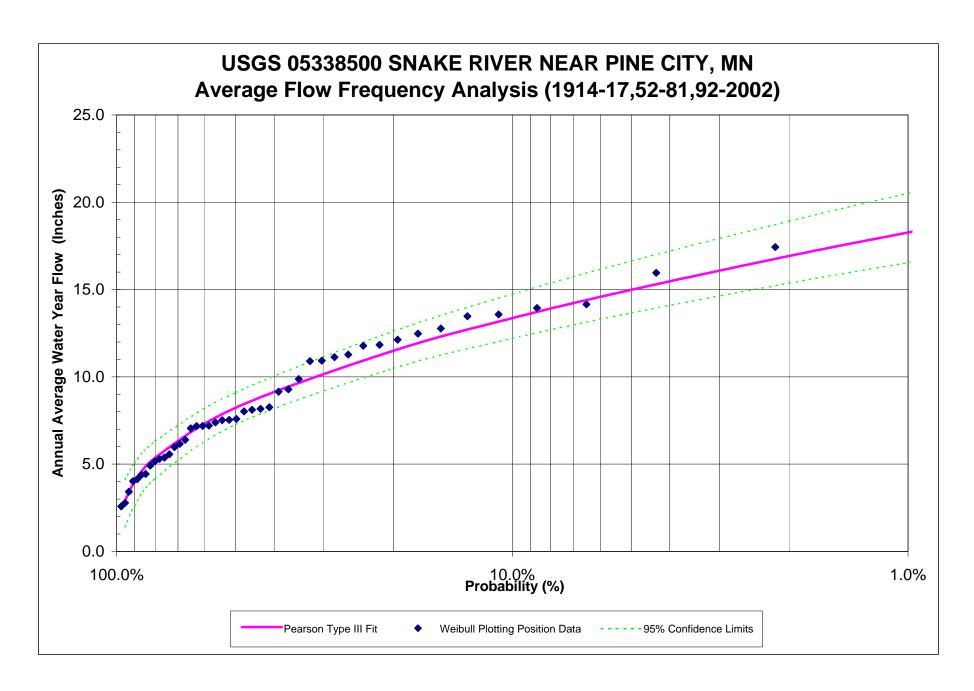


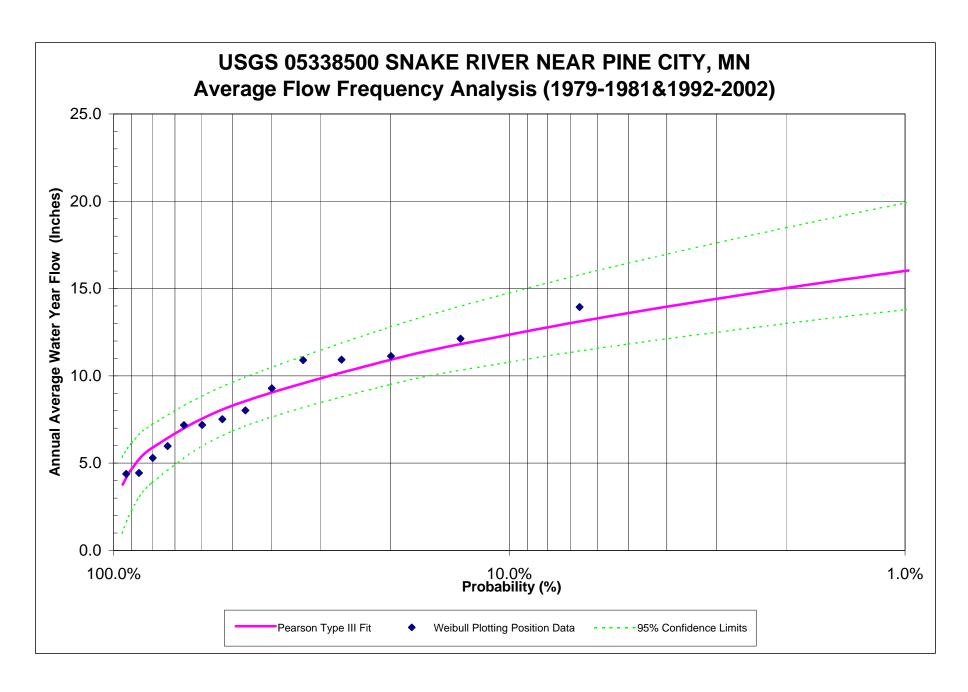


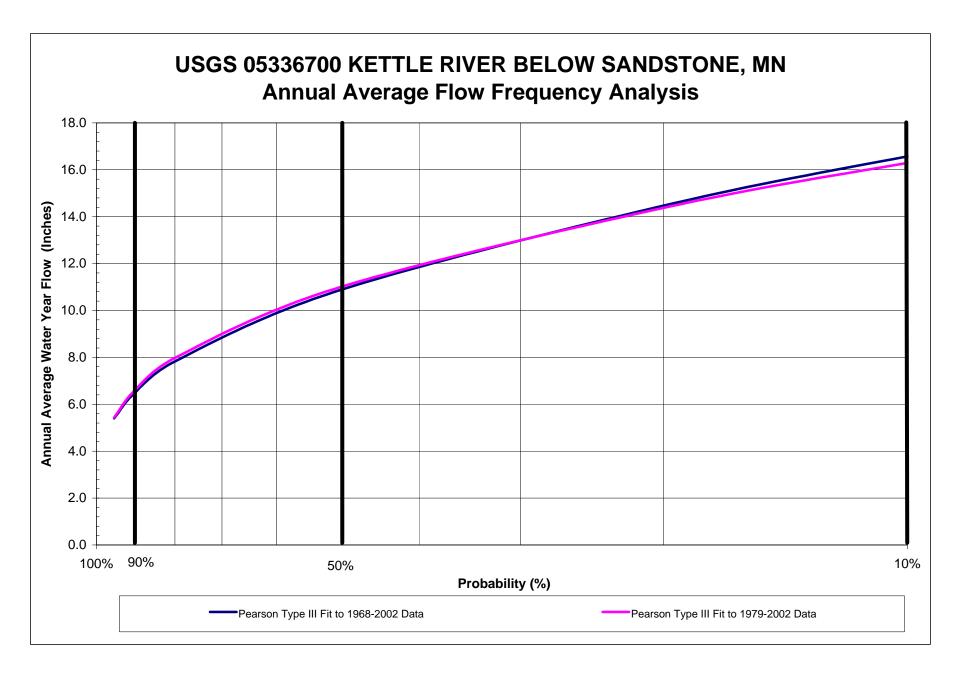


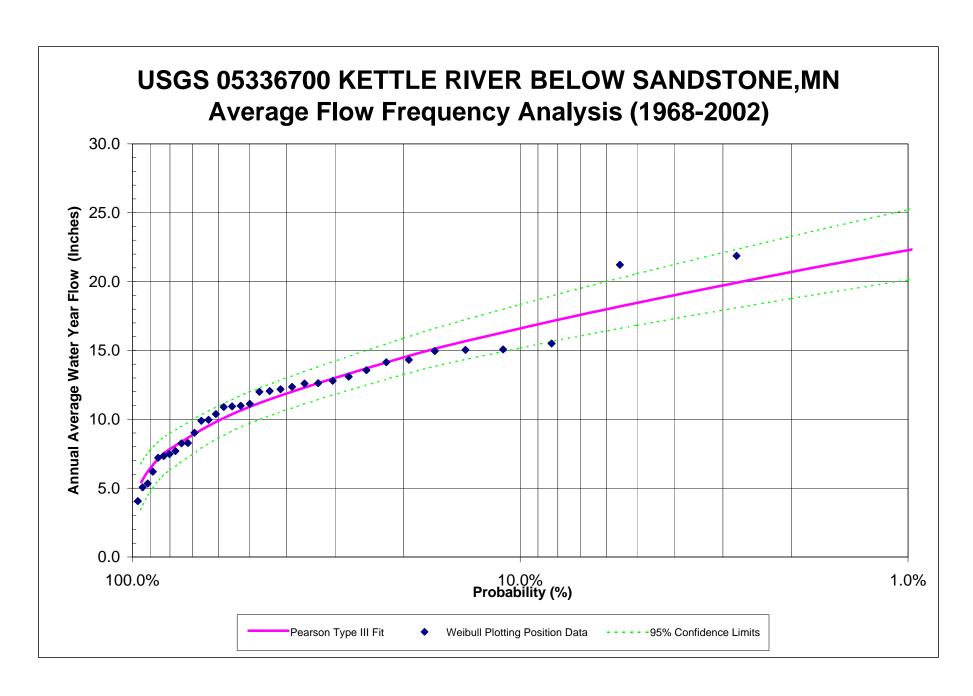


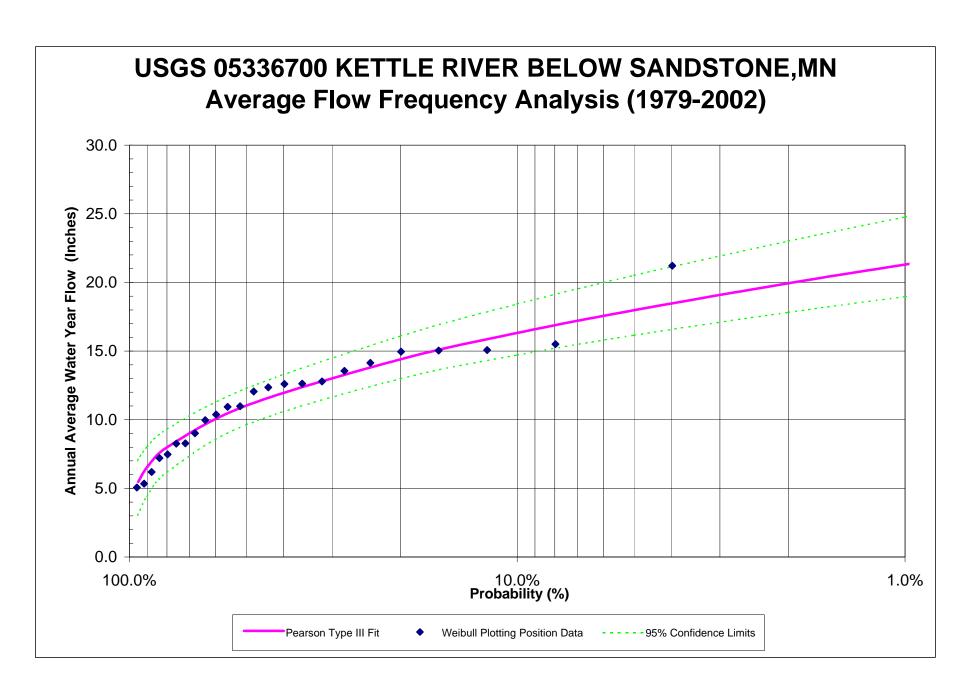


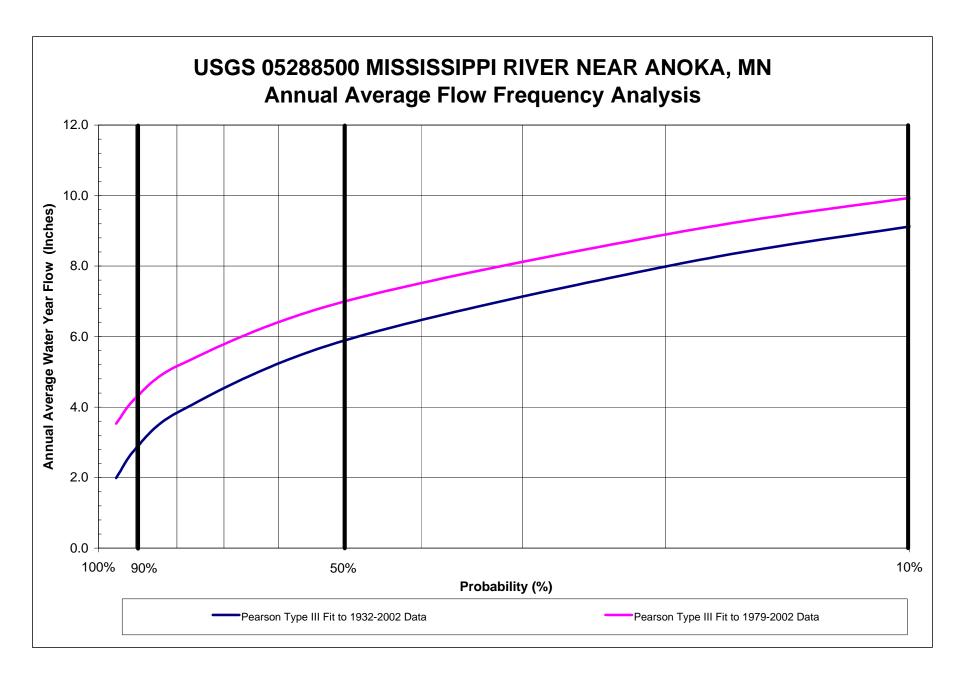


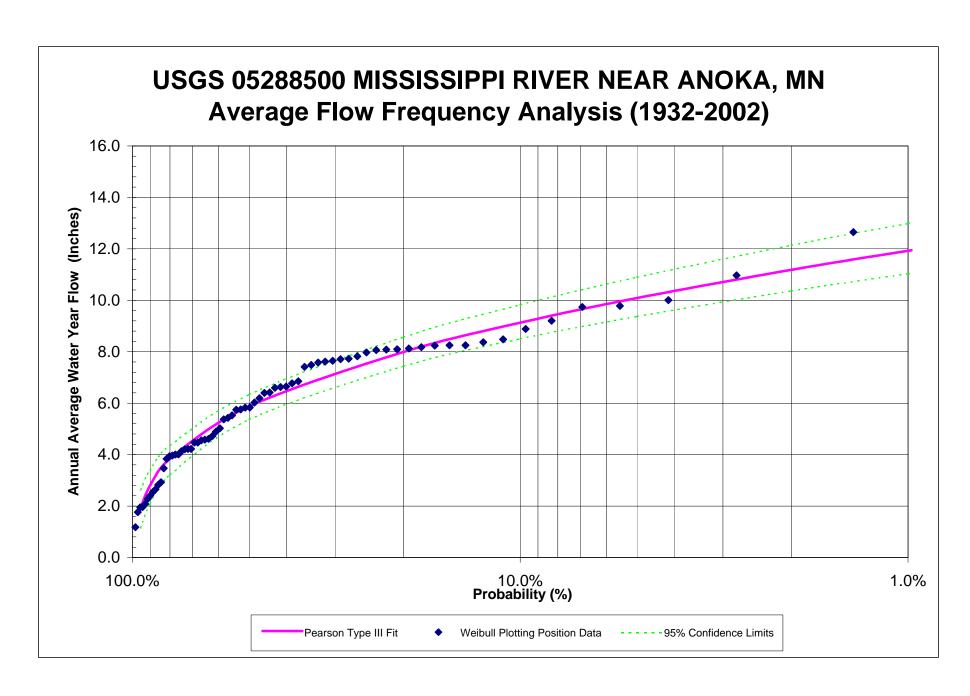


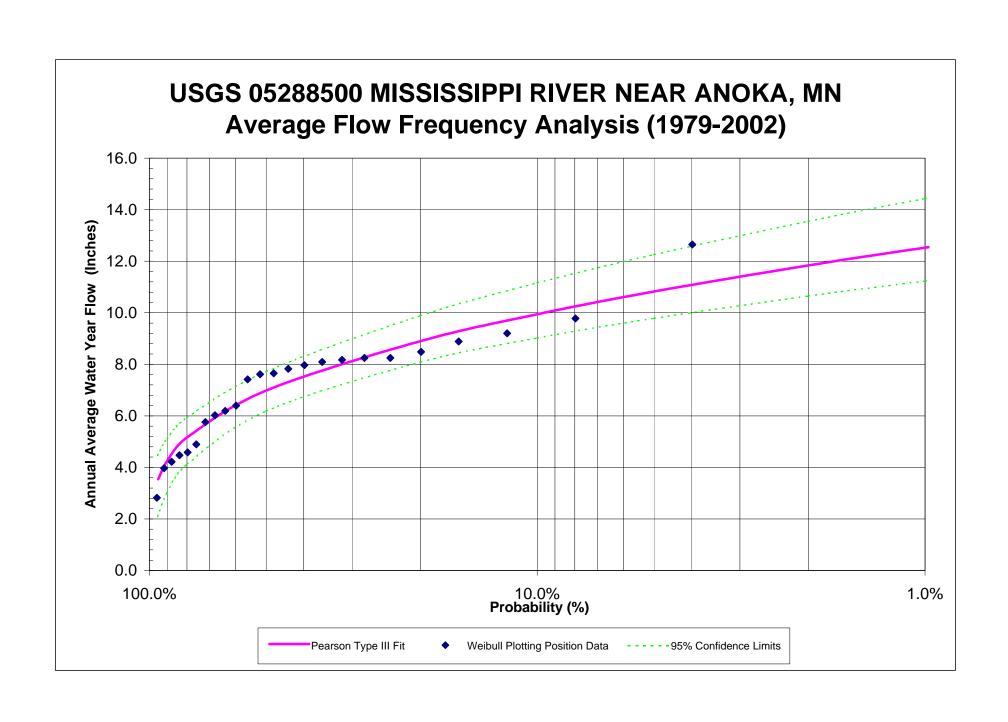


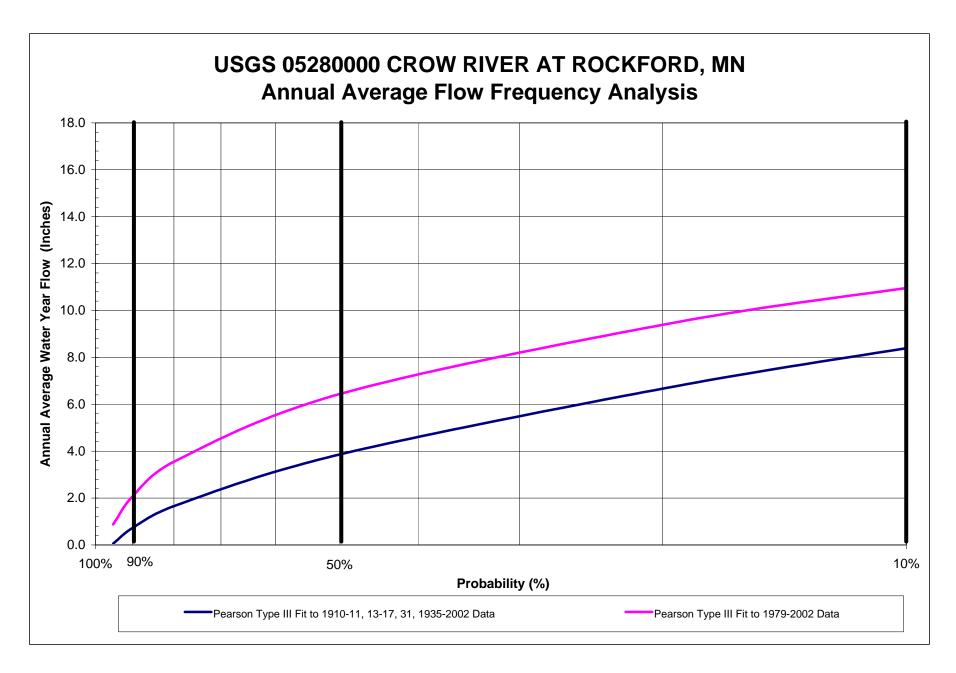


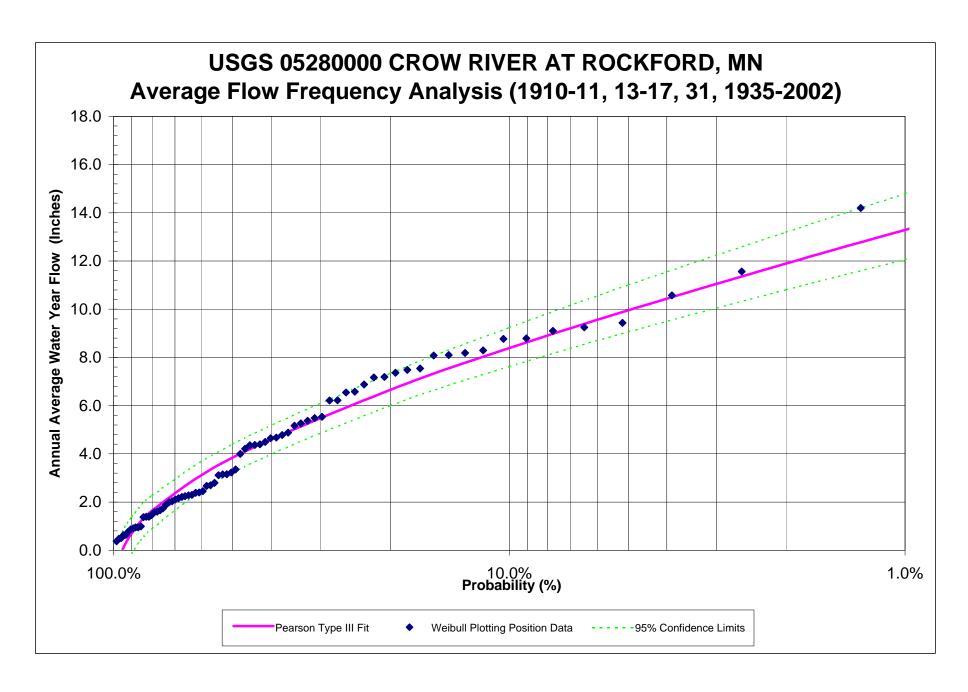


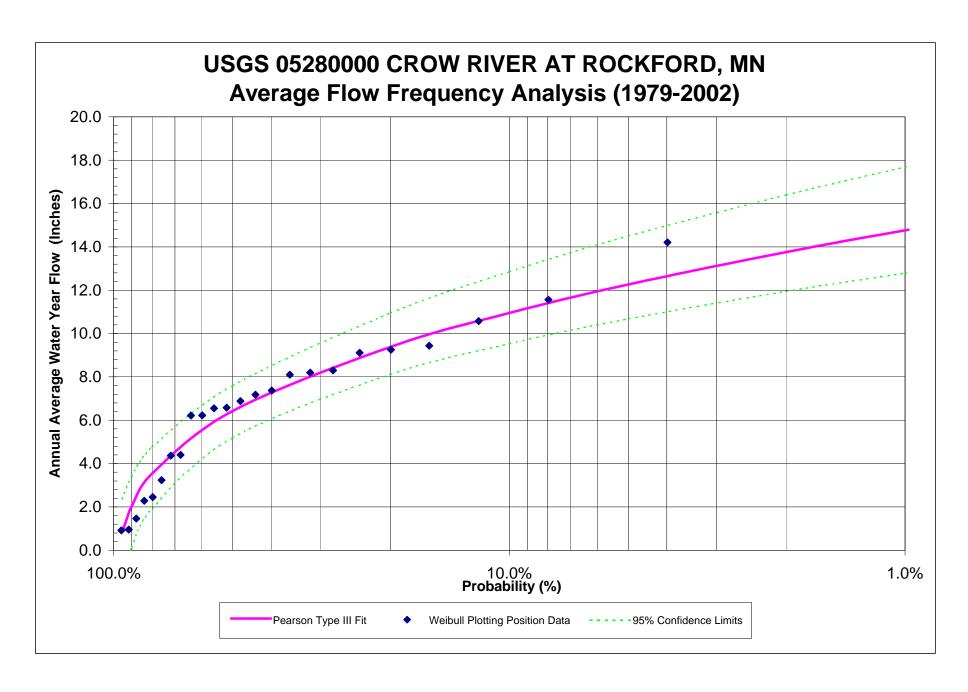


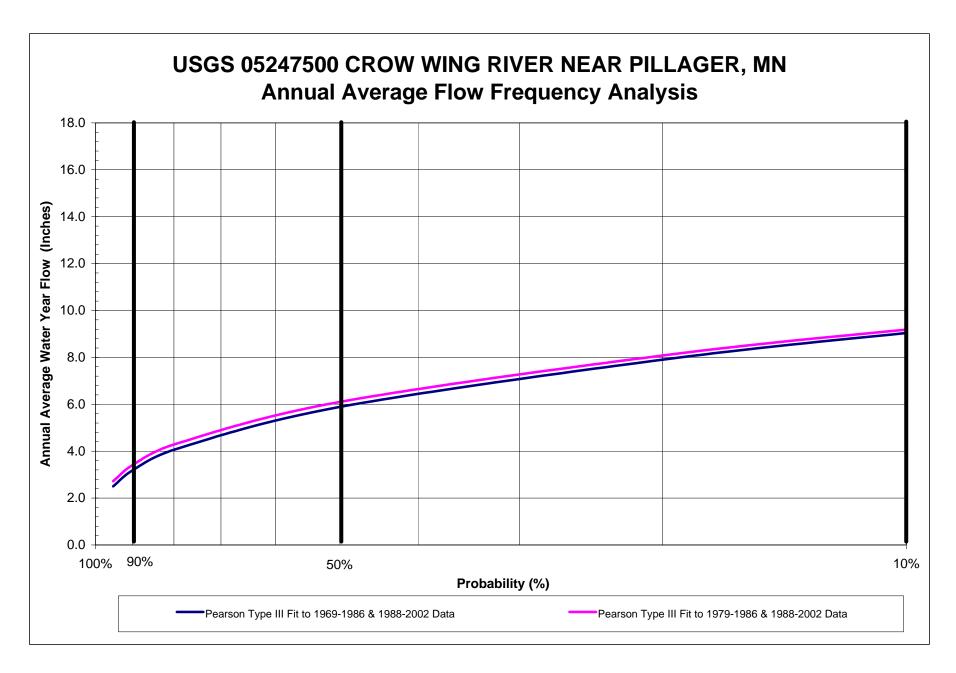


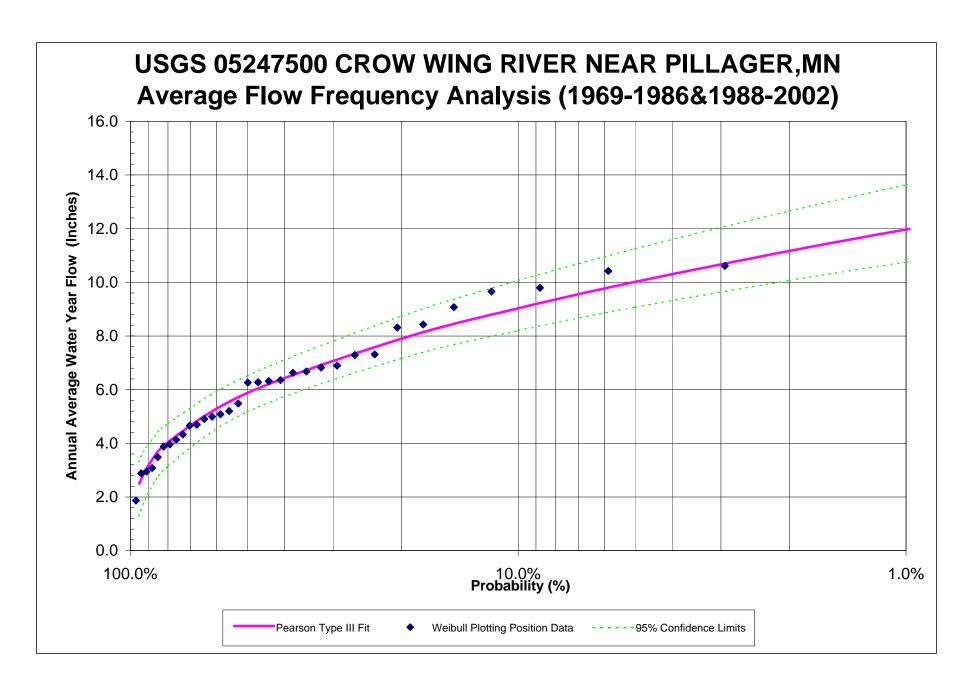


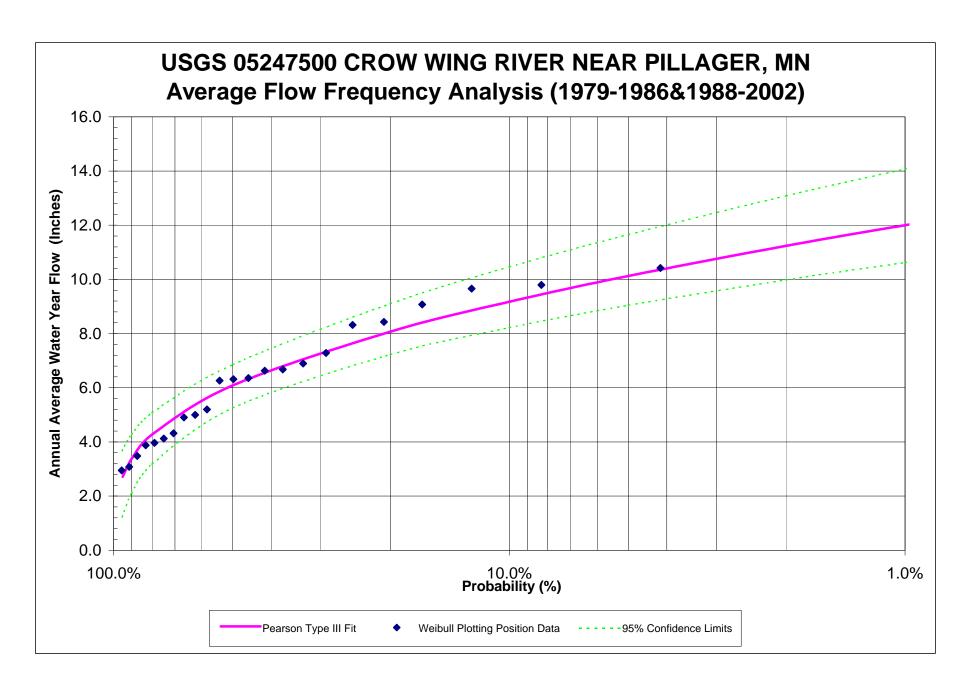


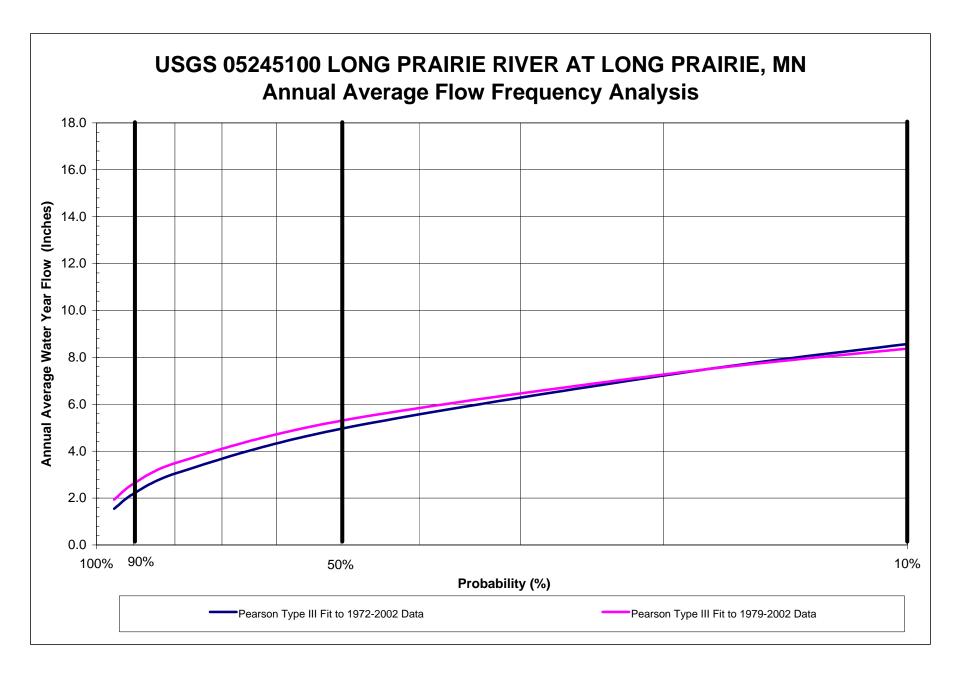


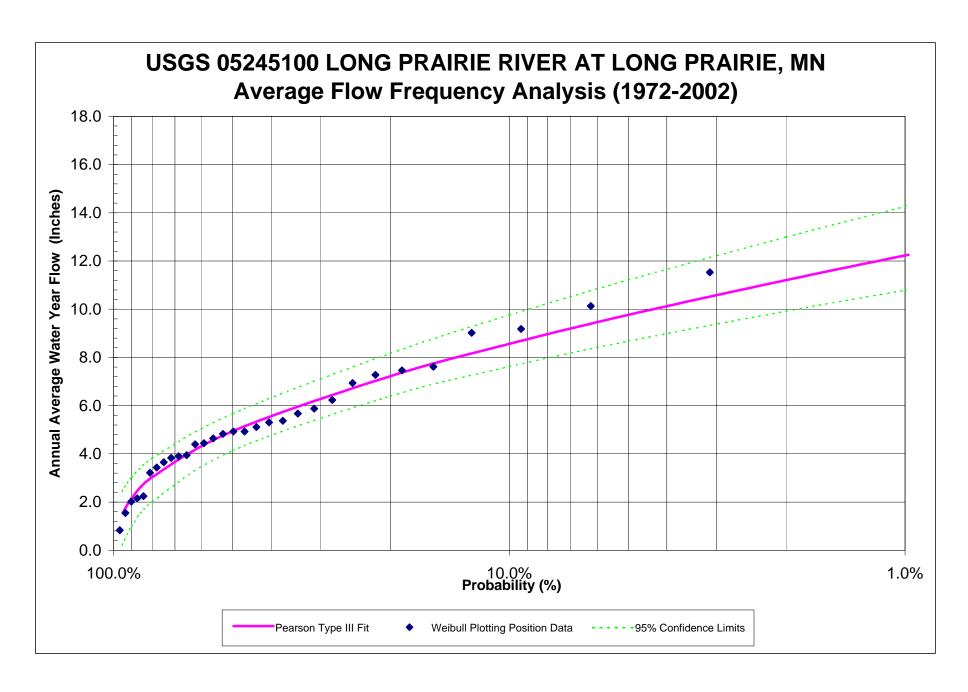


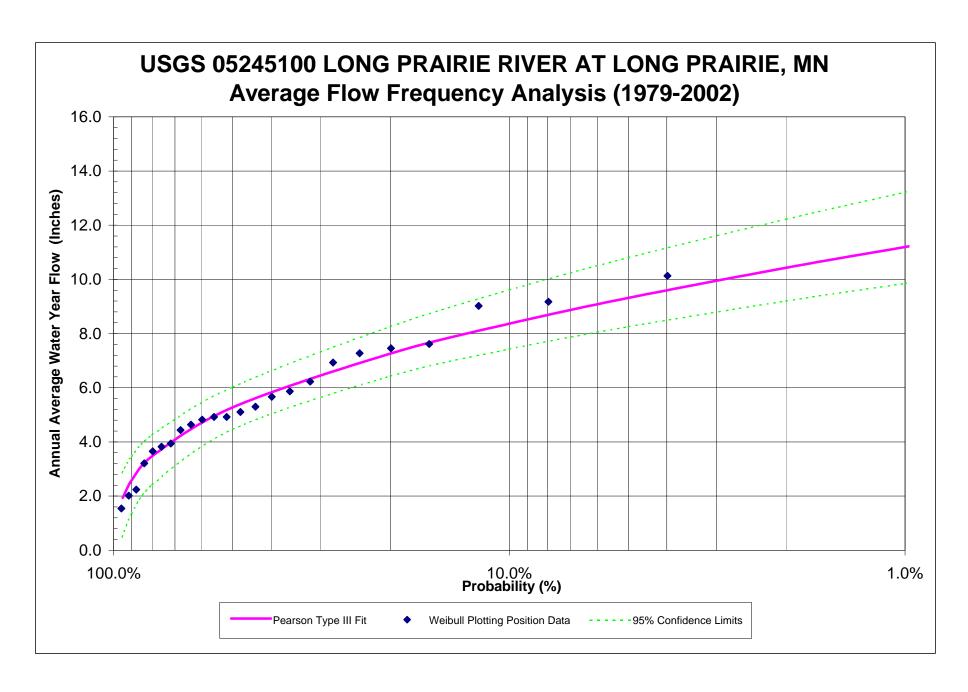


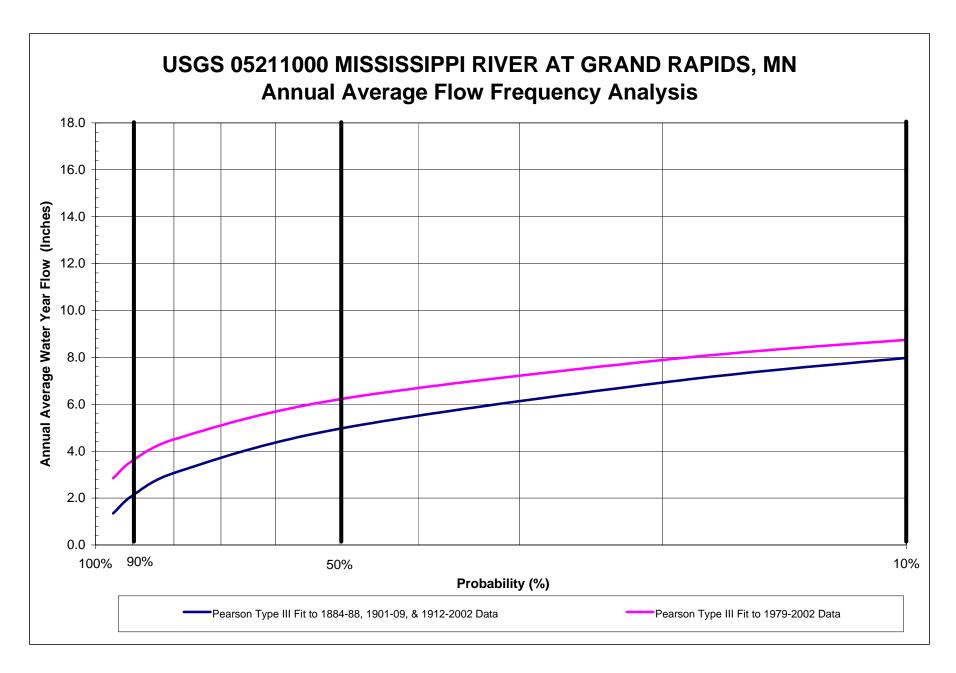


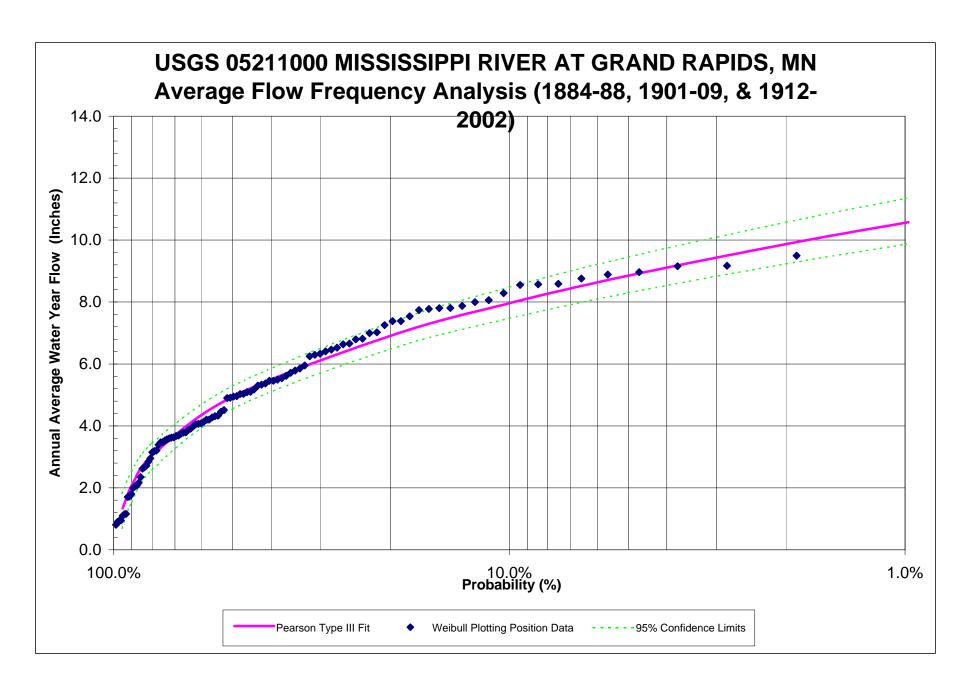


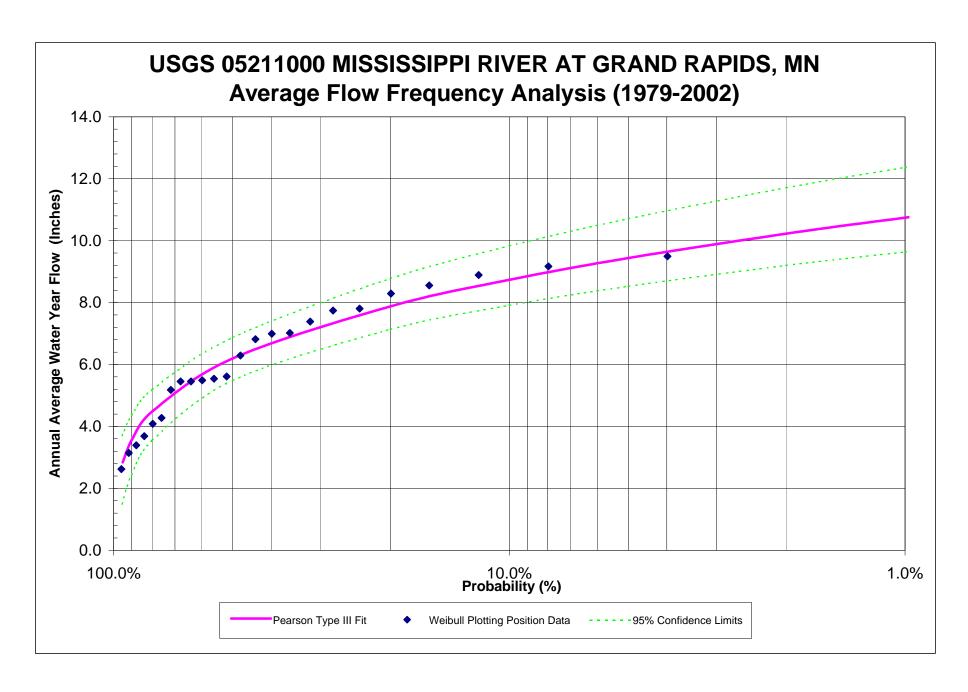


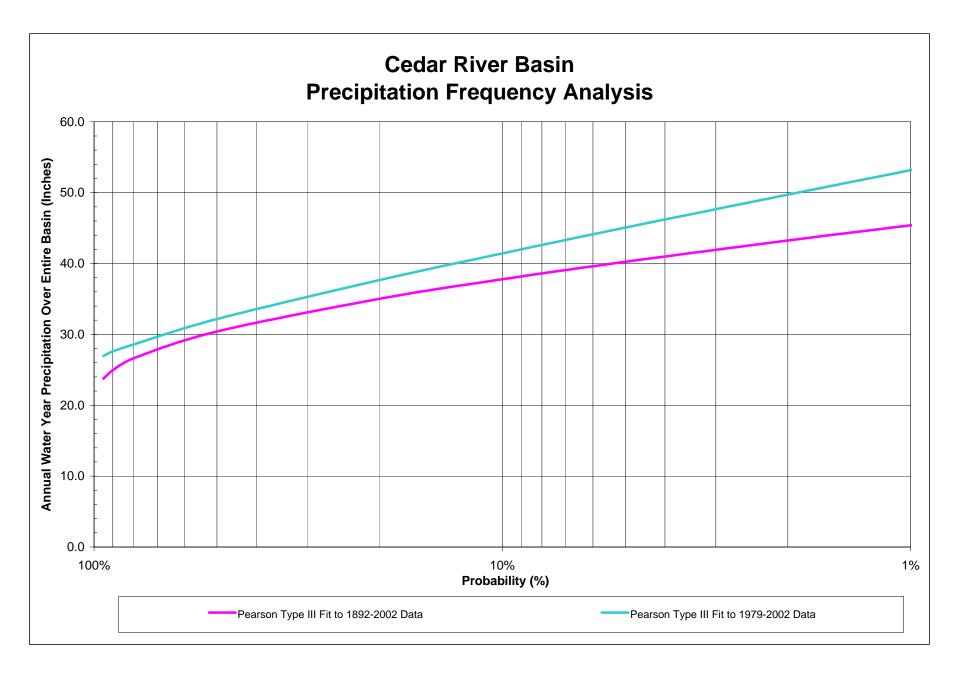


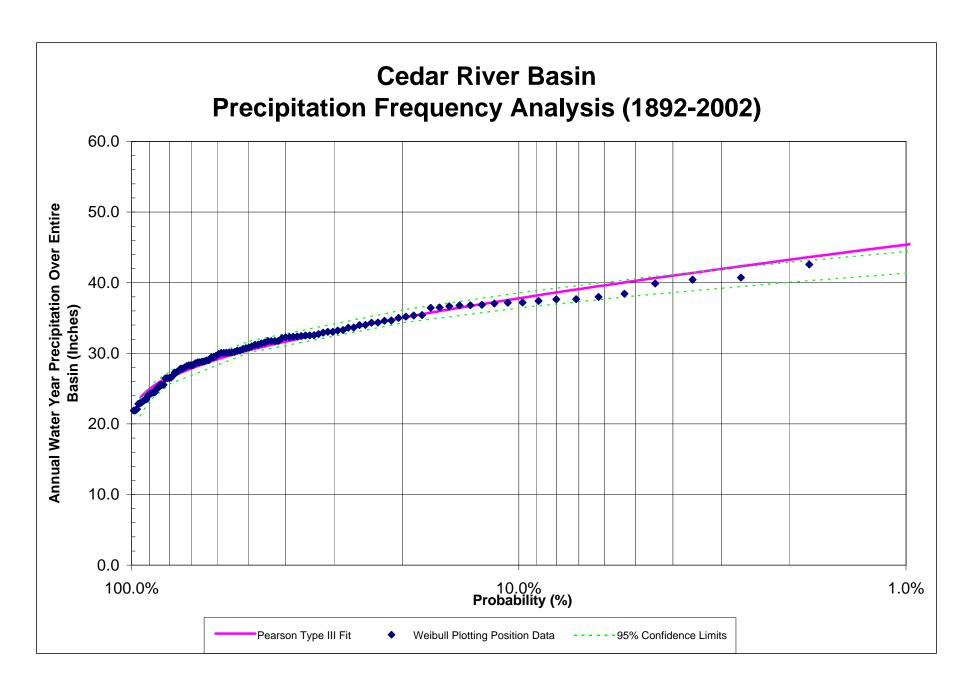


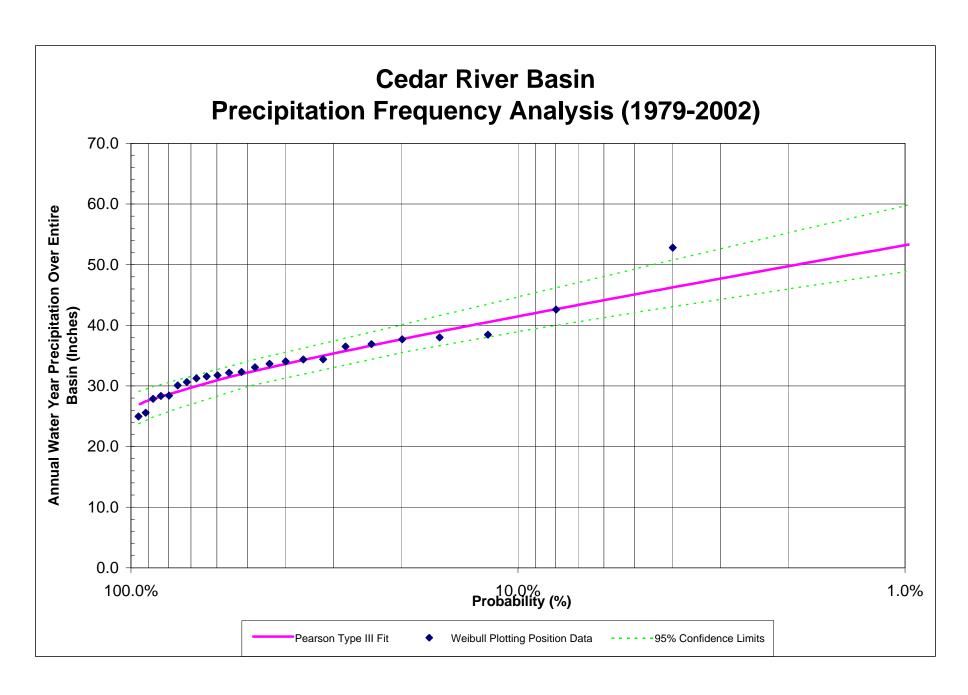


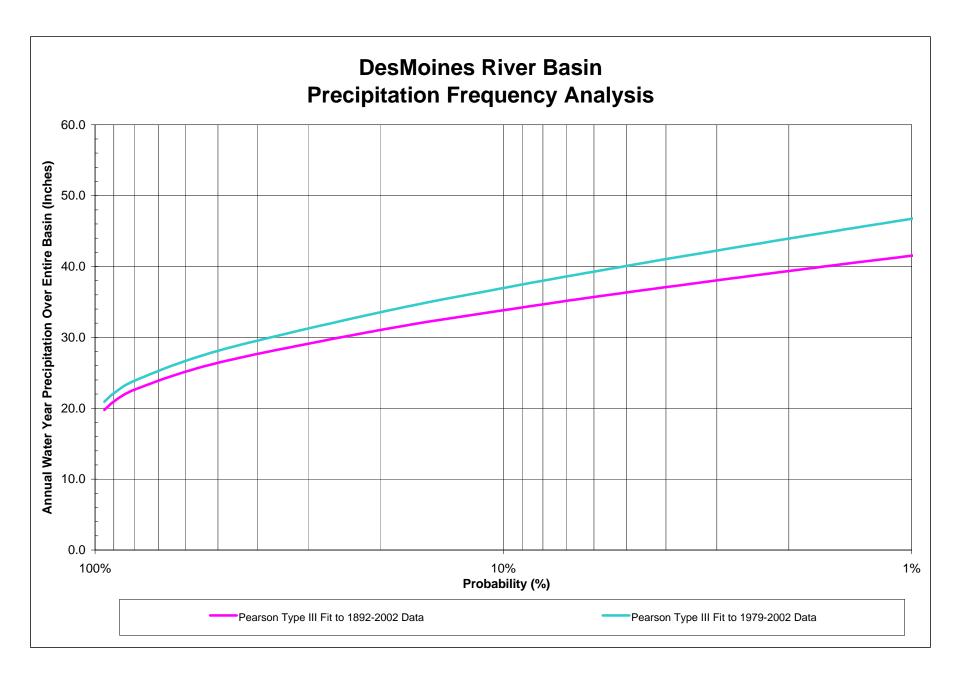


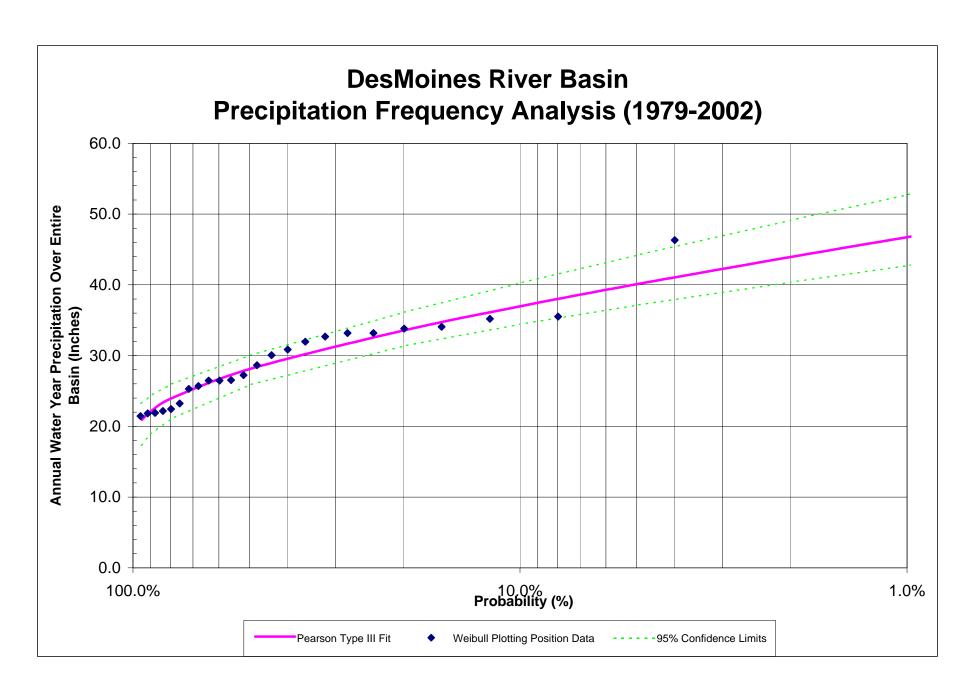


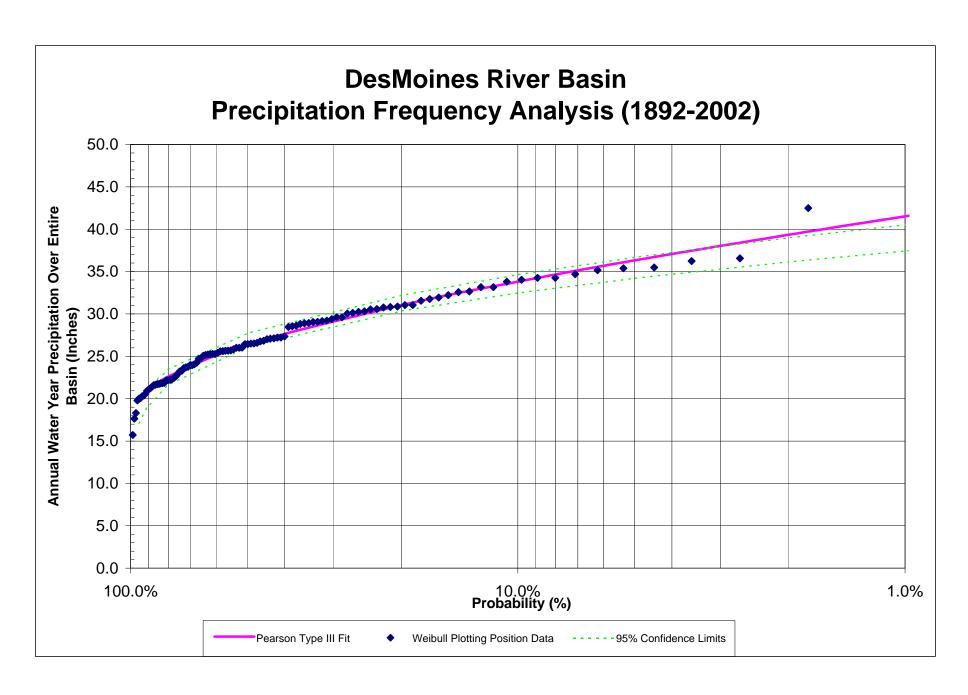


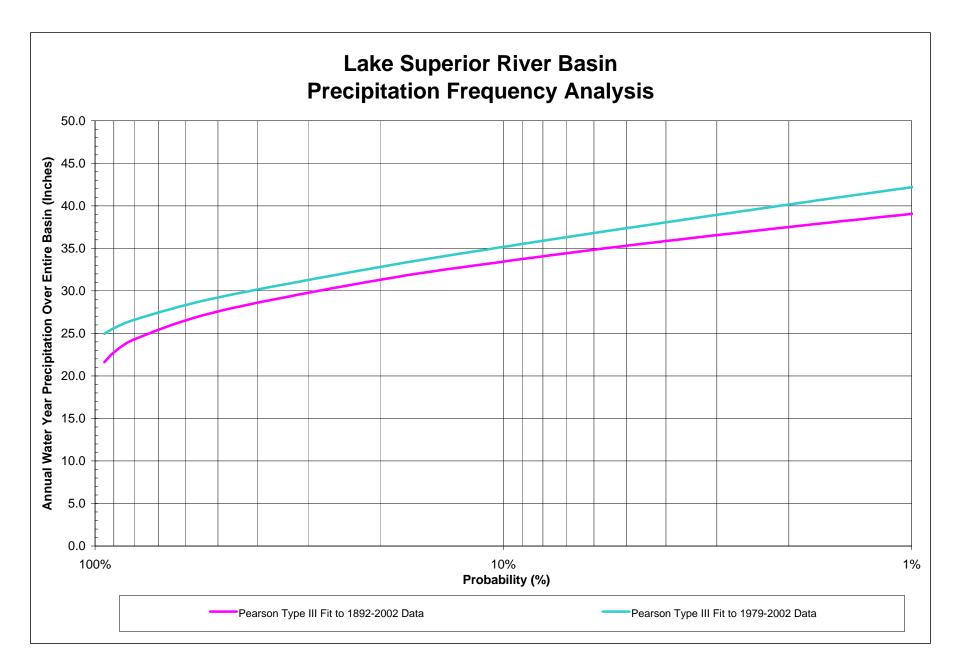


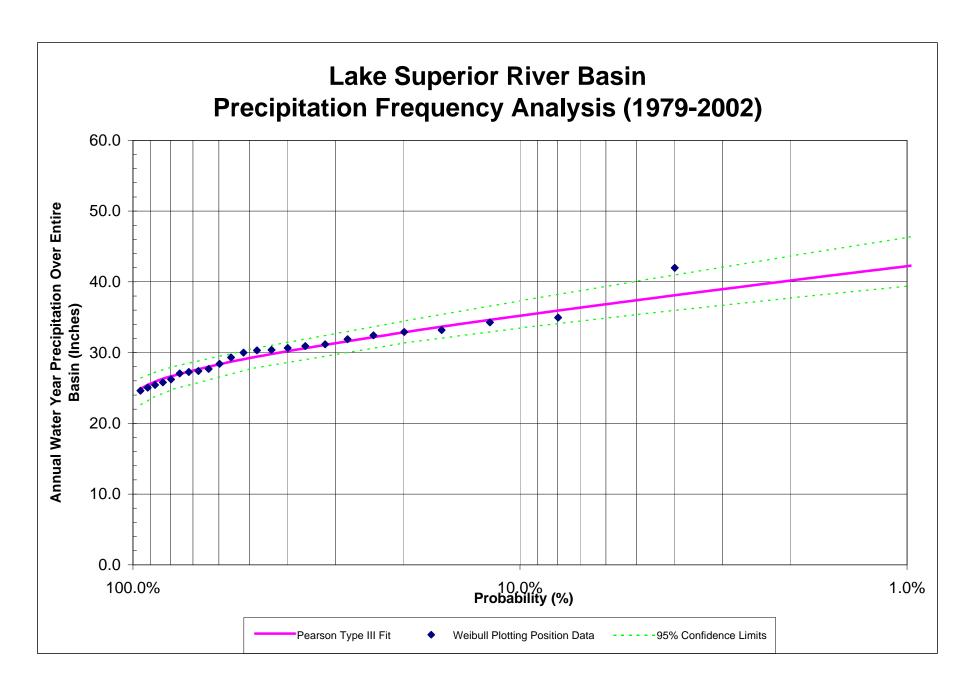


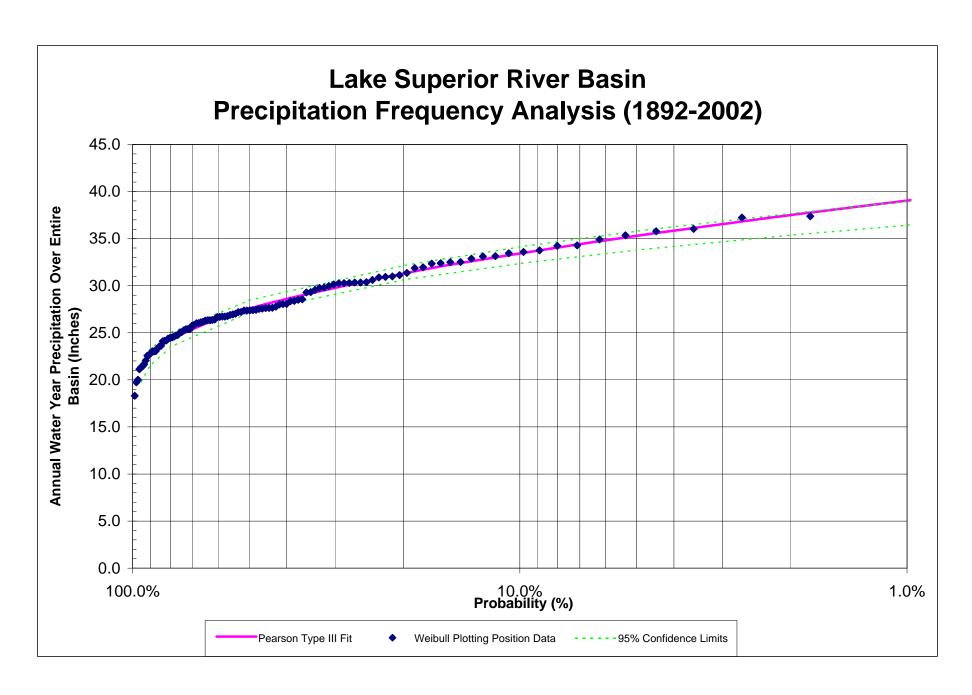


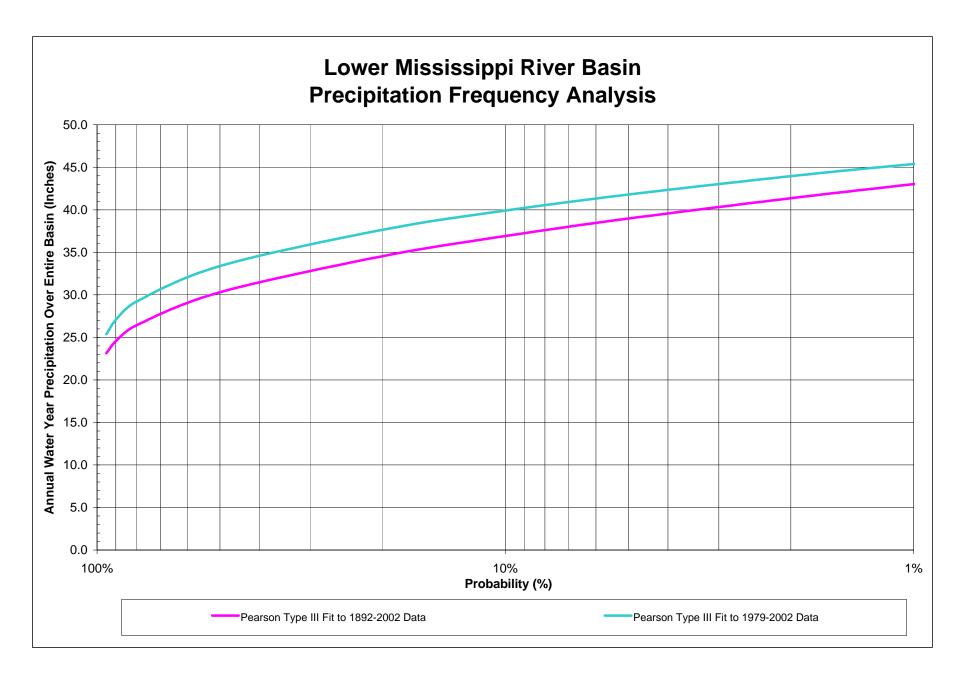


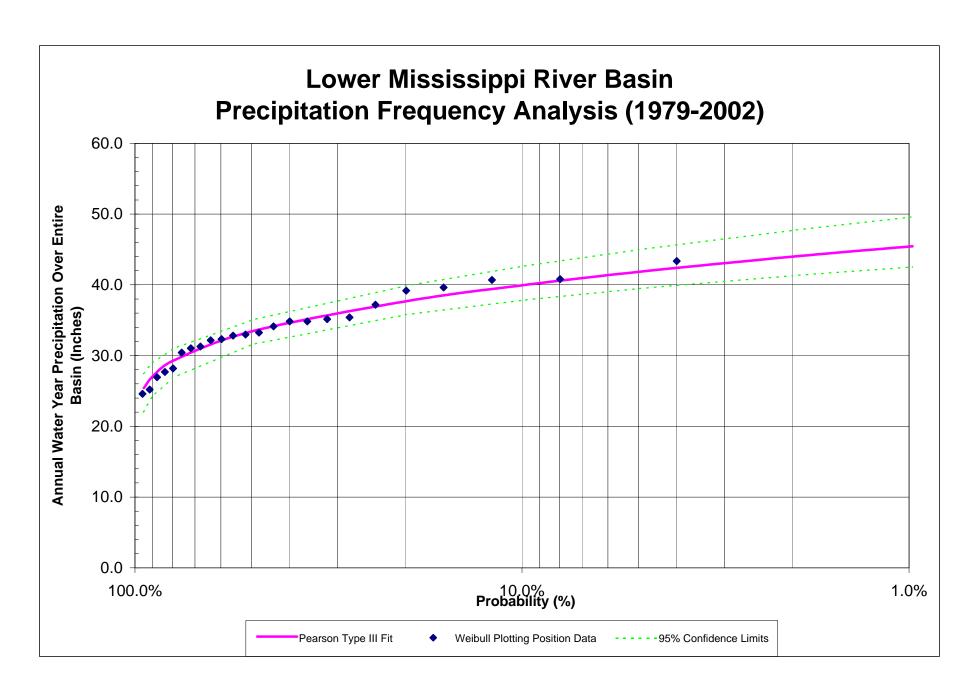


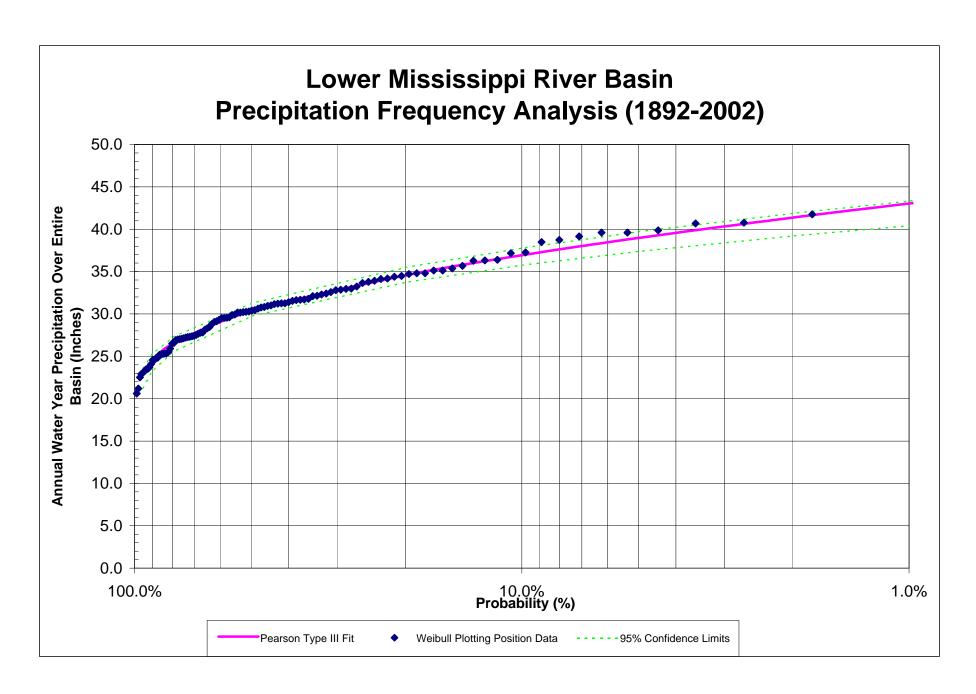


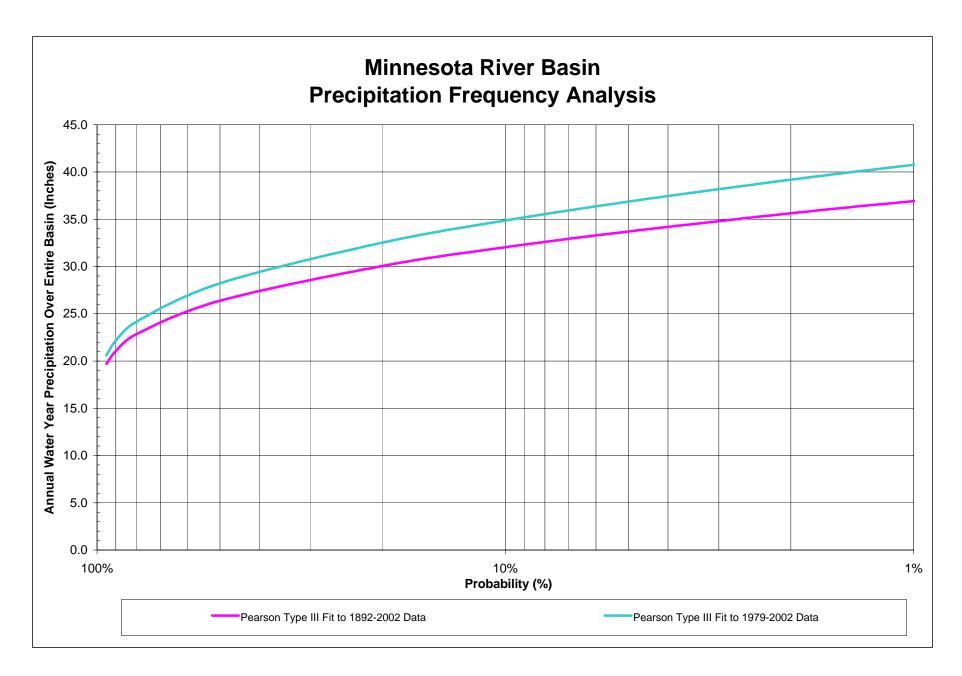


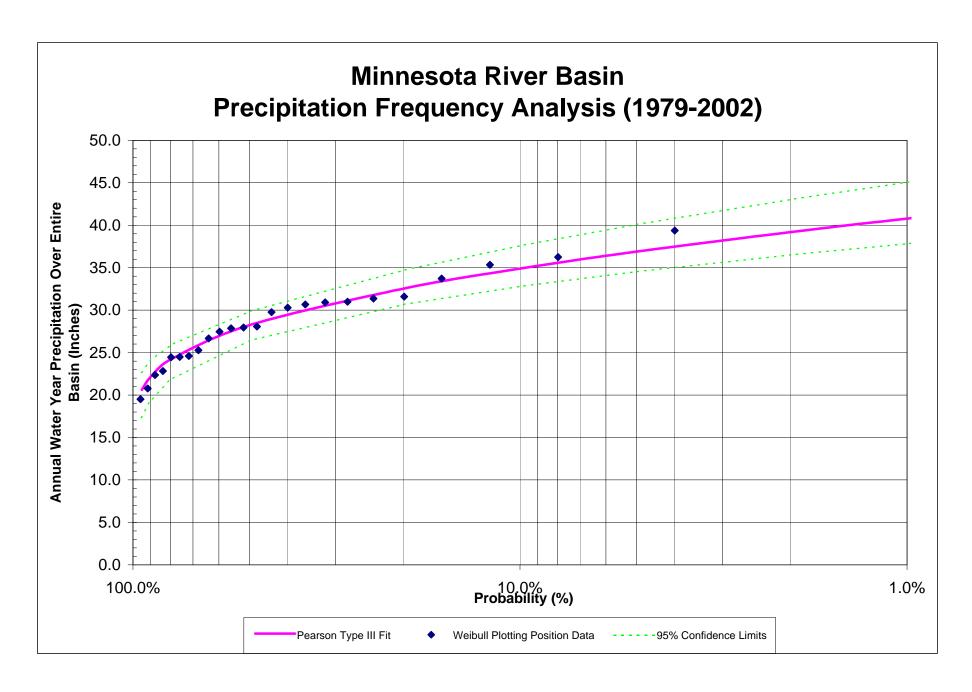


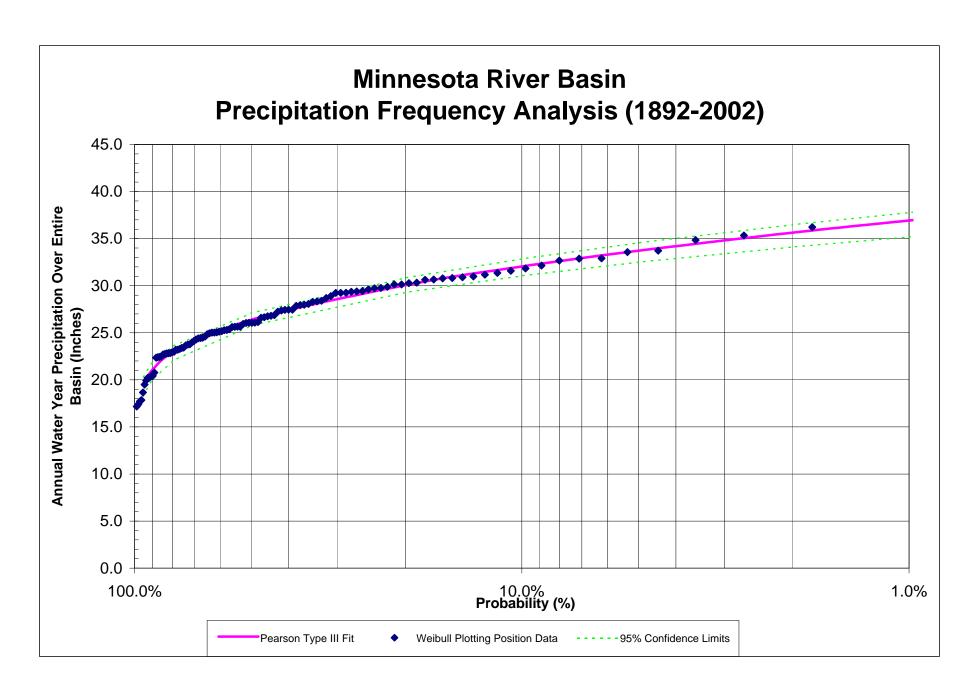


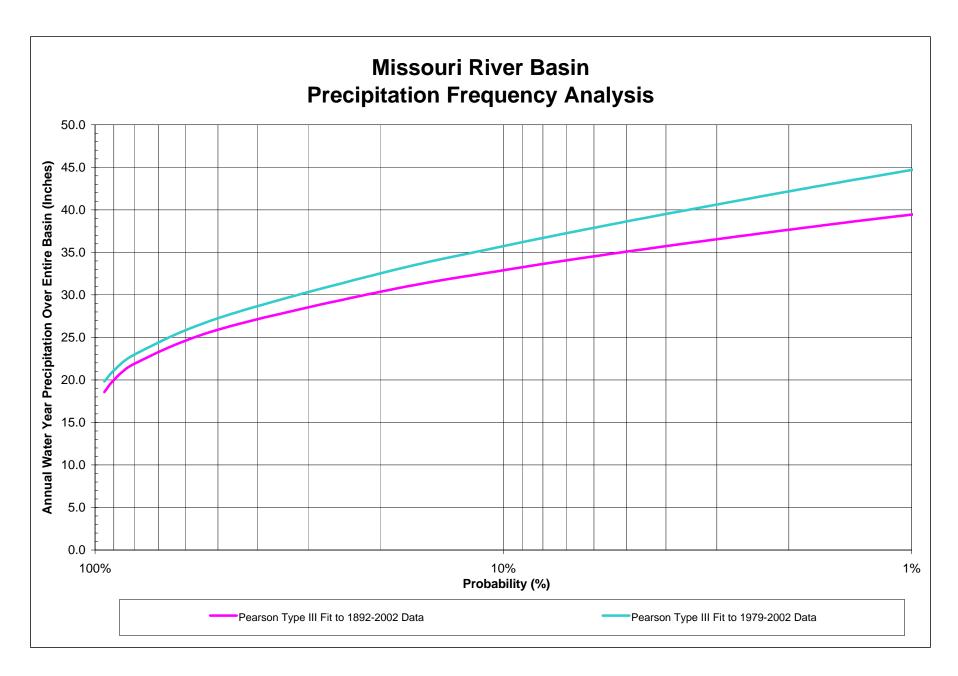


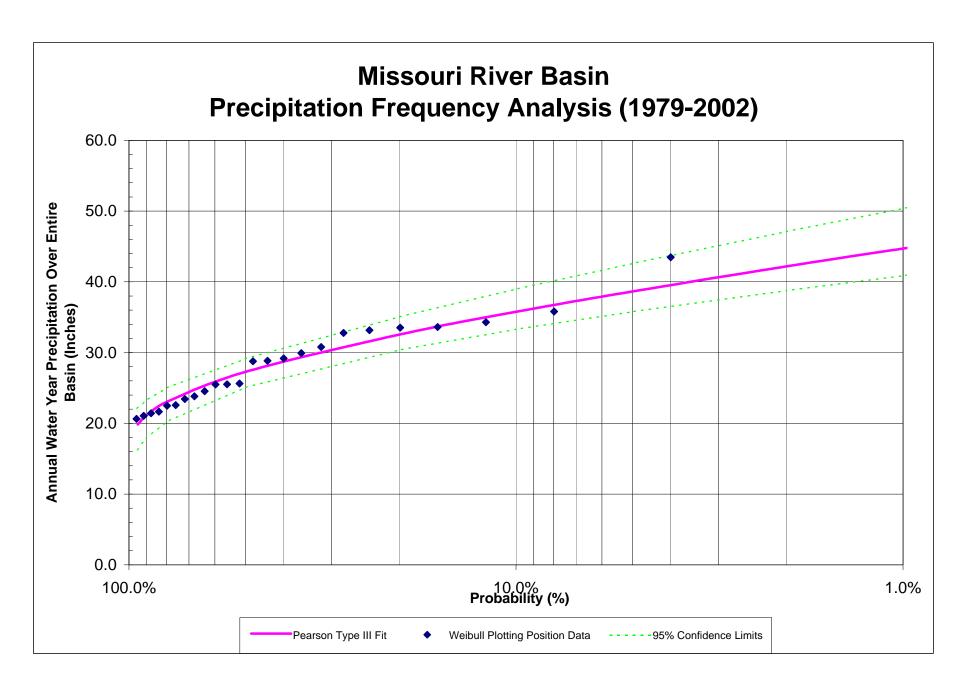


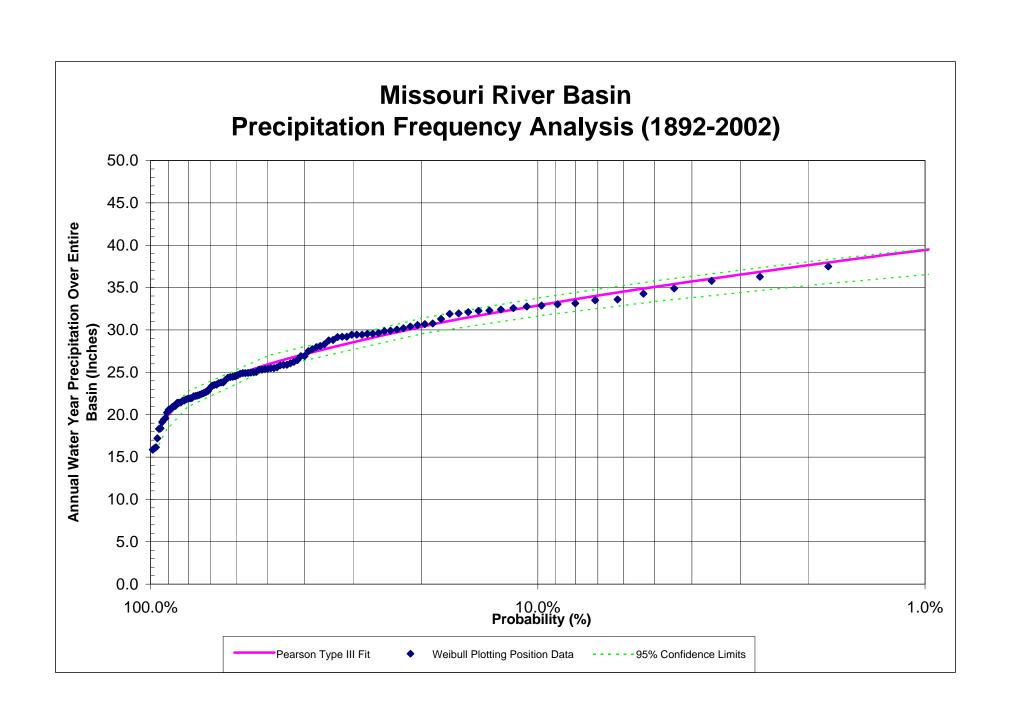


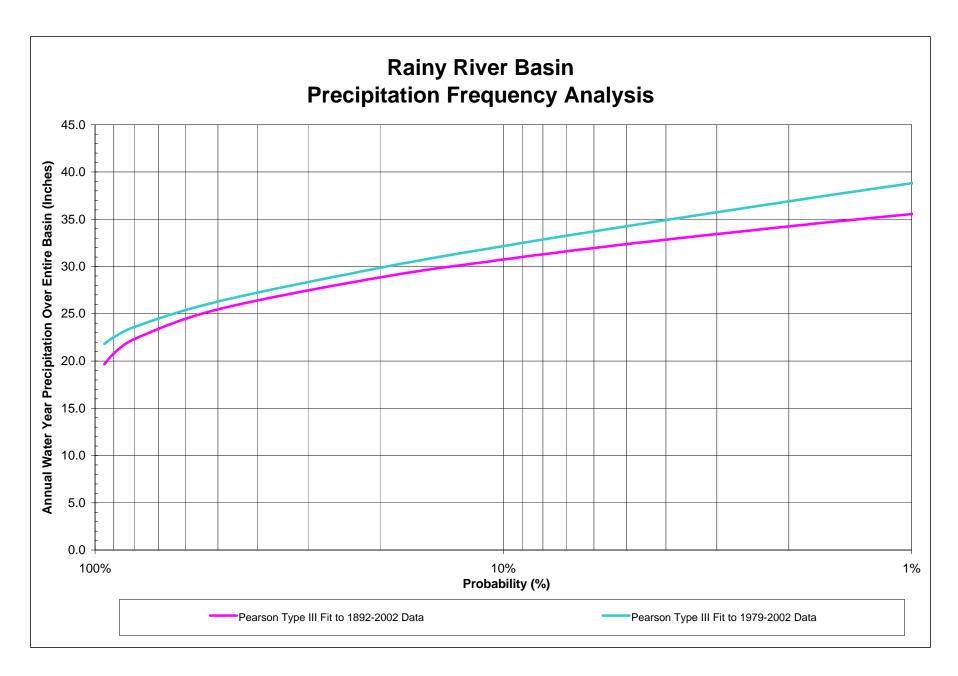


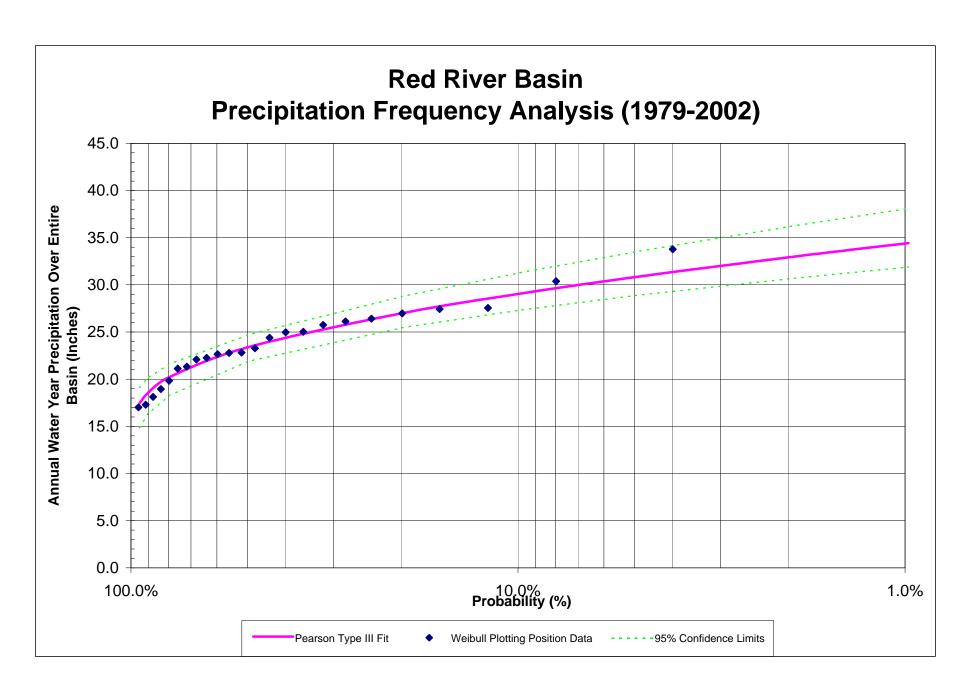


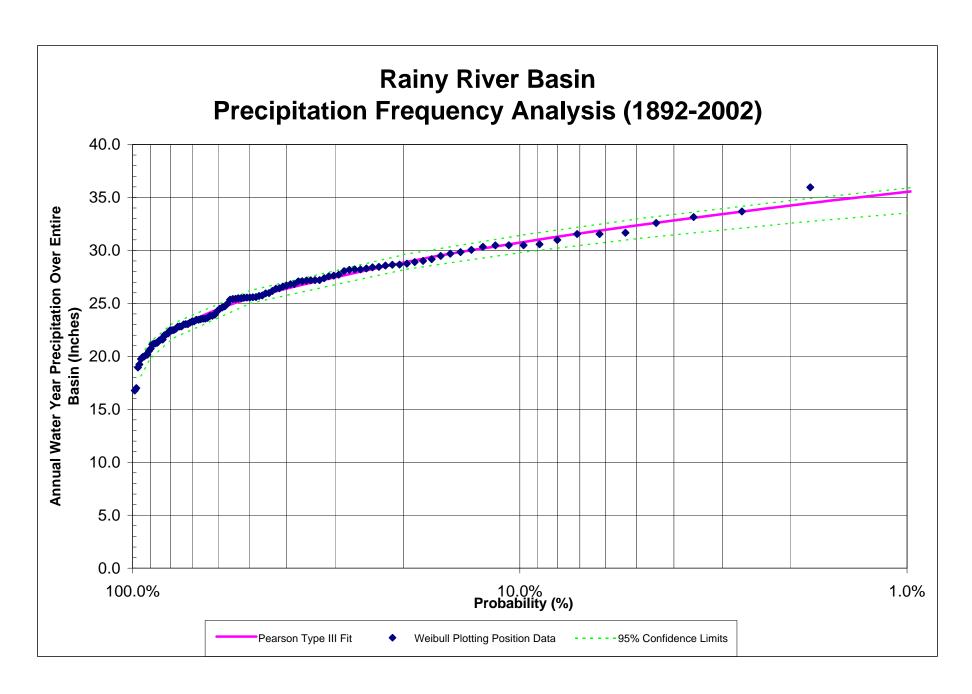


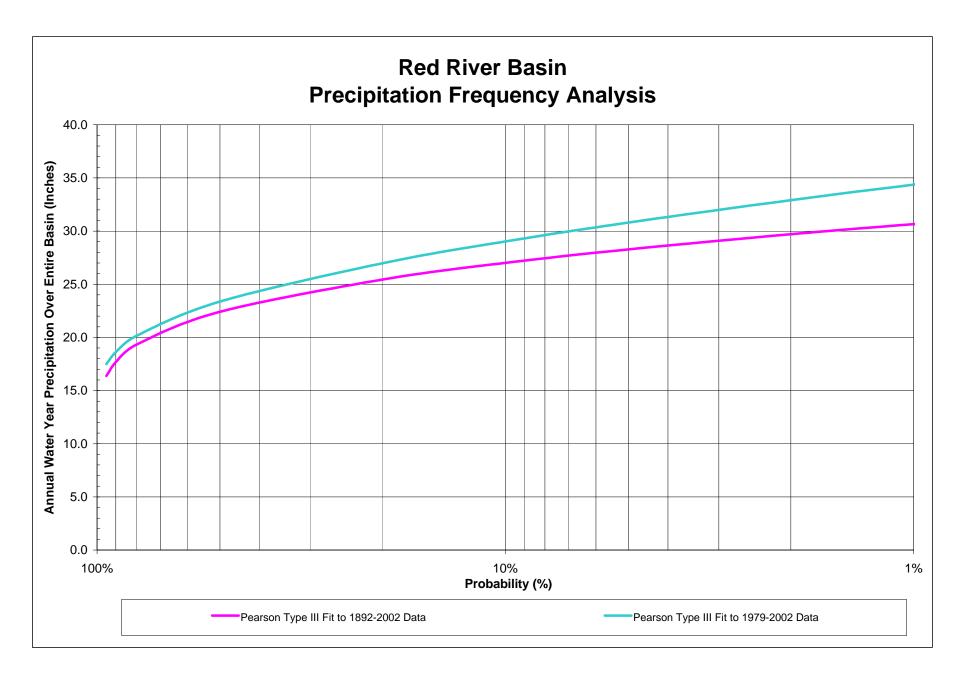


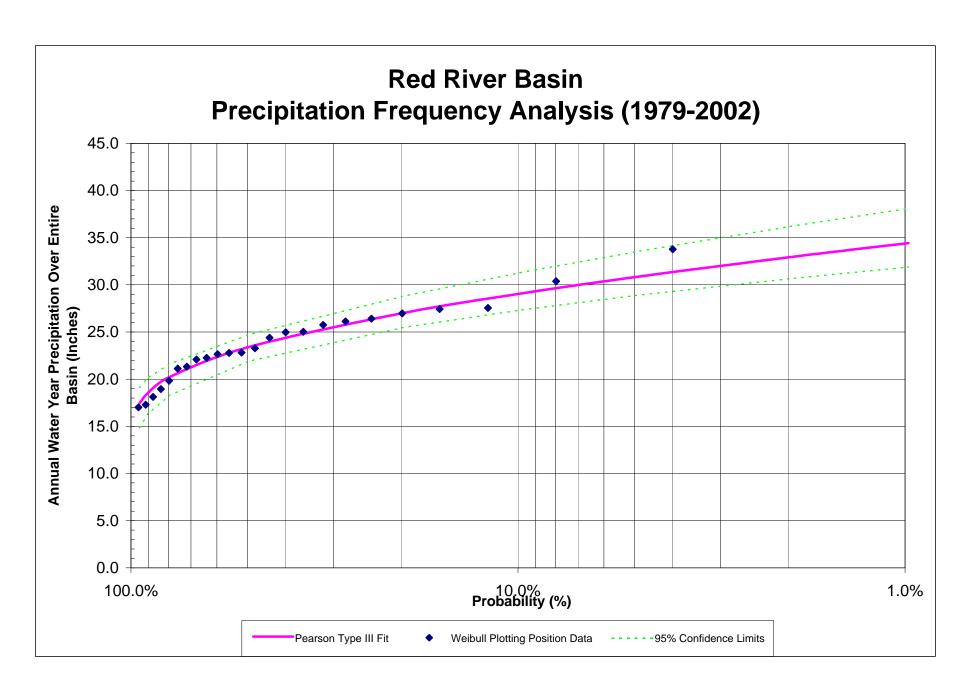


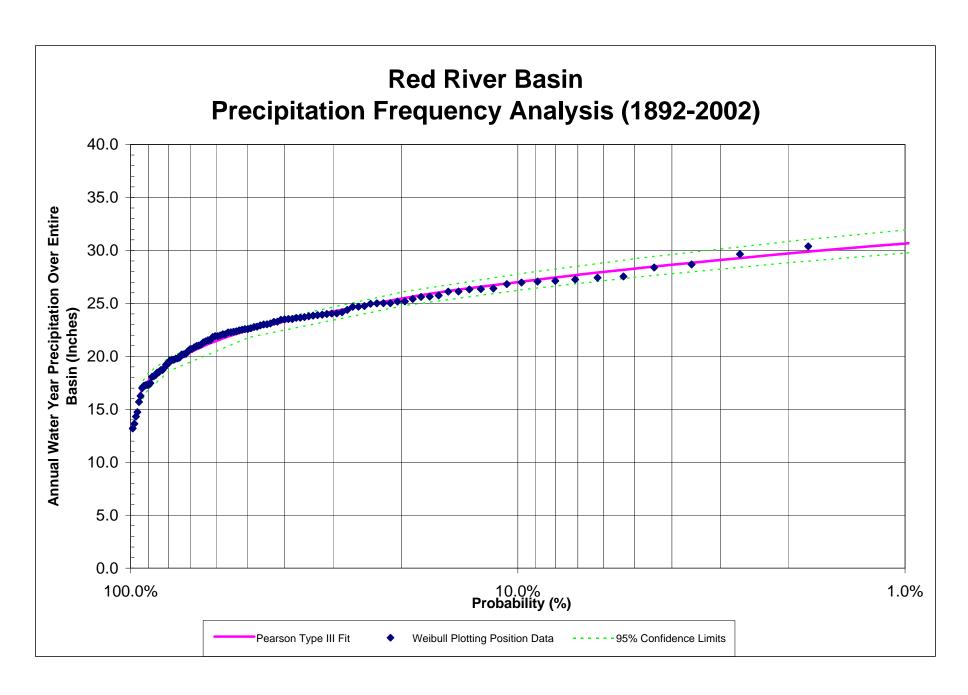


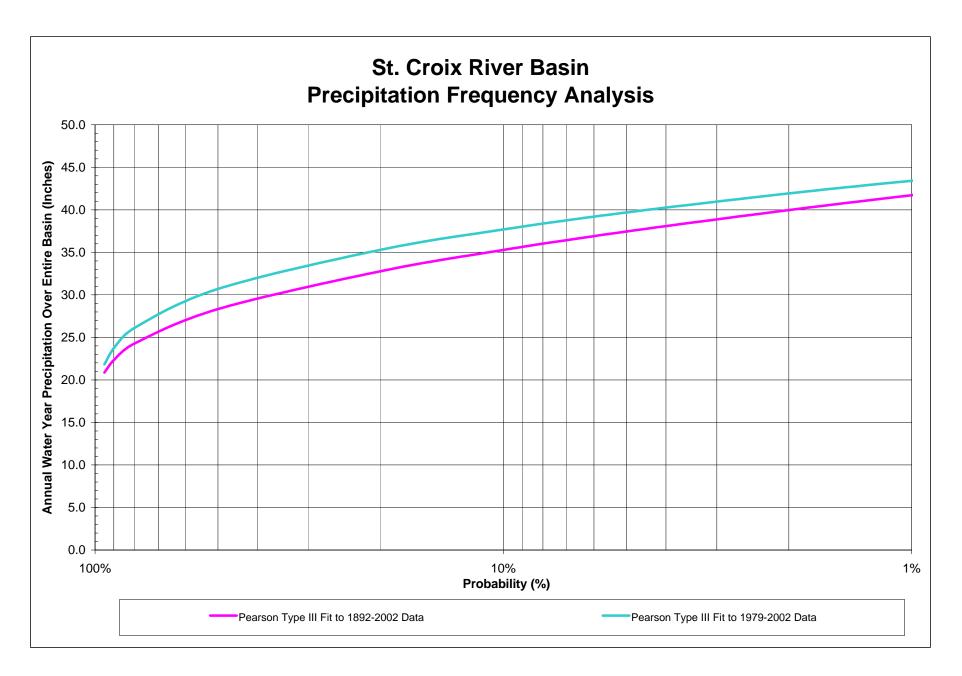


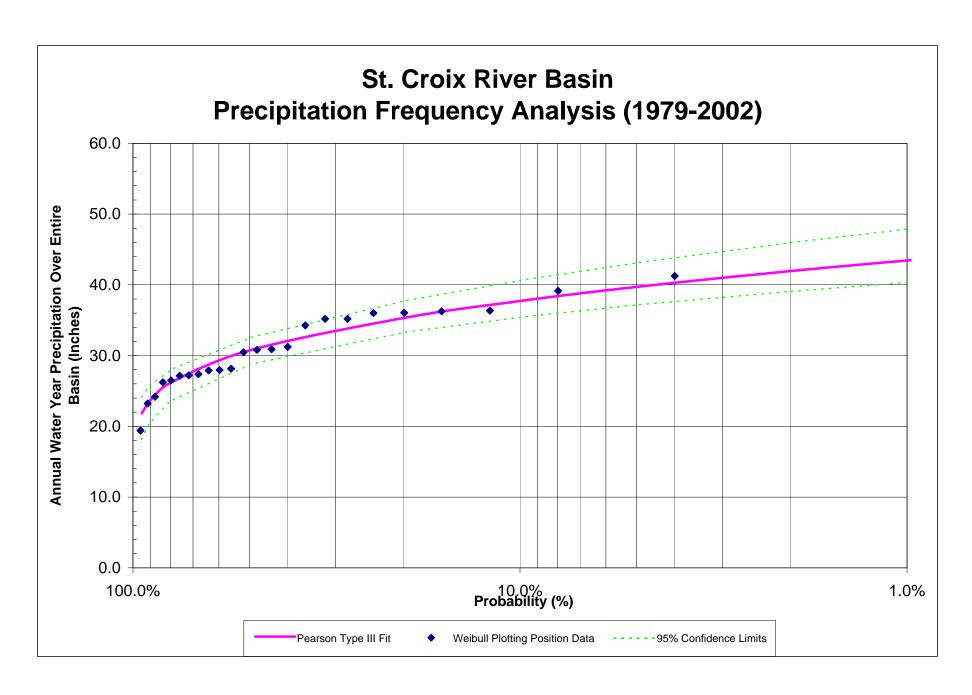


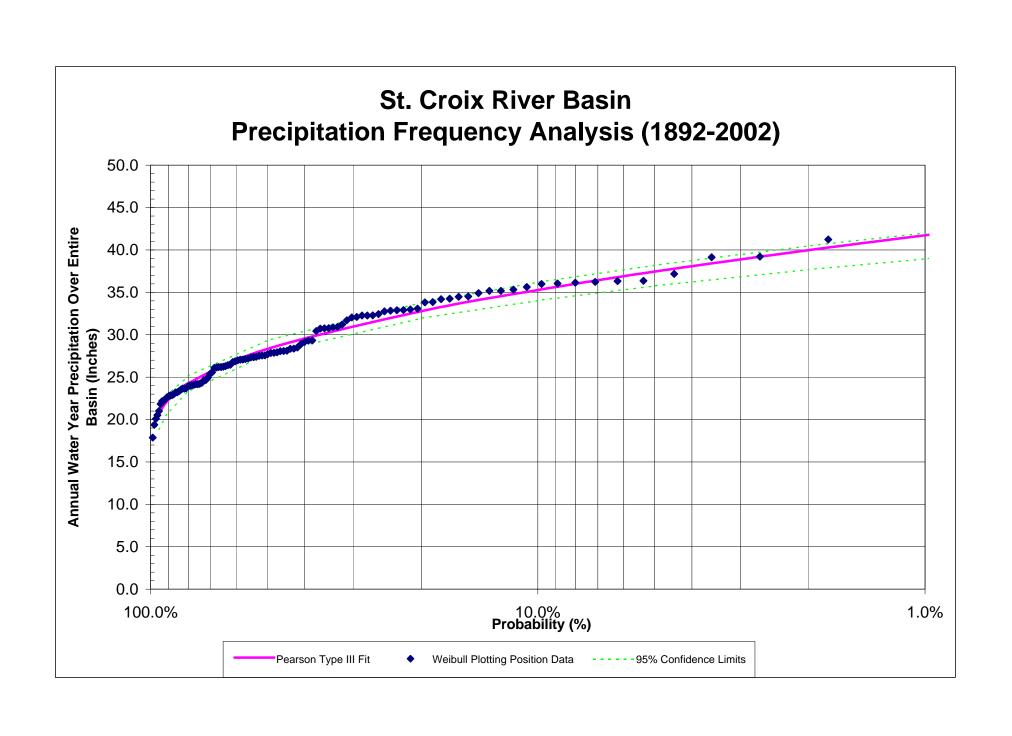


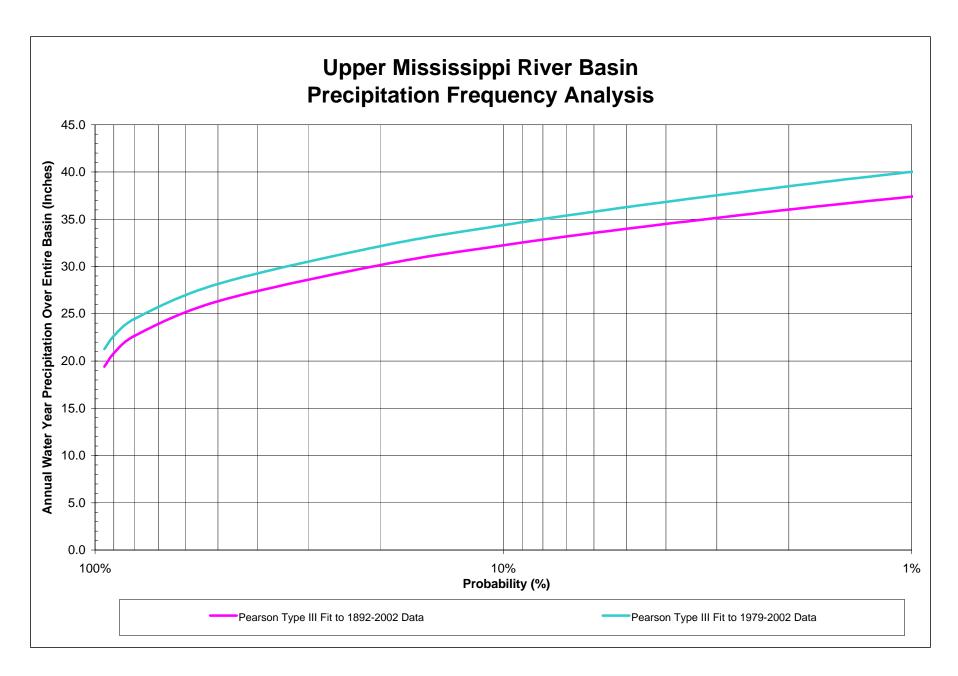


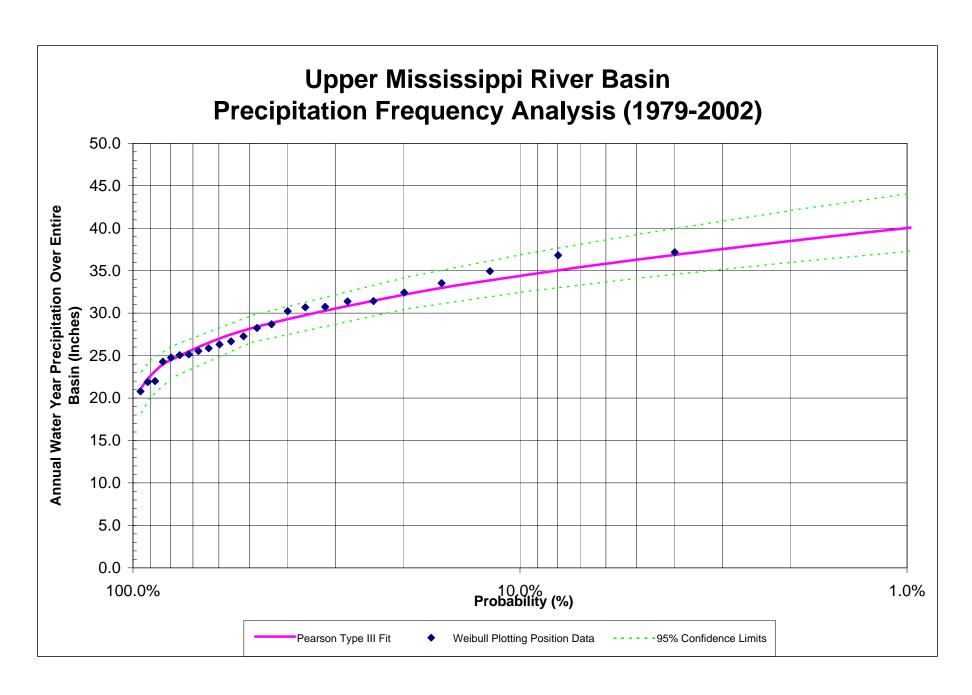


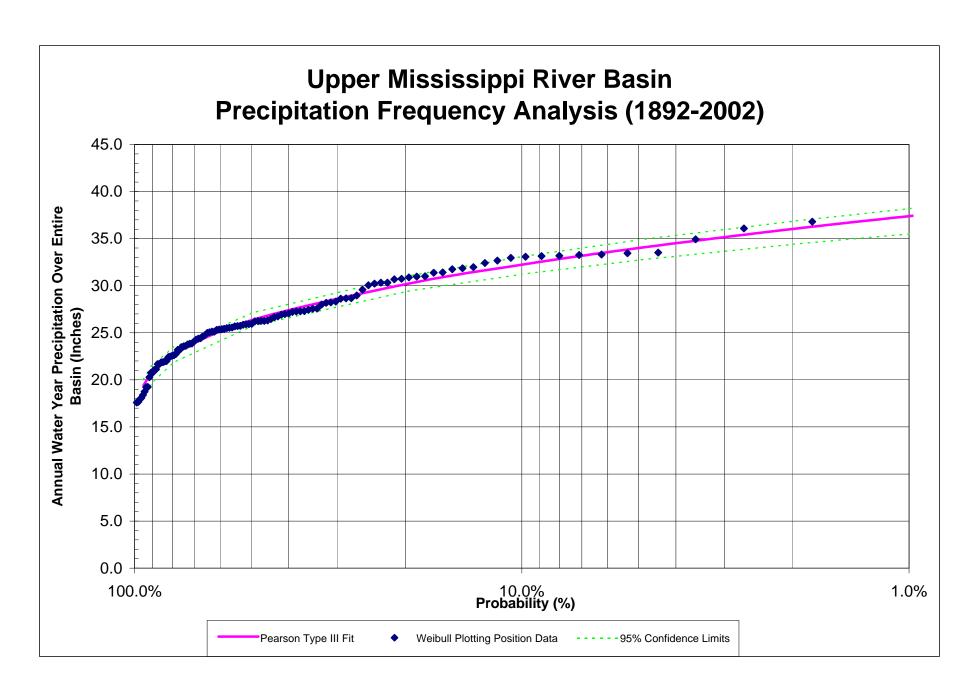












Technical Memorandum

To: Marvin Hora, Minnesota Pollution Control Agency

Douglas Hall, Minnesota Pollution Control Agency

Mark Tomasek, Minnesota Pollution Control Agency

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Point

Sources

Date: February 16, 2004

Project: 23/62-853 POTW 010

c: Greg Wilson

Henry Runke

The purpose of this memorandum is to provide a discussion regarding point sources of phosphorus to Minnesota watersheds and regarding the sources of phosphorus discharged to Minnesota publicly owned treatment works (POTWs). This discussion is based on a review of the available literature, monitoring data and the results of phosphorus loading computations done for each of Minnesota's major watershed basins as part of this study. This memorandum is intended to:

- Provide an overview and introduction to point sources as a source of phosphorus,
- Describe the results of the literature search and review of available monitoring data,
- Discuss the characteristics of each watershed basin as it pertains to point sources as a source of phosphorus,
- Describe the assumptions made and methodology used to complete the phosphorus loading computations and assessments for point sources as a source of phosphorus,
- Describe the methodology used to determine the various components of phosphorus loading,
- Discuss the results of the phosphorus loading computations and assessments,
- Discuss the uncertainty of the phosphorus loading computations and assessment,
- Provide recommendations for future refinements to phosphorus loading estimates and methods for reducing error terms, and
- Provide recommendations for lowering phosphorus export from point sources.

In addition, the results of this study and the information developed as part of this study is intended to assist the MPCA in complying with Minnesota Laws 2003, Chap. 128 Art. 1, Sec. 122

The state goal for reducing phosphorus from non-ingested sources entering municipal wastewater treatment systems is at least a 50 percent reduction based on the timeline for reduction developed by

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 2

the commissioner under section 166, and a reasonable estimate of the amount of phosphorus from non-ingested sources entering municipal wastewater treatment systems in calendar year 2003.

Therefore, it is the intent of this memorandum to also:

- Estimate the current phosphorus load entering municipal wastewater treatment plants, referred to as Publicly Owned Treatment Works (POTWs) for the remainder of this memorandum
- Estimate the various sources of phosphorus entering POTWs.

Overview and Introduction to Point Source(s) of Phosphorus

Point sources of phosphorus to Minnesota watersheds typically include domestic (private and public) and industrial facilities that discharge treated wastewater to surface water through distinct discharge points and are regulated under state and federal pollution permit programs. Nonpoint sources of phosphorus, such as stormwater runoff from various land use sources, are not covered in this memorandum. Additionally, this memorandum does not address discharge of wastewater associated with individual sewage treatment system (ISTS) nor does it address wastewater that is land applied.

Wastewater is generated by a number of sources and falls into two categories: Domestic/Household wastewater and Industrial and Commercial wastewater. Wastewater from these two sources is discharged to one of three categories of wastewater treatment facilities (WWTFs); POTWs, privately owned wastewater treatment systems for domestic sources, and industrial wastewater treatment systems. Each of the three categories of point sources is discussed in further detail below.

Publicly Owned Treatment Works (POTWs)

POTWs include wastewater treatment facilities owned and operated by public entities (cities and sanitary districts) usually. These facilities treat varying proportions of domestic wastewater and industrial wastewater. For the purposes of this study, POTWs have been subdivided into the following additional categories:

- 1. Size (based on Average Wet Weather Design flow)
 - a. Small less than 0.2 million gallons per day (mgd)
 - b. Medium from 0.2 mgd to 1.0 mgd
 - c. Large greater than 1.0 mgd

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 3

2. Waste Treated (% by flow volume treated)

- a. POTWs that serve mainly households and residences less than 20 % industrial or commercial contributions
- b. POTWs that have some commercial or industrial contribution between 20% and 50% industrial or commercial contributions
- c. POTWs that are dominated by a variety of commercial and industrial contributions greater than 50% industrial or commercial contributions

Privately Owned Wastewater Treatment Systems

Privately owned wastewater treatment systems include those designated for treatment of domestic sources and that are privately owned and operated. This category of facility is generally small and serves a limited number of residences. Mobile home parks, resorts, and small communities are examples of privately owned wastewater treatment facilities.

Industrial Wastewater Treatment Systems

Wastewater generated as a byproduct of an industrial or commercial process can either be discharged to a POTW for treatment or it can be treated (if needed) on site and discharged to a surface water under its own NPDES permit. Although, typically there is no difference in the type of wastewater generated, these two discharge arrangements are referred to separately in this memorandum for clarity. Those industries discharging to a surface water under their own NPDES permit are referred to as industrial wastewater treatment systems, while the industrial wastewater discharged to a POTW is referred to as an industrial process wastewater. Again, this nomenclature is strictly for the purposes of clarity when discussing industrial wastewater.

The industrial water treatment system category includes industries that discharge their treated wastewater to a surface water under their own National Pollutant Discharge Elimination System (NPDES) permit. In most cases, the wastewater discharged from an industrial wastewater facility is from an industrial process. In some cases, small quantities of domestic wastewater (i.e. employee wastewater) are also included in these discharges. It was assumed that the domestic portion of the wastewater discharges from an industrial facility was minor in comparison to the process wastewater discharge and no attempt was made to separate the two. This category also includes noncontact cooling water.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 4

Sources of Phosphorus

In addition to identifying the point source loading of phosphorus to each basin from each of the three types of treatment facilities (POTWs, privately owned treatment facilities, and industrial wastewater treatment systems), the other goal of this study is to identify the sources and estimate the amount of phosphorus discharged into POTWs. Although not required by the legislation, the sources of phosphorus and an estimate of the amount discharged into privately owned treatment works was also completed. Finally, the major types of industrial discharged were also identified for the industrial wastewater treatment systems. Phosphorus loading to each was categorized into the following sources:

POTWs

The following individual and/or categorical sources of phosphorus were researched for each POTW:

- Commercial/industrial process wastewater sources (including noncontact cooling water)
- Finished water supply and water treatment chemicals (such as polyphosphate compounds or orthophosphate compounds used for corrosion control purposes)
- Industrial and institutional automatic dishwasher detergent
- Residential automatic dishwasher detergent
- Dentifrices (oral hygiene products)
- Groundwater intrusion into sanitary sewers
- Food soils and garbage disposal wastes (food soils include waste food and beverages poured down the sink, and food washed down the drain as a result of dish rinsing and washing)
- Other consumer cleaning products
- Human wastes

Privately Owned Treatment Facilities

The following individual and/or categorical sources of phosphorus were evaluated for each privately owned treatment facility:

- Finished water supply and water treatment chemicals
- Residential automatic dishwasher detergent
- Dentifrices
- Food soils and garbage disposal wastes

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 5

Other consumer cleaning products

Human wastes

It was assumed that the privately owned treatment systems for domestic use were small and that no industries would be discharging to them. Therefore, the commercial/industrial process wastewater sources, industrial and institutional automatic dishwasher detergent and groundwater intrusion into the sanitary sewers sources were assumed not to contribute to these facilities.

<u>Industrial Wastewater Treatment Systems</u>

The various types of industries discharging phosphorus in their wastewater were identified. For each industrial wastewater discharger, their North American Industry Classification System (NAICS) code number was identified. The NAICS has replaced the U.S. Standard Industrial Classification (SIC) system. This NAICS allowed the data to be sorted by industry type.

The study presents a discussion and the results of phosphorus loading to each of the ten Minnesota watershed basins and for the entire state.

Results of Literature Search and Review of Available Monitoring Data

Identification of the point sources of phosphorus and load estimates was accomplished with existing data and literature information. No direct monitoring of waste streams was undertaken for this portion of the study.

Available Data

Minnesota Pollution Control Agency (MPCA) Database

As authorized by the Clean Water Act, the National Pollutant Discharge Elimination System (NPDES) permit program controls water pollution by regulating point sources that discharge pollutants into waters of the United States (US). This includes all wastewater treatment facilities. The NPDES program requires all point source discharges to obtain a permit and follow the discharge limits and monitoring requirements outlined in the permit. The MPCA administers the NPDES program within the state of Minnesota. The MPCA maintains a database of information required by NPDES permit holders and the monitoring data required by the permit. The MPCA's database for NPDES permit information is referred to as the Delta database. Monitoring is performed by the permit holders and data are sent to the MPCA via hardcopy and entered into the MPCA Delta

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 6

database by MPCA staff. Data submitted include the monthly averages, maximums and, in some cases, minimums for the required parameters.

Delta is a relatively new database and was phased in beginning in 1998. As permits came up for renewal, the permit information was transferred into the MPCA Delta database. Prior to this time, the MPCA used the Environmental Protection Agency's (EPA), Permit Compliance System (PCS) database to track its data. All NPDES permit information was being entered into Delta by January 2001. Therefore, at a minimum, data from the years 2001, 2002 and the first half of 2003 were used in the analysis report here. It was realized that using data from two and a half years rather than two full years may be a source of slight error due to the potential for seasonal patterns in phosphorus loading. However, it was decided to use two and a half years rather than two full years for several reasons:

- In many cases, the data were for more than the two and a half years (predating January 1, 2001), depending on when the permit came up for renewal,
- The error introduced by the additional half year of data was believed to be minor and would likely be industry-based only due to seasonal variations in production,
- It was believed that the two full years of data would balance out any seasonal variation due to the partial year of data,
- The data set available was limited and using two and a half years rather just the two full years expanded the data set.

The MPCA's Delta data contained data for more than 1,300 separate permits, many with multiple discharge points called stations, and all available phosphorus data contained therein was used for this study.

The specific information provided by the MPCA Delta database is described below:

- Permit number
- Name and location of treatment facility (Latitude and longitude)
- Location of discharges to surface waters from each permit
- Flow monitoring data (Monthly average, total and maximum)
- Phosphorus monitoring data (Monthly average and maximum concentrations)
- Population served by POTW facilities

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 7

Although the Delta database was our most important data source, it did not provide complete information for each permit. Phosphorus data are submitted by permittees for Delta database entry when effluent limits are included in permits. Since many permits do not include limits and/or monitoring requirements for phosphorus, there was no phosphorus data available for these permits. As a result, it was necessary to extrapolate phosphorus data from other permit information (e.g. permit application data and basin average phosphorus for similar facilities, etc.). This process and the assumptions are described in detail in subsequent sections of this memorandum. (Detailed information on the data fields for the Delta database are presented in Appendix A)

MNPRO Database

The Minnesota Department of Trade and Economic Development maintains a database (MNPRO) that contains information regarding community profiles for each city in Minnesota. The MNPRO database was used to obtain the following information (see Appendix B):

- A complete listing of Minnesota communities
- Information on the type of wastewater treatment system a community discharges to
- Population of the community
- A list of businesses and industries in each community, the NAICS code and number of employees for each business.

All population data obtained from the MNPRO database were from 2001 estimates. The other data obtained from the MNPRO database were provided by the communities and there may be some variation regarding the dates this information was reported.

Metropolitan Council Environmental Services

The Metropolitan Council Environmental Services (MCES) owns and operates the eight Twin Cities Metropolitan Area wastewater treatment facilities. MCES treatment plants process 300 million gallons of wastewater every day from 2.2 million residents in 104 communities. MCES serves 64 percent of the State's sewered population and flow from the MCES treatment facilities represents 56 percent of the flow discharged from POTWs in the state and nine percent of the total flow discharged from all permitted facilities (POTWs, privately owned treatment facilities and industrial facilities) to

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 8

the waters of the state. MCES treatment plants discharge treated wastewater to four area rivers: the Minnesota, Mississippi, St. Croix and Vermillion.

The Industrial Waste & Pollution Prevention (IWPP) Section, located within MCES's Environmental Planning and Evaluation Department, regulates and monitors industrial discharges to the sewer system to ensure compliance with local and federal regulations. IWPP Section staff issue Industrial Discharge Permits to industrial users of the Metropolitan Disposal System. Currently, more than 700 permits are in effect. Each permit holder is also required to conduct self-monitoring and submit reports to the IWPP section on a routine basis. The frequency of monitoring and the parameters monitored vary significantly by permit. For each MCES industrial permit holder, MCES provided the following information (See Appendix C):

- Name and location of permit holder
- SIC code number for each permit holder (was converted to NAICS code number)
- Flow and phosphorus estimates (phosphorus data were not available for all permit holders)
- Employee counts

Minnesota Department of Health (MDH)

The Minnesota Department of Health (MDH), the agency that regulates the quality of drinking water supplies in Minnesota, provided a list of communities that supplemented their water supply with continuous phosphate additions (for corrosion control for lead and copper, and iron and manganese sequestration) from 2001 to 2003 (see Appendix D). All public water systems in the state took part in an initial round of lead and copper testing that ended in 1994. The water was tested in a number of homes within each system, to determine if they exceeded the federal "action level" of 15 parts per billion (ppb) for lead or 1,300 ppb for copper. If a system exceeded the action level for lead or copper in more than 10 percent of the locations tested, it was required to take corrective action (such as the addition of phosphate to provide corrosion control for lead and copper) and do further testing. Lead and copper in drinking water is not an environmental contamination problem in the conventional sense. Water is almost never contaminated with lead or copper at the source, or when it first enters the distribution system. However, water can absorb lead and copper from plumbing components used in individual homes. Possible sources of lead contamination include lead pipe, lead

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 9

plumbing solder, and brass fixtures. Lead exposure is a potentially serious health concern, especially for young children.

The MDH list provided the water treatment facility's annual flow rate for all 360 of the systems that add phosphorus. In addition, they provided the residual phosphorus concentrations for the 120 systems that are required to add phosphorus for corrosion control. MDH staff (Dick Clark) provided an estimate of the phosphorus concentration of the water in the communities that add phosphorus for iron and manganese sequestration and are not required to monitor. He stated that he believed they added between 2 mg/L to 2.5 mg/L as phosphate (0.6 mg/L to 0.83 mg/L as phosphorus). These data were used to calculate the total phosphorus contribution to the POTWs from the municipal water supplies.

Minnesota Pollution Control Agency (MPCA)

Discussions with MPCA staff (Deborah Schumann, Personal Communications) provided a list of the water sources for most of the noncontact cooling water dischargers in the state. Information on noncontact cooling water additives was also provided by MPCA staff.

Minnesota Communities

A number of Minnesota communities were contacted to obtain data or to verify information regarding their wastewater treatment facilities (see Appendix E). The types of information provided by these communities included:

- Industrial Phosphorus Data. Fourteen out-state (non-metro) communities with industrial phosphorus monitoring programs were contacted and provided data on influent loadings from industrial and commercial dischargers to their wastewater treatment facilities.
- Population Data. Many communities were contacted to determine the population served by the wastewater treatment facility.
- Industrial Discharge Information. Many communities and industries were contacted to verify the type and volume of wastewater discharge from an industrial source.

Literature Review

A number of literature sources, including the following, were reviewed to obtain information on the sources of phosphorus to wastewater treatment facilities.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 10

Chemical Economics Handbook – Industrial Phosphates - The Chemical Economics Handbook (CEH) is published by Stanford Research Institute (SRI), International, and provides comprehensive analysis, historical data and forecasts pertaining to the industrial phosphorus market. Detailed supply and demand data are presented for the United States, Western Europe and Japan. The handbook provides detailed information on the mass of phosphorus consumed annually in the United States for major commercial, nonagricultural phosphate chemical products. The report provided historical data for the years 1984 through 2000 and forecasted data for the year 2005 for the following major commercial products:

- Detergent builders
- Water supply chemicals
- Food and beverages
- Dentifrices (such as toothpaste, etc.)

Metcalf and Eddy, Inc., Wastewater Engineering, 1991 is a well-respected reference in the field of wastewater treatment. This text discusses the components that make up wastewater as well as the typical wastewater flow rates and characteristics.

A number of studies were conducted in the late 1970's and early 1980's that analyzed residential wastewater. These studies segregated wastewater from toilets (human wastes), garbage disposals, dishwashing water, food soils, baths and showers, laundry discharges, and automatic dishwasher detergent, and provided typical flow rates and pollutant characteristics (including phosphorus) for each of these sources. The studies noted that while bath and shower wastes contributed to the hydraulic load from residences, there was little to no phosphorus from these sources. They did provide a phosphorus concentration from laundry discharges, but this study was conducted prior to the laundry detergent phosphorus ban. It was assumed that laundry wastes no longer contribute any phosphorus to wastewater.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 11

These studies found the following to contribute phosphorus to residential wastewater:

Human wastes

• Garbage disposals

• Dishwashing water

Food soils

• Laundry discharges (These studies were completed prior to the ban on phosphorus in laundry

detergent)

And automatic dishwasher detergent

The data were provided in terms of daily per capita use rates. It was assumed that no major changes had occurred in the estimates for human waste, garbage disposal waste, and food soils and these data

were used to estimate source amounts discharged to wastewater treatment facilities.

Ligman, Hutzler and Boyle (1974) characterized the types of wastewater generated in a domestic household. They surveyed a total of 50 rural and urban households to determine the various sources and amounts of wastewater generated from the bathroom, the kitchen and the laundry. They also characterized the pollutants generated from each type of wastewater discharge. A statistical analysis of data from rural households as compared with urban residences indicated no significant difference

in wastewater pollutant loads.

Siegrist, Witt, and Boyle (1976) characterized waste flows from individual rural households. Eleven rural homes were monitored and the wastewater flows and water quality characterized. The results of this study presented the mean wastewater contribution from various sources on a mass per capita per day basis. The wastewater sources studied included fecal toilet flush, nonfecal toilet flush, garbage disposal waste, kitchen sink waste, automatic dishwasher usage, clothes washer-wash, clothes washer-rinse and bath/shower usage. They found that on average human waste contains approximately 1.6 grams of phosphorus per person per day.

Boyle, Siegrist and Saw (1982) focused on treatment of graywater, but also provided a summary of the characterization of wastewater from households.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

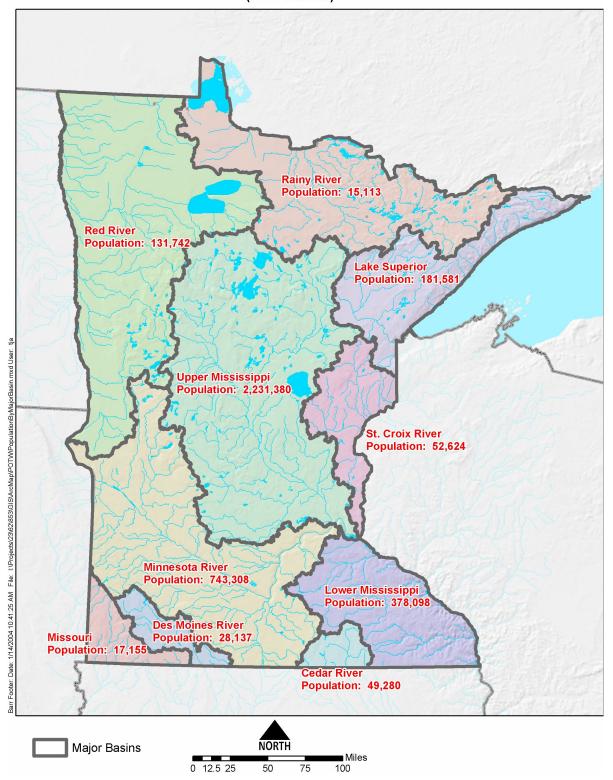
Date: February 16, 2004

Page: 12

Strauss (2000) provided information on the nutrient concentration in human waste. He states that humans excrete in the order of 2 grams of phosphorus per day.

Watershed Basin Characteristics

Wastewater treatment plants are the main point source inputs of phosphorus to Minnesota watersheds. Therefore, it follows that inputs of point source phosphorus depends on the sewered population and number of industries in an area. Figure 1 provides a map of Minnesota showing the sewered population to POTWs and privately owned treatment facilities of the ten major watershed basins. As this map indicates, the Upper Mississippi basin has the largest sewered population, exceeding the other basins by an order of magnitude. The sources of phosphorus may also vary by watershed basin. For example, the Cedar River basin has little industry and it is expected that the majority of the phosphorus contribution in that basin would come from POTWs.


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 13

FIGURE 1 Sewered Population of Major Basins (2000 Census)

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 14

Approach and Methodology for Phosphorus Loading Computations

The goal for determining the point source phosphorus loading for each of the watersheds consists of two parts. The first part is to quantify the point source loadings discharged to each of the watershed basins. The second is to identify the component sources of phosphorus in wastewater discharged into each of the POTWs. The process required to achieve these goals involved a multitude of steps and activities. This effort included collecting, processing and reviewing thousands of data points from a number of sources. The major data sources were discussed previously and the following paragraphs discuss the approach followed, assumptions made, and methodology used for accomplishing these goals.

The first phase of this study was to gather available data. The objectives were to:

- Obtain actual facility influent and effluent flow rates
- Obtain facility-specific phosphorus influent and effluent concentrations
- Obtain as much actual industrial discharge information as available given the schedule, both flow rate and phosphorus concentration
- Obtain actual data on phosphorus concentrations in finished water supplies
- Obtain actual data on infiltration and inflow to wastewater treatment systems, and
- Obtain literature values for the various components of the wastewater influent

After the data gathering phase, extensive data processing and quality assurance activities were performed in preparation for load calculations. These tasks are described in the paragraphs that follow.

Phosphorus Point Sources and Amounts to Waters of the State

The point source phosphorus loads to surface waters from each of the three types of treatment facilities were estimated by determining the average annual flow rate for each point source discharger and multiplying it by the average annual phosphorus concentration. Because there was limited data for some dischargers, monthly averages at best, it was decided to estimate the phosphorus load by calculating the average annual flow and multiplying it by the average annual phosphorus concentration. The phosphorus load to each basin was calculated as the sum of the loads from each point source discharger within the basin. It should be noted that sewershed boundaries do

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 15

not always agree with the watershed boundaries and the assignment of point source loads to a watershed basin was based on the point of discharge to waters of the state. In some cases the phosphorus load may have been generated in other basins and sewered to a wastewater treatment plant in another basin for treatment and discharge.

Influent and Effluent Flow Data

Data on all municipal, private and industrial and commercial dischargers were obtained from the MPCA Delta database. The Delta database provided information for a total of 1,307 permitted dischargers. Because this information determined which facilities and which stations discharged to a surface water and which did not, a significant level of effort was paid to reviewing this information. As a first step, the stations for each permit were reviewed to verify that a valid discharge to a surface water was occurring for each station in each permit. As a result of this review, many stations and some entire permits were deleted from the database used for this study. The following stations were deleted for this study:

- Stations that represented a discharge to land,
- Stations that strictly represented a stormwater runoff discharge,
- Permits that had no influent and effluent flow data. It was assumed that if there was no data
 for either the influent or the effluent stations, that there had been no discharge from that
 facility.

As a result of this process the total number of stations (or outfalls) was reduced from 7,861 to 1,510 and the total number of permits was reduced from 1,307 to 910.

The NPDES discharges were separated into the following categories as part of the review process:

- Domestic vs. industrial flow was verified. In some cases, the Delta database designation was modified. For example, prisons and schools were changed from an industrial source to a domestic source
- Noncontact cooling water sources were noted, and
- Mine pit dewatering sources were noted

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 16

Next, the influent and effluent flow rates for the NPDES surface water permits and stations were reviewed. If only influent flow data were available from the Delta database, the effluent flow was assumed to be equal to the influent flow, because loss through the wastewater treatment process is minimal. Similarly, if only effluent flow rates were available from Delta, the influent flow rates were assumed to be equal to the effluent flow rates. Pond systems presented a challenge in that they discharge infrequently and, when they do, the flow rate is relatively high. For many pond systems there was no discharge information available because they had not discharged during the period of record. Conversely, in other instances the average annual effluent flow from a pond system greatly exceeded the annual average influent flow. Because is was not possible to determine the time period between discharge events and therefore the average annual effluent flow rate, it was assumed that there was no net loss of wastewater from the pond system and the average annual effluent flow rate was assumed to be equal to the measured influent flow rates for pond systems. For industrial wastewater treatment systems, only effluent flow data were required.

Next, the flow rate data were validated. All flow values were converted to million gallons per day (mgd) and then averaged for each permit and station combination. The standard deviation was calculated for each permit station. Permits with high standard deviations raised concern, and the monthly flow rate data for the individual permits were manually reviewed. By reviewing multiple years is was relatively easy to spot the general trend in discharge rates and correct obvious errors.

Once the data validation was complete, average annual influent and effluent flow rates were calculated for each facility.

Treatment Plant Influent and Effluent Phosphorus Loadings

To meet the goals of this study, it was necessary to determine both the influent phosphorus loads discharged into the POTWs and privately owned treatment facilities and the effluent phosphorus load being discharged from the POTWs and privately owned treatment facilities along with the effluent loads from the industrial wastewater treatment systems. The approach used to determine the phosphorus loading from each of the three types of facilities to the basin is very similar and is described below. Phosphorus loads were determined by multiplying the influent and effluent flow rates discussed above by the influent and effluent phosphorus concentrations, respectively. Phosphorus concentration data was obtained from the Delta database. In some cases, determining the

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 17

phosphorus concentration from each discharger was complicated by the absence of phosphorus data. Delta phosphorus data are submitted by permittees for Delta entry when effluent limits or monitoring requirements are included in permits. Since many permits do not include limits and/or monitoring requirements for phosphorus, there were no effluent phosphorus data available for these permits. In addition, many facilities that have an effluent phosphorus limit monitor only the effluent phosphorus and do not monitor the influent phosphorus concentrations. 78 percent of the POTWs (which represents 88% of the flow), 52 percent of the privately owned treatment facilities (which represent 80 percent of the flow); and 22 percent of the industrial treatment facilities had effluent phosphorus data (which represents 7 percent of the flow). For these reasons, it was necessary to estimate phosphorus concentrations from other sources. Table 1 summarizes the availability of phosphorus data from the Delta database.

Table 1
Summary of Phosphorus Data

Treatment Facility Category	Total No. of Permits	Percent of Permits with Influent Phosphorus Data	Percent of Flow with Influent Phosphorus Data	Percent of Permits with Effluent Phosphorus Data	Percent of Flow with Effluent Phosphorus Data
POTW	534	71%	87%	78%	88%
Privately Owned Treatment Facility	42	31%	59%	22%	80%
Industrial Wastewater Treatment Facilty	315	NA	NA	69%	7%
Total	891	44%	87%	57%	20%

NA: Not Applicable

Effluent phosphorus data was available for approximately 505 POTWs, privately owned treatment works and industrial point source dischargers. Influent phosphorus data was available for 393 POTWs and privately owned treatment facilities. The annual influent and effluent phosphorus loads for each wastewater treatment facility and the effluent phosphorus loads for the industrial sources for which data were available were estimated as the products of the average phosphorus concentrations and flow rates extrapolated over the monitoring period.

Missing POTW and privately owned treatment facility effluent phosphorus concentrations were estimated by assuming the calculated basin average phosphorus (as described in the previous paragraph) for similar facility types. In a limited number of cases calls were made to the permittee to verify the phosphorus effluent concentrations. Missing influent phosphorus data were also estimated from basin average influent data for similar facilities.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 18

Effluent phosphorus concentrations for industrial wastewater treatment systems that did not have monitoring data were estimated from phosphorus data for industries with like NAICS codes. This process is described in detail in subsequent paragraphs.

Noncontact Cooling Water

Certain commercial and industrial users discharge noncontact cooling water directly to surface waters. Noncontact cooling water dischargers were identified through review of the NPDES permit data. When available, the amount of phosphorus in these discharges was calculated from data contained in the Delta database. In most cases, however, no phosphorus data were available. For each noncontact cooling water discharge, the source of the water was identified as were additions of phosphorus-based corrosion control chemicals. In calculating the phosphorus loads associated with noncontact cooling water, reported data on discharge volumes and phosphorus concentration were used whenever they were available. However, when the phosphorus concentration of noncontact cooling water was not specified in the permit data, the source of the cooling water was determined and any information on phosphorus additives was investigated. Most of this information was available from MPCA staff (D. Schumann, Personal Communication) familiar with the industries discharging cooling water. This provided a basis to estimate the phosphorus concentration. For example, if the source of the cooling water was the municipal water supply and no phosphorus was added, it was assumed that the phosphorus concentration discharged was equivalent to the municipal water supply value. If the source of the cooling water was an on-site well, the phosphorus concentration was assumed to be equal to the groundwater phosphorus concentration. Finally, if the source of the cooling water was the same body of water that received the effluent and no phosphorus was added for water treatment, it was assumed that there was no additional phosphorus load to the surface water.

Phosphorus Sources and Amounts to POTWs and Privately Owned Treatment Facilities

Although the 50 percent reduction goal required by Minnesota Laws 2003, Chap. 128 Art. 1, Sec. 122 applies only to the influent to POTWs and does not apply to the influent to privately owned treatment facilities, information on the phosphorus sources to both POTWs and privately owned treatment facilities is presented for comparison and completeness. The various sources of influent wastewater entering POTWs and privately owned treatment facilities were estimated separately by the techniques described below.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 19

Population Data

Because much of the information gathered during the literature search for the various components of the influent wastewater was based on per capita values, it was necessary to accurately determine the population served for each of the POTWs and privately owned wastewater treatment facilities. The population served for each facility was not readily available for all of the permitted facilities. Therefore, the following stepwise approach was taken:

- 1. MPCA Delta Database. When available, the population served by a treatment facility as listed in the Delta database was used. Approximately 230 of the permits had population data listed in the Delta database. However, through phone calls to individual wastewater treatment plant operators, some of these numbers were modified based on their comments.
- 2. MNPRO Database. If population data were not available from the Delta database, the population of the community corresponding to the permit was assumed to equal the population served by the WWTF. This information was obtained from the MNPRO database.
- 3. ISTS Information. Information obtained on ISTS and unsewered communities was obtained from MPCA as described in the Individual Sewage Treatment Systems/Unsewered Communities Technical Memorandum. These communities and the populations served by ISTS systems were compared to the communities having an NPDES permit as listed in the Delta database. If a community had both a NPDES permit to discharge to a surface water and was also listed has being served by an ISTS, the difference of the City's population and the ISTS population was used as the population served by the treatment facility. If no information could be located, the permit holder was contacted to verify the population served by each system.
- 4. MNPRO Database. The complete listing of communities within the state of Minnesota as contained in the MNPRO database was compared to both the NPDES list and the unsewered communities list to verify that all communities within the state were accounted for. Any community with a population greater than 1,000 that was unaccounted for was contacted by

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 20

telephone and the final disposition of their wastewater was determined. In many cases these communities transferred their wastewater to another community's treatment facility.

5. Communities with a population of less than 1,000 persons that did not have either an NPDES permit, were not listed in the ISTS database or were not listed as an unsewered community were assumed to be served by an ISTS system.

No information was available regarding septage hauled to the POTWs and therefore no estimate of this source was made.

Commercial and Industrial Process Wastewater

A wide variety of commercial and industrial operations discharge wastewater into the waters of the state. Some have direct discharges under their own NPDES permits as discussed in previous paragraphs while others discharge into POTWs under terms of city-issued wastewater discharge permits. Industrial process discharge monitoring data from MCES were collected for the eight MCES facilities. In addition to the MCES data, commercial and industrial process monitoring data were collected from the cities of Luverne, Melrose, Moorhead, St. Cloud, Winona, Faribault, Glencoe, New Ulm, Owatonna, Plainview-Elgin, Rochester, Zumbrota, Mankato and Marshall. In addition to the industrial monitoring data, the NAICS code number and number of employees were also obtained. Using this information, the estimated phosphorus load per employee was calculated for the various NAICS code numbers.

This information was used to estimate the industrial/commercial process wastewater component of the POTW phosphorus loads. The quantities of phosphorus discharged to the sewer system by commercial and industrial operations for which data were obtained was estimated by extrapolating discharge data to an annual total.

The data collected were categorized by NAICS code numbers for the commercial or industrial operation monitored, and included flow volumes and total phosphorus concentrations. NAICS code numbers are six digit numbers that organize similar industries into groups for statistical reporting purposes. Industries with the same six digit codes are virtually the same, in terms of the product(s) they produce or the service(s) they provide, although operational differences may result in

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 21

wastewater discharges of varying quality. Industries having NAICS codes with the same first five and four digits are in the same general industry group, but produce slightly different products or offer slightly different services. These records were used to estimate the Industrial and Commercial wastewater components of the POTW phosphorus loads where no data were available. This monitoring data collected as described above provided a database of industrial and commercial phosphorus loading by NAICS code and by employee count. For some industries there was good agreement in data, and in others there was significant variation. The industrial data set for each NAICS code number was reviewed. If there was significant variation in data, such as a single outlier when numerous other data points were in agreement, the outlier was not used in the industrial database. An average phosphorus load per employee was then calculated for each NAICS code number. Employee count was used as the method of adjusting the phosphorus load for the variation of industry sizes within a NAICS code number. The MCES industrial information received had employee count available for most of the facilities permitted. In addition, MNPRO listed the employee count for all the industries in their database. Appendices B, C and E present the industrial information collected as part of this study.

The industries in communities that did not have monitoring data were identified from the MNPRO database. The employee counts and NAICS code numbers were also obtained. The following process was used to estimate phosphorus discharges from industries for which no data were available:

- First, exact six digit matches to database were identified and these per employee phosphorus discharge rates were applied,
- Then five digit matches were identified for the remaining permits,
- Then four digit matches,
- Finally, if no match was found at the four-digit level, then no estimate of the phosphorus contribution was made.

There were a number of industries that did not have a match from the industrial database developed from the industrial process MCES and out-state information. The industrial process wastewater phosphorus loads to each POTW was reviewed and verified by completing a check on the influent sources. A per capita estimate for the human waste contribution to POTWs was used and the sum of the phosphorus load from all the sources was compared to the influent phosphorus value. These

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 22

numbers were in agreement for each basin on a whole. There was some variation when reviewed on an individual treatment plant basis.

Water Supply Treatment Chemicals

Phosphorus-based chemicals, primarily polyphosphate compounds or zinc orthophosphate, are sometimes used for corrosion control and metal sequestration purposes in water supply systems as well as industrial process water. It was assumed that the phosphorus load from the industrial process water would be accounted for in the industrial wastewater component and this section accounts only for the phosphorus added to municipal water supplies. The phosphorus-based chemicals add phosphorus to the water supply, either on a continuous or episodic basis. Discussions with staff of the Minnesota Department of Health (L. Rezania, Personal Communication), the agency that regulates the quality of drinking water supplies in Minnesota, provided a list of community water supplies that are supplemented with continuous phosphate additions for the years 2001 through mid-year 2003 (see Appendix D). The MDH found 360 systems that use a phosphate based chemical in their drinking water treatment process. Approximately 120 of these systems are required to add phosphorus under the corrosion control program. The MDH provided the average residual phosphorus concentration in the water supply for the systems that are required to add phosphorus and monitor and monitor their residual. The average residual phosphorus concentration was about 0.75 mg/L as phosphorus for the communities that monitored for phosphorus. This agreed with the estimate of 0.66mg/L to 0.85 mg/L provided by MDH staff. This average value was used for each of the communities that were known to add phosphorus, but for which there was no concentration data available.

Literature values (Metcalf and Eddy, 1991) indicate that, on average, 70 percent of the water supplied from a water treatment facility is discharged back into a wastewater treatment facility. This information was used to calculate the finished water phosphorus contribution to each facility. The phosphorus contribution from municipal water supplies to a POTW was calculated by estimating the annual phosphorus mass used in treatment of the water supply from the MDH data and assuming 70 percent of it is discharged to the POTW.

Residential Automatic Dishwasher Detergents (ADWD).

Automatic home dishwashing detergents may contain up to 11 percent phosphorus, by weight, according to Minnesota Rule Chapter 7100.0210. However, they typically average between 6 and 8

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 23

percent phosphorus, by weight, based on an informal store-shelf survey conducted as part of this project. According to the SRI report, although the demand for ADWD products has increased, the overall consumption of phosphorus in ADWD products has declined slightly. The major reason for the decline was the loss of the market for chlorinated trisodium phosphate (TSP-chlor) as more nonphosphate dishwashing formulations are being developed as well as a trend toward the use of tablets and liquids with a slightly lower phosphate content. Powder dishwashing products have historically contained about 9 percent phosphorus (as phosphorus) while liquid automatic dishwashing detergents contain only 5.7 percent phosphorus (as phosphorus). The SRI report states that although nonphosphate automatic dishwashing formulations are being developed, marketable products are not presently considered to be a serious threat because the alternatives are abrasive and costly. Total phosphorus consumption in home dishwashing detergents has declined by about 7 percent between 1993 and 2000, and values for 2002 are expected to be just below those obtained for 2000.

To estimate the residential ADWD component of the WWTF phosphorus loads, we referred to the Stanford Research Institute (SRI), an organization that tabulates raw material utilization and finished product generation for a wide variety of industries, world-wide. Using 2000 data on annual phosphate utilization for ADWD formulation in the United States (26,400 short tons, as phosphorus) from the SRI publication Chemical Economics Handbook - Industrial Phosphates, and the estimated U.S. population for 2000 (ca. 281,421,906), the estimated per capita ADWD usage was 0.085 kilograms per capita per year (kg/p·yr). This use rate was applied to the population served by each of the POTWs and privately owned treatment facilities to estimate the ADWD components of the phosphorus loads.

Commercial and Institutional Automatic Dishwasher (ADWD) Detergents

Minnesota Rules 7100.0210 B. requires both residential and commercial ADWD to be less than 11 percent by weight. Commercial and institutional ADWD are used in restaurants, cafeterias, hotels, hospitals and other institutions, etc. These facilities are not considered as part the commercial and industrial process wastewater phosphorus contribution discussed in previous paragraphs and were accounted for separately from the other commercial and industrial cleaners. To estimate the commercial and institutional ADWD component of the influent POTW phosphorus loads, information from the SRI report was again used. Using 2000 data on annual phosphate utilization for

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 24

commercial and institutional ADWD formulation (12,300 short tons, as phosphorus) from the SRI publication Chemical Economics Handbook - Industrial Phosphates, and the estimated U.S. population for 2000 (ca. 281,421,906), the estimated per capita commercial and institutional ADWD usage was 0.04 kg/p·yr. This per capita use rate was applied to the population served by each of the POTWs to estimate the commercial and industrial ADWD components of the phosphorus loads. To provide an accurate account, the per capita use rate was also applied to the population served by each privately owned treatment facility. Because it is unlikely that any commercial or industrial ADWD is discharged to a privately owned treatment facility for domestic use, this phosphorus load was then assigned to the POTWs.

Other Consumer Products

The SRI report provides information regarding the phosphorus used in the production of other consumer products such as scouring cleaners (Comet[®] and Ajax[®]) and home cleaners (Spic & Span[®] and Lime Away[®]) and reports that approximately 3,600 kg/yr are consumed in the United States for the production of these cleaners. However, the Minnesota ban on phosphorus limits the phosphorus content of all household cleaners to 0.5 percent, by weight, according to Minnesota Rule Chapter 7100.0210. An informal store-shelf survey verified that these cleaning products state that they contain no phosphorus. A call was also made to the manufactures of these products and they verified that phosphorus is longer used in the production of these products. Therefore, it was assumed that there was no phosphorus contribution from these products and no further discussion of this source is provided in this memorandum.

Food Soils/Garbage Disposal Waste

Several sources were reviewed to determine the phosphorus loading to WWTFs from garbage disposals and from food soils (*Siegrist, 1976 and Boyle et al, 1982*). For the purposes of this report, food soils are defined as waste beverages and food washed down the sink and food washed down the sink through dish rinsing and dish washing. Although most of the research conducted on phosphorus loadings from these sources was conducted in the late 1970's and 1980's, it was assumed that the phosphorus loading from this source has not changed substantially on a per capita basis over time. The most recent value of 0.1895 kg/p·yr was used as the rate applied to the populations served by each of the WWTFs to determine the phosphorus loading from this source. Approximately

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 25

25 percent of the phosphorus from this source can be attributed to garbage disposal wastes and the other 75 percent is from food soils washed down the sink during dish rinsing and dish washing.

Dentifrices

Dentifrices are substances such as toothpaste and denture cleaners. Data on annual phosphate utilization in dentifrices was available from the SRI publication Chemical Economics Handbook - Industrial Phosphates. Using 2000 data on phosphate consumed in dentifrices in the U.S. (3,560 short tons as phosphorus) and the estimated U.S. population for 2000 (ca. 281,421,906), the estimated per capita phosphorus contribution from dentifrices was 0.0115 kg/p·yr.

Industrial and Institutional Cleaners

Minnesota rules on cleaning agent phosphates limits the phosphorus content of household cleaning agents to 0.5 percent phosphorus, by weight. However, commercial and institutional cleaners are not covered by this rule, and may use phosphate-based cleaners. These institutional and industrial cleaners are used in dairies, meat processing plants, breweries and so forth. They are also used in scouring agents in commercial laundries and in metal and tile cleaners and in sanitizers. Finally, cleaning compositions for the exterior of vehicles, particularly trucks and buses, commonly use phosphate builders. Data on annual phosphate utilization for industrial and institutional cleaners was available from the SRI publication Chemical Economics Handbook - Industrial Phosphates.

However, further evaluation of this source indicated that most of the facilities discharging industrial and commercial cleaners would be accounted for in the industrial and commercial process wastewater component. To avoid double counting, this source was not categorized separately.

Car Washes

An attempt was made to determine the phosphorus loading from car and truck washes. Unfortunately, there were no data available to determine either the amount of flow or the number of car washes discharging to Minnesota POTWs. In addition, it is becoming common for car washes to recycle or reuse wash water. Therefore, no phosphorus load estimate for this source was made in this report.

Inflow and Infiltration

Measurable effects from inflow and infiltration (I & I) can be seen at WWTFs. The amount of I & I entering the sewer system and eventually making its way to the WWTF depends on the age of the

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 26

sewer system piping, the total length of the sewer system piping and the joint construction of the sewer pipes. It was not within the scope of this study to determine the specific I & I loading for each WWTF, instead an average infiltration rate was obtained from data provided by MCES. They provided average annual I & I flow estimates for their eight wastewater treatment facilities. These facilities vary in size and age and were considered to be representative of the systems throughout the state. The average I & I rate was approximately 10 percent of the total influent annually for the eight Twin Cities Metropolitan Area wastewater treatment facilities operated by MCES.

The phosphorus concentration in the I & I was estimated from data provided by the MPCA. The MPCA provided information on phosphorus concentrations for each of the aquifers underlying the state. An average phosphorus concentration of 0.035 mg/L was assumed to be representative of the shallow groundwater throughout the state.

Human Waste

Human waste-derived phosphorus was separated from the total phosphorus load to each of the POTWs and privately owned treatment systems by difference, subtracting all other estimated phosphorus contributions from the total phosphorus inflows. This value was converted to a per capita value and was validated by comparing it to literature values for blackwater (ingested human waste). Literature values ranged from 1.2 grams of phosphorus per capita per day (g/p·d) (*Boyle et al.*, 1982) to 2 g/p·d (*Strauss*, 2000).

Results of Phosphorus Loading Computations and Assessments

This section is divided into two parts. The first part discusses the sources and amounts of phosphorus being discharged to the influent to POTWs and privately owned treatment facilities and the second part of this section discusses the results of the effluent phosphorus loading to waters of the state from POTWs, privately owned treatment facilities and industrial treatment facilities.

Phosphorus Sources and Amounts to POTWs and Privately Owned Treatment Facilities

The sources of phosphorus to POTWs and to privately owned treatment facilities were identified and quantified by the methods described in the Approach and Methodology section. The total phosphorus load discharged to POTWs is presented by basin in Table 2. The total phosphorus discharged into POTWs in Minnesota is estimated to be 4,468,000 kg/yr.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

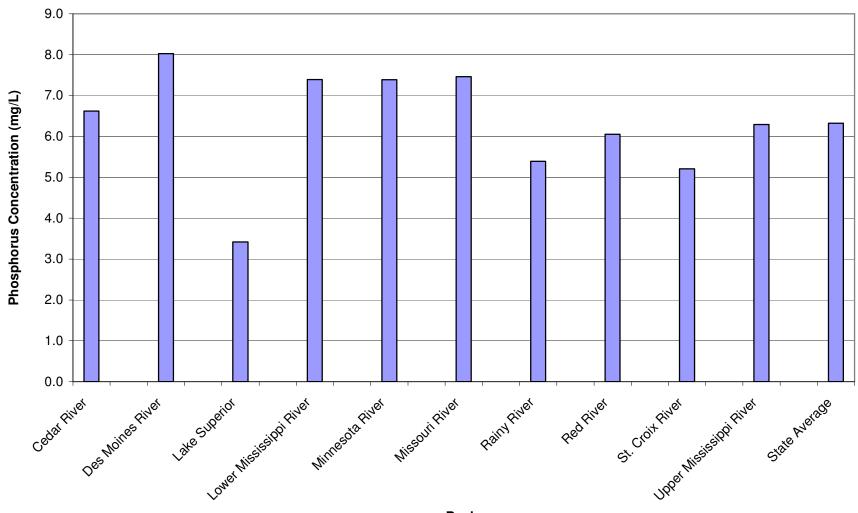
Date: February 16, 2004

Page: 27

Although flow to the treatment facilities varied seasonally, the phosphorus load to the POTWs and privately owned treatment facilities remained fairly constant through the year. Therefore, the phosphorus contribution to and from the various treatment facilities was assumed to be constant throughout the year and at low flow, mean flow, and high flow levels for rivers and streams.

Table 2
Total Phosphorus Load Discharged to POTWs

	Total (kg/yr)
Basin	(Rg/ y 1)
Cedar River	105,200
Des Moines River	46,200
Lake Superior	227,000
Lower Mississippi River	501,900
Minnesota River	952,200
Missouri River	26,400
Rainy River	20,100
Red River	150,600
St. Croix River	53,500
Upper Mississippi River	2,384,900
Total	4,468,000


Figure 2 illustrates the flow weighted mean influent phosphorus concentration discharged into POTWs and privately owned treatment facilities for the ten Minnesota watershed basins and the state. The flow weighted mean concentration for the state was estimated to be 6.2 mg/L. Metcalf and Eddy (1991) have classified wastewater phosphorus concentrations of 4, 8 and 15 mg/L as being "weak", "medium" and "strong", respectively. Based on this information, it would appear that the average influent phosphorus concentration to wastewater treatment facilities in Minnesota is relatively weak based on this number.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 2
Flow Weighted Mean Influent Phosphorus Concentration to POTWs and Privately Owned
Treatment Facilities

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 29

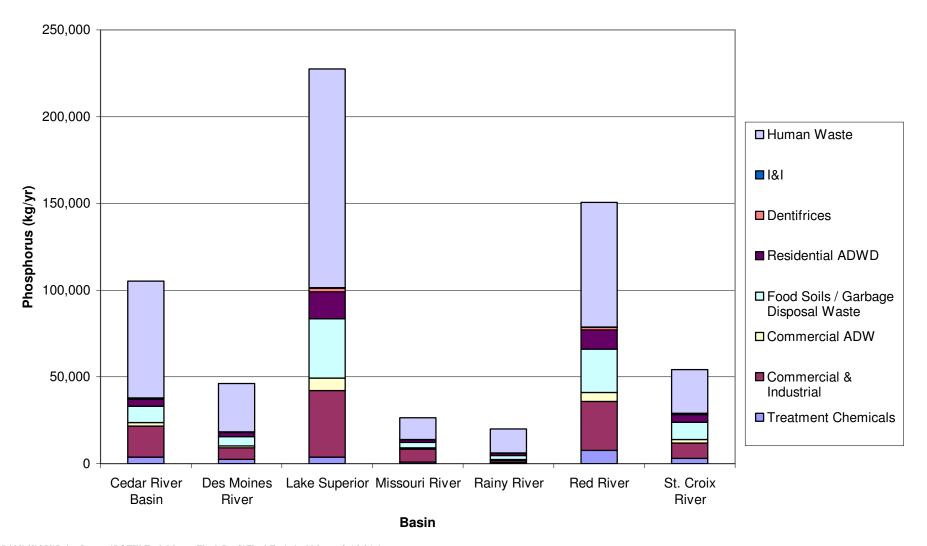
As part of this study, the influent phosphorus discharged into POTWs and publicly owned treatment facilities was separated into its major constituent sources. The following individual and/or categorical sources of phosphorus were evaluated:

- Residential Automatic Dishwashing Detergents
- Food Soils and Garbage Disposal Wastes
- Dentifrices
- Human Wastes
- Commercial and Industrial Wastewater
- Commercial Automatic Dishwashing Detergents
- Water Treatment Supply Chemicals
- Inflow and Infiltration

The domestic wastewater influent sources of phosphorus were also categorized for privately owned wastewater treatment facilities. These sources included:

- Residential Automatic Dishwashing Detergents
- Food Soils and Garbage Disposal Wastes
- Dentifrices
- Human Wastes
- Water Treatment Supply Chemicals

As discussed previously, phosphorus in other consumer cleaning products was also investigated, but it was determined that these products no longer contain phosphorus and no further discussion is provided in this memorandum.

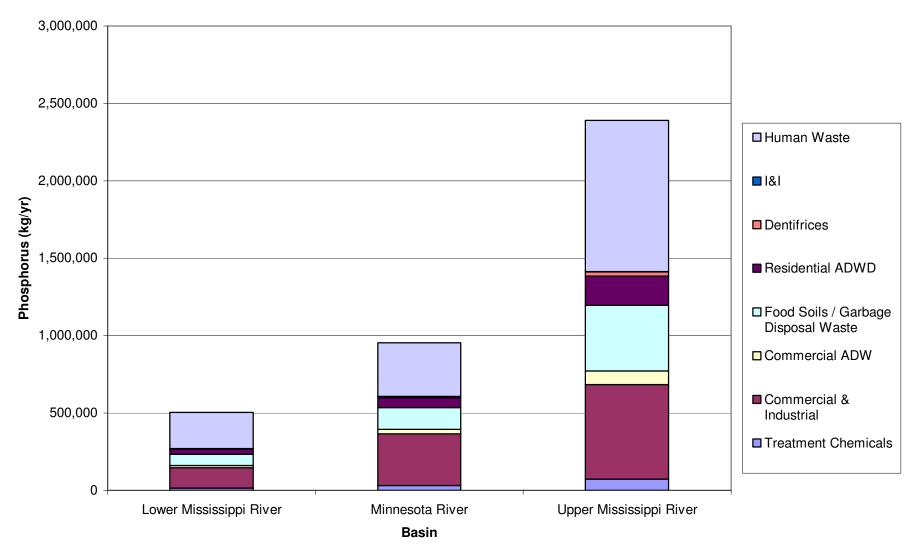

The results of this portion of the study are presented in several different ways to provide as much information as possible. Note that when the results of the influent sources discharged into the POTWs and privately owned treatment facilities are being presented, they are expressed in terms of the influent concentration and the fraction of the influent phosphorus load to the POTW or privately owned treatment facility. Figures 3A and 3B illustrates the contributions of various phosphorus sources to the influent phosphorus loads for the POTWs and privately owned treatment facilities. For clarity purposes, the scales on the two figures differ.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 3A
Influent Phosphorus Loading To POTWs & Privately Owned Treatment Facilities By Basin



From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 3B Influent Phosphorus Loading To POTWs & Privately Owned Treatment Facilities By Basin

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 32

The influent phosphorus load discharged to POTWs and privately owned treatment facilities for each basin and the state are presented alphabetically, by basin, interspersed in both tabular (Tables 3 through 24) and graphical (Figures 4 through 14) formats. These tables and figures present each component of the influent phosphorus load to the POTWs and the privately owned treatment facilities as a mass load in kg/yr and as a percent of the total influent phosphorus load to the treatment facilities in each basin.

Subtracting the human waste component from the total POTW phosphorus influent yields the estimated total non-ingested phosphorus load discharged to POTWs. Table 25 presents the non-ingested phosphorus load to POTWs for each basin and the state. The total non-ingested phosphorus load to POTWs is approximately 2,573,000 kg/yr. Commercial and industrial process wastewater represents the largest percentage, approximately 46 percent of that load.

The influent components of the POTW's and privately owned treatment facility's phosphorus loads are discussed in detail in the following paragraphs.

Date: February 16, 2004

Table 3 Estimated POTW Point Source Phosphorus Load - Cedar River Basin

	Phosphorus Load				
INELLIENT		(kg/yr)		% of Total	
INFLUENT					
Domestic Wastewater		81,413		77.4%	
Residential Automatic Dishwasher Detergents	4,176		4.0%		
Food Soils / Garbage Disposal Waste	9,310		8.8%		
Dentifrices	565		0.5%		
Human Waste	67,362		64.0%		
Commercial & Industrial Process Wastewater		17,982		17.1%	
Commercial & Institutional Automatic Dishwasher Detergent		1,951		1.9%	
Water Treatment Chemicals		3,827		3.6%	
Inflow & Infiltration		67		0.1%	
Total		105,241		100.0%	
<u>EFFLUENT</u>					
Total		56,424		100.0%	

Date: February 16, 2004

Table 4 Estimated Private WWTP Point Source Phosphorus Load - Cedar River Basin

	Lo	ohorus oad _I /yr)		% of Total
INFLUENT	(ng	/ y : /		70 01 10tai
Domestic Wastewater		0		0.0%
Residential Automatic Dishwasher Detergents	0		0.0%	
Food Soils / Garbage Disposal Waste	0		0.0%	
Dentifrices	0		0.0%	
Human Waste	0		0.0%	
Water Treatment Chemicals		0		0.0%
Total		0		0.0%
EFFLUENT				
Total		0		0.0%

Date: February 16, 2004

Table 5 **Estimated POTW Point Source Phosphorus Load - Des Moines River Basin**

	Phosphorus			
		Load (kg/yr)		% of Total
<u>INFLUENT</u>				
Domestic Wastewater		35,856		77.6%
Automatic Dishwasher Detergents	2,392		5.2%	
Food Soils / Garbage Disposal Waste	5,332		11.5%	
Dentifrices	324		0.7%	
Human Waste	27,809		60.2%	
Commercial & Industrial Process Wastewater		6,607		14.3%
Commercial & Institutional Automatic Dishwasher Detergent		1,117		2.4%
Water Treatment Chemicals		2,595		5.6%
Inflow & Infiltration		28		0.1%
Total		46,203		100.0%
EFFLUENT				
Total		15,142		100.0%

Date: February 16, 2004

Table 6 Estimated Private WWTP Point Source Phosphorus Load - Des Moines River Basin

	Phospl Loa (kg/	ad	% of Total
INFLUENT	(Kg/	y .,	,
Domestic Wastewater		0	0.0%
Residential Automatic Dishwasher Detergents	0		0.0%
Food Soils / Garbage Disposal Waste	0		0.0%
Dentifrices	0		0.0%
Human Waste	0		0.0%
Water Treatment Chemicals		0	0.0%
Total		0	0.0%
EFFLUENT			_
Total		0	0.0%

Date: February 16, 2004

Table 7 Estimated POTW Point Source Phosphorus Load - Lake Superior Basin

	Р	hosphorus		
		Load (kg/yr)		% of Total
INFLUENT				
Domestic Wastewater		177,353		78.1%
Residential Automatic Dishwasher Detergents	15,365		6.8%	
Food Soils / Garbage Disposal Waste	34,256		15.1%	
Dentifrices	2,079		0.9%	
Human Waste	125,653		55.4%	
Commercial & Industrial Process Wastewater		38,215		16.8%
Commercial & Institutional Automatic Dishwasher Detergent		7,190		3.2%
Water Treatment Chemicals		3,914		1.7%
Inflow & Infiltration		313		0.1%
Total		226,986		100.0%
EFFLUENT				
Total		31,774		100.0%

Date: February 16, 2004

Table 8 Estimated Private WWTP Point Source Phosphorus Load - Lake Superior Basin

	Pho I	% of Total	
<u>INFLUENT</u>		kg/yr)	70 01 10tui
Domestic Wastewater		542	100.0%
Residential Automatic Dishwasher Detergents	31	5.7%	
Food Soils / Garbage Disposal Waste	69	12.7%	
Dentifrices	4	0.8%	
Human Waste	438	80.8%	
Water Treatment Chemicals		0	0.0%
Total		542	100.0%
EFFLUENT			
Total		39	100.0%

Date: February 16, 2004

Table 9 Estimated POTW Point Source Phosphorus Load - Lower Mississippi River Basin

	Phosphorus Load				
<u>INFLUENT</u>		(kg/yr)		% of Total	
Domestic Wastewater		339,782		67.7%	
Residential Automatic Dishwasher Detergents	32,050		6.4%		
Food Soils / Garbage Disposal Waste	71,452		14.2%		
Dentifrices	4,336		0.9%		
Human Waste	231,943		46.2%		
Commercial & Industrial Process Wastewater		132,867		26.5%	
Commercial & Institutional Automatic Dishwasher Detergent		14,993		3.0%	
Water Treatment Chemicals		13,940		2.8%	
Inflow & Infiltration		321		0.1%	
Total		501,903		100.0%	
EFFLUENT					
Total		183,974		100.0%	

Date: February 16, 2004

Table 10 Estimated Private WWTP Point Source Phosphorus Load - Lower Mississippi River Basin

	Phosp Lo	% of Total	
INFLUENT	(kg	<u>(yi)</u>	/8 OI TOTAL
Domestic Wastewater		779	99.2%
Residential Automatic Dishwasher Detergents	85	10.8%	
Food Soils / Garbage Disposal Waste	197	25.1%	
Dentifrices	12	1.5%	
Human Waste	485	61.8%	
Water Treatment Chemicals		6	0.8%
Total		785	100.0%
EFFLUENT			
Total		269	100.0%

Date: February 16, 2004

Table 11 **Estimated POTW Point Source Phosphorus Load - Minnesota River Basin**

	Phosphorus Load			
INELLIENT		(kg/yr)		% of Total
INFLUENT		557.050		FO F0/
Domestic Wastewater		557,358		58.5%
Residential Automatic Dishwasher Detergents	63,090		6.6%	
Food Soils / Garbage Disposal Waste	140,653		14.8%	
Dentifrices	8,536		0.9%	
Human Waste	345,080		36.2%	
Commercial & Industrial Process Wastewater		333,212		35.0%
Commercial & Institutional Automatic Dishwasher Detergent		29,498		3.1%
Water Treatment Chemicals		31,481		3.3%
Inflow & Infiltration		612		0.1%
Total		952,161		100.0%
EFFLUENT				
Total		237,842		100.0%

Date: February 16, 2004

Table 12 Estimated Private WWTP Point Source Phosphorus Load - Minnesota River Basin

	Phosphorus Load (kg/yr)			% of Total
INFLUENT		(9, 1-)		
Domestic Wastewater		1,469		98.9%
Residential Automatic Dishwasher Detergents	65		4.4%	
Food Soils / Garbage Disposal Waste	115		7.7%	
Dentifrices	9		0.6%	
Human Waste	1,280		86.2%	
Water Treatment Chemicals		16		1.1%
Total		1,485		100.0%
EFFLUENT				
Total		840		100.0%

Date: February 16, 2004

Table 13 Estimated POTW Point Source Phosphorus Load - Missouri River Basin

	Phosphorus Load			~
<u>INFLUENT</u>		(kg/yr)		% of Total
Domestic Wastewater		17,272		65.3%
Residential Automatic Dishwasher Detergents	1,447		5.5%	
Food Soils / Garbage Disposal Waste	3,211		12.1%	
Dentifrices	196		0.7%	
Human Waste	12,419		47.0%	
Commercial & Industrial Process Wastewater		7,475		28.3%
Commercial & Institutional Automatic Dishwasher Detergent		679		2.6%
Water Treatment Chemicals		1,003		3.8%
Inflow & Infiltration		17		0.1%
Total		26,445		100.0%
EFFLUENT				
Total		12,359		100.0%

Date: February 16, 2004

Table 14 Estimated Private WWTP Point Source Phosphorus Load - Missouri River Basin

	L	phorus oad g/yr)	% of Total
INFLUENT	•		
Domestic Wastewater		74	100.0%
Residential Automatic Dishwasher Detergents	6	8.0%	
Food Soils / Garbage Disposal Waste	13	17.8%	
Dentifrices	1	1.1%	
Human Waste	54	73.1%	
Water Treatment Chemicals		0	0.0%
Total		74	100.0%
EFFLUENT			
Total		17	100.0%

Date: February 16, 2004

Table 15 **Estimated POTW Point Source Phosphorus Load - Rainy River Basin**

	Ph	osphorus Load		
		% of Total		
INFLUENT		(kg/yr)		
Domestic Wastewater		17,677		88.1%
Residential Automatic Dishwasher Detergents	1,257		6.3%	
Food Soils / Garbage Disposal Waste	2,480		12.4%	
Dentifrices	170		0.8%	
Human Waste	13,770		68.7%	
Commercial & Industrial Process Wastewater		1,043		5.2%
Commercial & Institutional Automatic Dishwasher Detergent		587		2.9%
Water Treatment Chemicals		729		3.6%
Inflow & Infiltration		18		0.1%
Total		20,054		100.0%
EFFLUENT				
Total		4,073		100.0%

Date: February 16, 2004

Table 16 Estimated Private WWTP Point Source Phosphorus Load - Rainy River Basin

	Phos L (k	% of Total	
INFLUENT	•		
Domestic Wastewater		29	100.0%
Residential Automatic Dishwasher Detergents	0	0.0%	
Food Soils / Garbage Disposal Waste	0	0.0%	
Dentifrices	0	0.0%	
Human Waste	29	100.0%	
Water Treatment Chemicals		0	0.0%
Total		29	100.0%
EFFLUENT			
Total		6	100.0%

Date: February 16, 2004

Table 17 Estimated POTW Point Source Phosphorus Load - Red River Basin

		sphorus Load	
		% of Total	
INFLUENT	•	kg/yr)	
Domestic Wastewater		109,433	72.7%
Residential Automatic Dishwasher Detergents	11,181	7.4%	1
Food Soils / Garbage Disposal Waste	24,928	16.6%	1
Dentifrices	1,513	1.0%)
Human Waste	71,810	47.7%	•
Commercial & Industrial Process Wastewater		28,026	18.6%
Commercial & Institutional Automatic Dishwasher Detergent		5,222	3.5%
Water Treatment Chemicals		7,801	5.2%
Inflow & Infiltration		116	0.1%
Total		150,597	100.0%
EFFLUENT			
Total		64,309	100.0%

Date: February 16, 2004

Table 18 Estimated Private WWTP Point Source Phosphorus Load - Red River Basin

	Phos Lo (k <u>o</u>	% of Total	
INFLUENT		1· J - /	
Domestic Wastewater		33	100.0%
Residential Automatic Dishwasher Detergents	0	0.0%	
Food Soils / Garbage Disposal Waste	26	79.4%	
Dentifrices	2	4.8%	
Human Waste	5	15.7%	
Water Treatment Chemicals		0	0.0%
Total		33	100.0%
EFFLUENT			
Total		33	100.0%

Date: February 16, 2004

Table 19 Estimated POTW Point Source Phosphorus Load - St. Croix River Basin

	Phosphorus			
		Load (kg/yr)		% of Total
<u>INFLUENT</u>		<i>(3</i> -7 /		
Domestic Wastewater		39,494		73.8%
Residential Automatic Dishwasher Detergents	4,292		8.0%	
Food Soils / Garbage Disposal Waste	9,570		17.9%	
Dentifrices	581		1.1%	
Human Waste	25,051		46.8%	
Commercial & Industrial Process Wastewater		8,834		16.5%
Commercial & Institutional Automatic Dishwasher Detergent		2,008		3.8%
Water Treatment Chemicals		3,115		5.8%
Inflow & Infiltration		47		0.1%
Total		53,498		100.0%
EFFLUENT				
Total		20,438		100.0%

Date: February 16, 2004

Table 20 Estimated Private WWTP Point Source Phosphorus Load - St. Croix River Basin

	Phosp Lo (kg	% of Total	
INFLUENT	(119)	1-7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Domestic Wastewater		793	100.0%
Residential Automatic Dishwasher Detergents	181	22.8%	
Food Soils / Garbage Disposal Waste	403	50.8%	
Dentifrices	24	3.1%	
Human Waste	185	23.3%	
Water Treatment Chemicals		0	0.0%
Total		793	100.0%
EFFLUENT			
Total		297	100.0%

Date: February 16, 2004

Table 21 Estimated POTW Point Source Phosphorus Load - Upper Mississippi River Basin

	Pl	hosphorus		
		Load		% of Total
<u>INFLUENT</u>		(kg/yr)		/6 OI TOTAL
Domestic Wastewater		1,610,756		67.5%
Residential Automatic Dishwasher Detergents	189,181		7.9%	
Food Soils / Garbage Disposal Waste	421,682		17.7%	
Dentifrices	25,595		1.1%	
Human Waste	974,298		40.9%	
Commercial & Industrial Process Wastewater		611,967		25.7%
Commercial & Institutional Automatic Dishwasher Detergent		88,571		3.7%
Water Treatment Chemicals		71,783		3.0%
Inflow & Infiltration		1,794		0.1%
Total		2,384,871		100.0%
EFFLUENT				
Total		1,109,534		100.0%

Date: February 16, 2004

Table 22 Estimated Private WWTP Point Source Phosphorus Load - Upper Mississippi River Basin

		osphorus Load		9/ of Total
INFLUENT		(kg/yr)		% of Total
Domestic Wastewater		4,086		96.0%
Residential Automatic Dishwasher Detergents	487		11.4%	
Food Soils / Garbage Disposal Waste	1,196		28.1%	
Dentifrices	66		1.5%	
Human Waste	2,338		54.9%	
Water Treatment Chemicals		171		4.0%
Total		4,257		100.0%
EFFLUENT				
Total		1,955		100.0%

Date: February 16, 2004

Table 23 **Estimated POTW Point Source Phosphorus Load - State of Minnesota**

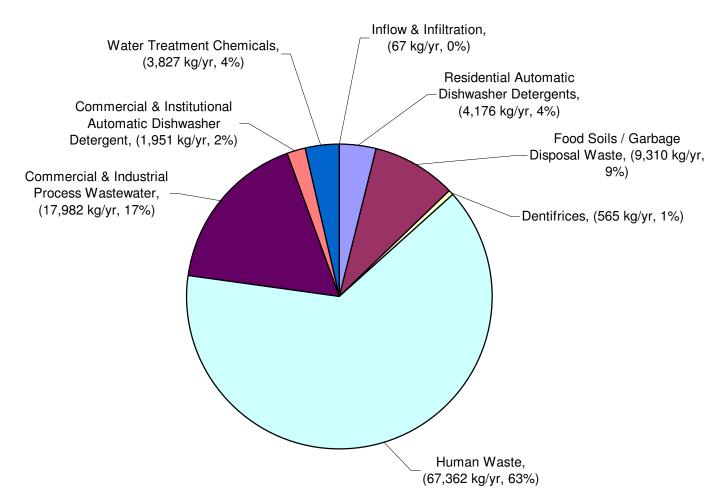
	Ph	Load		% of Total
INFLUENT		(kg/yr)		/6 UI 1 Utai
Domestic Wastewater		2,986,392		66.8%
Residential Automatic Dishwasher Detergents	324,431		7.3%	
Food Soils / Garbage Disposal Waste	722,873		16.2%	
Dentifrices	43,894		1.0%	
Human Waste	1,895,195		42.4%	
Commercial & Industrial Process Wastewater		1,186,229		26.5%
Commercial & Institutional Automatic Dishwasher Detergent		151,815		3.4%
Water Treatment Chemicals		140,188		3.1%
Inflow & Infiltration		3,333		0.1%
Total		4,467,958		100.0%
EFFLUENT				
Total		1,735,869		100.0%

Date: February 16, 2004

Table 24 Estimated Private WWTP Point Source Phosphorus Load - State of Minnesota

	Phosphorus Load			
<u>INFLUENT</u>		(kg/yr)		% of Total
Domestic Wastewater		7,804		97.6%
Residential Automatic Dishwasher Detergents	855		10.7%	
Food Soils / Garbage Disposal Waste	2,019		25.2%	
Dentifrices	118		1.5%	
Human Waste	4,813		60.2%	
Water Treatment Chemicals		193		2.4%
Total		7,997		100.0%
EFFLUENT				
Total		3,456		100.0%

February 16, 2004 Date:

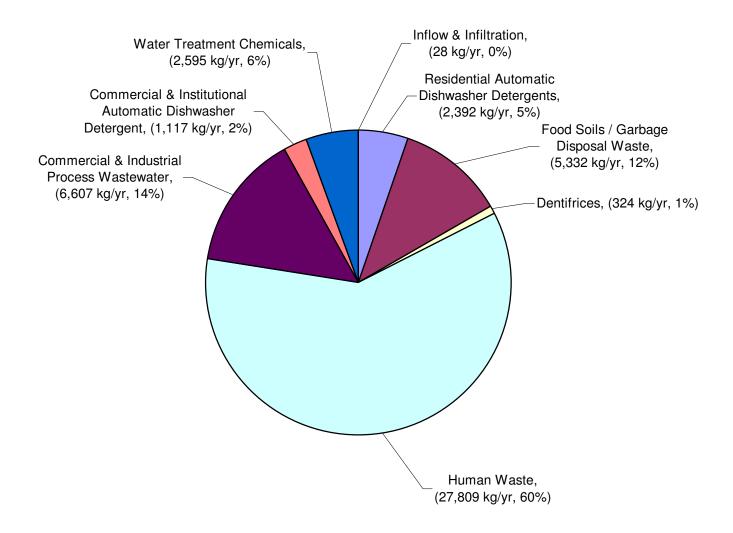

		Non-ingested	Table 25 Phosphorus		OTWs			
	Residential ADWD (kg/yr)	Food Soils / Garbage Disposal Waste (kg/yr)	Dentifrices (kg/yr)	Commercial and Industrial Process Wastewater (kg/yr)	Commercial and Institutional ADWD (kg/yr)	Water Treatment Chemicals (kg/yr)	Inflow and Infiltration (kg/yr)	Total (kg/yr)
<u>Basin</u>								
Cedar River	4,200	9,300	600	18,000	2,000	3,800	70	38,000
Des Moines River	2,400	5,300	300	6,600	1,100	2,600	30	18,300
Lake Superior	15,400	34,300	2,100	38,200	7,200	3,900	310	101,400
Lower Mississippi River	32,000	71,452	4,300	132,900	15,000	13,900	320	269,900
Minnesota River	63,100	140,700	8,500	333,200	29,500	31,500	610	607,100
Missouri River	1,400	3,200	200	7,500	700	1,000	20	14,000
Rainy River	1,300	2,500	200	1,000	600	700	20	6,300
Red River	11,200	24,900	1,500	28,000	5,200	7,800	120	78,700
St. Croix River	4,300	9,600	600	8,800	2,000	3,100	50	28,500
Upper Mississippi River	189,200	421,700	25,600	612,000	88,600	71,800	1,790	1,410,700
Total	324,500	723,000	43,900	1,186,200	151,900	140,100	3,300	2,572,900
Percent of Non-Ingested Phosphorus Load to POTWs	12.6%	28.1%	1.7%	46.1%	5.9%	5.4%	0.1%	

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 4
Cedar River Basin POTW Estimated Influent Phosphorus Load

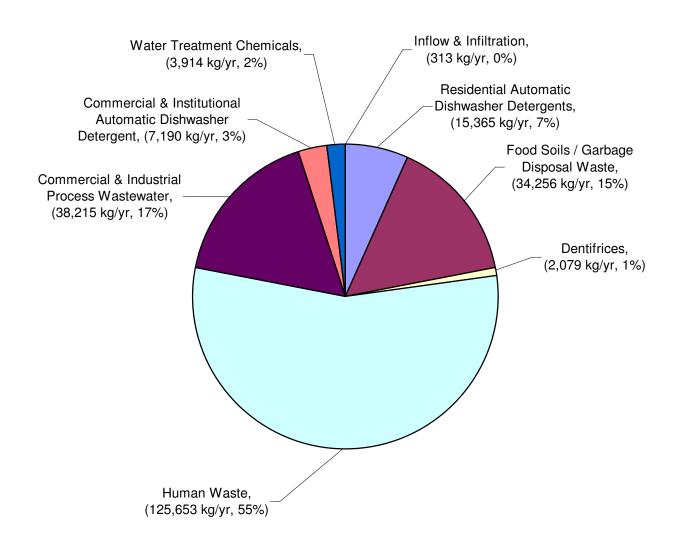


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 5
Des Moines River Basin POTW Estimated Influent Phosphorus Load

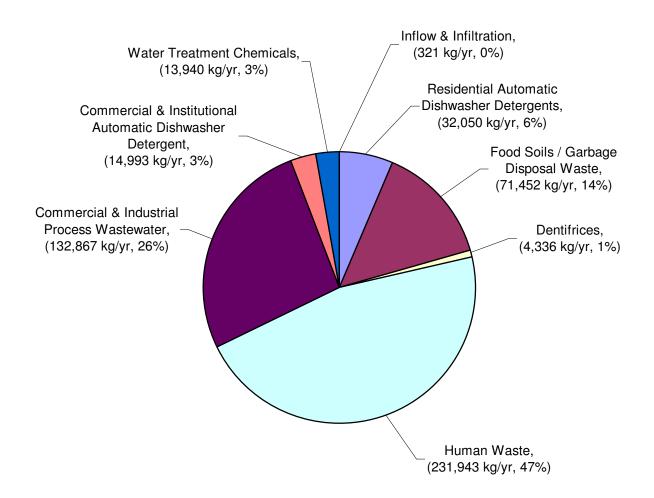


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 6
Lake Superior Basin POTW Estimated Influent Phosphorus Load

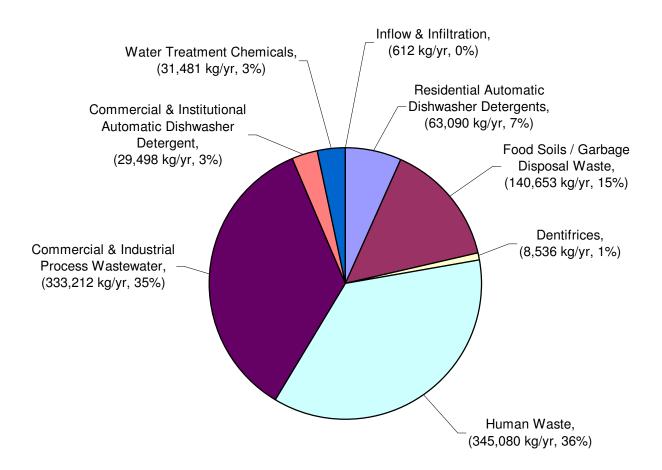


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 7
Lower Mississippi River Basin POTW Estimated Influent Phosphorus Load

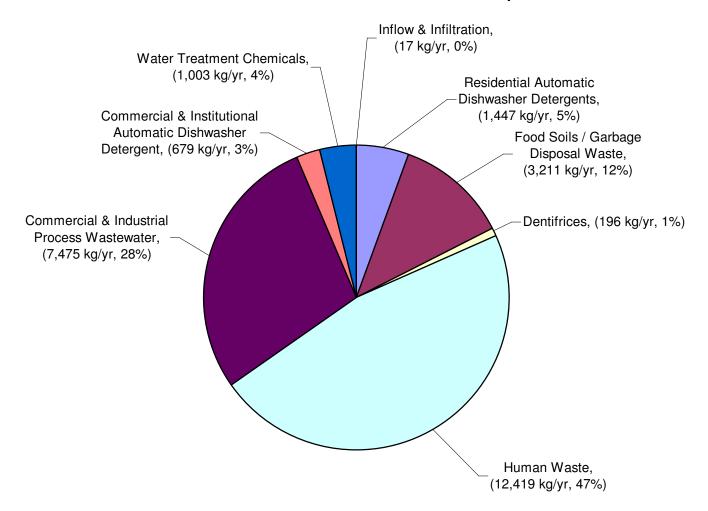


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 8
Minnesota River Basin POTW Estimated Influent Phosphorus Load

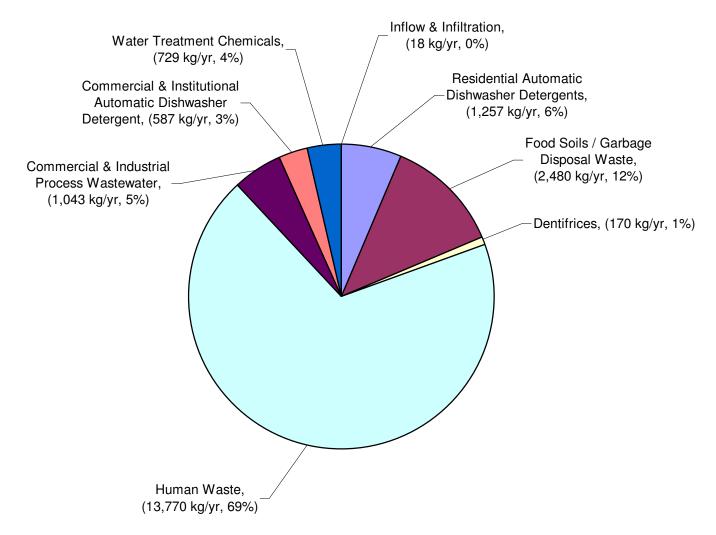


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 9
Missouri River Basin POTW Estimated Influent Phosphorus Load

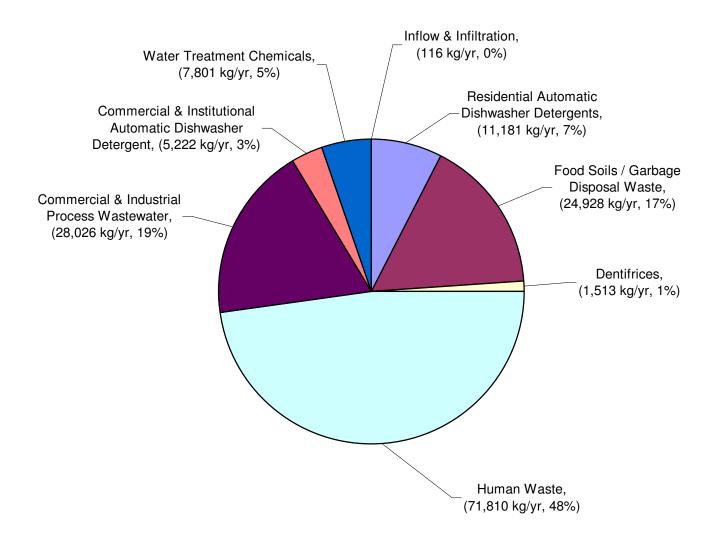


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 10
Rainy River Basin POTW Estimated Influent Phosphorus Load



From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

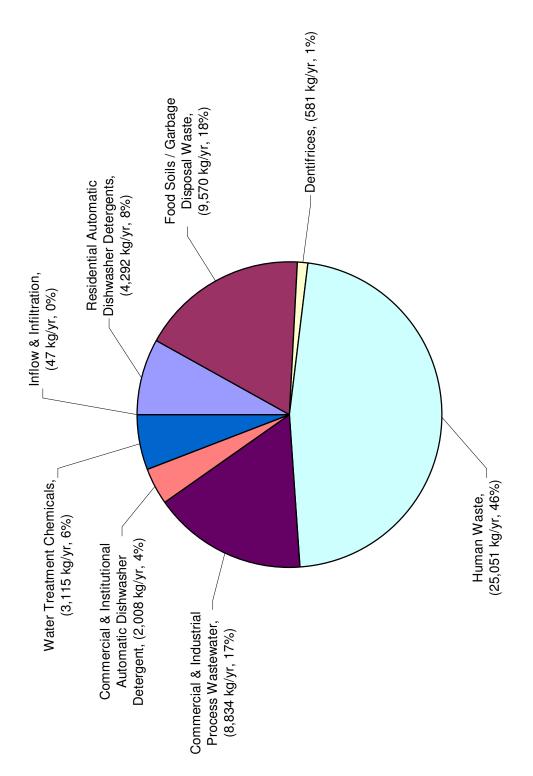
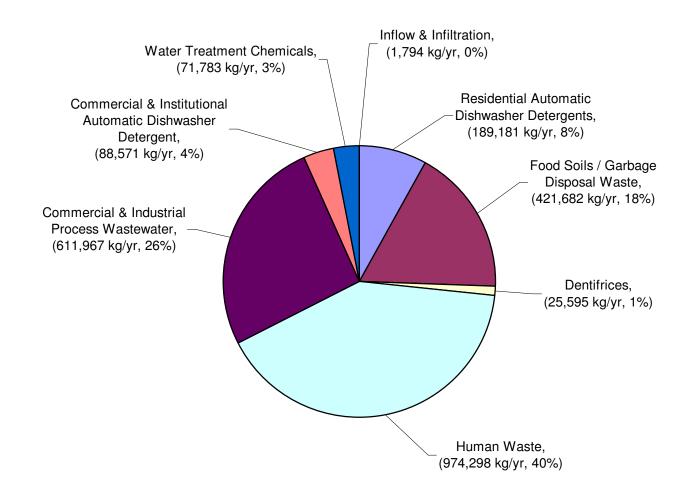

Date: February 16, 2004

Figure 11
Red River Basin POTW Estimated Influent Phosphorus Load

Marvin Hora, Douglas Hall and Mark Tomasek, Minnesota Pollution Control Agency Nick Nelson, Dan Nesler, and Teresa Perry Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Point Sources February 16, 2004 Subject: I Date: I

St. Croix Basin POTW Estimated Influent Phosphorus Load Figure 12

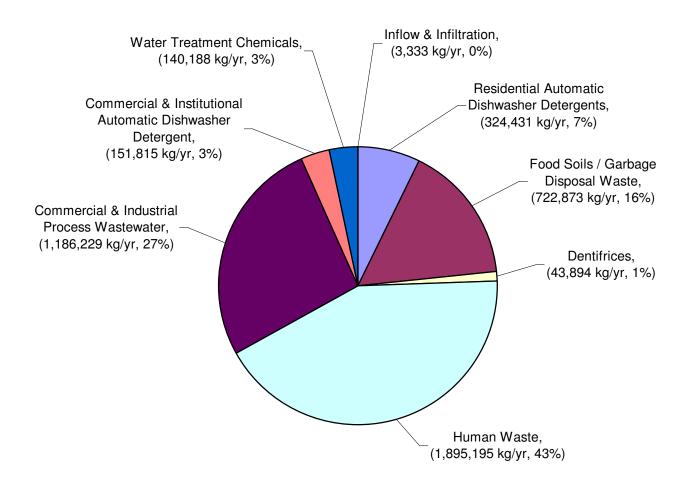


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 13
Upper Mississippi River Basin POTW Estimated Influent Phosphorus Load



From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 14
State of Minnesota POTW Estimated Influent Phosphorus Load

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 67

Residential Automatic Dishwasher Detergents (ADWD)

The per capita use information suggests that the residential use of ADWD contributes a moderate amount of phosphorus discharged to wastewater for treatment. For the Minnesota watershed basins, these amounts range from 4.0 percent to 8.2 percent and averaged 7.3 percent statewide of influent phosphorus totals (see Table 26), discharging into POTWs and privately owned treatment facilities.

Table 26
Estimated Influent Phosphorus Load from Residential Automatic Dishwasher
Detergents to POTWs and Privately Owned Treatment Works by Basin

	Influent Phosphorus	Influent Phosphorus
	Load (kg/yr)	Load (% of Total)
<u>Basin</u>		
Cedar River	4,200	4.0%
Des Moines River	2,400	5.2%
Lake Superior	15,400	6.8%
Lower Mississippi River	32,100	6.4%
Minnesota River	63,200	6.6%
Missouri River	1,500	5.5%
Rainy River	1,300	6.3%
Red River	11,200	7.4%
St. Croix River	4,500	8.2%
Upper Mississippi River	189,700	7.9%
State Total	325,500	7.3%

The use of phosphates in the residential ADWD market declined about seven percent between 1993 and 2000 (SRI, 2002). Nonphosphate ADWD formulations are being developed and this market segment is projected to continue to decline marginally. The trend toward the use of tablets, with a slightly lower phosphate content, is also a factor in the decline.

Food Soils/Garbage Disposal Waste

The information obtained regarding food soils and garbage disposal wastes suggests that this source contributes a moderate amount of phosphorus to untreated wastewater. For the ten Minnesota

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 68

watershed basins, these amounts range from 8.8 percent to 18.4 percent and averages approximately 16 percent statewide of influent phosphorus totals (see Table 27). The total phosphorus load to POTWs and privately owned treatment facilities from food soils and garbage disposal wastes was estimated to be approximately 725,000 kg/yr.

Table 27
Estimated Influent Phosphorus Load from Food Soils and Garbage
Disposal Wastes to POTWs and Privately Owned Treatment Works by
Basin

<u>Basin</u>	Influent Phosphorus Load (kg/yr)	Influent Phosphorus Load (% of Total)
Cedar River	9,300	8.8%
Des Moines River	5,300	11.5%
Lake Superior	34,300	15.1%
Lower Mississippi River	71,600	14.3%
Minnesota River	140,800	14.8%
Missouri River	3,200	12.2%
Rainy River	2,500	12.3%
Red River	25,000	16.6%
St. Croix River	10,000	18.4%
Upper Mississippi River	422,900	17.7%
State Total	724,900	16.2%

Dentifrices

Dentifrices contribute a relatively small amount of phosphorus to the influent wastewater stream to wastewater treatment plants for each of the watershed basins. These amounts range from 0.5 percent to 1.1 percent (1.0 percent statewide average) of the total influent phosphorus discharged into

From: Nick Nelson, Dan Nesler, and Teresa Perry
Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

February 16, 2004 Date:

Page: 69

POTWs and privately owned treatment facilities (see Table 28). This is a relatively minor source of phosphorus to POTWs.

Table 28 **Estimated Influent Phosphorus Load from Dentifrices** to POTWs and Privately Owned Treatment Works by Basin

	Influent Phosphorus Load (kg/yr)	Influent Phosphorus Load (% of Total)	
<u>Basin</u>		· · · · · · · · · · · · · · · · · · ·	
Cedar River	600	0.5%	
Des Moines River	300	0.7%	
Lake Superior	2,100	0.9%	
Lower Mississippi River	4,300	0.9%	
Minnesota River	8,500	0.9%	
Missouri River	200	0.7%	
Rainy River	200	0.8%	
Red River	1,500	1.0%	
St. Croix River	600	1.1%	
Upper Mississippi River	25,700	1.1%	
State Total	44,000	1.0%	

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 70

Human Wastes

The human waste component of the influent phosphorus loading to POTWs and privately owned treatment facilities is the single largest influent source in all ten watershed basins. Only in the Minnesota River basin does the phosphorus contribution from the commercial/industrial process wastewater component approach that of the human waste component. The human waste component comprises between approximately 36 percent and 69 percent on a basin basis and averages approximately 42 percent statewide of the total influent phosphorus loading (see Table 29). The one market segment of phosphorus use that has reported an increase is the food and beverage market. The increase is due to an increased use of phosphorus in food manufacturing and preparation (SRI, 2002). One of the increases has been in the meat, poultry and seafood segment, followed by baking products. Sodium tripolyphosphate (STPP) is the main phosphate product in this market. Its use has expanded significantly because of increased deli-type packaged poultry and meat sales as well as a significant growth in marinated and rotisserie chicken. Another increase in the consumption of phosphorus is due to the increased consumption of colas. Colas contain phosphoric acid that is used to give them a tart taste and as a preservative.

Table 29
Estimated Influent Phosphorus Load from Human Waste to POTWs and Privately Owned Treatment Works by Basin

	Influent Phosphorus Load (kg/yr)	Influent Phosphorus Load (% of Total)	Average Human Waste Phosphorus Content (g/p·d)	
<u>Basin</u>				
Cedar River	67,400	64.0%	3.98	
Des Moines River	27,800	60.2%	1.45	
Lake Superior	126,100	55.4%	2.19	
Lower Mississippi River	232,400	46.2%	1.75	
Minnesota River	346,400	36.3%	1.45	
Missouri River	12,500	47.0%	2.21	
Rainy River	13,800	68.7%	2.61	
Red River	71,800	47.7%	1.71	
St. Croix River	25,200	46.5%	1.52	
Upper Mississippi River	976,600	40.9%	1.29	
State Total	1,900,000	42.4%	1.53	

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 71

Commercial and Industrial Process Wastewater

Next to human wastes, a variety of industrial and commercial dischargers contribute the most phosphorus to POTW influent wastewater. These commercial and industrial dischargers comprised between approximately 5 percent and 35 percent on a basin basis and approximately 27 percent statewide of the total phosphorus loads entering the POTWs (see Table 30). The POTWs in the Minnesota River basin receive an average of 35 percent of the influent phosphorus load from commercial and industrial process wastewater sources. This is the only basin in which the commercial and industrial process wastewater contribution approaches the human waste contribution. This basin appears to be receiving effluent from several communities that have a significant commercial and industrial base. The majority of the commercial and industrial phosphorus sources in this basin are from food processing facilities.

Table 30
Estimated Influent Phosphorus Load from Commercial and Industrial
Dischargers to POTWs by Basin

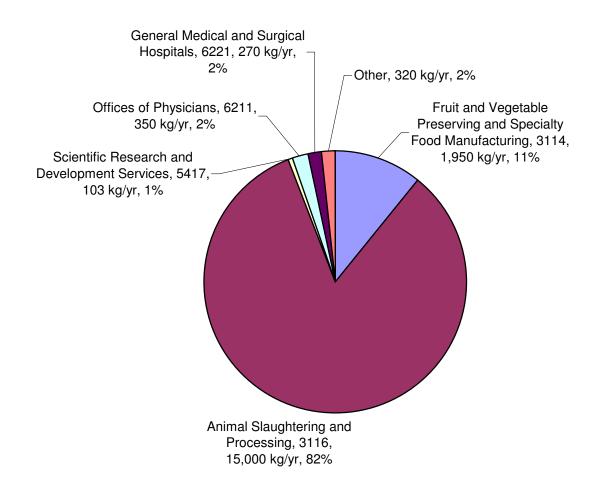
	Influent Phosphorus Load (kg/yr)	Influent Phosphorus Load (% of Total)	
<u>Basin</u>		, , , , , , , , , , , , , , , , , , , ,	
Cedar River	18,000	17.1%	
Des Moines River	6,600	14.3%	
Lake Superior	38,200	16.8%	
Lower Mississippi River	132,900	26.4%	
Minnesota River	333,200	34.9%	
Missouri River	7,500	28.2%	
Rainy River	1,000	5.2%	
Red River	28,000	18.6%	
St. Croix River	8,800	16.3%	
Upper Mississippi River	612,000	25.6%	
State Total	1,186,200	26.5%	

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 72

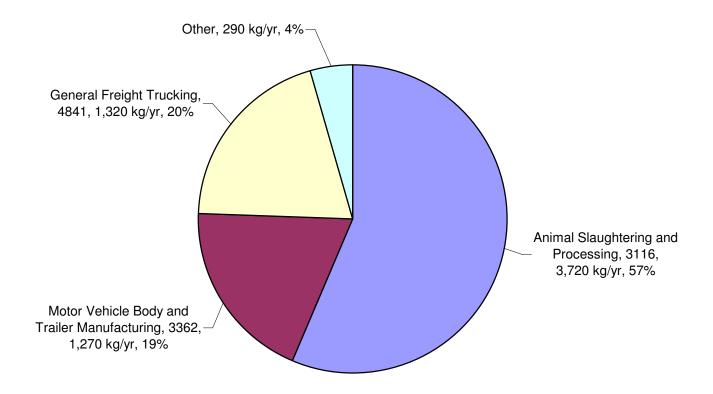

Although it was not in the scope of this study to provide a detailed breakdown or discussion of the various industries that discharge phosphorus to POTWs, the major industrial/commercial process wastewater phosphorus contributors were identified. The commercial and industrial process wastewater dischargers were grouped by four digit NAICS code and presented graphically (see Figures 15 through 25) for each of the watershed basins. These figures present each industry (grouped by four digit NAICS code number) whose phosphorus contribution exceeded one percent of the total industrial/commercial process wastewater phosphorus load discharged to POTWs. See Appendices B, C and E for a listing of the various industries listed under each NAICS code number. The industries that contributed less than one percent of the industrial/commercial process wastewater phosphorus load were grouped together and presented as "Other". This information suggests that food product processing is the largest contributor of phosphorus to untreated wastewater discharged to POTWs. Animal slaughtering and processing (NAICS #3116) was the largest phosphorus contributor, estimated to discharge 168,000 kg/yr. Fruit and vegetable preserving and specialty food manufacturing (NAICS #3114) contributed 132,000 kg/yr, followed by grain and oilseed manufacturing (NAICS #3112) and dairy product manufacturing (NAICS #3115) at 127,000 kg/L and 45,000 kg/L respectively.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 15
Estimated Phosphorus Load to POTWs from Industrial & Commercial Process Wastewater to Cedar River Basin (by 4 Digit NAICS Code)

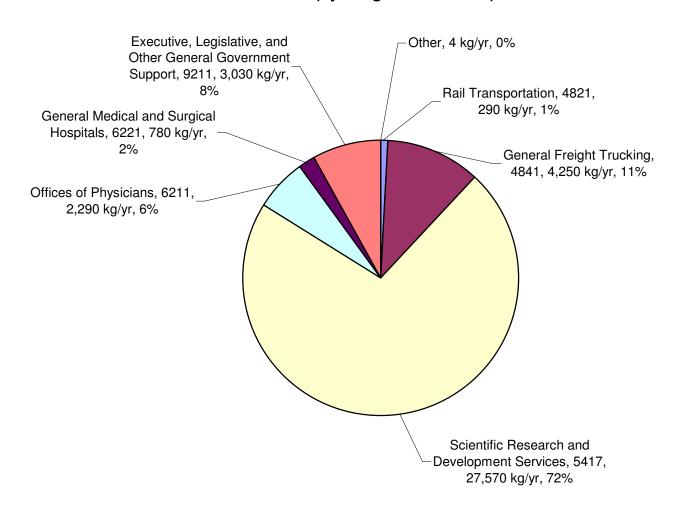


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 16
Estimated Phosphorus Load to POTWs from Industrial & Commercial Process Wastewater to
Des Moines River Basin (by 4 Digit NAICS Code)

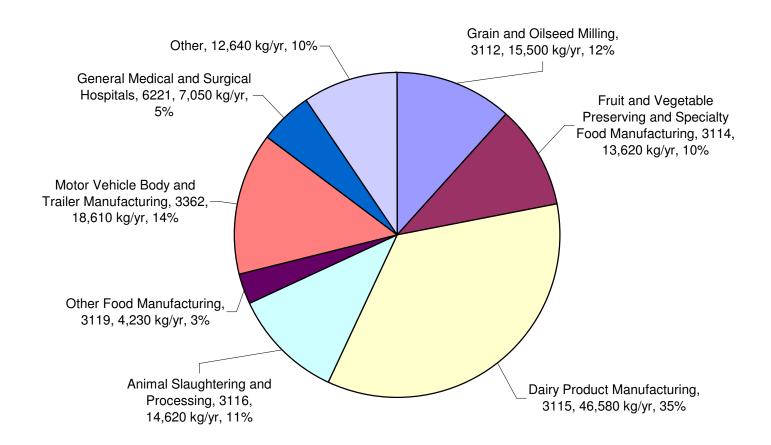


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 17
Estimated Phosphorus Load to POTWs from Industrial & Commercial to Lake Superior River
Basin (by 4 Digit NAICS Code)

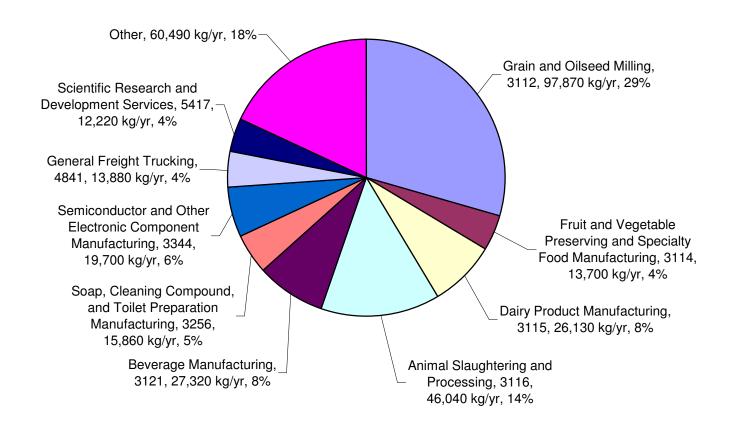


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 18
Estimated Phosphorus Load to POTWs from Industrial & Commercial Process Wastewater to
Lower Mississippi River Basin (by 4 Digit NAICS Code)

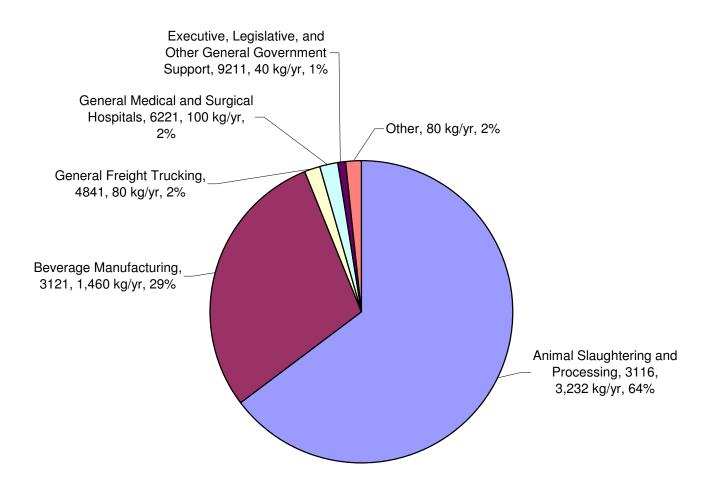


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 19
Estimated Phosphorus Load to POTWs from Industrial & Commercial Process Wastewater to
Minnesota River Basin (by 4 Digit NAICS Code)

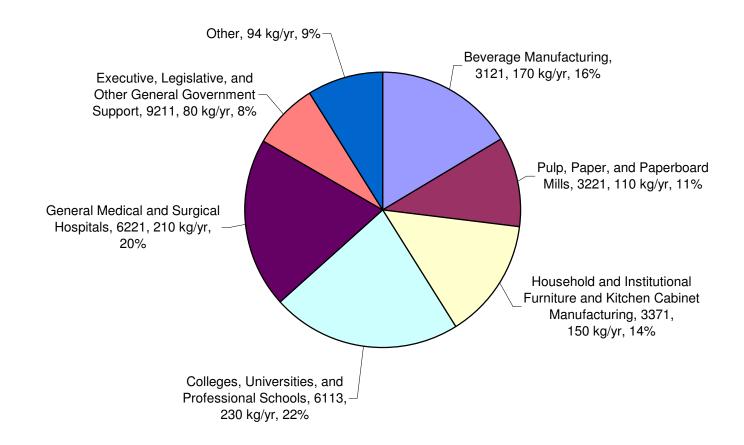


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 20
Estimated Phosphorus Load to POTWs from Industrial & Commercial Process Wastewater to
Missouri River Basin (by 4 Digit NAICS Code)

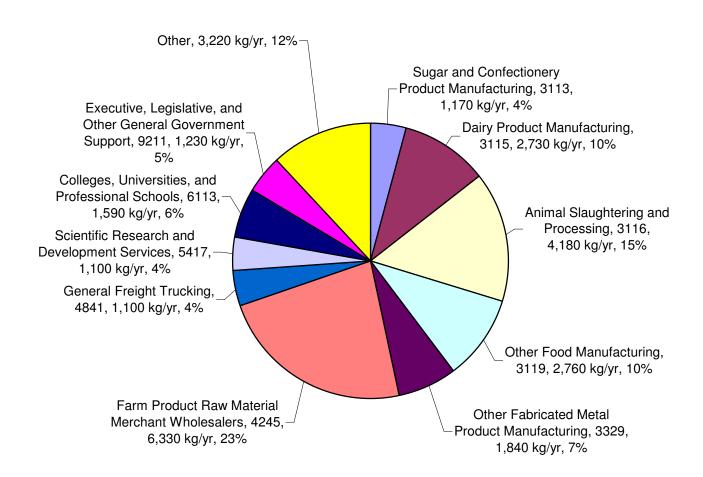


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 21
Estimated Phosphorus Load to POTWs from Industrial & Commercial Process Wastewater to Rainy River Basin (by 4 Digit NAICS Code)

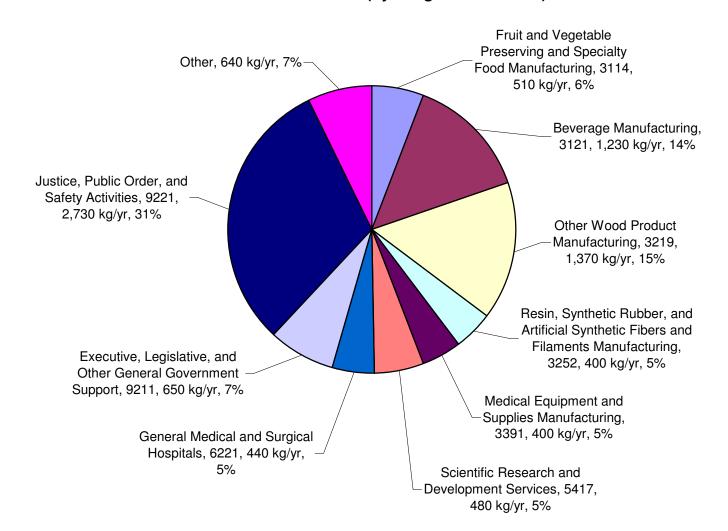


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 22
Estimated Phosphorus Load to POTWs from Industrial & Commercial Process Wastewater to Red River Basin (by 4 Digit NAICS Code)

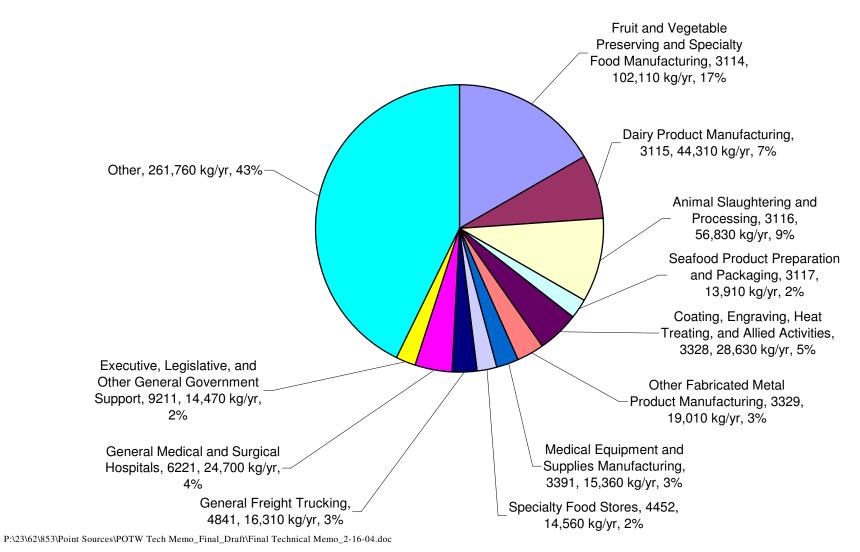


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 23
Estimated Phosphorus Load to POTWs from Industrial & Commercial Process Wastewater to St. Croix River Basin (by 4 Digit NAICS Code)

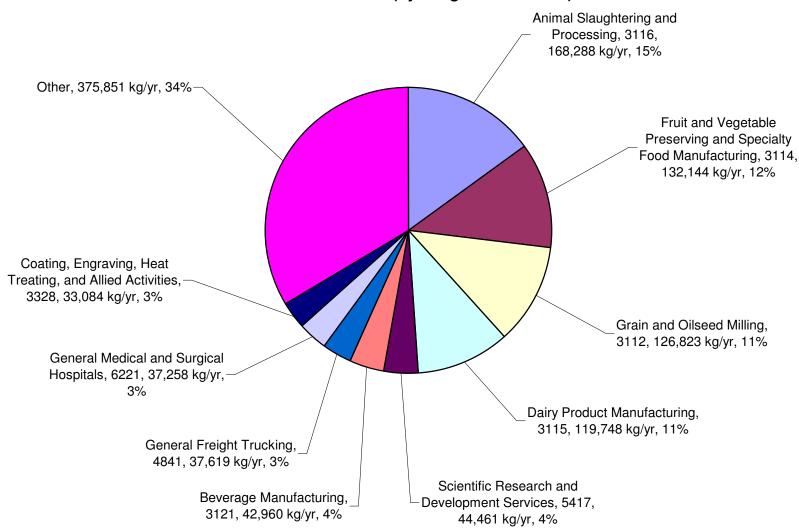


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 24
Estimated Phosphorus Load to POTWs from Industrial & Commercial Process Wastewater to
Upper Mississippi River Basin (by 4 Digit NAICS Code)



From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 25
Estimated Phosphorus Load to POTWs from Industrial & Commercial Process Wastewater to State of Minnesota (by 4 Digit NAICS Code)

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 84

Commercial and Institutional Automatic Dishwasher Detergents (ADWD)

The per capita use information indicates that the commercial and institutional use of ADWD contributes a relatively small amount of phosphorus to untreated wastewater. For the ten Minnesota watershed basins, these amounts ranged from 1.9 percent to 3.7 percent on a basin basis and 3.4 percent statewide of the total influent phosphorus (see Table 31).

Table 31
Estimated Influent Phosphorus Load from Commercial & Institutional
Automatic Dishwasher Detergent to POTWs by Basin

	Influent Phosphorus Load (kg/yr)	Influent Phosphorus Load (% of Total)
<u>Basin</u>		
Cedar River	2,000	1.9%
Des Moines River	1,100	2.4%
Lake Superior	7,200	3.2%
Lower Mississippi River	15,000	3.0%
Minnesota River	29,500	3.1%
Missouri River	700	2.6%
Rainy River	600	2.9%
Red River	5,200	3.5%
St. Croix River	2,000	3.7%
Upper Mississippi River	88,600	3.7%
State Total	151,900	3.4%

No specific information regarding trends in the commercial and institutional use of ADWD was available from the literature reviewed. However, the general industrial and institution cleaner market of which commercial and institutional ADWD is a part, has declined moderately and a marginal rate of decline is projected during the forecast period to 2005. (SRI, 2002)

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 85

Water Supply Treatment Chemicals

A variety of phosphorus-based chemicals are applied to municipal water supplies to inhibit and control scale and corrosion, soften water and control pH. For the years 2001 through mid-year 2003, the MDH provided data on the annual flow volume for each of the communities adding phosphorus and average residual phosphorus concentration in the water supply for a number of the communities adding phosphorus. The municipal water treatment chemicals phosphorus contribution to POTWs ranged from 1.7 percent to 5.7 percent in each of the basins and 3.1 percent statewide of the total influent phosphorus (see Table 32). The phosphorus contribution from water treatment chemicals was based on actual numbers from MDH and an estimated average and was also compared to per capita values. Using the MDH data on phosphorus used in municipal water supply treatment in Minnesota (140,000 kg/yr) and the estimated Minnesota population for 2000 (ca. 4,919,479), the estimated per capita phosphorus used for municipal water treatment was 0.029 kg/p·yr.

Table 32
Estimated Influent Phosphorus Load from Water Treatment Chemicals to POTWs and Privately Owned Treatment Works by Basin

	Influent Influer Phosphorus Phospho Load Load (kg/yr) (% of To	
<u>Basin</u>		
Cedar River	3,800	3.6%
Des Moines River	2,600	5.6%
Lake Superior	3,900	1.7%
Lower Mississippi River	13,900	2.8%
Minnesota River	31,500	3.3%
Missouri River	1,000	3.8%
Rainy River	700	3.6%
Red River	7,800	5.2%
St. Croix River	3,100	5.7%
Upper Mississippi River	72,000	3.0%
State Total	140,300	3.1%

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 86

Using 2000 data on annual U.S. phosphate consumption for water treatment chemicals (13,700 short tons, as phosphorus) from the SRI publication <u>Chemical Economics Handbook - Industrial Phosphates</u>, and the estimated U.S. population for 2000 (ca. 281,421,906), the estimated per capita phosphorus usage in water treatment chemicals was 0.044 kg/p·yr. However, because the water treatment chemical phosphorus estimate completed for this study includes only municipal water treatment and not industrial water treatment chemical usage, the 0.029 kg/p·yr may be an accurate number.

The use of phosphates nationally in the municipal water treatment market increased slightly between 1993 and 2000 (SRI, 2002), a trend that is expected to continue with the increased regulatory requirements for drinking water suppliers.

Inflow and Infiltration

The results of this study indicate that inflow and infiltration contribute a negligible amount of phosphorus to POTW influent. The inflow and infiltration contribution was approximately 0.1 percent of the total influent phosphorus load discharged into POTWs (see Table 33).

Table 33
Estimated Influent Phosphorus Load from Inflow & Infiltration to POTWs by Basin

	Influent Phosphorus Load	Influent Phosphorus Load	
Basin	(kg/yr)	(% of Total)	
Cedar River	70	0.1%	
Des Moines River	30	0.1%	
Lake Superior	310	0.1%	
Lower Mississippi River	320	0.1%	
Minnesota River	610	0.1%	
Missouri River	20	0.1%	
Rainy River	20	0.1%	
Red River	120	0.1%	
St. Croix River	50	0.1%	
Upper Mississippi River	1,790	0.1%	
State Total	3,340	0.1%	

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 87

Phosphorus Point Sources and Amounts to Waters of the State

The point source effluent phosphorus loads to each of the ten Minnesota basins and the state were computed using the methods described in the Approach and Methodology section. The estimated annual phosphorus load to waters of the state is 2,124,000 kg/yr with a flow weighted mean effluent concentration of 0.6 mg/L. The following tabulation (see Table 34) summarizes the estimated point source phosphorus loads to each of the ten Minnesota watershed basins by average annual load. The effluent phosphorus load is presented in both kg/yr and in flow weighted mean concentration. The subsequent table (Table 35) and figures (Figures 26 through 36) summarize the estimated point source phosphorus loads for the three categories of treatment facilities; POTWs, privately owned wastewater treatment systems for domestic sources, and industrial wastewater treatment systems for each basin and the state. Table 35 also summarizes the estimated flow weighted mean effluent concentration for the three categories of treatment facilities.

To: Marvin Hora, Douglas Hall and Mark Tomasek, Minnesota Pollution Control Agency
From: Nick Nelson, Dan Nesler, and Teresa Perry
Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Table 34 Point Source Phosphorus Loads by Basin

	Point Source Effluent Phosphorus Load (kg/yr)	Flow Weighted Mean Effluent Phosphorus Concentration (mg/L)
<u>Basin</u>		
Cedar River	56,800	2.5
Des Moines River	55,500	5.4
Lake Superior	34,800	0.04
Lower Mississippi River	267,400	0.5
Minnesota River	371,700	0.6
Missouri River	13,200	3.3
Rainy River	44,300	0.6
Red River	78,100	0.8
St. Croix River	22,100	1.3
Upper Mississippi River*	1,180,100	0.9
State Total	2,124,000	0.6

^{*}Expected Load reduction of (578,600 kg/yr) associated with 1 mg/L effluent discharge limit at the MCES Metro WWTF (Effective 12/31/05)

From: Nick Nelson, Dan Nesler, and Teresa Perry

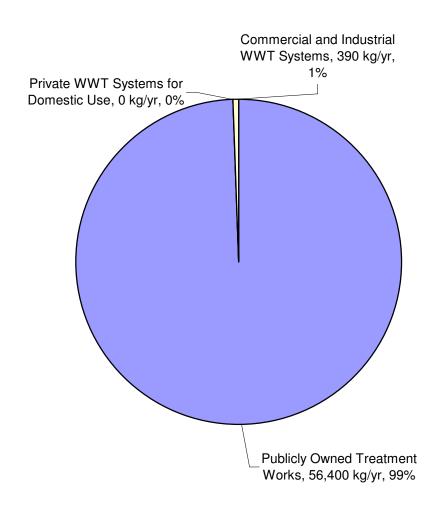
Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 89

Table 35
Point Source Phosphorus Loads by Basin and Facility Type

	Publicly Owned Treatment Works (kg/yr)	POTW Flow Weighted Mean Effluent Phosphorus Concentration (mg/L)	Private WWT Systems for Domestic Use (kg/yr)	Private WWT Systems Flow Weighted Mean Effluent Phosphorus Concentration (mg/L)	Commercial and Industrial WWT Systems (kg/yr)	Commercial and Industrial Flow Weighted Mean Effluent Phosphorus Concentration (mg/L)
<u>Basin</u>						
Cedar River	56,400	3.95	0	NA	390	0.25
Des Moines River	15,100	2.04	0	NA	40,440	10.61
Lake Superior	31,800	0.48	40	0.41	2,970	0.004
Lower Mississippi River	184,000	2.71	270	2.50	83,120	0.34
Minnesota River	237,800	1.84	840	3.73	133,060	0.30
Missouri River	12,400	3.49	20	1.18	750	2.03
Rainy River	4,100	1.06	10	1.06	40,160	0.57
Red River	64,300	2.62	30	3.00	13,810	0.37
St. Croix River	20,400	2.04	300	1.95	1,360	0.21
Upper Mississippi River	1,109,500	2.94	1,960	3.50	68,650	0.35
State Total	1,735,800	2.47	3,470	2.96	384,710	0.29

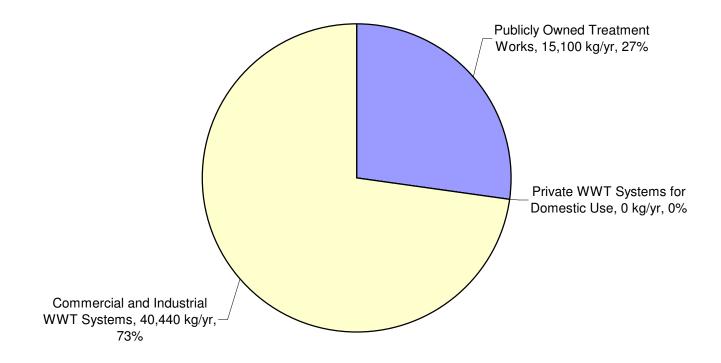

NA - Not Applicable

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 26
Point Source Phosphorus Loads Discharged to the Cedar River Basin by Treatment Facility

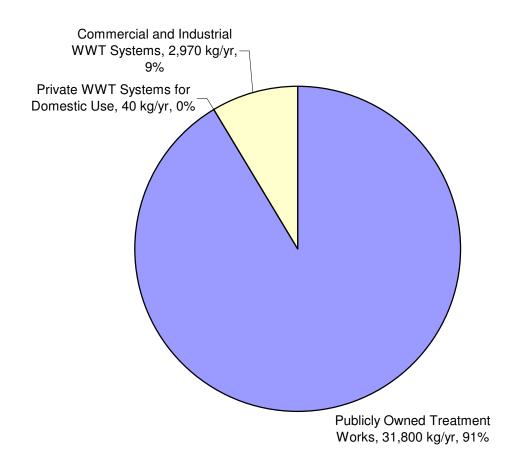


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 27
Point Source Phosphorus Loads Discharged to the Des Moines River Basin by Treatment
Facility

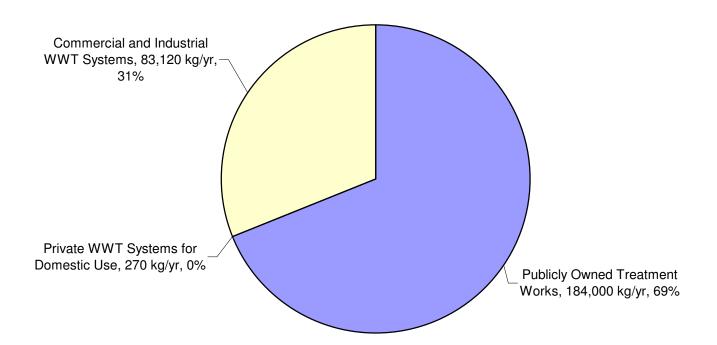


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 28
Point Source Phosphorus Loads Discharged to the Lake Superior Basin by Treatment Facility

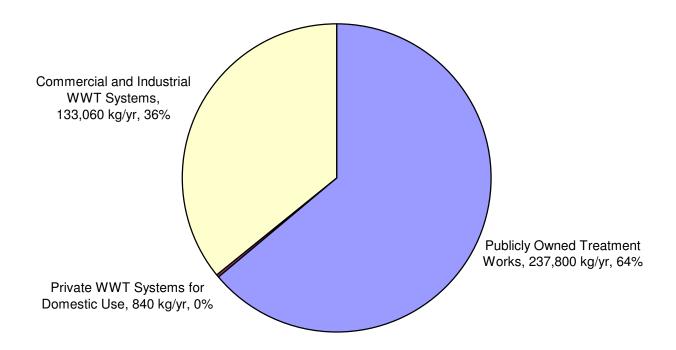


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 29
Point Source Phosphorus Loads Discharged to the Lower Mississippi River Basin by
Treatment Facility

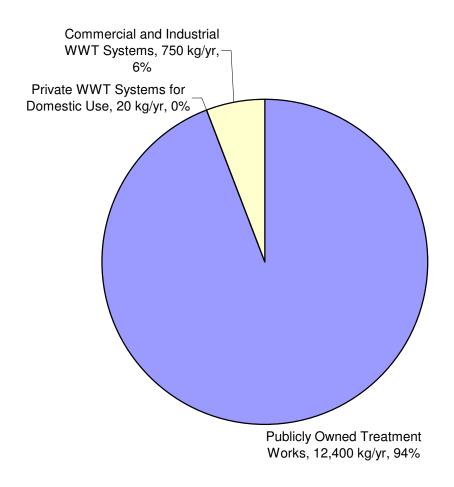


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 30
Point Source Phosphorus Loads Discharged to the Minnesota River Basin by Treatment Facility

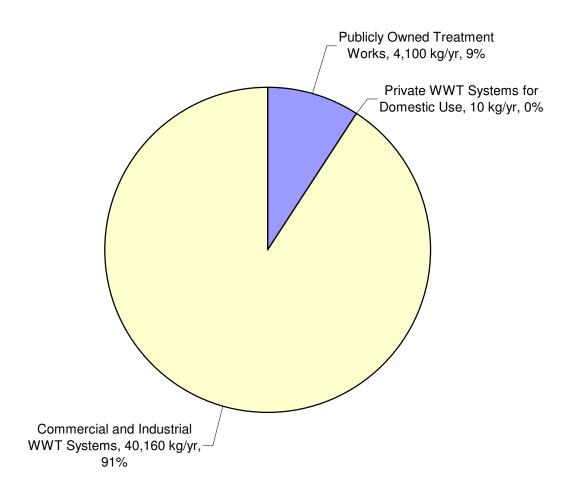


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 31
Point Source Phosphorus Loads Discharged to the Missouri River Basin by Treatment Facility

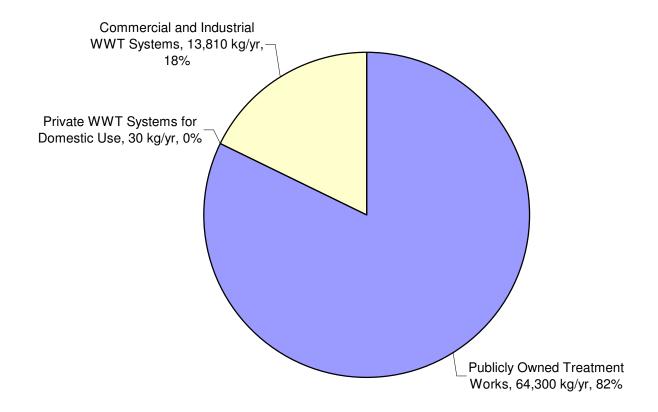


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 32
Point Source Phosphorus Loads Discharged to the Rainy River Basin by Treatment Facility

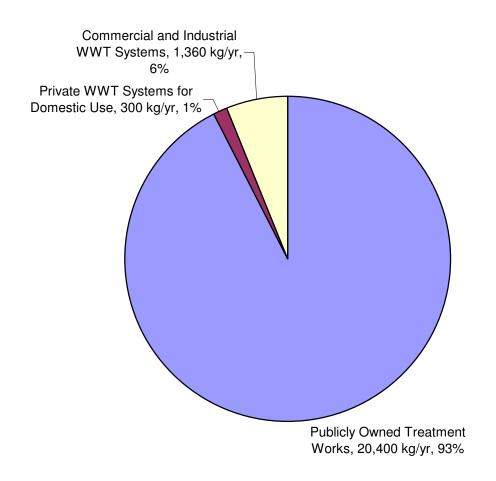


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 33
Point Source Phosphorus Loads Discharged to the Red River Basin by Treatment Facility

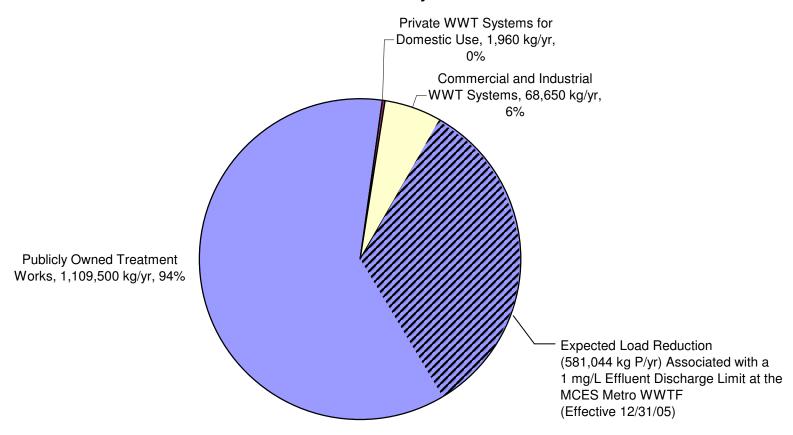


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 34
Point Source Phosphorus Loads Discharged to the St. Croix River Basin by Treatment Facility

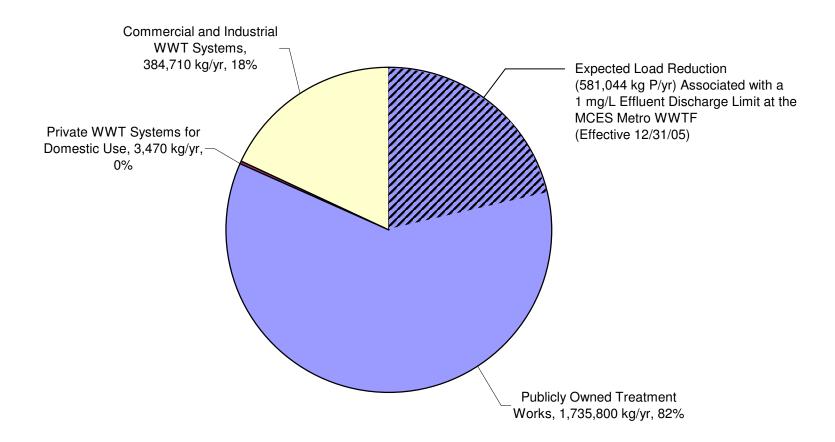


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 35
Point Source Phosphorus Loads Discharged to the Upper Mississippi River Basin by
Treatment Facility



From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 36
Point Source Phosphorus Loads Discharged Statewide by Treatment Facility

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 101

POTWs

POTWs discharge an estimated 1,736,000 kg/yr of phosphorus or just slightly more than 80 percent of the total point source phosphorus load to the watershed basins. In the Rainy River basin, POTWs accounted for only an estimated 9.3 percent of the total phosphorus loading to the basin, whereas, in the Lake Superior, St. Croix River, Missouri River, Upper Mississippi River, and Cedar River Basins, POTWs accounted for 91, 92, 94, 94 and 99 percent of the total phosphorus load, respectively.

The data used for this study is from the years 2001, 2002 and the first half of 2003. During that time period many POTWs have implemented phosphorus removal and others will begin to implement it in the future. The largest impact is probably phosphorus removal at the MCES' Metro plant, which is required to implement phosphorus removal to 1 mg/L by the end of 2005. This facility discharges to the Upper Mississippi River basin and had an average phosphorus effluent concentration for the study period of 2.97 mg/L at an average annual phosphorus load to the basin of approximately 870,000 kg/y. While the 1 mg/L limit isn't effective until the end of 2005, the MCES Metro plant has completed modifications to its facility that have enabled it to meet the 1 mg/L in December 2003 and MCES staff anticipate continuing to meet the 1 mg/L limit. A reduction in the phosphorus concentration to 1 mg/L results in a reduction of an estimated 581,044 kg of phosphorus per year. Because this one facility accounts for approximately 74 percent of the phosphorus load to the Upper Mississippi River basin and an estimated 40 percent statewide, phosphorus removal at this one facility will have a significant impact on the relative phosphorus loads in this basin and the state.

The phosphorus removal efficiency in POTWs and privately owned treatment facilities was estimated based on the estimated influent and effluent loads (see Table 36). The estimated average phosphorus removal statewide is 61 percent in POTWs.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Table 36
Phosphorus Removal in POTWs and Privately Owned Treatment Facilities

Phosphorus Removal in Pot ws and Phyately Owned Treatment Facilities									
		POTW		Private					
Basin	Influent Load	Effluent Load	Percent Removal	Influent Load	Effluent Load	Percent Removal			
	(kg/yr)	(kg/yr)	(%)	(kg/yr)	(kg/yr)	(%)			
Cedar River Basin	105,200	56,400	46%	0	0				
Des Moines River	46,200	15,100	67%	0	0				
Lake Superior	227,000	31,800	86%	500	40	92%			
Lower Mississippi River	501,900	184,000	63%	800	300	63%			
Minnesota River	952,200	237,800	75%	1,500	800	47%			
Missouri River	26,400	12,400	53%	100	20	80%			
Rainy River	20,100	4,100	80%	30	10	67%			
Red River	150,600	64,300	57%	0	0				
St. Croix River	53,500	20,400	62%	800	300	63%			
Upper Mississippi River	2,384,900	1,109,500	53%	4,300	2,000	53%			
State-wide	4,468,000	1,735,800	61%	8,030	3,470	57%			

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 103

The estimated point source effluent phosphorus load to each basin was categorized by POTW size and category for each of the POTW influent phosphorus source components (see Tables 37 through 39). The number of facilities in each category is given in parentheses.

- 1. Size (based on Average Wet Weather Design flow)
 - a. Small less than 0.2 mgd (316 facilities)
 - b. Medium from 0.2 mgd to 1.0 mgd (149 facilities)
 - c. Large greater than 1.0 mgd (68 facilities)
- 2. Waste Treated (% by flow volume treated)
 - a. POTWs that serve mainly households and residences less than 20 % industrial or commercial contributions (128 facilities)
 - b. POTWs that have some commercial or industrial contribution between 20% and 50% industrial or commercial contributions (207 facilities)
 - c. POTWs that are dominated by a variety of commercial and industrial contributions greater than 50% industrial or commercial contributions (198 facilities)

Approximately 88 percent of the phosphorus load discharged to the watershed basins from POTWs is from large POTWs (i.e., >1.0 mgd). While approximately 8.5 percent of the point source phosphorus load discharged to the basins is from POTWs categorized as medium (i.e., 0.2 to 1.0 mgd) and only 3.5 percent is from small POTWs (i.e., <0.2 mgd). Within the large category, POTWs that have some commercial or industrial contribution (between 20% and 50% industrial or commercial contributions) contribute the majority (72 percent) of the phosphorus load from this category to the basins. The POTWs were ranked from high to low by their phosphorus load discharged to watershed basins:

- 1. Large POTWs that have some commercial or industrial contribution between 20% and 50% industrial or commercial contributions (1,100,000 kg/yr)
- 2. Large POTWs that are dominated by a variety of commercial and industrial contributions greater than 50% industrial or commercial contributions (347,000 kg/yr)
- 3. Large POTWs that serve mainly households and residences less than 20 % industrial or commercial contributions (83,000 kg/yr)
- 4. Medium POTWs that are dominated by a variety of commercial and industrial contributions greater than 50% industrial or commercial contributions (68,000 kg/yr)
- 5. Medium POTWs that have some commercial or industrial contribution between 20% and 50% industrial or commercial contributions (65,000 kg/yr)

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

- 6. Small POTWs that are dominated by a variety of commercial and industrial contributions greater than 50% industrial or commercial contributions (23,000 kg/yr)
- 7. Small POTWs that have some commercial or industrial contribution between 20% and 50% industrial or commercial contributions (22,000 kg/yr)
- 8. Small POTWs that serve mainly households and residences less than 20 % industrial or commercial contributions (14,000 kg/yr)
- 9. Medium POTWs that serve mainly households and residences less than 20 % industrial or commercial contributions (14,000 kg/yr)

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 105

Table 37 Phosphorus Loading to Waters of the State Small POTW Point Sources

				Basin Name	Cedar River	Des Moines River	Lake Superior	Lower Mississippi River	Minnesota River	Missouri River	Rainy River	Red River	St. Croix River	Upper Mississippi River	Statewide
		Phosphoru	s Sources		Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)
			Residential Automatic Dishwasher Detergen		42	(0)	(0)	(0)			(0)	117	(0)	(0),	
			Commercial Automatic Dishwasher Deterger		10	10	1/4		122			56			
			Food Soils/Garbage Disposal Waste	IL.	93	49	67		582			260			
			Dentifrices		6	3	4	1,510	35	100		16	55	70	242
		Serving Mainly	Human Waste		142	61	58	2.500	1.362			308	30	1.981	
		Households and	Finished Water Supply		46	0.	0	180	117		0	34	. 0	362	
			Groundwater Intrusion (I&I)		0	0	0	4	1	, o	0	1	0	3	10
			Commercial/Industrial Process Water		1	0	0	40	23	0	0	15	7	139	226
			Noncontact Cooling Water		0	0	0	0	0	0	0	0	0	0	0
			Sub Total		350	145	174	5.330	2,503	526	13	806	201	4.423	14,471
			Residential Automatic Dishwasher Detergen		85	73	0	178	503		74	389	136	250	
			Commercial Automatic Dishwasher Deterger	nt	40	34	0	83	235	67	35	182	64	1.195	
			Food Soils/Garbage Disposal Waste		189	163	0	398	1,122	320	165	867	303	536	
Phosphorus		0 . 0	Dentifrices		11	10	0	24	68	19	10	53	18	72	287
Sources to	Small POTWs	Serving Some Commercial/ Industrial	Human Waste		283	336	0	1,445	3,528	452	353	1,750	612	3,310	12,068
Waters of the	(<0.2 mgd)	Users	Finished Water Supply		35	0	0	88	285	4	38	83	69	484	1,087
State	(- 3-7	Users	Groundwater Intrusion (I&I)		1	1	0	2	5	1	1	3	1	5	19
State			Commercial/Industrial Process Water		0	0	0	61	390	13	96	150	16	216	942
			Noncontact Cooling Water		0	0	0	0	0	0	0	C	0	0	0
			Sub Total		643	617	0	2,279	6,137	1,020	772	3,476	1,220	6,069	
			Residential Automatic Dishwasher Detergen		61	10	189	59	324			213			
			Commercial Automatic Dishwasher Deterger	nt	29	5	88	28	151			100	27	965	
			Food Soils/Garbage Disposal Waste		136	23			722	215	58	475	129		
		Serving Predominantly	Dentifrices		8	1	26	8	44			29	•	59	
		Commercial/ Industrial	Human Waste		184	45	1,036	762	4,210			2,998	562		
		Users	Finished Water Supply		53	0	122	39	190	20	38	49	2	144	
		03613	Groundwater Intrusion (I&I)		1	0	3	1	5	1	0	3	1	6	22
			Commercial/Industrial Process Water		0	0	12	11	317	106	0	100	0	1,332	1,878
			Noncontact Cooling Water		0	0	0	0	0	0	0	C	0	0	0
	Sub Total			472							3,968				
		Total			1,464	846	2,071	8,648	14,602	3,100	1,311	8,249	2,207	16,725	59,224

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 106

Table 38 Phosphorus Loading to Waters of the State Medium POTW Point Sources

				Basin Name	Cedar River	Des Moines River	Lake Superior	Lower Mississippi River	Minnesota River	Missouri River	Rainy River	Red River	St. Croix River	Upper Mississippi River	Statewide
		Phosphoru	s Sources		Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)
			Residential Automatic Dishwasher Detergent		0	89		334				130			
			Commercial Automatic Dishwasher Deterger		0	41	0	156	226			6			
			Food Soils/Garbage Disposal Waste		0	197	0	745	1,078		(290	145	617	
		1	Dentifrices		0	12	0	45	65			18	3	83	
		Serving Mainly	Human Waste		0	273	0	1.193	1.025			304	372		
		Households and	Finished Water Supply		0	41		190	65		() (63		
		Residences	Groundwater Intrusion (I&I)		0	1	0	2	3	0	Ċ)	il (3	3 10
		1	Commercial/Industrial Process Water		0	1	0	3	117	8	(162	115	58	3 464
		l	Noncontact Cooling Water		0	0	0	0	0	0	() () (1
			Sub Total		0	656	0	2,668	3.063	185	Ċ	965	799	5.410	13.746
	ľ		Residential Automatic Dishwasher Detergent		0	145	151	1,703	1,407	0	(288	3 498	771	1 4,963
		1	Commercial Automatic Dishwasher Deterger	nt	0	68	70	795	657	0	(135	233	3,681	
		ľ	Food Soils/Garbage Disposal Waste		0	323	336	3,796	3,138	0	(642	1.110	1,651	1 10,997
Phosphorus			Dentifrices		0	20	20	230	190	0	C	39	67	223	791
Sources to	Medium POTWs	Serving Some	Human Waste		0	1,078	433	8,235	7,723	0	C	1,411	3,283	8,906	
Waters of the		Commercial/ Industrial Users	Finished Water Supply		0	0	74	696	631	0	C	163	3 76	873	2,513
State	(Users	Groundwater Intrusion (I&I)		0	1	2	15	13	0	(3	3	14	4 53
State			Commercial/Industrial Process Water		0	611	41	3,078	1,797	0	(22	271	2,463	8,481
			Noncontact Cooling Water		0	0	0	0	C	0) () (1
		ſ	Sub Total		0	2,246	1,127	18,549	15,558	0	(2,90	5,542	18,583	
			Residential Automatic Dishwasher Detergent		85	40	83	532	840			419			
			Commercial Automatic Dishwasher Deterger	nt	40	19	39	249	392	39	17	196	85	1,307	
		ſ	Food Soils/Garbage Disposal Waste		190	90	185	1,187	1,872	184	81	934	1 406	586	
		Complete Broad and a settle	Dentifrices		12	5	11	72	114	11	Ę	5	7 25		
	Serving Predominantly Commercial/ Industrial	Human Waste		1,610	295	635	4,852	6,478	911	624	6,656	3,602	9,172		
		Heave	Finished Water Supply		0	0	23	491	278	89	30	273	462	498	3 2,144
		users	Groundwater Intrusion (I&I)		2	1	1	8	12		() (6	11	
		[Commercial/Industrial Process Water		84	5	9	6,250	7,335	1,014	23	1,500	290	3,876	20,385
		[Noncontact Cooling Water	-	0	0	0	0	C	0	() () (0) (
			Sub Total		2,023	455	986	13,640	17,320	2,332	817	10,041	5,055	15,803	3 68,47
		Total			2,023	3,357	2,113	34,857	35,940	2,517	817	13,907	7 11,396	39,795	146,72

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 107

Table 39 Phosphorus Loading to Waters of the State Large POTW Point Sources

				Basin Name	Cedar River	Des Moines River	Lake Superior	Lower Mississippi River	Minnesota River	Missouri River	Rainy River	Red River	St. Croix River	Upper Mississippi River	Statewide
		Phosphoru	is Sources		Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)	Total Phosphorus (kg/yr)
			Residential Automatic Dishwasher Detergent		0	0	77			0	0		0	1.768	
			Commercial Automatic Dishwasher Deterger		0	0	36		0	0	0	0	0	8,441	10.340
			Food Soils/Garbage Disposal Waste		0	0	171		0	0	0	0	0	3,786	12,850
			Dentifrices		0	0	10	540	0	0	0		0	512	
		Serving Mainly	Human Waste		0	0	23			0	0	0	0	10.599	
		Households and	Finished Water Supply		0	0	0	516	0	0	0	0	0	1,191	
		Residences	Groundwater Intrusion (I&I)		0	0	0	27	0	0	0	Č	0	20	47
			Commercial/Industrial Process Water		0	0	0	8.731	0	0	0	C	0	1,934	10,665
			Noncontact Cooling Water		0	0	0	0	0	0	0	C	0	0	0
			Sub Total		0	0	318	54.314	0	0	0	0	Ó	28,253	82.884
			Residential Automatic Dishwasher Detergent		0	0	444	3,119	8,913	0	0	1,849	434	36,683	51,442
			Commercial Automatic Dishwasher Deterger	nt	0	0	207	1.459	4.168	0	0	863	203	174,610	181.511
			Food Soils/Garbage Disposal Waste		0	0	989	6,954	19,872	0	0	4,122	967	78,321	111,224
Phosphorus		0 . 0	Dentifrices		0	0	60	422	1,206	0	0	250	59	10,596	12,593
Sources to	Large POTWs	Serving Some Commercial/ Industrial	Human Waste		0	0	2,229	15,776	39,576	0	0	7,333	1,780	375,757	442,452
Waters of the	(>1.0 mgd)	Users	Finished Water Supply		0	0	0	678	4,823	0	0	1,671	170	28,097	35,439
State	(- 3-7	Users	Groundwater Intrusion (I&I)		0	0	3	33	81	0	0	16	4	713	
State			Commercial/Industrial Process Water		0	0	79	10,183	37,713	0	0	4,061	1,231	211,386	264,654
			Noncontact Cooling Water		0	0	0	0	0	0	0	C	0	0	0
			Sub Total		0	0	4,011	38,624	116,353	0	0	20,165	4,847	916,164	1,100,164
			Residential Automatic Dishwasher Detergent		1,826			2,062	2,043	342		1,437	168		
			Commercial Automatic Dishwasher Deterger	nt	853	161	616	963	954			671	78		9,865
			Food Soils/Garbage Disposal Waste		4,071	769	2,931	4,597	4,556	754	238	3,203	373	2,401	23,894
		Serving Predominantly	Dentifrices		247		178		276			194			
		Commercial/ Industrial	Human Waste	,	36,651	5,525	13,189		20,672	2,872		7,947	674		
		Users	Finished Water Supply		1,797	668	384		2,014	406	66	1,178	145		
		Users	Groundwater Intrusion (I&I)		31	5	33		32		2	17	2	62	219
			Commercial/Industrial Process Water		7,460	3,419	4,615	14,754	40,399	2,155	114	7,339	523	56,773	137,552
			Noncontact Cooling Water		0	0	0	0	0	0	0	C	0	0	0
			Sub Total		52,937	10,939	23,261	47,432	70,946	6,742	1,945	21,987	1,987	108,598	
		Total			52,937	10,939	27,590	140,370	187,299	6,742	1,945	42,152	6,834	1,053,014	1,529,823

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 108

Privately Owned Treatment Systems

As shown on Figures 26 through 36, privately owned treatment facilities for domestic use account for less than half of a percent of the total point source phosphorus load to waters of the state. They contribute only 3,500 kg/yr of phosphorus to waters of the state.

Commercial and Industrial Wastewater Treatment Systems

Commercial and industrial wastewater systems discharging directly to waters of the state make up the remaining point source phosphorus load, approximately 18 percent. They discharge an estimated 385,000 kg/yr to Minnesota surface waters. No attempt was made to determine the major commercial and industrial phosphorus contributors discharging directly to waters of the state.

Noncontact Cooling Water

Noncontact cooling water is a subcategory of point source commercial and industrial wastewater. The phosphorus load from cooling water dischargers to each of the basins are summarized, by basin, in Table 40.

Table 40
Summary of Estimated Commercial & Industrial Wastewater Systems Point Source Phosphorus Load

	Other Commercial & Industrial Wastewater (kg/yr)	Non-contact Cooling Water (kg/yr)	Total Commercial & Industrial Wastewater (kg/yr)
Basin			
Cedar River	85	304	389
Des Moines River	40,437	0	40,437
Lake Superior	2,935	35	2,970
Lower Mississippi River	81,986	1,129	83,115
Minnesota River	128,560	4,503	133,063
Missouri River	746	0	746
Rainy River	40,148	11	40,159
Red River	10,296	3,517	13,813
St. Croix River	1,361	0	1,361
Upper Mississippi River	63,873	4,779	68,652
Total	370,427	14,278	384,704

From: Nick Nelson, Dan Nesler, and Teresa Perry

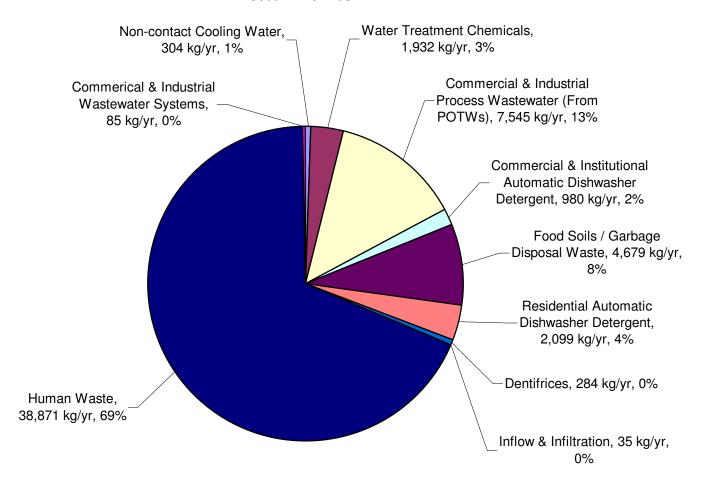
Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 109

It is estimated that noncontact cooling water contributes approximately 14,000 kg/yr or approximately 0.7 percent of the total phosphorus to waters of the State. In eight of the ten basins, noncontact cooling water accounted for less than one-half of a percent of the total phosphorus load. In one basin, the Red River basin, it accounted for 4.5 percent (3,500 kg/yr) and in the remaining basin, the Minnesota River basin, it accounted for approximately 1.2 percent (4,500 kg/yr) of the total phosphorus load to the basin.

Summary of Phosphorus Loads to Basin

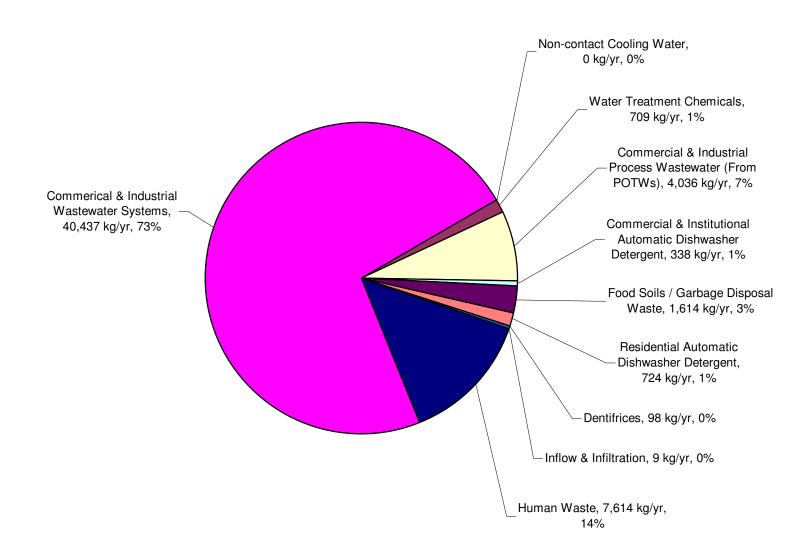

The total point source phosphorus load discharged to each basin and the state from each of the three types of wastewater treatment systems (POTWs, privately owned treatment systems and commercial and industrial wastewater treatment systems) is separated by source and presented in Figures 37 though 47. It was assumed that the influent components of the POTW's and privately owned treatment facility's phosphorus loads were in the treatment plant effluent in the same proportions as in the influent. It is understood that that this may not be the case, that phosphorus from the various sources may not have the same percentage of removal. However, due to the various types of treatment and their variable removal rates, it was not in the scope of this study to estimate the individual removal rates for each type of treatment system and each source of phosphorus. The commercial and industrial wastewater contributions were separated into those facilities discharging directly to a surface water under their own NPDES permit (Commercial & Industrial Wastewater Systems) and those discharging their wastewater to a POTW for treatment (Commercial and Industrial Process Wastewater).

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 37
Estimated Point Source Phosphorus Loads Discharged to the Cedar River Basin

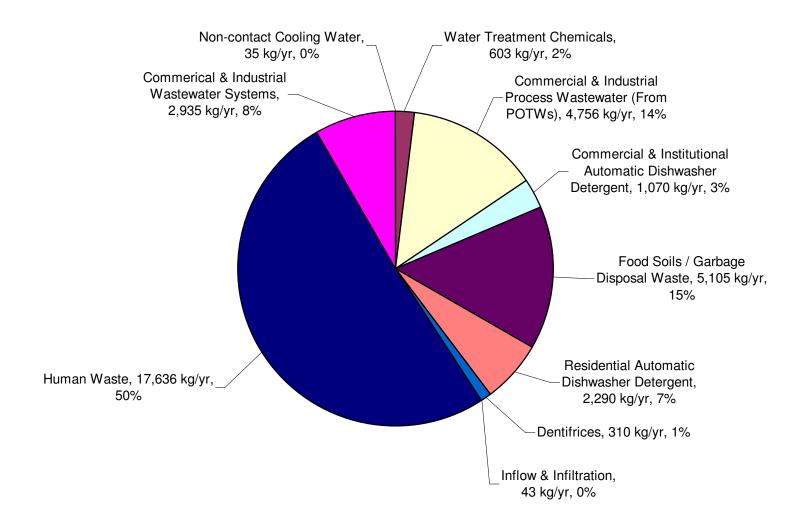


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 38
Estimated Point Source Phosphorus Loads Discharged to the Des Moines River Basin

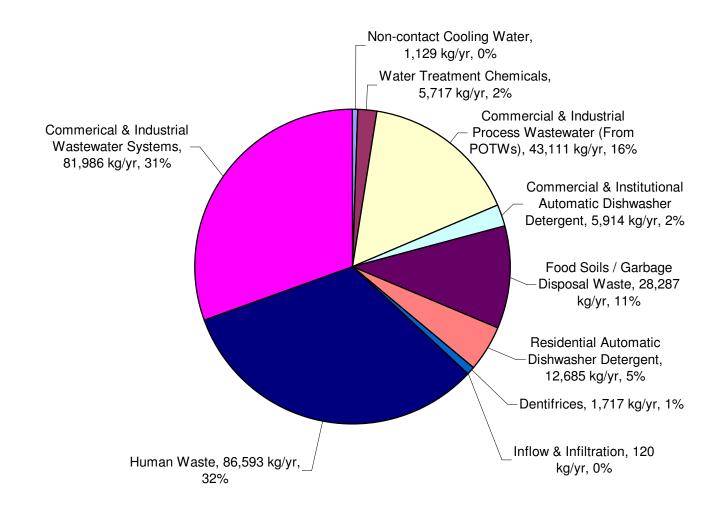


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 39
Estimated Point Source Phosphorus Loads Discharged to the Lake Superior River Basin

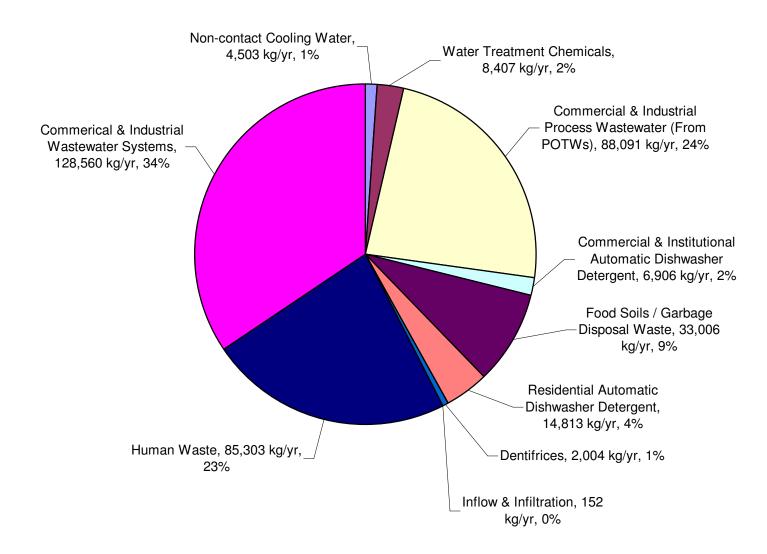


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 40
Estimated Point Source Phosphorus Loads Discharged to the Lower Mississippi River Basin

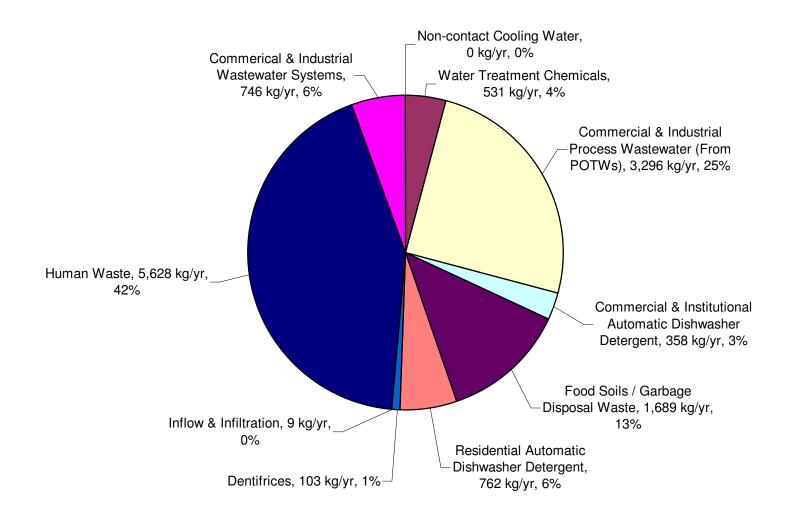


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 41
Estimated Point Source Phosphorus Loads Discharged to the
Minnesota River River Basin

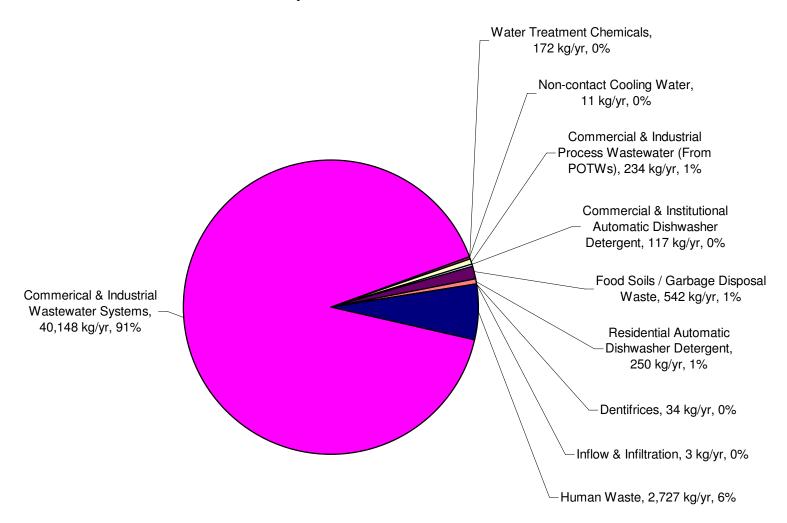


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 42
Estimated Point Source Phosphorus Loads Discharged to the
Missouri River Basin



From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

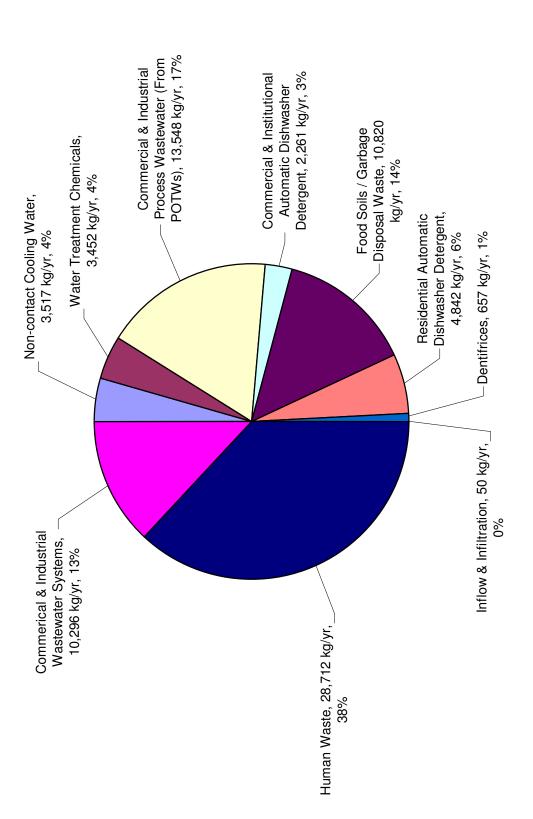
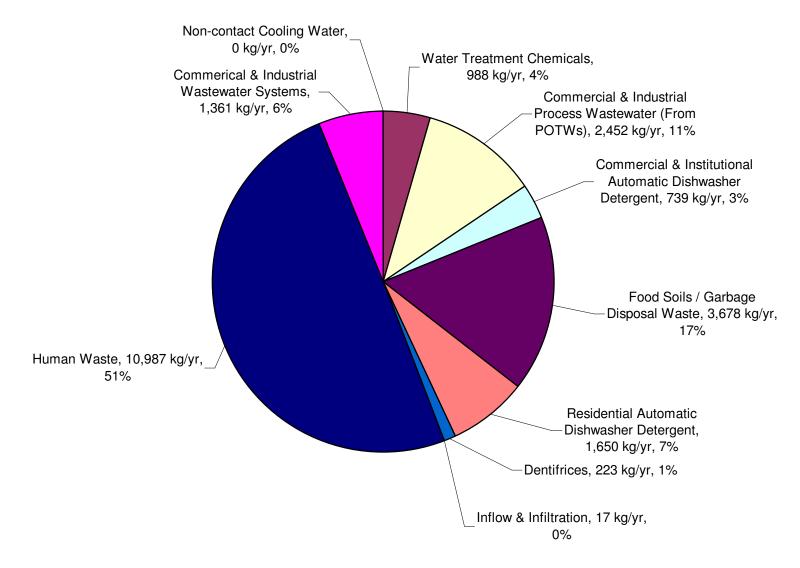

Date: February 16, 2004

Figure 43
Estimated Point Source Phosphorus Loads Discharged to the Rainy River Basin

Marvin Hora, Douglas Hall and Mark Tomasek, Minnesota Pollution Control Agency Nick Nelson, Dan Nesler, and Teresa Perry Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Point Sources February 16, 2004 Subject: I Date: I Page:

Figure 44
Estimated Point Source Phosphorus Loads Discharged to the Reasin

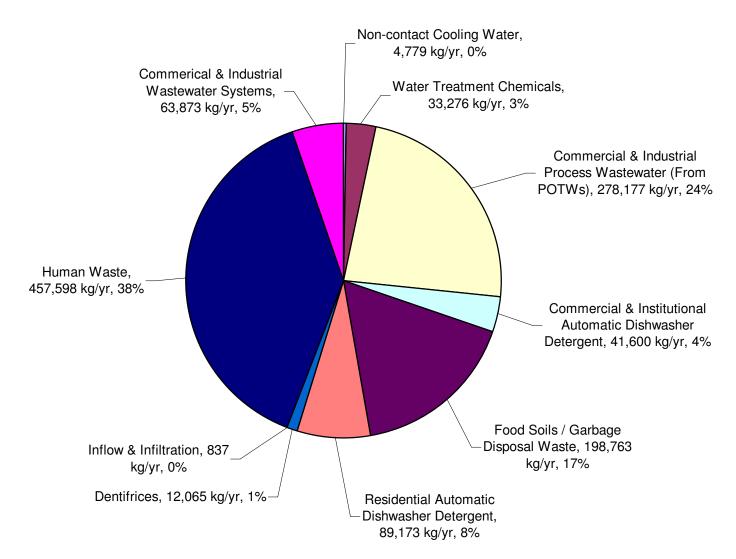


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 45
Estimated Point Source Phosphorus Loads Discharged to the St. Croix River Basin

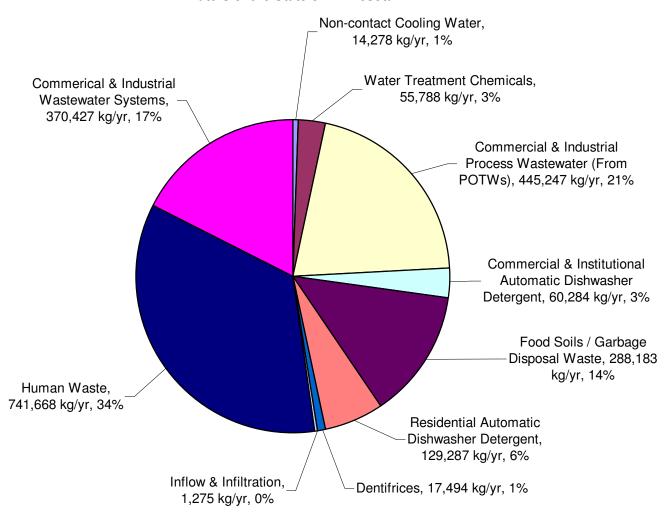


From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 46
Estimated Point Source Phosphorus Loads Discharged to the Upper Mississippi River Basin



From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Figure 47
Estimated Point Source Phosphorus Loads Discharged to the
Waters of the State of Minnesota

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 121

Point Source Phosphorus Variability and Uncertainty

The variability and uncertainty associated with the data sources has been discussed throughout this report. The following paragraphs provide a more detailed discussion of the variability and uncertainty associated with each data source.

Influent and Effluent Flow Data

Data on all municipal, private and industrial and commercial dischargers were obtained from the Delta database. Influent and/or effluent flow data were available for all permits in the Delta database. The data are submitted by the permittees for entry into Delta and there is no way to determine the accuracy of each permittee's measurements. However, most permits require regular flow measurement and had at least monthly flow data for those facilities with a continuous discharge. Pond systems that discharge infrequently may have had only one or two effluent data points available, otherwise the flow data was based on numerous data points. In addition, an attempt was made to validate the flow data. All flow values were converted to million gallons per day (mgd) and then averaged for each permit and station combination. The standard deviation was calculated for each station in a permit. Permits with high standard deviations raised concern, and the monthly flow data for the individual permits were manually reviewed. By reviewing multiple years it was relatively easy to spot the general trend in discharge rates and correct obvious errors. This process removed most of the variability from the data.

One area of some uncertainty is not the flow data itself, but which flows are discharged to surface waters. Each station under each permit in the Delta database is coded to list the type of discharge: surface water, land application, spray irrigation, internal waste stream, etc. Because this information is submitted by permittees for entry into Delta by MPCA staff, there may be some error due to interpretation and it is possible that some discharge stations may have been miscategorized.

Treatment Plant Influent and Effluent Phosphorus Loadings

There are several areas of uncertainty associated with the influent and effluent phosphorus loading estimates. These estimates are based on the flow data discussed above and the average annual phosphorus concentration. In many cases, phosphorus concentration data was limited to a few data points or not available at all. It was necessary to estimate the phosphorus concentration for many of

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 122

the permittees. In addition, there was some variability among the phosphorus data for a permit when it was available. However, as noted in Table 1, there were phosphorus data for approximately one half of the facilities or approximately 88 percent of the total wastewater flow.

The method of calculating the estimated phosphorus load will impact the results. The study used annual average flow rates multiplied by the average annual phosphorus concentration to estimate the annual phosphorus load. The load could also have been calculated on a daily basis or monthly basis and then the average annual load calculated. Each method would likely result in different values. However, since there was limited data, monthly averages at best, it was decided to estimate the phosphorus load by calculating the average annual flow and multiplying it by the average annual phosphorus concentration.

Population Data

As discussed earlier in this memorandum, many of the influent phosphorus sources are based on per capita values and there is some uncertainty associated with the available population data. Approximately 230 of the 576 POTW and privately owned treatment facilities had population data listed in the Delta database. The process used to estimate the remaining population data was described in a previous section of the memorandum. As discussed, an attempt was made to validate some of the data, but due to the number of permits, it was not possible to verify all of the population data received. As a result, there is some uncertainty associated with this data.

Commercial and Industrial Wastewater

Data was collected on commercial and industrial dischargers to the MCES system. However, not all of these facilities had phosphorus monitoring data. Additional phosphorus data from commercial and dischargers was also colleted from several out-state POTWs. The phosphorus data that was available was often based on a limited number of sampling events and there was some variability between industries with similar NAICS code numbers. Other than the MCES permitted facilities and the handful of out-state communities that required their industries to monitor for phosphorus, most of the commercial and industrial process wastewater phosphorus values were estimates based on the data set collected from industrial dischargers to the MCES system and to the other communities that monitored for phosphorus. Given the limited data set, there is likely a high level of uncertainty associated with the estimates for this source.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 123

Water Supply Treatment Chemicals

The information on the phosphorus contribution from water supply chemicals in municipal water treatment was based on information from the MDH. While the information received is likely valid, it was not complete. Phosphorus concentrations were provided for only 120 of the 360 facilities noted as adding phosphorus. The phosphorus residual in the remaining 240 water treatment facilities was based on an estimate using the average phosphorus concentration in the other 120 communities.

Residential Automatic Dishwasher Detergents (ADWD)

The phosphorus loading from residential ADWD has some uncertainty associated with it due mainly to the population estimates. While the annual consumption of phosphorus in ADWD reported (SRI, 2002) is likely an accurate number, the loading to the Minnesota basins was estimated based on a per capita value calculated from this national total. This assumes that each resident in Minnesota uses ADWD at the national average. Because this estimate also relied on population data, there is some additional uncertainty associated with it due to the uncertainty in the population data discussed in a previous paragraph.

Commercial and Institutional Automatic Dishwasher Detergents (ADWD)

The uncertainties associated with commercial and institutional ADWD are similar to those discussed for the residential ADWD in the previous paragraph.

Food Soils/Garbage Disposal Waste

The per capita value used to determine the food soils and garbage disposal waste contribution to the influent phosphorus loading to POTWs and privately owned treatment facilities was based on the average of several values obtained from studies conducted in the 1970s and 1980s. There were only three values available from the literature and these were based on a limited number of samples, but they were in fairly good agreement. Given that these data are from 20 to 30 years ago may introduce some uncertainty. Based on the SRI report, there has been a significant increase in the use of phosphorus in the food and beverage market. For example, the use of sodium phosphates in preparation of meat, seafood and poultry more than doubled between 1984 and 2000. It follows then that there may be more phosphorus in the food disposed of down the drain. What is unknown is the trend in the amount of food and beverages disposed of down the drain.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 124

Also, because the food soils and garbage disposal wastes were based on per capita values, the loadings discharged to the treatment facilities are also based on the population served. As discussed above, there is some uncertainty associated with the population data.

Dentifrices

The method used to determine the dentifrice contribution to the influent phosphorus load to treatment facilities was based on a per capita value calculated from annual consumption in the U.S. The annual U.S. consumption was based on the data presented in the SRI report and likely quite accurate. From this information and the estimated U.S. population, the per capita phosphorus contribution from dentifrices was calculated. This method assumes that Minnesota's dentifrice use is equivalent to that as the U.S. as a whole and because this is a per capita value and there is some uncertainty due to the population data.

<u>Inflow and Infiltration</u>

The inflow and infiltration flow values were obtained from MCES and are estimates based on a few data points for each of their facilities. However, because the groundwater phosphorus concentration is quite low, even a large variability in the flow values will not have a large impact on the total phosphorus to the POTWs from this source.

Human Waste

The phosphorus loading from human waste was calculated by difference. That is, all other estimated sources of phosphorus were subtracted from the total influent phosphorus load for each facility. This method of estimating the human waste phosphorus contribution leaves some uncertainty since it is based on all of the other source estimates. Therefore, the phosphorus contribution from human waste obtained by difference was compared to literature values. Literature values for phosphorus in human waste ranged from 1.6 g/p·d (*Siegrist et al.*, 1976) to 2 g/p·d (*Strauss*, 2000). The statewide flow weighted average for phosphorus in human waste was 1.53 g/p·d (see Table 29).

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 125

Recommendations for Future Refinements

The following recommendations are made to improve the estimates of phosphorus point source loading to the watershed basins in Minnesota:

- Since the commercial and industrial loadings are a significant portion of the phosphorus load, additional monitoring of industrial effluent discharged to POTWs would improve the precision of estimates presented in this component.
- 2. It was not within the scope of this study to present or discuss the phosphorus contribution from individual industrial contributors of phosphorus to POTWs. It would be interesting to expand this study to determine the specific industries that constitute the major phosphorus contributors.
- 3. This study assumed that the influent components of the POTW's and privately owned treatment plant's phosphorus from various sources were in the effluent in the same proportions as in the influent. A study on the percentage removal for the various sources at the different type of treatment plants would provide a more accurate picture of the source of phosphorus loads to the waters of the state.
- 4. Many of the phosphorus sources discharge to POTWs were based on per capita estimates. Improving the population served data for each of the POTWs would improve the accuracy of these estimates.
- 5. Phosphorus data were not available for all permits. Increased phosphorus monitoring (both influent and effluent) would improve loading estimates.
- 6. Calculation of phosphorus loads on a monthly basis and then totaled rather than on an annual basis would improve the estimates.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 126

Recommendations for Lowering Phosphorus Export

The recommendations for lowering the phosphorus export are presented in two parts. The first part discusses recommendations for lowering phosphorus loading discharged to POTWs and the second part discusses recommendations for lowering the point source phosphorus load discharged to the watershed basins.

Phosphorus Loading to POTWs

The results of this study are intended to assist the MPCA in complying with MN Laws 2003, Chap. 128 Art. 1, Sec. 122.

The state goal for reducing phosphorus from non-ingested sources entering municipal wastewater treatment systems is at least a 50 percent reduction developed by the commissioner under section 166, and a reasonable estimate of the amount of phosphorus from non-ingested sources entering municipal wastewater treatment systems in calendar year 2003.

For purposes of complying with this legislation, this study has estimated that the current non-ingested phosphorus load entering POTWs is 2,573,000 kg/yr (see Table 25). A 50 percent reduction would require decreasing the phosphorus discharged to POTWs by least 1,286,000 kg/yr.

The applicability of reduction tactics for each of the non-ingested sources entering POTWs are discussed, by component, in the following paragraphs:

Residential Automatic Dishwasher Detergents (ADWD)

As discussed in a previous section, residential ADWD contributes approximately 7.3 percent or 326,000 kg/yr to the total influent phosphorus load discharged into POTWs and almost 13 percent of the non-ingested phosphorus load. Eliminating all phosphorus from residential ADWD would reduce the non-ingested phosphorus load discharged to POTWs by almost 13 percent.

Although, there has been a slight decline in the consumption of phosphorus for residential ADWD, SRI states that it is unlikely that detergents with much lower phosphorus contents will be available in the near future. However, an informal search for phosphorus-free residential ADWD found three

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 127

brands of phosphorus-free detergent available in the Minneapolis area. The phosphorus free detergent was more costly than the best selling brands. The average ADWD with phosphorus cost \$0.0567 per ounce less the phosphorus-free detergent. Just as with most products the cost of phosphorus-free detergent would decrease as demand increased. It should also be noted that one brand of phosphorus-free ADWD contained caustic soda which may cause issues with septic systems. As non-phosphorus residential ADWD are being developed some additional decrease may be achieved by a policy of advertising and education accompanied by prominent content labeling to aid consumers in choosing low or phosphorus-free products.

Food Soils/Garbage Disposal Waste

Food soils and garbage disposal wastes account for approximately 28 percent (725,000 kg/yr) of the non-ingested phosphorus discharged to POTWs. This is a substantial amount, but it is unlikely amenable to direct modification (e.g. product modification), or prohibiting discharge of food wastes into the sewer systems. Approximately 25 percent of the phosphorus from this source is discharged into the sewer system as garbage disposal waste. Garbage disposal waste could be sent elsewhere (trash, compost, etc.) while it would be more difficult to manage the phosphorus from dish rinsing and dish washing. Short of inducing the food product industries to reduce their use of phosphates or eliminating garbage disposals and discharge of food wastes down the drain, relatively little appears possible for reducing this phosphorus load to POTWs. Public education may be possible to reduce discharge of food wastes down the drain.

Dentifrices

Dentifrices account for less than two percent of the total non-ingested phosphorus load to POTWs. Because the phosphorus load from this source is so minimal, it does not warrant major steps to reduce phosphorus discharges from toothpastes and denture cleaners.

Commercial and Industrial Wastewater

Next to human wastes, a variety of industrial and commercial dischargers contribute the most phosphorus to POTW influent streams. The contribution of phosphorus from these commercial and industrial sources accounts for approximately 46 percent of the non-ingested phosphorus load discharged into POTWs.

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 128

Total removal of phosphorus from commercial and industrial wastewater is, of course, not an option. In most cases, reduction would have to come from resource/product substitution, improvements in technology, through recycling and reuse, and through pretreatment of wastewater prior to discharge to the POTW. However, reducing the commercial and industrial phosphorus contribution to POTWs by one half would reduce the total non-ingested phosphorus discharged to POTWs by almost 23 percent.

Animal slaughtering and processing (NAICs#3166) is the single largest commercial and industrial process wastewater contributor to POTWs and accounts for an estimated 14 percent of the total commercial and industrial process wastewater phosphorus load to POTWs. Fruit and vegetable preserving (NAICS #3114) and grain and oilseed milling (NAICS #3112) each account for approximately 11 percent of the commercial and industrial process wastewater discharged to POTWs followed closely by dairy product manufacturing (NAICS #3115) at 10 percent.

Excise taxes and/or effluent strength charges may be useful in reducing this influent source of phosphorus. At the time of this writing, it is our understanding that Mankato has implemented a program to impose a phosphorus strength charge on its industrial dischargers and other cities and sewer districts are considering implementing such charges.

Commercial and institutional Automatic Dishwasher Detergents (ADWD)

Commercial and institutional ADWD contributes a statewide average of approximately 6 percent (152,000 kg/yr) of the influent non-ingested phosphorus load discharged into POTWs. As with residential ADWD, SRI states that it is unlikely that detergents with much lower phosphorus contents will be available in the near future.

Water Supply Treatment Chemicals

The influent phosphorus loads to POTWs from water supply chemicals were estimated to average approximately 5.5 percent of the non-ingested phosphorus load to POTWs statewide. Use of phosphorus for sequestration of metals is an aesthetics issue. Iron and manganese are not a health concern, but cause undesirable effects such as undesirable tastes and odors and staining of laundry and household fixtures. On the other hand, corrosion control of lead and copper is a human health issue and is required by law for those communities that do not pass the state corrosion tests. Iron and manganese can be oxidized and removed during treatment thereby eliminating the need for

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 129

sequestration chemicals. Another option would be to substitute alternative water treatment chemicals in place of the phosphorus-based ones.

Inflow and Infiltration

The results of this study indicate that inflow and infiltration contribute a negligible amount of phosphorus to POTW influent. There are reasons to limit inflow and infiltration into sewer systems, such as to prevent hydraulic overloading of treatment facilities, but the reduction of influent phosphorus is not one of them.

Summary

Given that phosphorus in food soils would be very difficult to reduce, and that dentifrices and I & I contribute so little to the influent phosphorus load discharged to POTWs, it is recommended that reduction efforts focus on residential ADWD, commercial and industrial process wastewater, commercial and institutional ADWD, and water treatment chemicals. A summary of the phosphorus load discharged to POTWs and the reduction potential is presented in Table 41.

Table 41
Phosphorus load to POTW
Reduction Potential

Summary		Portion of Total Load to POTW
Total Phosphorus Load Discharged to POTWs	4,468,000 kg/yr	
Human Waste	1,900,000 kg/yr	43
Non-ingested Waste	2,573,000 kg/yr	57
Phosphorus Source	% Reduction to Non- ingested Phosphorus Load (%)	Cumm. Reduction to Non- ingested Phosphorus Load (%)
Residential ADWD reduced to 0	13	13
Commercial ADWD reduced to 0	6	19
Commercial and Industrial reduced by one half	23	42
Total Reduction		42

If residential and commercial/institutional ADWD and water treatment chemicals were eliminated completely, the required commercial and industrial process wastewater reduction is estimated to be more than 64 percent. Given that it will be difficult, at best, to completely eliminate

To: Marvin Hora, Douglas Hall and Mark Tomasek, Minnesota Pollution Control Agency

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 130

commercial/institutional ADWD and water treatment chemicals and reduce the commercial and industrial process wastewater reduction by more than 68 percent, a 50 percent reduction in the total non-ingested phosphorus contribution to POTWs is a very aggressive undertaking.

Reduction of Point Source Phosphorus Export to Waters of the State POTWs

Phosphorus effluent from POTWs represents, on average, more than 80 percent of the total point source loads to waters of the state. The statewide flow weighted average phosphorus effluent concentration was 2.4 mg/L. The largest source of phosphorus is from large (> 1.0 mgd) POTWs and phosphorus reduction efforts should begin at these facilities. As discussed previously, many POTWs have implemented phosphorus removal and others will begin to implement it in the near future. The largest impact is probably phosphorus removal at the MCES' Metro plant, which is required to implement phosphorus removal to 1 mg/L by the end of 2005, but is already achieving the 1 mg/L limit. This facility discharges to the Upper Mississippi River basin and had an average phosphorus effluent concentration for the study period of 2.97 mg/L with an average annual phosphorus load to the basin of approximately 870,000 kg/y. A reduction in the phosphorus concentration to 1 mg/L will result in a reduction of an estimated 581,000 kg of phosphorus per year. Because this one facility accounts for approximately 74 percent of the phosphorus load to the Upper Mississippi River basin and an estimated 40 percent statewide, phosphorus removal at this one facility will have a significant impact on the relative phosphorus loads in this basin and the state. The reduction of the effluent phosphorus concentration to 1 mg/L at this one facility will result in the effluent phosphorus from POTWs being reduced from 80 percent to 74 percent of the point source load to waters of the state.

Privately Owned Wastewater Treatment Systems

Privately owned wastewater treatment systems account for less than 0.5 percent of the total point source phosphorus discharged to the watershed basins and increased phosphorus removal at these facilities will not have a large impact on the statewide point source phosphorus load.

Commercial and Industrial Wastewater Treatment Systems

Commercial and industrial dischargers to the watershed basins constitute approximately 18 percent of the point source phosphorus load. It was not within the scope of this study to categorize the phosphorus loading data by NAICS code number or to determine which industries are the largest

To: Marvin Hora, Douglas Hall and Mark Tomasek, Minnesota Pollution Control Agency

From: Nick Nelson, Dan Nesler, and Teresa Perry

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Point Sources

Date: February 16, 2004

Page: 131

contributors. However, this exercise may bring to light any industrial dischargers that make major contributions to the phosphorus load.

Literature Cited

- Boyle, W.C., Siegrist, R.L., and Saw, C.C. "Treatment of Residential Grey Water with Intermittent Sand Filtration." University of Wisconsin. D. Reidel Publishing Company, 1982.
- Ligman, K., Hutzler, N., and Boyle, W.C.. *Household Wastewater Characterization*. The Journal of the Environmental Engineering Division. ASCE Feb.1974.
- Metcalf and Eddy, Inc. 2001. *Wastewater Engineering Treatment, Disposal and Reuse*. Third Edition. McGraw-Hill Publishing Company. New York.
- Siegrist, R., Witt, M., and Boyle, W.C. "Characteristics of Rural Household Wastewater." *The Journal of the Environmental Engineering Division*. ASCE, June 1976.
- SRI, International. 2002. *Chemical Economics Handbook CEH Marketing Research Report Industrial Phosphates.* (Proprietary Information).
- Strauss, Martin. "Human Waste (Extreta and Wastewater) Reuse." EAW AG/SANDEC, August 2000.

Appendix A Fields used from MPCA Delta Database

Appendix A. Fields used from MPCA Delta Database

Facility

Permit Number

Contact Name

Phone

Address 1

Address 2

City Name

Zip Code

Design Flow

Contact Role

County

First DMR

State

Population Served

Public

SIC Code

SIC Name

Watersheds

Major

Treatment Type

Domestic

Major Watershed

Major Drain

ID

Permit Number

Station ID

Start Date

End Date

Reported Value

Limit ID

Concentration ID

Analyte ID

Datasource ID

units ID

Converted P Value

Permit Number

Station ID

Local Name

Subwatershed Number

Subwatershed

Discharge

Watershed

Major Drain

Latitude

Longitude

Appendix B

Industrial Phosphorus Data Matched to MNPRO Database by NAICS

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
5592	Bridges Medical Center	Ada		MN0021709	100	
5593	Ada Co-op Oil Assn	Ada	0.01	MN0021709	81	325320
5594	Norman, County of	Ada		MN0021709	72	921190
5595	Ada-Borup School District	Ada		MN0021709	67	611110
	Ada, City of	Ada	0.04	MN0021709	29	
	Specialty Feed Products Co	Ada		MN0021709	25	
	Lee Bros. Sales Inc	Ada		MN0021709	24	
	Loretel Systems Inc	Ada		MN0021709	24	
	Norman County Implement Inc	Ada		MN0021709	22	
	Prairie Dental Center	Ada		MN0021709	22	
	Ada Feed & Seed Co	Ada	0.41	MN0021709	21	311900
	Kelly's Chrysler Center Inc	Ada		MN0021709	20	
	Ralph's Food Pride	Ada		MN0021709	19	
	Ada Produce Co	Ada		MN0021709	17	
	Wild Rice Dining Emporium	Ada		MN0021709	16	
	Adams Health Care Ctr	Adams		MN0021261	84	
	Southland High School	Adams		MN0021261	40	
	Schmitz Electric	Adams		MN0021261	15	
	Adams Group Home	Adams		MN0021261	10	
	Adams Farmers Division	Adams		MN0021261	8	
	Farmers St Bk of Adams	Adams		MN0021261	8	
	Wagner's Inc	Adams		MN0021261	8	
	Adams Builders Supply	Adams		MN0021261	6	
	Corky's Corner	Adams		MN0021261	6	
	Adrian Public Schools-ISD #511	Adrian		MNG580001	71	611100
	Arnold Mem. Hospital & Nursing Home	Adrian		MNG580001	65	
	Sailor Plastics Inc	Adrian	0.04	MNG580001	25	
	Adrian Hardware	Adrian		MNG580001	14	
	Adrian, City of	Adrian	0.02	MNG580001	13	
	Adrian Co-op Oil Co	Adrian		MNG580001	12	
	Adrian State Bank	Adrian		MNG580001	11	522100
	Hohn Implement	Adrian		MNG580001	11	423800
	Carl's Farm Store	Adrian		MNG580001	9	
	Southwest Mutual Insurance Co	Adrian		MNG580001	7	
	Judy's test business one	2.01		ISTS	15	
	Riverwood Health Care Ctr	Aitkin		MN0020095	296	
	Aitkin County	Aitkin	0.38	MN0020095	267	921100
	Aitkin Public Schools	Aitkin		MN0020095	190	
	Aicota Health Care Ctr	Aitkin	0.00	MN0020095	120	
	Aitkin Iron Works Inc	Aitkin	0.00	MN0020095	75	
	Woodland Container Inc	Aitkin		MN0020095	75	
	Paulbeck's Super Valu	Aitkin		MN0020095	70	
	Lake States Lumber Inc	Aitkin	0.04	MN0020095	60	
	Intercon 1	Aitkin	0.04	MN0020095	50	
	Mille Lacs Electric Cooperative	Aitkin		MN0020095	47	
	Pamida Discount Ctr	Aitkin		MN0020095	44	
	Aitkin Discount Foods/IGA	Aitkin		MN0020095	42	
	Stern Rubber	Aitkin		MN0020095	40	
	Garrison Disposal	Aitkin		MN0020095	35	
	Cummings Oil, Inc.	Albany		MN0020095	25	
	Albany Area Schools	Albany		MN0020575	253	
	Mother Of Mercy Nursing Home	Albany	0.07	MN0020575	130	
	Albany Area Hospital	Albany		MN0020575	104	
	Kraft Food Group	Albany	5.62	MN0020575	90	
	Stearns Bank N.A.	Albany	0.05	MN0020575	63	
	Master Mark Plastic Products	Albany		MN0020575	60	
	Ramler Trucking	Albany	1.71	MN0020575	33	
	Wood Shop Of Avon Inc	Albany		MN0020575	25	
	Stearns County Publishing Inc	Albany		MN0020575	15	
	Albany Mutual Telephone Assn	Albany	2 = :	MN0020575	12	
	Albert Lea Medical Center	Albert Lea	0.74	MN0041092	1141	622100
	Streator Store Fixtures	Albert Lea		MN0041092	500	
	Albert Lea Public School Dist. #241	Albert Lea		MN0041092	480	
	Good Samaritan Center	Albert Lea		MN0041092	300	
	St John's Lutheran Home	Albert Lea	2.55	MN0041092	295	
	Lou-Rich Machine Tool	Albert Lea	0.00	MN0041092	199	
	Ventura Foods LLC	Albert Lea		MN0041092	188	
5661	Alliant Energy	Albert Lea		MN0041092	150	221100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
	Progress Casting Group Inc	Albert Lea		MN0041092	133	
	Mrs. Gerry's Kitchen, Inc.	Albert Lea	5.35	MN0041092	115	
	Larson Contracting	Albert Lea		MN0041092	110	
	Minnesota Corrugated Box Inc	Albert Lea		MN0041092	106	
	Thorne Crest Retirement	Albert Lea		MN0041092	98	
	Alamco Wood Products, Inc.	Albert Lea		MN0041092	90	
	Outlets At Albertville	Albertville		MN0050954	800	
	ISD #885- St. Michael/Albertville	Albertville		MN0050954	275	
	HGP	Albertville		MN0050954	135	
	Truss Manufacturing Company	Albertville		MN0050954	50	
	Land of Lakes Tile & Stone	Albertville		MN0050954	40	
	Fraser Steel Inc	Albertville		MN0050954	32	
	DJ' S Heating & Airconditioning	Albertville		MN0050954	20	
	Don's Bus Service Omann Brothers	Albertville Albertville		MN0050954	20	
			0.01	MN0050954		
	DJ'S Home Care Center	Albertville		MN0050954	14	
	Radiation Product, Inc.	Albertville	0.40	MN0050954	14	
	Franklin Outdoor Advertising Co.	Albertville		MN0050954	12	
	Sunrise Plumbing	Albertville		MN0050954	12	
	Tele-Ad Co.	Albertville	0.01	MN0050954	10	
	Eull Concrete Products, Co.	Albertville	0.01	MN0050954	9	
	Alden-Conger Public Schools	Alden		MN0020605	46	
	Petro Pumper	Alden		MN0020605	11	
	Alden Co-op Elevator Co	Alden		MN0020605	10	
	Hemmingsen's Transfer	Alden		MN0020605	10	
	Main Street Bar & Grill	Alden		MN0020605	8	
	American Legion	Alden		MN0020605	6	
	Alden Concrete Products	Alden	0.04	MN0020605	5	
	Alden Medical Ctr	Alden	0.01	MN0020605	5	
	Elaine's Day Care	Alden	0.00	MN0020605	5	
	Old Reliable Transportation	Alden	0.26	MN0020605	5	
	Alden Advance	Alden		MN0020605	4	
	Alden Oil Co	Alden		MN0020605	4	
	Frantum Sanitation	Alden		MN0020605	4	
	Redeemer Lutheran Church	Alden		MN0020605	4	
	Alden Dental Office	Alden	0.40	MN0020605	3	
	Douglas County Hospital	Alexandria	0.43	MN0040738	660	
	Alexandria Public Schools-ISD#206	Alexandria		MN0040738	625	
	Douglas Machine	Alexandria	7.85	MN0040738	467	333993
	Douglas, County of	Alexandria	0.40	MN0040738	350	
	Alexandria Extrusion Co	Alexandria		MN0040738	286	
	Tastefully Simple	Alexandria	1.47	MN0040738	276	
	Knute Nelson Memorial Home	Alexandria		MN0040738	247	623110
	Arrowwood Resort and Conference Center	Alexandria		MN0040738	240	
	Rural Cellular Corp	Alexandria		MN0040738	240	
	Central Specialties	Alexandria	0.07	MN0040738	235	
	Alexandria Clinic	Alexandria	0.27	MN0040738	199	
	Donnelly Manufacturing Co.	Alexandria		MN0040738	195	
	Alexandria Technical College	Alexandria	0.50	MN0040738	191	
	Brenton Engineering Co	Alexandria	2.59	MN0040738	154	
	Annandale Public Schools-ISD #876	Annandale		MN0021229	233	
	Annandale Care Ctr	Annandale		MN0021229	161	623100
	Malco Products Inc	Annandale		MN0021229	150	
	RM Johnson Co	Annandale		MN0021229	75	
	Market Place II	Annandale		MN0021229	62	
	Lakedale Telephone Co	Annandale		MN0021229	50	
	M & M Express Inc	Annandale		MN0021229	45	
	Truk-Mate Vans Inc	Annandale		MN0021229	45	
	Mid Minnesota Hot Mix	Annandale		MN0021229	40	
	Annandale St Bk	Annandale		MN0021229	34	
	Annandale Sod & Contracting	Annandale	0.10	MN0021229	30	
	RR Howell Co	Annandale	0.13	MN0021229	30	
	Minnesota Meat Masters	Annandale		MN0021229	25	
	Lundeen Brothers Inc	Annandale		MN0021229	21	
	Country Chevrolet	Annandale		MN0021229	20	
	Anoka, County of	St. Paul		MN0029815	1900	
	Hoffman Engineering Co	St. Paul	6.88	MN0029815	1000	
5732	Lund International Holdings	St. Paul		MN0029815	250	336300

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
5733	Anoka-Hennepin Technical College	St. Paul		MN0029815	230	
5734	Anoka, City of	St. Paul	0.28	MN0029815	202	
5735	Rainbow Signs	St. Paul		MN0029815	180	339900
5736	Copper Sales	St. Paul		MN0029815	170	423500
5737	Lakeland Tool & Engineering	St. Paul	0.12	MN0029815	150	325200
5738	Rural Community Insurance Svcs	St. Paul		MN0029815	150	524100
5739	West Publishing	St. Paul		MN0029815	125	511100
	First Team Sports	St. Paul		MN0029815	100	
	Royal Engineering & Mfg	St. Paul	0.15	MN0029815	46	
	Carbide Tool Services Inc	St. Paul		MN0029815	45	
	Prairie Correctional Facility	Appleton		MN0021890	350	
	Appleton Municipal Hospital	Appleton	0.18	MN0021890	148	
	Econar Energy Systems	Appleton		MN0021890	25	
	Del Dee Foods	Appleton		MN0021890	20	
	Otter Tail Power Co		3.10	MN0021890	10	
	I .	Appleton				
	Pioneer Public TV	Appleton		MN0021890	25	
	Otter Tail Power Co	Appleton		MN0021890	10	
5757	Syntegra	St. Paul		MN0029815	750	
	MSI Insurance	St. Paul		MN0029815	640	
5759	Manufacturer's Services	St. Paul		MN0029815	600	
5760	Fair Isaac	St. Paul		MN0029815	500	54160
5761	Presbyterian Homes-Johanna Shores	St. Paul		MN0029815	500	62390
5762	Sims Deltec	St. Paul	0.39	MN0029815	500	334500
5763	Argyle Public School Dist. #2856	Argyle		MN0052451	46	61110
	Marshall County Group Home	Argyle		MN0052451	19	
	Rivard's Quality Seeds	Argyle		MN0052451	19	
	Farmer Dell Restaurant	Argyle		MN0052451	16	
	Argyle Building Center	Argyle		MN0052451	10	
	Argyle State Bank	Argyle		MN0052451	10	
	Sundby's Cafe	Argyle		MN0052451	10	
	Argyle Co-op Warehouse Assn	Argyle		MN0052451	8	
	Sorenson Construction	Argyle		MN0052451	8	
	Cassie Company Mfg	Argyle		MN0052451	7	
5773	Argyle, City of	Argyle	0.01	MN0052451	6	92110
5774	Northstar Services	Argyle		MN0052451	6	81230
5775	Borowicz Construction	Argyle		MN0052451	5	23620
5776	Valley Best Potatoes Inc	Argyle		MN0052451	5	11120
5777	Hammerback Welding	Argyle	0.02	MN0052451	3	33290
	ACGC North Elementray	Atwater		MN0022659	54	
	Jennie-O Feed Mill	Atwater		MN0022659	27	31110
	Presbyterian Family Services	Atwater		MN0022659	23	
	Holm Brothers Plumbling & Heating	Atwater		MN0022659	21	23820
	St. Francis House	Atwater		MN0022659	17	
	American Industrial Refrigeration	Atwater		MN0022659	15	
	Discount Grain	Atwater		MN0022659	15	
	Kandiyohi DAC	Atwater		MN0022659	13	
	Atwater State Bank	Atwater		MN0022659	12	
5787	Cenral Lake Cooperative	Atwater		MN0022659	12	
5788	Audubon Engineering	Audubon		MN0022675	250	33230
5789	Audubon, City of	Audubon	0.00	MN0022675	250	33270
5790	Audubon Co-Op Elevator Association	Audubon		MN0022675	14	42490
5791	Mesabi East Schools	Aurora		MN0020494	167	61110
5792	White Community Hospital	Aurora	0.09	MN0020494	144	
	Mesabi Electronics Inc	Aurora	0.00	MN0020494	40	
	US Forest Service	Aurora		MN0020494	21	
	Zup's Supermarket	Aurora		MN0020494	21	
		Aurora	0.00			
	East Range Clinics Ltd			MN0020494	12	
	Quality Pork Processors	Austin		MN0022683	725	
	Austin Medical Center	Austin	0.95	MN0022683	700	
	Austin Public Schools - ISD #492	Austin		MN0022683	550	
	Austin, City of	Austin		MN0022683	260	
	Mower, County of	Austin	0.33	MN0022683	235	
5804	St Mark's Lutheran Home	Austin		MN0022683	230	62310
	Riverland Community/Technical College	Austin		MN0022683	210	61130
	Complete Packaging Service Inc	Austin		MN0022683	180	
	Weyerhaeuser Co	Austin		MN0022683	159	
	REM - Minnesota	Austin		MN0022683	125	
5808						

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
5810	Burr Oak Manor	Austin		MN0022683	110	
5811	McFarland Truck Lines	Austin		MN0022683	110	488400
5812	Gerard of Minnesota	Austin		MN0022683	85	624200
5813	Cedar Valley Services	Austin		MN0022683	78	624300
	KAAL Television	Austin		MN0022683	62	
	Robinson Business Forms	Austin		MN0022683	55	
	Mower House Color Graphics	Austin		MN0022683	50	
	Avoca Municipal Liquor	Slayton		MN0022004	6	
	Columbia Gear Div	Avon		MN0047325	210	
	D H Blattner & Sons Inc	Avon		MN0047325	59	
	Avon Elementary School	Avon		MN0047325	47	611100
	Lumber One Inc	Avon		MN0047325	41	
	NOVA Fabricating Inc	Avon	0.00	MN0047325	35	
	Avon St Bk	Avon		MN0047325	20	
	Budde Trucking	Avon	0.36	MN0047325	7	
	Avon Elevator	Avon		MN0047325	5	
	Northwest Rule Die	Avon	0.00	MN0047325	5	
	Northshore Mining Co	Babbitt		MN0020656	165	
	Babbitt School	Babbitt		MN0020656	61	611100
	Kasson Manufacturing Inc	Babbitt		MN0020656	32	
	Zupancich Brothers	Babbitt		MN0020656	31	445100
	Babbitt, City of	Babbitt	0.04	MN0020656	26	
	Rollins Resources	Babbitt		MN0020656	25	
	Babbitt Short Stop	Babbitt		MN0020656	19	
	Babbitt Bar & Bowling Alley	Babbitt		MN0020656	17	
	Blomberg & Sons	Babbitt		MN0020656	15	
	Benville Service	Babbitt		MN0020656	12	
	Babbitt Cafe	Babbitt		MN0020656	10	
	Babbitt Steelworkers Credit Union	Babbitt		MN0020656	5	
	Babbitt Drug	Babbitt		MN0020656	4	
	First Bank Babbitt	Babbitt		MN0020656	4	
	State Farm Ins - Babbitt	Babbitt		MN0020656	4	
	His 'N Hers	Babbitt		MN0020656	3	
	Shear Harmony	Babbitt	0.01	MN0020656	3	
	Billie's	Babbitt		MN0020656	2	
	Culbert Realty	Babbitt		MN0020656	2	
	Jean's Hair Shoppe	Babbitt	0.00	MN0020656	1	
	Backus Elementary School			ISTS	42	
	Bruce's Contracting			ISTS	30	
	Eveland's Inc			ISTS	27	336200
	Backus Corner Store & Restaurant		9.45	ISTS	25	
	Foot Hills Saloon & Restaurant			ISTS	25	
	Godfrey's Super Valu			ISTS	25	
	Red Pine Log Homes			ISTS	10	
	US Post Office			ISTS	9	
	Cass Co Land Dept			ISTS	8	
	First NB of Walker at Backus			ISTS	6	
	MN Dept of Natural Resources			ISTS	6	
	Backus Bar		0.01	ISTS	5	
	Backus, City of		0.01	ISTS	5	
	Backus Lumber & Supply			ISTS	4	
	Beckler Masonry			ISTS	4	
	Chitwood Oil Co		0.17	ISTS	4	
	Backus Locker			ISTS	3	
	Cass County HRA Clearwater, County of	Raglov		ISTS MN0022691	3	
		Bagley		MN0022691	400	
	Team Industries-Bagley Bagley Public Schools-ISD #162	Bagley	1.54	MN0022691 MN0022691	155	
	Gesell Concrete Products Inc	Bagley		MN0022691	45	
	Kubiak's Family Foods	Bagley		MN0022691	45	
	Bagley Hardwood Products Inc	Bagley		MN0022691		
	Galen's Super Valu	Bagley		MN0022691	37	
	First NB	Bagley		MN0022691	35 24	
	Bagley, City of	Bagley	0.00			
	Clearwater-Polk Electric Coop Inc	Bagley	0.03	MN0022691	21	
	·	Bagley		MN0022691	16	
	Bagley Dental	Bagley		MN0022691	12	
	Hillside Lumber, Inc. Bagley Mercantile Hardware Hank	Bagley		MN0022691 MN0022691	12	
50//	Dayley Melcalille Hallwale Hallk	Bagley		IVIINUUZZOGI	11	444100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
5878	Larson Lumber Co	Bagley		MN0022691	10	423300
5879	US Post Office	Bagley		MN0022691	10	491100
5880	Galli Furniture & Appliance	Bagley		MN0022691	7	442100
5881	Barnesville Good Samaritan Ctr	Barnesville		MN0022501	101	623100
5882	Barnesville Public School District	Barnesville		MN0022501	100	611100
5883	Barnesville, City of	Barnesville	0.05	MN0022501	33	921100
	Dean's Bulk Oil Services	Barnesville		MN0022501	29	454300
	Barnesville Super Value	Barnesville		MN0022501	25	
	Mike Layton Co.	Barnesville	0.70	MN0022501	15	
	Cenex General Store	Barnesville		MN0022501	14	
	Barnesville Area Clinic	Barnesville		MN0022501	13	
	Wells Fargo	Barnesville	0.02	MN0022501	13	
	Midwest Bank	Barnesville		MN0022501	8	
	Lakewood Health Care Ctr	Baudette	0.08	MN0022501	130	
	Baudette Public Schools-ISD #390	Baudette	0.00	MN0029599	105	
			0.10			
	Lake of the Woods, County of	Baudette		MN0029599	74	
	Baudette, City of	Baudette	0.05	MN0029599	36	
	Erickson Timber Products	Baudette		MN0029599	21	
	North Star Electric Co-op	Baudette		MN0029599	20	
	Northern National Bank	Baudette		MN0029599	19	
	Fleet Farm	Brainerd		MN0049328	309	
	Wal-Mart	Brainerd		MN0049328	300	
	Nor-Son Inc	Brainerd		MN0049328	177	
	MN Dept of Transportation	Brainerd		MN0049328	175	
	Good Neighbor Home Health Care	Brainerd		MN0049328	150	
5904	Target	Brainerd		MN0049328	147	452100
5905	Menards	Brainerd		MN0049328	136	444100
5906	Home Depot	Brainerd		MN0049328	125	444100
5907	Cub Foods	Brainerd		MN0049328	120	445100
5908	Crow Wing Power	Brainerd		MN0049328	107	423600
5909	Super One	Brainerd		MN0049328	104	445100
5910	Reichert Enterprises Inc	Brainerd		MN0049328	100	485400
	Widseth Smith Nolting & Assoc	Brainerd		MN0049328	60	541300
	K Mart	Brainerd		MN0049328	58	
	Infotel Communications/Integra	Brainerd		MN0049328	50	
	Bonanza Restaurant	Brainerd		MN0049328	36	
	Viking Coke	Brainerd	2.36	MN0049328	35	
	First St Bk of Bayport	St. Paul	2.00	MN0029998	45	
	Bayport Marina	St. Paul		MN0029998	20	
	Bayport Printing	St. Paul		MN0029998	17	
	Bayport, City of	St. Paul	0.02	MN0029998	13	
	Beardsley Public School Dist #57	St. Faui	0.02			
				ISTS ISTS	26	
	Security St Bk of Beardsley				8	
	Beardsley Farmers Elevator			ISTS	6	
	Tri-County Cooperative			ISTS	3	
	Cove Point	Beaver Bay		MN0040754	20	
	Holiday Station Store	Beaver Bay		MN0040754	12	
	Beaver Bay Inn & Motel	Beaver Bay		MN0040754	11	
5929	Northern Lights Cafe	Beaver Bay		MN0040754	10	
5930	Beaver Bay Liquor Store	Beaver Bay		MN0040754	7	445300
	Beaver Bay Mobil Mart & Deli	Beaver Bay		MN0040754	6	447100
5932	Beaver Bay Sports Inc	Beaver Bay		MN0040754	4	451100
5933	Beaver River Deli	Beaver Bay		MN0040754	4	722100
5934	Computerized Creation	Beaver Bay		MN0040754	4	323100
5935	Momma's Table	Beaver Bay		MN0040754	4	722100
5936	Superior Auto	Beaver Bay		MN0040754	4	811100
	Bay Antique	Beaver Bay		MN0040754	3	453300
	Beaver Bay Agate	Beaver Bay		MN0040754	3	453200
	The Cedar Chest	Beaver Bay		MN0040754	3	
	Beaver Bay Electric	Beaver Bay		MN0040754	2	
	Becker Furniture World	Becker		MN0025666	255	
	Becker Public Schools	Becker		MN0025666	220	
	Becker, City of	Becker	0.15	MN0025666	104	
	Liberty Paper Inc.		0.15	MN0025666	98	
		Becker				
	Becker Truss	Becker	0.44	MN0025666	66	
	T.J. Potter Trucking	Becker	3.41	MN0025666	66	
	Jubilee Foods	Becker		MN0025666	52	
5949	Darter Plastics	Becker	0.04	MN0025666	50	325200

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
	Country Lumber	Becker		MN0025666	33	
5952	Roseville Greenhouse Inc	Becker		MN0025666	26	332300
5953	Structural Buildings Inc	Becker		MN0025666	26	236200
5954	Plymouth Foam Products	Becker		MN0025666	25	444100
5955	Belgrade Nursing Home			MN0051381	150	623100
5956	Bayer Built Woodwork			MN0051381	120	321900
	Belgrade Schools (BBE)			MN0051381	107	611100
	Menards			MN0051381	50	
	Belgrade Coop Assn			MN0051381	28	
	Belgrade Steel Tank Inc			MN0051381	25	
	North American St Bk			MN0051381	21	522100
	Belgrade Milling Co			MN0051381	9	
	Belgrade Grain & Feed	5 !! 5! :		MN0051381	6	
	Belle Plaine Lutheran Home	Belle Plaine		MN0022772	276	
	Belle Plaine Public Schools-ISD #716	Belle Plaine		MN0022772	90	
	Emma Krumbee's Family Restaurant	Belle Plaine		MN0022772	85	
	Wendt Laboratories	Belle Plaine		MN0022772	30	
	Huber's SuperValu	Belle Plaine Belle Plaine		MN0022772	25	445100 522100
	State Bk of Belle Plaine	Belle Plaine		MN0022772	21	
	Kluver Mechanical Construction	Belle Plaine		MN0022772 MN0022772	20	
	Valley View Golf Club				20	
	Belle Plaine Co-op	Belle Plaine Belle Plaine		MN0022772 MN0022772	18	493100 441100
	Keup Motors				17	
	Seimon Implement Belle Plaine, City of	Belle Plaine	0.00	MN0022772	17	423800
		Belle Plaine	0.02	MN0022772 MN0022772	15	
	Hardee's	Belle Plaine			15	
	Subway Belle Plaine Clinic	Belle Plaine Belle Plaine	0.02	MN0022772 MN0022772	13	
	Creative Tool & Engineering				12	
	Kyes Automatic Products	Belle Plaine Belle Plaine		MN0022772	11	332700
	Prairie Farm Supply	Belle Plaine	0.00	MN0022772 MN0022772	11	424900
	Westerman Lumber	Belle Plaine		MN0022772	10	
	Parkview Home	Belview		MNG580003	95	
	Belview Liquor Store	Belview		MNG580003	14	
	Parkwood Apartments	Belview		MNG580003	10	
	MinnWest Bank	Belview		MNG580003	7	
	North Country Health Services	Bemidji	0.55	MN0022462	850	
	Bemidji Public School	Bemidji	0.00	MN0022462	810	
	Bemidji State University	Bemidji		MN0022462	550	
	Bemidji Clinic/ Merit Care	Bemidji		MN0022462	402	
	Beltrami, County of	Bemidji	0.51	MN0022462	360	
	Potlatch Corp	Bemidji	0.01	MN0022462	326	
	Johanneson's Incorporated	Bemidji		MN0022462	282	
	Nortech Systems Inc	Bemidji	0.26	MN0022462	229	
	Northstar Materials Inc.	Bemidji	0.20	MN0022462	190	
	Havenwood Care Center	Bemidji		MN0022462	150	
	Northwood Panelboard	Bemidji		MN0022462	141	423300
	Episcopal Community Services	Bemidji		MN0022462	110	
	Northwest Juvenile Training Center	Bemidji		MN0022462	100	
	Synergy Solutions	Bemidji		MN0022462	100	
	Bemidji, City of	Bemidji	0.13	MN0022462	93	
	Department of Natural Resources-Bemidji	Bemidji	1110	MN0022462	90	
	CNH	Benson		MN0020036	300	
	Benson Public Schools	Benson		MN0020036	180	
	Red Ball LLC	Benson		MN0020036	170	
	Swift County-Benson Hospital	Benson	0.12	MN0020036	98	
	Meadow Lane Healthcare Ctr	Benson		MN0020036	83	
	Future Products Inc	Benson		MN0020036	82	
6009	Custom Roto Mold	Benson		MN0020036	69	
	Chippewa Valley Ethanol Co	Benson		MN0020036	35	
	Lorenz Manufacturing Co	Benson		MN0020036	30	
	Ron Carlson Machine	Benson	0.00	MN0020036	9	
	Monitor Printing	Benson		MN0020036	6	
	Page & Hill Forest Products	Big Falls		MN0022802	50	
	Willow Creek Furniture	Big Falls		MN0022802	15	
6016	671 Cafe	Big Falls		MN0022802	10	722110
6017	City of Big Falls Liquor Store	Big Falls		MN0022802	10	722410
	North Itasca Health Care Center	Big Falls		MN0022802	7	621111

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
	ISD No 727	Big Lake		MN0041076	230	
6020	Remmele Engineering Inc	Big Lake	0.00	MN0041076	185	332700
6021	Connections, etc. (fka Sherburne Tele. Sys. Inc.)	Big Lake		MN0041076	63	
6022	City of Big Lake	Big Lake	0.04	MN0041076	31	921100
6023	Options, Inc.	Big Lake		MN0041076	30	624300
6024	Preferred Bank	Big Lake		MN0041076	23	522100
	Steven's Super Value	Big Lake		MN0041076	21	445100
6026	Cargill/Nutrena Feeds	Big Lake		MN0041076	17	424900
	Shade Tree	Big Lake		MN0041076	17	451100
	Big Lake Lumber Center	Big Lake		MN0041076	14	
	Paragon Store Fixtures, Inc.	Big Lake		MN0041076	8	
	The Stampin Place	Big Lake		MN0041076	7	
	West Sherburne Tribune	Big Lake		MN0041076	7	
	Audio Communications, Inc.	Big Lake		MN0041076	6	
	Madsen Boatworks, Inc.	Big Lake		MN0041076	6	
	Perf-Form Products, Inc.	Big Lake		MN0041076	5	
	Big Lake Hardware Hank	Big Lake		MN0041076	4	
	Carousell Works, Inc.	Big Lake	0.00	MN0041076	2	
	L & S Tool and Design	Big Lake	0.00	MN0041076	2	
	Big Lake Machine	Big Lake		MN0041076	1	811300
	Faith Christian High School			ISTS	12	
	Russell Drainage Co.			ISTS	5	
	United Co-op Elevator			ISTS	5	
	Bigelow Post Office		0.00	ISTS	4	
	City of Bigelow	Diefede	0.00	ISTS	3	
	The Bergquist Co	Bigfork		MN0022811	204	
	Bigfork Public Schools - Dist #318	Bigfork		MN0022811	75	
	Rajala Mill Co	Bigfork		MN0022811	55	
	Kocian's IGA North Itasca Electric Coop	Bigfork		MN0022811	25 20	
	First St Bk of Big Fork	Bigfork Bigfork		MN0022811 MN0022811	11	522100
	BOLD School District	Bird Island		MN0022811	150	
	Renville County Community Residence	Bird Island		MN0022829	60	
	Bob's Country Market/Bottle Shoppe	Bird Island		MN0022829	30	
	St Mary's School	Bird Island		MN0022829	26	
	Glesener's Inc	Bird Island		MN0022829	25	
	Athmann's Inn/Island Ballroom	Bird Island		MN0022829	24	
	Island Manor Healthcare	Bird Island		MN0022829	22	
	Rural Computer Consultants	Bird Island		MN0022829	17	
	State Bank of Bird Island	Bird Island		MN0022829	15	
	Bird Island Handi Stop	Bird Island		MN0022829	13	
	The Learning Funhouse, Inc.	Bird Island		MN0022829	12	
	George Paur Insurance Agency	Bird Island		MN0022829	11	524210
	Greater Minnesota Family Services	Bird Island		MN0022829	10	
	Bird Island Soil Service	Bird Island		MN0022829	9	
	Rob Saunders Accounting	Bird Island		MN0022829	8	
	The Broaster	Bird Island		MN0022829	8	722110
	Health Enhancement	Bird Island		MN0022829	7	
	Kibble Equipment	Bird Island		MN0022829	7	
	Bob's Body Shop	Bird Island		MN0022829	6	
6070	George Plass Sales & Service	Bird Island		MN0022829	6	423820
6071	Bird Island Farmer's Elevator	Bird Island		MN0022829	4	
6072	Electric Motor Shop	Bird Island		MN0022829	4	
6073	Giants Ridge Recreation Area	Biwabik		MN0053279	30	721100
6074	Anderberg Communications	Biwabik		MN0053279	22	517200
6075	Merritt House	Biwabik		MN0053279	12	
	Biwabik ShortStop	Biwabik		MN0053279	10	
	Edwards Spur	Biwabik		MN0053279	10	
	Jamboree Foods	Biwabik		MN0053279	10	
	Paul J Stark DDS	Biwabik		MN0053279	8	
	SalznWalz Restaurant	Biwabik		MN0053279	7	
	Alden's Cafe	Biwabik		MN0053279	6	
	Biwabik Lodge	Biwabik		MN0053279	5	
	Northern Lights Surveying & Mapping	Biwabik		MN0053279	5	
	Poor Gary's Pizza	Biwabik		MN0053279	5	
	Vi's Pizza	Biwabik		MN0053279	5	
	Biwabik Times	Biwabik		MN0053279	4	
6087	Herrmann Electric	Biwabik		MN0053279	4	238200

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
	Biwabik Motel	Biwabik		MN0053279	3	
	Black Diamond Chalet & Lounge	Biwabik		MN0053279	3	
	Kenny K's	Biwabik		MN0053279	3	
	Mountain Iron First State Bk - Biwabik	Biwabik		MN0053279	3	
	US Post Office	Biwabik		MN0053279	3	
	Anderson Fabrics Inc			ISTS	275	
	Blackduck Public Schools			ISTS	137	
	Northern Pines Good Samaritan			ISTS	85	
	Blackduck District Ranger Station			ISTS ISTS	30	
	Palmer Nursery Blackduck, City of		0.00	ISTS	20 15	
	Blackduck Co-op Ag Service		0.02	ISTS	7	
	DNR District Forestry Office			ISTS	6	
	General Pattern	St. Paul	1 17	MN0029815	170	
	National Sports Center	St. Paul	1.17	MN0029815	137	
	Carley Foundry Inc	St. Paul		MN0029815	130	
	Parker Hannifin Corp.	St. Paul		MN0029815	102	
	Advance Tool Inc	St. Paul	0.00	MN0029815	100	
	Excel Dental Studios, Inc.	St. Paul		MN0029815	90	
	Artistic Screening	St. Paul	2.00	MN0029815	80	
	Sunrise Packaging, Inc	St. Paul	0.06	MN0029815	70	
	Earle M. Jorgensen Co.	St. Paul	0.00	MN0029815	68	
	Turfco Manufacturing Inc	St. Paul		MN0029815	65	
	Green Lights Recycling, Inc.	St. Paul		MN0029815	60	
	Overnite Transport	St. Paul		MN0029815	53	
	Cemstone Products Co.	St. Paul		MN0029815	50	
	Diesel Cast Welding Inc	St. Paul		MN0029815	50	
	Security Products Co.	St. Paul	0.34	MN0029815	50	
	BGK Finishing Systems Inc	St. Paul	0.04	MN0029815	45	
	Riverside Color Corp	St. Paul		MN0029815	35	
	Blooming Prairie School Dist #756	Blooming Prairie		MN0023013	120	
	Prairie Manor Nursing Home	Blooming Prairie		MN0021822	110	
	Elf Atochem North America Inc	Blooming Prairie	0.28	MN0021822	54	
	Tandem Products Inc	Blooming Prairie	0.20	MN0021822	50	
	Central Coop Oil	Blooming Prairie		MN0021822	34	
	Metal Services	Blooming Prairie	0.16	MN0021822	23	
	Main Street Dental	Blooming Prairie	00	MN0021822	14	
	Lysne Construction Inc	Blooming Prairie		MN0021822	12	
	GTE	Blooming Prairie		MN0021822	10	
	SCSI	Blooming Prairie	0.01	MN0021822	10	
6133	Ceridian Corp	St. Paul		MN0030007	1900	334100
6134	Bloomington Public Schools	St. Paul		MN0030007	1450	611100
	Health Partners Inc	St. Paul		MN0030007	1352	524100
6137	Holiday Companies	St. Paul		MN0030007	918	447100
6139	Donaldson Companies Inc	St. Paul		MN0030007	821	333200
6140	VTC Inc	St. Paul		MN0030007	550	334400
6141	Bloomington, City of	St. Paul	0.73	MN0030007	519	921100
6142	Normandale Community College	St. Paul		MN0030007	450	
6143	Fourth Shift Corp	St. Paul		MN0030007	420	541500
6144	Jostens	St. Paul		MN0030007	359	
6146	St Paul Fire & Marine Ins	St. Paul		MN0030007	350	524100
6147	Health Systems Integration Inc	St. Paul		MN0030007	335	
6150	Northwest Racquet, Swim & Health	St. Paul		MN0030007	50	713900
6152	Telex Communications Inc	Blue Earth		MN0020532	300	334300
6153	St Lukes Lutheran Care Ctr	Blue Earth		MN0020532	250	623100
6154	Blue Earth Public Schools	Blue Earth		MN0020532	199	611100
6155	Custom Food Processors	Blue Earth	5.07	MN0020532	185	
6156	United Hospital-Blue Earth	Blue Earth	0.11	MN0020532	166	
	Wal-Mart	Blue Earth		MN0020532	85	
	Tafco Equipment Co	Blue Earth		MN0020532	60	
6159	Blue Earth Valley Telephone Co	Blue Earth		MN0020532	43	517100
6160	Hybrid Microcircuits Inc	Blue Earth		MN0020532	30	
6161	Winnebago Mfg Co	Blue Earth		MN0020532	30	811300
6163	Central Graphics Inc	Blue Earth		MN0020532	26	323100
6164	Custom Built Pneumatics	Blue Earth		MN0020532	10	423800
6165	Papa D's Pizza Wholesale	Blue Earth	0.46	MN0020532	10	311400
6166	East Central Energy	Braham		MN0022870	160	221100
6167	Braham Area School District #314	Braham		MN0022870	133	611100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
6168	Five County Mental Health Center	Braham		MN0022870	54	621300
6169	Aurelius Manufacturing Co	Braham		MN0022870	39	
6170	Ercoa Industries	Braham		MN0022870	30	
6171	Lepinski Pallet	Braham		MN0022870	25	321900
6172	Design Engineering & Mfg Inc	Braham		MN0022870	17	332300
6173	Premier Products	Braham		MN0022870	16	326200
6174	Rural American Bank-Braham	Braham		MN0022870	16	522100
6175	Genesis Technologies/YouBet!Net	Braham		MN0022870	11	517200
	Braham Food Locker	Braham	0.57	MN0022870	10	311600
6177	Braham Monument Co	Braham		MN0022870	10	327900
	Braham Step Company	Braham		MN0022870	10	
	Brainerd Public Schools-#181	Brainerd		MN0049328	950	
	Brainerd Regional Human Svc Ctr	Brainerd		MN0049328	677	
	Maddens, Inc.	Brainerd		MN0049328	500	
	Crow Wing, County of	Brainerd	0.62	MN0049328	450	
	J		0.03			
	Bisys	Brainerd		MN0049328	404	
	Bethany Good Samaritan Village	Brainerd		MN0049328	325	
	Central Lakes Comm College- Brainerd	Brainerd		MN0049328	313	
	Brainerd Medical Ctr	Brainerd	0.39	MN0049328	285	
6188	Anderson Bros Construction Co	Brainerd		MN0049328	160	
6189	Keystone Automotive Industries, INC	Brainerd	1.74	MN0049328	157	33280
6190	Woodland Good Samaritan Village	Brainerd		MN0049328	150	62330
6191	Brainerd, City of	Brainerd	0.21	MN0049328	148	92110
	Bang Printing Co	Brainerd		MN0049328	145	32310
	A-Tek Inc	Brainerd	0.14	MN0049328	125	
	Burlington Northern/Santa Fe Railroad	Brainerd		MN0049328	125	
	Missota	Brainerd	0.00	MN0049328	120	
	Cub Foods	Brainerd		MN0049328	110	
	Herberger's	Brainerd		MN0049328	105	
	Brainerd Daily Dispatch	Brainerd		MN0049328	101	51110
	US Post Office	Brainerd		MN0049328	80	
	Dept. of Natural Resources	Brainerd		MN0049328	77	92410
6201	St Francis Medical Ctr/Home/Appletree Crt.	Breckenridge		MN0022900	397	62310
6202	Breckenridge Schools-ISD #846	Breckenridge		MN0022900	143	61110
6203	Red River Valley & Western Railroad	Breckenridge		MN0022900	95	33650
6204	Wilkin, County of	Breckenridge	0.09	MN0022900	65	92110
	Sigco Sun Products Inc	Breckenridge	1.01	MN0022900	52	31190
	Breckenridge, City of	Breckenridge		MN0022900	45	
	Bremer Bank	Breckenridge		MN0022900	32	
	Minn-Kota Ag Products	Breckenridge		MN0022900	30	
	Breezy Point Resort	Brookermage		MN0047457	205	
	Narvson Mgmt			MN0047457	59	
	Commander Bar			MN0047457	20	
	I.					
	Breezy Oasis			MN0047457	19	
	Breezy Point, City of		0.02	MN0047457	12	
	Primetime Charlies			MN0047457	12	
6215	Pelican Square			MN0047457	10	42490
6216	SVRLB School	Brewster		MN0021750	30	
6217	First National Bank of Brewster	Brewster		MN0021750	6	52210
	Silver Bucket Bar Inc.	Brewster		MN0021750	4	
6219	City of Brewster	Brewster	0.00	MN0021750	3	
	Brewster Agency, Inc.	Brewster		MN0021750	2	
	Brewster Lumber Co.	Brewster		MN0021750	2	
	Bush Pioneer Seed	Brewster		MN0021750	2	
	Silvers's Computer Shop	Brewster		MN0021750	2	
	Brewster Electric	Brewster		MN0021750	1	
	Brewster Legion	Brewster		MN0021750	1	
	Jim's Standard Station	Brewster		MN0021750	1	
	Pat's Welding & Repair Inc	Brewster		MN0021750	1	
	Owatonna Canning	Bricelyn	1.16	MN0022918	25	
6229	State Bk of Bricelyn	Bricelyn		MN0022918	20	52210
	USC Elementary School	Bricelyn		MN0022918	16	
	Cannon Valley Marketing	Bricelyn		MN0022918	15	
	Bricelyn Pub	Bricelyn		MN0022918	10	
	Bud's Cafe	Bricelyn		MN0022918	10	
	Chuck's Food Store	Bricelyn		MN0022918	10	
	Wantonwan Farm Service	Bricelyn		MN0022918	9	
6236	Cannon Valley Telecom Inc	Bricelyn		MN0022918	8	51710

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
6237	American Legion	Bricelyn		MN0022918	6	813400
6238	Glenn's Cenex	Bricelyn		MN0022918	5	424900
6239	Main Street Clinic	Bricelyn	0.01	MN0022918	5	621100
6240	Bruss-Heitner Funeral Home	Bricelyn		MN0022918	4	812200
6241	Dr Jack Peterson	Bricelyn		MN0022918	4	541900
6242	Rural America Supply	Bricelyn		MN0022918	3	444100
6243	Bricelyn Insurance Agency	Bricelyn		MN0022918	2	524100
	Jacobson Oil	Bricelyn		MN0022918	2	424900
	Beckman Repair	Bricelyn		MN0022918	1	-
	Sens Electric	Bricelyn		MN0022918	1	
	Storage Tek	St. Paul		MN0029815	1200	
	Target Corporation	St. Paul		MN0029815	1200	
	Siemens Empros Systems Intl	St. Paul				
				MN0029815	404	
	Medical Arts Press	St. Paul		MN0029815	375	
	Recovery Engineering	St. Paul		MN0029815	375	
	Wal-Mart	St. Paul		MN0029815	300	
6256	Unisource Worldwide	St. Paul	7.63	MN0029815	264	
6258	Target	St. Paul		MN0029815	225	452100
6259	Varitronic Systems Inc	St. Paul		MN0029815	175	541400
	Wilson's	St. Paul		MN0029815	150	
	TL Systems Corp	St. Paul		MN0029815	140	
	Creative Carton	St. Paul		MN0029815	135	
	Creative Carton Crow River Industries Inc	St. Paul Brooten	0.40			
				MN0025909	80	
	Northern Lights Food Processing	Brooten	1.80	MN0025909	80	
	Brooten Public Schools	Brooten		MN0025909	30	
	Offutt R D Co	Brooten		MN0025909	25	
6267	Bonanza Valley State Bank	Brooten		MN0025909	11	522100
6268	Brooten Industries	Brooten		MN0025909	10	333400
6269	Browns Valley Health Ctr/Nursing Home		0.10	ISTS	75	621100
6270	EDW Blanck & Associates			ISTS	75	
	Browns Valley Public Schools			ISTS	30	
	Cenex Cooperative			ISTS	10	
	BW Inc			ISTS		
					8	
	Maynard's Food Ctr			ISTS	8	
	Union St Bk of Browns Valley			ISTS	8	
	Browns Valley Community Elevator			ISTS	6	
6277	Hanson Chevrolet			ISTS	6	441100
6278	Hardware Hank			ISTS	5	444100
6279	I. B. Industries, Inc.	Brownsdale		MN0022934	120	518200
	Akkerman Mfg CO	Brownsdale		MN0022934	55	-
	Gerlach Bus	Brownsdale		MN0022934	25	
	Farmers & Merchant St. Bank- Brownsdale	Brownsdale		MN0022934	10	
		Brownsdale		MN0022934	8	
	Greenway Co-op		0.00			
	Krueger Trucking Company	Brownsdale	0.00	MN0022934	8	
	Farm Bureau Insurance	Brownsdale		MN0022934	4	
	US Post Office	Brownsdale		MN0022934	4	
6287	Brownsdale Co-op	Brownsdale		MN0022934	3	424900
	Brownsdale Motor	Brownsdale		MN0022934	2	
6289	First American Insurance	Brownsdale		MN0022934	2	
	Brownsdale Motor Service	Brownsdale		MN0022934	1	
	McCloud Public School	Brownton		MN0022951	40	
					+	-
	Brownton Coop Ag Center	Brownton		MN0022951	15	
	Lake Marion Supper Club	Brownton		MN0022951	15	
	Shade Tree Retirement Center	Brownton		MN0022951	10	
	Security Bank and Trust	Brownton		MN0022951	8	
	Buffalo Public Schools-ISD #877	Buffalo		MN0040649	514	
6297	Wright, County of	Buffalo	0.63	MN0040649	450	
6298	Buffalo Hospital	Buffalo	0.16	MN0040649	240	622100
	Wal-Mart	Buffalo		MN0040649	200	
	Target	Buffalo		MN0040649	185	
2300	Universal Circuits	Buffalo		MN0040649	125	
6301		Buffalo		MN0040649	115	
		Dullaio				
6302	Ebenezer Covenant Home	Duffolo				237300
6302 6303	Buffalo Bituminous Inc	Buffalo		MN0040649	100	
6302 6303 6304	Buffalo Bituminous Inc Econofoods - Buffalo	Buffalo		MN0040649	100	445100
6302 6303 6304 6305	Buffalo Bituminous Inc Econofoods - Buffalo Buffalo Clinic	Buffalo Buffalo	0.11	MN0040649 MN0040649	100 79	445100 621100
6302 6303 6304 6305	Buffalo Bituminous Inc Econofoods - Buffalo	Buffalo	0.11	MN0040649	100	445100 621100
6302 6303 6304 6305 6306	Buffalo Bituminous Inc Econofoods - Buffalo Buffalo Clinic	Buffalo Buffalo	0.11	MN0040649 MN0040649	100 79	445100 621100 333600

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
6309	Buffalo Family & Specialty Care Ctr	Buffalo	0.07	MN0040649	50	621100
6310	Buffalo Veneer & Plywood Co	Buffalo		MN0040649	50	321200
6311	Buffalo Lake Nursing Home	Buffalo Lake		MN0050211	111	623100
6312	Minnesota Beef Industry Inc	Buffalo Lake		MN0050211	106	311600
	Farmers Co-op Elevator Co	Buffalo Lake		MN0050211	55	493100
6314	Buffalo Lake Schools-ISD #647	Buffalo Lake		MN0050211	41	611100
6315	Duane Kottke Trucking	Buffalo Lake		MN0050211	40	484100
6317	D & D Stark	Buffalo Lake		MN0050211	15	237300
	Maynard's	Buffalo Lake		MN0050211	10	445100
	CenBank	Buffalo Lake		MN0050211	6	522100
	Mesabi Academy	Buhl		MN0022969	90	
	Burnsville Public Schools-ISD #191	St. Paul		MN0030007	1600	
	Northern Hydraulics Inc	St. Paul		MN0030007	500	
	Yellow Freight System Inc	St. Paul		MN0030007	500	
	CUB Foods	St. Paul		MN0030007	300	
	Asset Marketing Services Inc	St. Paul		MN0030007	275	
	City of Burnsville	St. Paul		MN0030007	268	
	Byerly's Co	St. Paul		MN0030007	250	
	Frontier Communications of MN	St. Paul		MN0030007	234	
6331	Park Nicollet Medical Ctr	St. Paul	0.30	MN0030007	225	621100
6332	? Target	St. Paul		MN0030007	200	452100
6333	Ebenezer Ridges Care Center	St. Paul		MN0030007	180	623100
6334	Caire Inc	St. Paul	0.14	MN0030007	175	334500
	Kavouras Inc	St. Paul		MN0030007	150	
	Rainbow Foods	St. Paul		MN0030007	148	
	Schmidt Printing Inc	Byron		MN0049239	450	
	Byron Public Schools	Byron		MN0049239	198	
	Agriland Elevators Inc	Byron		MN0049239	45	
	-	-				
	Byron, City of	Byron		MN0049239	36	
	Olmsted Co Lumber Mart Inc	Byron		MN0049239	35	
	Byron Food Ctr	Byron		MN0049239	30	
	Zumbro Education District	Byron		MN0049239	30	
	Bob Braaten Construction Inc	Byron		MN0049239	23	
6346	Country Cabinetry Inc	Byron		MN0049239	22	
6347	Northwest Camper Sales	Byron		MN0049239	20	441200
6348	Byron Dairy Queen	Byron		MN0049239	18	722100
6349	Floors & More	Byron		MN0049239	15	444100
6350	First Security Bk	Byron		MN0049239	14	522100
	Marquette Grain Systems Inc	Byron		MN0049239	11	
	Byron Dental Group	Byron		MN0049239	10	
	US Post Office	Byron		MN0049239	9	
	Frederick W Nolting DDS	Byron		MN0049239	8	
	Joel Bigelow & Sons Enterprises Inc			MN0049239	8	
	Midwest Fuel	Byron		MN0049239		
		Byron			8	
	Strains Body Shop	Byron		MN0049239	8	
	Amazing Kids	Byron		MN0049239	6	
	Olmsted Medical Ctr-Byron	Byron		MN0049239	6	
	Able, INC.	Caledonia		MN0020231	200	
6361	Houston County	Caledonia	0.22	MN0020231	160	921100
6362	Caledonia Schools	Caledonia		MN0020231	150	611100
6363	Caledonia Haulers	Caledonia		MN0020231	136	484100
6364	Sagebrush	Caledonia		MN0020231	135	541500
6365	Lutheran Home	Caledonia		MN0020231	109	
	Houston Co. Group Homes	Caledonia		MN0020231	80	
	Woodland Industries	Caledonia		MN0020231	55	
	Quillin's IGA	Caledonia		MN0020231	52	
	APN, Inc.	Caledonia		MN0020231	40	
	Bonanza Grain, Inc.	Caledonia		MN0020231	25	
	State of Minnesota	Caledonia		MN0020231	25	
	Nelson Construction	Caledonia		MN0020231	24	
	Franciscan Skemp Healthcare/Clinic	Caledonia		MN0020231	23	
	Merchants National Bank	Caledonia		MN0020231	22	
	City of Caledonia	Caledonia		MN0020231	21	
	AmericInn	Caledonia		MN0020231	17	
6377	U. S. Post Office	Caledonia		MN0020231	15	491100
0070	Community First Bank	Caledonia		MN0020231	12	522100
6378						
	Cambridge Medical Center	Cambridge	0.60	MN0020362	931	622100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
6381	Wal-Mart	Cambridge	3	MN0020362	425	452100
6382	Grandview Christian Ministries	Cambridge		MN0020362	358	623100
	Cambridge Metals & Plastics	Cambridge		MN0020362	277	332900
	Motek Engineering & Mfg CO	Cambridge	0.42	MN0020362	215	333500
	Minnesota Extended Treatment Options	Cambridge		MN0020362	200	622200
	Isanti, County of	Cambridge	0.27	MN0020362	195	921100
	Target	Cambridge		MN0020362	180	452100
	County Market	Cambridge		MN0020362	155	445100
6389	Cambridge Health Care	Cambridge		MN0020362	150	623100
	Arrow Tank & Engineering CO	Cambridge		MN0020362	145	332400
	Menards Mega Store	Cambridge		MN0020362	130	444100
	MoDenalde Postourent	Cambridge		MN0020362	120	445100 722100
	McDonalds Restaurant Perkins Restaurant	Cambridge		MN0020362 MN0020362	80	722100
	Industries Incorporated	Cambridge Cambridge	0.00	MN0020362	75	332700
	Schlagel Inc.	Cambridge		MN0020362	72	332700
	Cambridge Campus ARCC	Cambridge	0.00	MN0020362	65	611300
	Park Manufacturing	Cambridge	0.07	MN0020362	65	335900
	City of Cambridge	Cambridge		MN0020362	53	921100
	Bindery	Cambridge	0.01	MN0020362	45	323100
	John Hirsch's Cambridge Motors	Cambridge		MN0020362	45	336100
	North Star Media	Cambridge		MN0020362	40	511100
	Midwest of Cannon Falls Inc	Cannon Falls		MN0022993	375	424900
	Cannon Equipment Co	Cannon Falls	0.00	MN0022993	315	332700
	Cannon Falls Public Schools-ISD#252	Cannon Falls	1.00	MN0022993	240	611100
6406	Kid Duds	Cannon Falls		MN0022993	175	315200
6407	Fil-Mor Express Inc	Cannon Falls		MN0022993	170	484100
6408	Gemini Inc	Cannon Falls		MN0022993	160	339900
6409	Cannon Valley Woodwork Inc	Cannon Falls		MN0022993	135	337100
	Bergquist Co	Cannon Falls		MN0022993	100	425100
6411	Our Lady of the Angels	Cannon Falls		MN0022993	95	623100
	Community Hospital	Cannon Falls	0.06	MN0022993	90	622100
	Plastics Profiles Inc/Amesbury Group Inc	Cannon Falls	0.07	MN0022993	85	325200
	Alliant Food Service	Cannon Falls		MN0022993	70	311600
	Write On	Cannon Falls		MN0022993	42	313200
	Medical Safety Systems	Cannon Falls		MN0022993	23	562100
	Natural Fertilizer of America Inc	Cannon Falls		MN0022993	23	325300
	Thrall Process Services Inc	Cannon Falls		MN0022993	15	811200
	Hancock Concrete Products	Cannon Falls	2.00	MN0022993	14	327300
	Strike Tool Inc	Cannon Falls	0.00	MN0022993	12	332700
	Johnson Logging	Cannon Falls	0.00	MN0022993	11	113300
	Carlton, County of Stearns Manufacturing Co	Duluth Duluth	0.38	MN0049786 MN0049786	270 160	921100 451100
	Carlton Nursing Home	Duluth		MN0049786	102	623100
	Carlton Public Schools-ISD #93	Duluth		MN0049786	102	611100
	CHEMSTAR	Duluth		MN0049786	13	213100
	Eagle Trucking	St. Paul	3 10	MN0029815	60	484100
	Waterworks Beach Club	St. Paul	3.10	MN0029815	47	722400
	Rehbein Inc	St. Paul		MN0029815	30	562100
	Kelly's Korner	St. Paul		MN0029815	16	722400
	Ro-So Contracting	St. Paul		MN0029815	15	237100
	Reel Manufacturing	St. Paul	0.00	MN0029815	14	332700
	Centerville Pizza & Video	St. Paul	3.50	MN0029815	12	722100
	Corner Express	St. Paul		MN0029815	11	447100
	Lake Area Utility Contracting	St. Paul		MN0029815	10	237100
	Northern Forest Products	St. Paul		MN0029815	10	444100
	Jim Stevens Construction	St. Paul		MN0029815	9	238100
6439	Tom Thumb	St. Paul		MN0029815	9	445100
6440	Noble Welding	St. Paul		MN0029815	7	811300
6441	Arcade Asphalt	St. Paul		MN0029815	6	324100
6442	Comfort Plus Heating & Cooling	St. Paul		MN0029815	6	238200
6443	Rivard Electric	St. Paul		MN0029815	5	238200
	APW McLean	St. Paul		MN0029815	425	423700
	Lifetime Fitness	St. Paul		MN0029815	160	812900
	County Market	St. Paul		MN0029815	134	445100
	Johansen Bus Service	St. Paul		MN0029815	95	485400
	Scherer Brothers Far North Windows	St. Paul		MN0029815	95	444100
6449	Champlin, City of	St. Paul	0.13	MN0029815	94	921100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
6451	Secoa	St. Paul		MN0029815	50	
6452	Cardinal Health	St. Paul	0.15	MN0029815	45	541700
6453	Allina Medical Clinic-Champlin	St. Paul	0.04	MN0029815	33	621100
	Trails Best	Chandler	0.55	MN0039748	275	
	Prins Feed & Grain	Chandler		MN0039748	11	493100
	Schuur Concrete	Chandler		MN0039748	11	493100
	Chandler Coop	Chandler		MN0039748	9	
	Chandler Feed & Grain	Chandler		MN0039748	9	
	State Bank of Chandler	Chandler		MN0039748	9	
	Chandler Machine Shop	Chandler		MN0039748	4	
	Super Value Headquarters	St. Paul	2.00	MN0029882	650	
	Entegris	St. Paul		MN0029882	350	
	Banta Bloomberg Companies	St. Paul St. Paul	1.00	MN0029882 MN0029882	300	
	Young America Corp.	St. Paul		MN0029882	275 200	
	ABC/Lyman Lumber	St. Paul		MN0029882	180	
	MA Gedney Co	St. Paul	0.08	MN0029882	70	
	Fluoroware Inc	St. Paul	0.00	MN0029882	800	
	Lake Region Mfg Inc	St. Paul	0.58	MN0029882	745	
	Sanofi Diagnostic Pasteur Inc	St. Paul		MN0029882	415	
	Carver, County of	St. Paul		MN0029882	383	
	Mammoth Inc	St. Paul	5.51	MN0029882	350	
	Pie's Inc	St. Paul		MN0029882	200	
	Sprint	St. Paul		MN0029882	200	
	Preferred Products	St. Paul	0.23	MN0029882	135	
6481	Advanced Flex	St. Paul		MN0029882	90	334400
6482	Lewis Engineering Co	St. Paul		MN0029882	90	332300
6483	Van den Bergh Foods Co	St. Paul		MN0029882	90	311800
6484	Galtek Corp.	St. Paul	2.31	MN0029882	80	339100
6486	Oak Ridge Conference Center	St. Paul		MN0029882	80	561900
6487	Chaska, City of	St. Paul	0.11	MN0029882	76	921100
6488	Jonaco Machines Inc	St. Paul		MN0029882	65	
	Dyna-Graphics Corp	St. Paul		MN0029882	63	
	Dataforms Inc	St. Paul		MN0029882	55	
	Laser Engineering Inc	St. Paul		MN0029882	50	
	Olsen Tool & Plastics Inc	St. Paul		MN0029882	50	
	AFC Div - Morrison Molded Fiberglass Co	Chatfield	0.16	MN0021857	200	
	Tuohy Furniture Corp	Chatfield		MN0021857	200	
	Chosen Valley Care Center	Chatfield		MN0021857	130	
	Chosen Valley Public Schools	Chatfield		MN0021857	100	
	Root River State Bank	Chatfield		MN0021857	22	
	Darling International Bob's Food Pride	Chatfield Chatfield		MN0021857 MN0021857	16 15	
	Subway	Chatfield		MN0021857		
	Huckstadt Meat Processing Inc	Chatfield	0.51	MN0021857	15	
	Snider Publishing Co Inc	Chatfield	0.51	MN0021857	9	
	All American Co-op	Chatfield		MN0021857	8	
	Chisago Health Services	Center City	0.03	MN0055808	40	
	Chisago Lakes Distributing	Center City		MN0055808	40	
	Haus Specialty Mfg	Center City		MN0055808	35	
	Hibbing Taconite Co	Chisholm	5.00	MN0020117	1006	
	Northwest Airlines	Chisholm		MN0020117	600	
	Ironworld	Chisholm		MN0020117	150	
	Range Center	Chisholm		MN0020117	140	
	Chisholm Public Schools	Chisholm		MN0020117	105	
	Heritage Manor	Chisholm		MN0020117	100	
	Minnesota Twist Drill	Chisholm	0.00	MN0020117	80	
	Creative Garments	Chisholm		MN0020117	76	315200
6515	Chisholm, City of	Chisholm	0.07	MN0020117	50	
6516	Mickman Brothers	Chisholm		MN0020117	50	
	U.S.Post Office- Chisholm	Chisholm		MN0020117	50	
	First NB of Chisholm	Chisholm		MN0020117	40	
	Jubilee Foods	Chisholm		MN0020117	30	
	Buchanan Nursing Home	Chisholm		MN0020117	25	
	Bank Windsor	Chisholm		MN0020117	5	
	American Guidance	St. Paul		MN0029815	125	
	Golden Lake Elementary	St. Paul		MN0029815	75	
6524	McDonalds	St. Paul		MN0029815	70	722100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
6525	Frattallone's Ace Hardware	St. Paul		MN0029815	30	
	Circle Pines, City of	St. Paul	0.03	MN0029815	22	
	Circle Pines Credit Union	St. Paul		MN0029815	18	
	Firstar Bank of MN NA	St. Paul		MN0029815	16	
	Al-Corn Clean Fuel	Claremont	0.15	MN0022187	29	
	Hodgman Drainage Co	Claremont		MN0022187	15	
	Huntting Elevator	Claremont		MN0022187	14	
	Magnum Products	Claremont	0.01	MN0022187	13	
	Claremont Service Ctr	Claremont		MN0022187	12	
	Greenway Co-op	Claremont		MN0022187	11	
	Claremont Pub	Claremont	0.00	MN0022187	10	
	JED Welding	Claremont	0.00	MN0022187	10	
	Security St Bk of Claremont	Claremont	0.00	MN0022187	8	
	Dickie Equipment Hometown Market	Claremont Claremont	0.00	MN0022187 MN0022187	7	
	Highway 14 Country Cafe	Claremont		MN0022187	4	
	Coffee Cup Cafe	Claremont		MN0022187	3	
	Central Todd Care Center	Clarissa		MNG580008	100	
	Glen Mac Inc	Clarissa		MNG580008	13	
	Jon & Rita's Super Valu	Clarissa		MNG580008	12	
	Battle Lake Outdoors	Clarissa		MNG580008	9	
	Agri-Valley Farm Center	Clarissa		MNG580008	6	
	Hansen Lumber & Hardware	Clarissa		MNG580008	6	
	Independent News Herald	Clarissa		MNG580008	6	
	Clarissa Meat Market	Clarissa	0.02	MNG580008	5	
	Fond Du Lac Indian Reservation	Duluth		MN0049786	1225	
	Sappi Fine Paper	Duluth		MN0049786	580	
	Cloquet Public Schools-ISD #94	Duluth		MN0049786	400	
6554	Diamond Brands Inc	Duluth		MN0049786	285	444100
6555	Community Memorial Hospital	Duluth	0.18	MN0049786	275	622100
	Boldt Construction	Duluth		MN0049786	210	236200
6557	Upper Lakes Foods Inc	Duluth		MN0049786	195	445100
6558	Wal-Mart	Duluth		MN0049786	184	452100
	Human Services Ctr	Duluth		MN0049786	88	
	Super One Foods	Duluth		MN0049786	78	
	Nels Nelson & Sons	Duluth		MN0049786	71	
	Cloquet Co-op Credit Union	Duluth		MN0049786	58	
	Pinewood Learning Ctr	Duluth		MN0049786	50	
	Raiter Clinic	Duluth	0.07	MN0049786	50	
	Fond du Lac Tribal & Comm College	Duluth		MN0049786	47	
	Wear-A-Knit Corp	Duluth		MN0049786	45	
	Nelson Motor Co	Duluth		MN0049786	30	
	Little Store	Duluth		MN0049786	24	
	Bergquist Imports Inc	Duluth		MN0049786	16	
	Cokato Public Schools-ISD #466	Cokato		MN0049204	275	
	Cokato Manor Inc	Cokato		MN0049204	100	
	CTS Corp Market Place	Cokato		MN0049204 MN0049204	100	
		Cokato	2.70		90	
	Faribault Foods Airtex Consumer Products	Cokato Cokato	2.70	MN0049204 MN0049204	54	
	Norseman Restaurant Inc	Cokato		MN0049204	44	
	CAM Manufacturing Inc	Cokato		MN0049204	40	
	Ingredient Supply Inc	Cokato	1.63	MN0049204	35	
	Raydot Inc	Cokato	1.00	MN0049204	35	
	Home Health Care	Cokato		MN0049204	30	
	Saunatec Inc	Cokato		MN0049204	30	
	Dairy Queen	Cokato		MN0049204	25	
	Holt Motors Inc	Cokato		MN0049204	25	
	Olsen Chain & Cable Co	Cokato		MN0049204	19	
	Cokato Motor Sales	Cokato		MN0049204	15	
	Cokato, City of	Cokato	0.02	MN0049204	12	
	Tepley Equipment	Cokato		MN0049204	9	
	Cold Spring ISD #750	Cold Spring		MN0023094	285	
	Assumption Campus	Cold Spring		MN0023094	112	
	Cold Spring, City of	Cold Spring	0.10	MN0023094	68	
	Cold Spring Creamery	Cold Spring		MN0023094	65	
	Blue Heron	Cold Spring		MN0023094	54	
	Cold Spring Bakery	Cold Spring		MN0023094	50	

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
6597	Hardee's	Cold Spring		MN0023094	40	
6598	Marnanteli's	Cold Spring		MN0023094	39	722100
	Cold Spring Electric	Cold Spring		MN0023094	31	221100
	Lumber One Inc	Cold Spring		MN0023094	31	444100
	First NB of Cold Spring	Cold Spring		MN0023094	27	521100
	Vogt Food Market	Cold Spring		MN0023094	25	
	State Bk of Cold Spring	Cold Spring		MN0023094	16	
	Cold Spring Medical Clinic	Cold Spring	0.02	MN0023094	15	
	Stewart Cabinets	Cold Spring		MN0023094	13	
	Willenbring Law Office	Cold Spring		MN0023094	13	
	Mark Twain Cable	Cold Spring		MN0023094	10	
	Coleraine School District #316	Coloraine		MN0053341	130	
	University of Minnesota Research Minnesota Power	Coloraine		MN0053341	26	
	First NB of Coleraine	Coleraine Coleraine		MN0053341 MN0053341	17	
	Anoka-Hennepin School District #11	St. Paul		MN0029815	1166	
	Coon Rapids Medical Center	St. Paul	0.62	MN0029815	460	
	Anoka-Ramsey Comm College	St. Paul	0.02	MN0029815	380	
	John Roberts Co	St. Paul		MN0029815	320	
	Vincent Metals	St. Paul		MN0029815	237	
	Coon Rapids, City of	St. Paul	0.29	MN0029815	206	
	Ramsey Technology Inc	St. Paul		MN0029815	195	
	Camilia Rose Convalescent Ctr	St. Paul	5.22	MN0029815	166	
	Mary T. Inc	St. Paul		MN0029815	150	
	Diversified Adjustment Services Inc	St. Paul		MN0029815	133	
	Plastics Inc	St. Paul	0.10	MN0029815	130	
6627	Possis Medical	St. Paul	0.10	MN0029815	130	334500
6628	Merit Corp	St. Paul	0.07	MN0029815	95	334500
6629	Steinwall Inc	St. Paul	0.06	MN0029815	75	325200
6630	Juno Enterprises Inc	St. Paul	0.08	MN0029815	70	335900
6631	Dynamic Engineering Inc	St. Paul	0.05	MN0029815	60	325200
6632	U.M.C		2.60	ISTS	90	339100
	Hicks Concrete			ISTS	50	
	Cosmos Healthcare Ctr	Cosmos		MNG580056	75	
	Uni-Hydro Inc	Cosmos		MNG580056	65	
	ACGC South Elementary	Cosmos		MNG580056	48	
	Raske Building Systems	Cosmos		MNG580056	25	
	Nystrom's Restaurant	Cosmos		MNG580056	18	
	4 & 7 Corner Mart	Cosmos		MNG580056	15	
	American Legion Club	Cosmos		MNG580056	15	
	Koch's Warehouse	Cosmos		MNG580056	13	
	Farmer's Co-op Elevator School District 833	Cosmos		MNG580056	9	
	Up North Plastics Inc	St. Paul St. Paul	11 27	MN0029815 MN0029815	1081	611100 325900
	Renewal by Andersen	St. Paul	11.37	MN0029815	250	
	Target	St. Paul		MN0029815	212	
	Cub Foods	St. Paul		MN0029815	208	
	Commercial Carriers Inc	St. Paul	10 35	MN0029815	200	
	Menard's	St. Paul	10.33	MN0029815	200	
	Rainbow Foods	St. Paul		MN0029815	200	
	Aggregate Industries	St. Paul		MN0029815	165	
	Allina Medical Clinic	St. Paul	0 17	MN0029815	125	
	City of Cottage Grove	St. Paul	_	MN0029815	120	
	US Postal Services	St. Paul		MN0029815	35	
	CCE Technologies	St. Paul	5.00	MN0029815	30	
	Orkin Pest Control	St. Paul		MN0029815	30	
	Cogentrix	St. Paul		MN0029815	20	
	Norcraft Companies	Cottonwood		MNG580010	225	
	North Star Companies	Cottonwood		MNG580010	113	
	Lakeview School	Cottonwood		MNG580010	50	
	Cottonwood Coop Oil Co	Cottonwood		MNG580010	25	
6664	Empire St Bk	Cottonwood		MNG580010	15	522100
	Farmers Coop Elevator Co	Cottonwood		MNG580010	15	
	Extreme Panel Technologies	Cottonwood		MNG580010	10	
	Cottonwood, City of	Cottonwood	0.01	MNG580010	9	
	Centrol Inc	Cottonwood		MNG580010	8	
	Minnesota Hardwood Inc			ISTS	50	
6670	CN Labs		13.49	ISTS	25	541700

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
6671	Courtland Industries Inc			ISTS	20	327300
6672	Crow Bar			ISTS	9	722100
	Swany's Pub			ISTS	8	
	Voges Construction			ISTS	7	
	Courtland State Bank			ISTS	5	
	Immanuel Lutheran Church			ISTS	5	
	Renner's Feed Service			ISTS	5	
	Courtland Evangelical Lutheran Church			ISTS	4	
	Courtland Waste Handling Inc			ISTS	4	
	Frank Bode Trucking		0.10	ISTS	2	
	Courtland Hardware Store	Caraman		ISTS	1	
	Cromwell Schools Villa Vista Nursing Home	Cromwell Cromwell		MN0051101 MN0051101	60	
	Michigan Peat	Cromwell		MN0051101	36	
	American Furniture	Cromwell		MN0051101	20	
	Farmers Co-op Store/Station	Cromwell		MN0051101	18	
	Peatrex	Cromwell		MN0051101	15	
	Country Inn	Cromwell		MN0051101	13	
	Cromwell, City of	Cromwell	0.02	MN0051101	8	
	Cromwell Liquor Store	Cromwell	0.02	MN0051101	6	
	Trolley Station/Store	Cromwell		MN0051101	5	
	First State Bank of Finlayson-Cromwell	Cromwell		MN0051101	4	
	Riverview Healthcare Assn	Crookston	0.60	MN0021423	500	
	Crookston Public Schools	Crookston	1.00	MN0021423	300	
	American Crystal Sugar Co	Crookston	2.81	MN0021423	250	
	University of Minnesota-Crookston	Crookston		MN0021423	240	611310
	New Flyer of America (MN) Inc	Crookston		MN0021423	212	336211
6698	Villa St Vincent	Crookston		MN0021423	175	623110
6699	Dahlgren & Co	Crookston	6.15	MN0021423	163	311911
6700	Dee Inc Foundry & Mfg	Crookston	0.19	MN0021423	160	331521
6701	Hugo's	Crookston		MN0021423	100	445110
6702	Phoenix Industries of Crookston Ltd.	Crookston		MN0021423	100	326199
	Occupational Development Ctr	Crookston		MN0021423	80	
	Tri-Valley Opportunity Council Inc	Crookston		MN0021423	70	
	Altru Clinic	Crookston		MN0021423	68	
	Bremer Bank-Crookston	Crookston		MN0021423	65	
	Crookston, City of	Crookston		MN0021423	65	
	Crookston Super Valu	Crookston		MN0021423	30	
	Crookston Welding & Machine	Crookston		MN0021423	30	
	Mid-Valley Grain Coop	Crookston		MN0021423	30	
	Red Power Intl Inc	Crookston	0.01	MN0021423	30	
	Otter Tail Power Co	Crookston	0.04	MN0021423	19	
	Crookston Implement	Crookston	0.01	MN0021423	18	
	Eickhof Columbaria Cuyuna Regional Medical Ctr	Crookston	0.25	MN0021423	10	
	Crosby Public Schools-ISD #182	Crosby Crosby	0.25	MN0058122 MN0058122	390 255	
	Riverwood International USA	<u> </u>		MN0058122	190	
	Central Lakes Medical Ctr	Crosby Crosby	0.07	MN0058122	55	
	Super Valu	Crosby		MN0058122	41	
	First NB of Crosby	Crosby		MN0058122	17	
	Minnesota Power & Light	Crosby		MN0058122	9	
	Reeds Market	Crosslake		MN0038122	50	
	Pine Peaks Restaurant	Crosslake		MN0021491	30	
	Crosslake Construction	Crosslake		MN0021491	20	
	Crosslake Sheet Metal Inc.	Crosslake	0.14	MN0021491	20	
	Simonson Lumber	Crosslake	3.71	MN0021491	18	
	Mezzenga Distributing	Crosslake		MN0021491	16	
	Build All Lumber	Crosslake		MN0021491	15	
	Crosslake Water Slides	Crosslake		MN0021491	15	
6730	Crosslake Communications	Crosslake		MN0021491	13	517100
	NMN Inc	Crosslake		MN0021491	12	
	Moonlight Bay Family Restaurant	Crosslake		MN0021491	10	722100
6733	Cub Foods	St. Paul		MN0029815	295	
	TimeSavers Inc	St. Paul		MN0029815	235	333200
	Crystal Care Center	St. Paul		MN0029815	200	
	Target	St. Paul		MN0029815	200	
	US West	St. Paul		MN0029815	115	
6738	Featherlite Exhibits	St. Paul		MN0029815	105	711300

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
	Thrift-Way Supermarket	St. Paul		MN0029815	67	445100
6740	Crystal SuperValu	St. Paul		MN0029815	63	445100
6741	Norwest Bank	St. Paul		MN0029815	27	522100
6742	Casting Technology Inc	St. Paul		MN0029815	20	331500
6743	Wiltec Industries	St. Paul		MN0029815	20	333200
6745	Crystal Shamrock	St. Paul		MN0029815	17	336400
6746	Benchmark Industries	St. Paul		MN0029815	14	337100
6747	Brad Kelvington	Danube	0.00	MNG580057	47	325320
	Brlys Bar and Grill	Danube		MNG580057	10	722400
	Kay Krueger	Danube		MNG580057	10	452100
	Allen Larson	Danube		MNG580057	5	
	Phil Stanfield	Danube		MNG580057	4	
	John Veglahn	Danube		MNG580057	2	
	Commerford Gravel Inc.	Appleton		MN0025593	25	
	Commerford Construction Inc	Appleton		MN0025593	10	
	State Bank of Danvers	Appleton		MN0025593	9	
	Syngenta Seeds	Appleton		MN0025593	8	
		Dassel	0.06	MN0054127	75	
	American Time & Signal Co					
	Crest Electronics	Dassel	0.05	MN0054127	60	
	Miller Manufacturing Co	Dassel		MN0054127	48	
	Jay-Dee Industries Inc	Dassel		MN0054127	40	
	Johnson Mem Hospital/Nursing Home	Dawson	0.13	MN0021881	200	
	Viessman Trucking Inc	Dawson		MN0021881	200	
	AG Processing Inc	Dawson		MN0021881	95	
6765	Midwest Truck & Parts	Dawson		MN0021881	25	
6766	Dawson ICF-MR	Dawson		MN0021881	20	621400
6767	Land O'Lakes Inc	Dawson		MN0021881	18	
6768	Dawson Engineering	Dawson	0.10	MN0021881	15	332900
6769	Deer River Healthcare	Deer River	0.16	MN0051616	250	622100
6770	Deer River Schools-Dist #317	Deer River		MN0051616	135	611100
6771	Rajala Timber Co	Deer River		MN0051616	50	423900
	Rajala Lumber Co	Deer River		MN0051616	32	444100
	Wille Transport Inc	Deer River	1.55	MN0051616	30	
	Trout Post & Pole	Deer River		MN0051616	28	
	Deer River Folio Co Inc	Deer River		MN0051616	14	
	Itasca Sash & Door	Deer River		MN0051616	5	
	Landscape Structures Inc	Delano		MN0051250	350	
	Delano Public Schools-ISD #879	Delano		MN0051250	300	
	Coborns	Delano		MN0051250	170	
	Randy's Sanitation Inc	Delano		MN0051250	90	
	Delano Healthcare Ctr	Delano		MN0051250	70	
						444100
	Industrial Louvers Inc	Delano		MN0051250	61	
	Arctic Fox Heaters	Delano		MN0051250	60	
	DB Direct	Delano		MN0051250	50	
	Star West Chevrolet Oldsmobile	Delano		MN0051250	43	
	Building Materials Inc	Delano		MN0051250	40	
	Modern Molding	Delano	0.03	MN0051250	40	
	Stahlke Bus Service	Delano		MN0051250	35	
6789	Circuit Research Corp	Delano		MN0051250	29	424600
6790	Kalco Recovery Inc	Delano		MN0051250	25	423900
6791	State Bk of Delano	Delano		MN0051250	20	522100
6792	Loon Photographic	Delano		MN0051250	16	541900
6793	Crow River St Bk	Delano		MN0051250	15	522100
6794	Delano Theatre	Delano		MN0051250	14	512100
6795	Delano Dodge-Chrysler-Plymouth	Delano		MN0051250	10	441100
6796	Quik Shop 66 Pizzeria & Deli	Delano		MN0051250	10	447100
6797	Detroit Lakes Public Schools	Detroit Lakes		MN0020192	476	611100
	St. Mary's Regional Health Ctr	Detroit Lakes	0.24	MN0020192	372	622100
	BTD Mfg. Inc	Detroit Lakes		MN0020192	280	
	Snappy Air Distribution Products	Detroit Lakes		MN0020192	265	
	Emmanuel Nursing Center	Detroit Lakes	1.02	MN0020192	250	
	Lakeshirts	Detroit Lakes		MN0020192	190	
	SJ Electro Systems Inc	Detroit Lakes	0.12	MN0020192	170	
	Dakota Clinic	Detroit Lakes Detroit Lakes		MN0020192	125	
	DL Manufacturing, Inc	Detroit Lakes	0.00	MN0020192	105	
	MN Dept of Transportation	Detroit Lakes		MN0020192	100	
	Dynamic Homes, Inc	Detroit Lakes		MN0020192	97	
6808	Bergen's Greenhouses	Detroit Lakes		MN0020192	80	332300

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
6809	Lakes Offset	Detroit Lakes		MN0020192	70	323100
6810	Merit Care Clinic	Detroit Lakes	0.09	MN0020192	67	621100
6811	DL Printing	Detroit Lakes		MN0020192	45	323100
6812	Friesens	Detroit Lakes	0.07	MN0020192	34	333500
6813	Burlington Northern/Santa Fe Railroad	Moorhead	0.17	MN0049069	375	482100
6814	Wal-Mart	Moorhead		MN0049069	225	452100
6815	Dilworth Public Schools	Moorhead		MN0049069	95	611100
	F-M Asphalt Inc	Moorhead		MN0049069	85	
	Howard Johnson's/Paisano's	Moorhead		MN0049069	72	
	Bargain's	Moorhead		MN0049069	35	
	Slumberland	Moorhead		MN0049069	30	
	Terra Fertilizer	Moorhead	4.00	MN0049069	22	
	Janesville Auto	Moorhead	1.03	MN0049069	20	
	Northwestern St Bank of Ulen - Dilworth	Moorhead		MN0049069	16	
	Weivoda Carpets	Moorhead		MN0049069	13	
	Dairy Queen	Moorhead		MN0049069	12	722100
6825	Stop-N-Go	Moorhead		MN0049069	11	445100
6826	Cenex Convenience Store	Moorhead		MN0049069	10	424900
6827	First National Bank - Dilworth	Moorhead		MN0049069	10	522100
	Food-N-Fuel	Moorhead		MN0049069	9	
	Mc Neilus Companies	Dodge Center		MN0021016	650	
	Mc Neilus Steel Inc	Dodge Center		MN0021016	175	
	Triton School District #2125	Dodge Center Dodge Center		MN0021016	173	
			0.40		+	
	Owatonna Canning Co	Dodge Center	2.48	MN0021016	110	
	Fairview Nursing Home	Dodge Center		MN0021016	100	
	Energy Economics Inc	Dodge Center		MN0021016	73	
	RDM of Minnesota	Dodge Center	0.00	MN0021016	70	
	John's Super Valu Foods	Dodge Center		MN0021016	36	
6837	Corey's Companies	Dodge Center		MN0021016	29	812300
6838	Dickie Equipment	Dodge Center		MN0021016	20	333100
	Greene Doors & Hardware	Dodge Center		MN0021016	17	238900
	Norwest Bk MN Southeast NA	Dodge Center		MN0021016	14	
	The Turkey Store Company	Dodge Center		MN0021016	12	
	Dodge Veterinary Clinic	Dodge Center		MN0021016	11	
	Southern Minnesota Machinery Sales	Dodge Center		MN0021016	10	
		ū				
	Bowie and Mosier CPA	Dodge Center	0.44	MN0021016	9	
	Freerksen Trucking	Dodge Center	0.41	MN0021016	8	
	Mc Neilus Auto & Truck Parts	Dodge Center		MN0021016	8	
	Welsh Equipment	Dodge Center		MN0021016	8	
6848	Terra International	Dodge Center		MN0021016	6	
6849	St. Mary's/Duluth Clinic	Duluth	5.14	MN0049786	3800	621100
6850	Duluth Public Schools-ISD#709	Duluth		MN0049786	1700	611100
6851	St. Louis, County of	Duluth	2.31	MN0049786	1640	921100
6852	University of Minnesota-Duluth	Duluth		MN0049786	1571	611300
	St. Luke's Hospital	Duluth	0.74	MN0049786	1143	
	Duluth, City of	Duluth		MN0049786	1060	
	US Post Office-Main	Duluth	1.45	MN0049786	930	
	Uniprise (United HealthCare)	Duluth	4.40	MN0049786	900	
	US Government	Duluth		MN0049786	850	
	Allete (Minnesota Power)	Duluth		MN0049786	768	
	Duluth Missabe Iron Range Railway Co	Duluth	0.30	MN0049786	680	
6860	Cirrus Design	Duluth		MN0049786	550	
6861	Grandma's Restaurants	Duluth		MN0049786	450	722100
6862	Minnesota Air National Guard	Duluth		MN0049786	450	928100
	USPS Remote Encoding Center	Duluth		MN0049786	450	
	Wells Fargo	Duluth		MN0049786	429	
	College of St Scholastica	Duluth		MN0049786	425	
	Northwest Airlines	Duluth		MN0049786	425	
	Stora Enso	Duluth		MN0049786	325	
	ZMC Hotels					
		Duluth		MN0049786	325	
	Advanstar Communications Inc	Duluth	2:-	MN0049786	309	
	Benedictine Health System	Duluth	0.19	MN0049786	290	
	Target	Duluth		MN0049786	275	
6872	Perkins Family Restaurants	Duluth		MN0049786	265	
6873	Luigino's Inc	Duluth		MN0049786	240	722100
0013		I = 1 .1		N 4N 100 40 700	005	511100
	Duluth News Tribune	Duluth		MN0049786	235	311100
6874	Duluth News Tribune Monson Trucking	Duluth	11.64	MN0049786	235	

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

B878 Lakeshore Lutheran Home	ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
B879 City of Dundee						–	
B881 Branda's Gas & Groopy BSTS	6879	City of Dundee		0.00	ISTS	3	921100
B882 New Vision Co-op	6880	DJ's Tap			ISTS	3	722400
B883 West Information Publishing Group	6881	Brenda's Gas & Grocery			ISTS	2	722100
6898 Bise Cross & Bise Shield S. Paul MN0000007 3000 324100 6898 Lochood Martin Tactual Defense Sys St. Paul MN0000007 1750 334100 6898 Cross Pessearch Inc St. Paul MN0000007 1435 402100 6898 Cross Pessearch Inc St. Paul MN0000007 1435 342100 6898 Cross Pessearch Inc St. Paul MN0000007 6895 3212100 6898 Cross Pessearch Inc St. Paul Sp.71 MN0000007 6895 3212100 6898 Cross Pessearch Inc St. Paul Sp.71 MN0000007 6895 3212100 6895 Cross Cores Bulk Mail Center St. Paul Legal MN0000007 400 331500 6895 Cross Cores Bulk Mail Center St. Paul Legal MN0000007 400 331500 6893 Cross Cores March Inc St. Paul Legal MN0000007 400 331500 6893 Cross Cores March Inc St. Paul MN0000007 250 333100 6895 Wish Mart St. Paul MN0000007 250 333100 250	6882	New Vision Co-op			ISTS	1	424900
B885 Lockheed Martin Tactical Defense Sys St. Paul MN0030007 1750 334100 6888 Cray Research Inc St. Paul MN0030007 900 334100 6889 Cray Research Inc St. Paul MN0030007 900 334100 6889 Cray Research Inc St. Paul MN0030007 736 4381100 6889 Cray Pass Service Bulk Mail Center St. Paul MN0030007 736 4431100 6881 US Post Service Bulk Mail Center St. Paul 44M0030007 736 4431100 6881 US Post Service Bulk Mail Center St. Paul 44M0030007 680 4181100 6881 US Post Service Bulk Mail Center St. Paul 46.29 MN0030007 680 4181100 6891 US Post Service Bulk Mail Center St. Paul 62.29 62.	6883	West Information Publishing Group	St. Paul		MN0030007	7000	511100
B886 United Parcel Service	6884	Blue Cross & Blue Shield	St. Paul		MN0030007	3000	524100
B888 Cray Research Inc	6885	Lockheed Martin Tactical Defense Sys	St. Paul		MN0030007	1750	
6898 Corae-Cole Bottling Co							
Best Unisys Corp							
B891 US Post Service Bulk Mail Center St. Paul MN0030007 680 491100 6892 Kraft American St. Paul 16.29 IMN0030007 315 484100 6893 Freightmasters inc St. Paul 16.29 IMN0030007 325 333100 6895 Wal-Mart St. Paul MN0030007 250 333100 6895 Wal-Mart St. Paul MN0030007 240 452100 6898 Wal-Heart St. Paul MN0030007 240 452100 6898 Wal-Heart St. Paul MN0030007 100 334500 6898 Wal-Heart 6898 Wal-Hea				59.71			
6892 Kraft American							
6893 Freightmasters inc St. Paul 16.29 InN03030007 315 484100 6899 Luil Industries inc St. Paul MN03030007 250 333100 6898 3M-Hearing Health St. Paul 0.08 InN03030007 100 334500 6800 Ergotron Inc St. Paul 0.08 InN03030007 100 334500 6901 Bird & Cronin Medical Products St. Paul 1.08 MN03030007 20 339100 6902 Eagle Valley School Eagle Bend MN0023248 42 611100 6903 Bird School School Eagle Bend MN0023248 16 237300 6903 Bird School School School School School Michael School Michael School Michael School Michael Michael School Michael Michael School Michael Michael School Michael School Michael School Michael Michael School Michael Michael School Michael School Michael School Michael Lagle Bend Michael Michael Michael Michael School Michael Mi							
6894 Lull Industries Inc St. Paul MN00300007 250 333100 6898 384 Hearing Health St. Paul 0.08 MN00300007 100 334500 6800 Ergotron Inc St. Paul 0.08 MN00300007 100 334500 6901 Bird & Cronin Medical Products St. Paul 2.37 MN00300007 82 339100 6901 Eagle Valley School Eagle Bend MN0023248 42 611100 6903 Elagie Supermarket Eagle Bend MN0023248 12 427100 6904 Bissel's Supermarket Eagle Bend MN0023248 12 447100 6905 Northand Clark Supphy Eagle Bend MN0023248 12 447100 6906 Northand Clark Supphy Eagle Bend MN0023248 11 424900 6907 Central Ag Sarvice Eagle Bend MN0023248 11 424900 6907 Eagle Bend Metal Eagle Bend MN0023248 9 115100 6908 Heast Swifte Farm Implement Eagle Bend MN0023248 9 141500 6910 Eagle Bend Metal Eagle Bend MN0023248 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
6898 Wal-Mart St. Paul MN0030007 240 452100 6890 Ergotron Inc St. Paul MN0030007 100 334500 6800 Ergotron Inc St. Paul St. Paul MN0030007 100 334500 6801 Bird & Cronin Medical Products St. Paul 2.27 MN0030007 82 339100 6802 Eagle Valley School Eagle Bend MN0023248 42 611100 6803 Bimbeck Construction Eagle Bend MN0023248 14 245100 6803 Bimbeck Construction Eagle Bend MN0023248 14 245100 6805 Bimbeck Construction Eagle Bend MN0023248 12 445100 6800 Fibro Express/Jenny's Cafe Eagle Bend MN0023248 12 445100 6800 Fibro Express/Jenny's Cafe Eagle Bend MN0023248 12 445100 6800 Fibro Express/Jenny's Cafe Eagle Bend MN0023248 11 424900 6800 Fibro Express/Jenny's Cafe Eagle Bend MN0023248 11 424900 6800 Fibro Express/Jenny's Cafe Eagle Bend MN0023248 11 424900 6800 Fibro Express/Jenny's Cafe Eagle Bend MN0023248 11 424900 6800 Fibro Express/Jenny's Cafe Eagle Bend MN0023248 9 424900 6800 Eagle Bend Municipal Liquor Store Eagle Bend MN0023248 7 445300 6911 Eagle Bend MN0023248 7 445300 6911 Eagle Bend MN0023248 7 445300 6913 Eagle Bend MN0023248 6 813400 6913 Eagle Bend MN0023248 6 813400 6913 Eagle Bend MN0023248 6 813400 6915 Eagle Bend MN0023248 5 444100 6915 Eagle Bend MN0023248 5 811100 6915 Eagle Bend MN0023248 6 813400 6915 Eagle Eagle Express				16.29			
6898 3M - Hearing Health							
6900 Ergotron Inc							
6901 Bird & Cronn Medical Products St. Paul 2.37 MN0030007 82 339100 6902 Eagle Valley School Eagle Bean MN0002248 42 611100 6903 Blombeck Construction Eagle Bean MN0002248 12 435100 6908 Blosts Supermarket Eagle Bean MN0002248 12 4455100 6909 Fetro Express/Jenny's Cate Eagle Bean MN0002248 11 2447100 6907 Central Ag Service Eagle Bean MN0002248 11 2447100 6907 Central Ag Service Eagle Bean MN0002248 11 244900 6907 Central Ag Service Eagle Bean MN0002248 9 115100 6909 Hess White Farm Implement Eagle Bean MN0002248 9 115100 6909 Hess White Farm Implement Eagle Bean MN0002248 9 1494900 6909 Hess White Farm Implement Eagle Bean MN0002248 7 811300 6910 Eagle Bend Mulricipal Liquor Store Eagle Bean MN0002248 7 7 7 22100 6910 Eagle Bend Mulricipal Liquor Store Eagle Bean MN0002248 7 7 722100 6912 Eagle Bend Verteral Stub Inc Eagle Bean MN0002248 7 7 722100 6912 Eagle Bend Verteral Stub Inc Eagle Bean MN0002248 6 813400 6913 Tri-cap Senior Ctr Eagle Bean MN0002248 6 813400 6914 Eagle Bend Farm & Lumber Suphy Eagle Bean MN0002248 6 813400 6915 Eagle Bend Widning Eagle Bean MN0002248 5 811100 6915 Milry's Body Storp Eagle Bean MN0002248 5 811100 6915 Milry's Body Storp Eagle Bean MN0002248 5 811100 6915 Milry's Gas & Groceries Eagle Bean MN0002248 5 811100 6915 Milry's Gas & Groceries Eagle Bean MN0002248 5 811100 6915 Milry's Gas & Groceries Eagle Bean MN0002248 5 811100 6915 Milry's Gas & Groceries Eagle Bean MN0002248 5 811100 6915 Milry's Gas & Groceries Eagle Bean MN0002248 5 811100 6915 Milry's Gas & Groceries Eagle Bean MN0002248 5 811100 6915 Milry's Gas & Groceries Eagle Bean MN0002248 5 811100 6915 Milry's Gas & Groceries Eagle Bean MN0002248 4 811100 6915 Milry's Gas & Groceries Eagle Bean MN0002248 5 811100 6915 M				0.08			
6902 Eagle Valley School				0.07			
6903 Biombeck Construction				2.37			
6904 Bisel's Supermarket		0 7					
6905 Petro Express/Jemny's Cafe							
6906 Northland Dairy Supply							
6907 Central Ag Service Eagle Bend MN0023248 9 115100 6908 Hess White Farm Implement Eagle Bend MN0023248 7 242900 6909 Eagle Bend Metal Eagle Bend MN0023248 7 811300 6910 Eagle Bend Municipal Liquor Store Eagle Bend MN0023248 7 722100 6911 Eagle Bend Veteran's Club Inc Eagle Bend MN0023248 6 813400 6913 Thricap Senior Clr Eagle Bend MN0023248 6 813400 6914 Eagle Bend Veteran's Club Inc Eagle Bend MN0023248 6 813400 6914 Eagle Bend Farm & Lumber Supply Eagle Bend MN0023248 5 813400 6915 Eagle Bend Welding Eagle Bend MN0023248 5 811300 6916 Jerry's Body Shop Eagle Bend MN0023248 5 811100 6917 Nell's Sarvice Ctr Eagle Bend MN0023248 5 811100 6918 Shirley's Gas & Groceries Eagle Bend MN0023248 5 811100 6919 Engebretson Moltors Eagle Bend			-				
6908 Hess White Farm Implement Eagle Bend MN0023248 7 811300 6910 Eagle Bend Municipal Liquor Store Eagle Bend MN0023248 7 445300 6911 Sir Anthony's Family Restaurant Eagle Bend MN0023248 7 722100 6911 Eagle Bend Verlaren's Club Inc Eagle Bend MN0023248 6 813400 6913 Th'-cap Senior Ctr Eagle Bend MN0023248 6 813400 6914 Eagle Bend Farm & Lumber Supply Eagle Bend MN0023248 5 444100 6915 Eagle Bend Welding Eagle Bend MN0023248 5 811300 6916 Serice Ctr Eagle Bend MN0023248 5 811100 6917 Nell's Service Ctr Eagle Bend MN0023248 5 811100 6918 Shirley's Gas & Groceries Eagle Bend MN0023248 5 811100 6919 Eagle Service Ctr Eagle Bend MN0023248 5 811100 6919 Shirley's Gas & Groceries Eagle Bend MN0023248 5 811100 6910 Shirley's Gas & Groceries Eagle Bend <td></td> <td></td> <td>ū</td> <td></td> <td></td> <td></td> <td></td>			ū				
6909 Eagle Bend Metal Eagle Bend MN0023248 7 811300			-			-	
6910 Eagle Bend Municipal Liquor Store Eagle Bend MN0023248 7 722100			-				
6911 Sir Anthony's Family Restaurant Eagle Bend MN0023248 7 722100		ŭ .					
6912 Eagle Bend Veteran's Club Inc			ū				
6913 Tri-cap Senior Ctr							
6914 Eagle Bend Farm & Lumber Supply Eagle Bend MN0023248 5 444100 6915 Eagle Bend Welding Eagle Bend MN0023248 5 811300 6916 Jerry's Body, Shop Eagle Bend MN0023248 5 811100 6917 Neil's Service Ctr Eagle Bend MN0023248 5 811100 6918 Shirley's Gas & Groceries Eagle Bend MN0023248 5 811100 6919 Engebretson Motors Eagle Bend MN0023248 4 811100 6920 Lakewood Clinic Eagle Bend MN0023248 4 811100 6921 NAPA Auto Parts Eagle Bend MN0023248 4 811100 6921 NAPA Auto Parts Eagle Bend MN0023248 4 41300 6922 Micro-Trak Systems Inc Eagle Bend MN0023248 4 41300 6923 Eagle Shest Eagle Bend MN0023248 4 41300 6924 American Legion Post 617 9 921100 6925 Eagle Lake, City of 0.03 19 921100 6926 Uncle Alberts Cafe 0.03 19 921100 6927 Chuck's Body Shop 0.03 19 921100 6928 Eagle Lake Amoco 10 47100 6939 Eagle Lake Amoco 10 47100 6930 Hughes Automotive 10 811100 6931 Gene's Repair Inc 6 811100 6932 Pierce Enterprises 6 811200 6933 Milled Overhead Door 5 532300 6934 Skelgas 5 454300 6935 Peoples State Bank 5 5 5 6936 Melchior Tree Service 9 0.00 1 812100 6939 Hair Affair 0.00 1 812100 6930 Hugh's Automotiving 1810 18115 6941 Anokarlsanti School Dist. 15 1875 3 238200 6944 Arrow Fence & Sign 181200 6944 Arrow Fence & Sign 1815 1815 20 339900 6944 Arrow Fence & Sign 1815 1815 20 339900 6945 Peoples Bank of Commerce East Grand Forks 0.15 MN0021814 420 311300 6947 American Crystal Sugar Company East Grand Forks MN0021814 420 311300 6948 Peoples Bank of Commerce 1815 18100 6947 American Crystal Sugar Company East Grand Forks MN0021814 420 311300 6948 Peoples Bank of Commerce East Grand Forks MN0021814 420 311300 6948 Peoples Bank of Commerce East Grand Forks MN0021814 420 3113			0				
Eagle Bend Mologa Eagle Bend Mologa Eagle Bend Mologa Serry's Body Shop Eagle Bend Mologa Serry's Body Shop Eagle Bend Mologa Serry's Body Shop Eagle Bend Mologa Service Ctr Service Service Service Ctr Eagle Bend Mologa Service Ctr Service Se			ū				
Eagle Bend							
6917 Neil's Service Ctr		ů .	ū				
6918 Shirley's Gas & Groceries Eagle Bend MN0023248 5 447100			ū				
Begin Engin Engi							
6920 Lakewood Clinic Eagle Bend 0.01 MN0023248 4 621100 6921 MAPA Auto Parts Eagle Bend MN0023248 4 441300 6922 Micro-Trak Systems Inc 40 423800 6923 Eagle's Nest 23 445300 6924 American Legion Post 617 20 813400 6925 Eagle Lake, City of 0.03 19 921100 6926 Uncle Albert's Cafe 15 722100 6927 Chuck's Body Shop 10 811100 6928 Eagle Lake Amoco 10 424900 6929 Eagle Lake Amoco 10 447100 6930 Hughes Automotive 10 811100 6931 Gene's Repair Inc 6931 Gene's Repair Inc 6 811100 6931 Gene's Repair Inc 6 811200 6933 Pierce Enterprises 6 811200 6934 Skelgas 5 454300 6935 Peoples State Bank 5 454300 6936 Baurer's Specialty 1 812100 6937 Al's Hair Shop 0.00 1 812100 6939 Baurer's Specialty 1 812100 6934 Anoka/isanti School Dist. 15 812100 6941 Anoka/isanti School Dist. 15 812100 6944 Arrow Fence & Sign 8158 20 339900 6945 East Brah of Commerce 8158 20 339900 6947 American Crystal Sugar Company East Grand Forks MN0021814 420 311300 6947 American Crystal Sugar Company East Grand Forks MN0021814 420 311300 6947 American Crystal Sugar Company East Grand Forks MN0021814 340 611100 6947 American Crystal Sugar Company East Grand Forks MN0021814 340 611100 6947 American Crystal Sugar Company East Grand Forks MN0021814 340 611100 6947 American Crystal Sugar Company East Grand Forks MN0021814 340 611100 6947 American Crystal Sugar Company East Grand Forks MN0021814 340 611100 6947 American Crystal Sugar Company East Grand Forks MN0021814 340 611100 6947 American Crystal Sugar Company East Grand Forks MN0021814 340 611100 6947 American Crystal Sugar Company East Grand Forks MN0021814 340 611100 6948 East Grand Forks MN0021814 340 611100 6948 East Grand Forks MN0021814 340 611100 6948 East Grand Fo			ū				
6921 NAPA Auto Parts Eagle Bend MN0023248 4 441300 6922 Micro-Trak Systems Inc 40 423800 6923 Eagle's Nest 23 445300 6924 American Legion Post 617 20 813400 6925 Eagle Lake, City of 0.03 19 921100 6926 Uncle Albert's Cafe 5 722100 6927 Chuck's Body Shop 10 811100 6928 Eagle Express 10 424900 6929 Eagle Lake Amoco 10 447100 6930 Hughes Automotive 10 811100 6931 Gene's Repair Inc 6 811100 6932 Pierce Enterprises 6 811200 6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Seoples State Bank 5 454300 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 1 812100 6939 Baurer's Specialty 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anokal'santi School Dist. 15 ISTS 33 238200 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6946 Peoples Bank of Commerce ISTS 20 444100 6947 American Crystal Sugar Company East Grand Forks MN0021814 420 311300 6948 East Grand Forks D.15 MN0021814 340 611100 6947 American Crystal Sugar Company East Grand Forks MN0021814 340 611100 6947 American Crystal Sugar Company East Grand Forks MN0021814 340 611100 6948 East Grand Forks MN0021814 340 611100 6949 East Grand Forks MN0021814 340 611100 6941 East Grand Forks MN0021814 340 611100 6942 East Grand Forks MN0021814 340 611100 6943 East Grand Forks East Grand Forks MN0021814 340 611100 6944 East Grand Forks East Grand Forks MN0021814 340 611100 6946 East Grand Forks East Grand Forks MN0021814 340 611100 6947 East Grand Forks East Grand Forks MN0021814 340 611100 6948 East Grand Forks East Grand Forks MN0021814 340 611100		ŭ .	ū	0.01			
6923 Micro-Trak Systems Inc 40 423800 6924 American Legion Post 617 20 813400 6925 Eagle Lake, City of 0.03 19 921100 6926 Uncle Albert's Cafe 15 722100 6927 Chuck's Body Shop 10 811100 6928 Eagle Express 10 424900 6929 Eagle Lake Amoco 10 811100 6930 Hughes Automotive 10 811100 6931 Gene's Repair Inc 6 811100 6932 Pierce Enterprises 6 811200 6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 0.00 1 812100 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6943 East Bethel Theatre ISTS 30 512100 6945 Syivester Lumber				0.01			
6923 Eagle's Nest 23 445300 6924 American Legion Post 617 20 813400 6925 Eagle Lake, City of 0.03 19 921100 6926 Uncle Albert's Cafe 15 722100 6927 Chuck's Body Shop 10 811100 6928 Eagle Express 10 424900 6929 Eagle Lake Amoco 10 447100 6930 Hughes Automotive 10 811100 6931 Gene's Repair Inc 6 811100 6932 Pierce Enterprises 6 811200 6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812200 6939 Baurer's Specialty 0 1 812200 6940 Judy's Cuts & Curls 0.00 1 812200 6941 Anoka/lasnit School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 3 238200 6943 East Bethel Theatre ISTS			Eagle Bellu		WINUU23246		
6924 American Legion Post 617 20 813400 6925 Eagle Lake, City of 0.03 19 921100 6926 Uncle Albert's Cafe 15 722100 6927 Chuck's Body Shop 10 811100 6928 Eagle Express 10 424900 6929 Eagle Lake Amoco 10 447100 6930 Hughes Automotive 10 811100 6931 Gene's Repair Inc 6 811100 6932 Pierce Enterprises 6 811200 6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 0.00 1 812100 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 33 238200 6942 Park Manufacturing		-					
6925 Eagle Lake, Ĉity of 0.03 19 921100 6926 Uncle Albert's Cafe 15 722100 6927 Chuck's Body Shop 10 811100 6928 Eagle Express 10 424900 6929 Eagle Lake Amoco 10 447100 6930 Hughes Automotive 10 811100 6931 Gene's Repair Inc 6 811200 6932 Pierce Enterprises 6 811200 6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 811200 6938 Baurer's Specialty 1 811200 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isant							
6926 Uncle Albert's Cafe 15 722100 6927 Chuck's Body Shop 10 811100 6928 Eagle Express 10 424900 6929 Eagle Lake Amoco 10 447100 6930 Hughes Automotive 10 811100 6931 Gene's Repair Inc 6 811200 6932 Pierce Enterprises 6 811200 6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 1 811200 6939 Hair Affair 0.00 1 812100 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 Saylvester Lumber ISTS 20 339900 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100 6949 East Best Grand Forks Public Schools East Grand Forks MN0021814 340 611100 6940 Mackalisanti School Schools East Grand Forks MN0021814 340 611100 6941 MN0021814 340 611100 6942 Mackalisanti School Schools East Grand Forks MN0021814 340 611100 6944 Mackalisanti School Schools East Grand Forks MN0021814 340 611100 6945 Mackalisanti School Schools East Grand Forks MN0021814 340 611100 6946 MRO021814 340 611100 6947 Mackalisanti School Schools East Grand Forks MN0021814 340 611100 6948 East Grand Forks MN0021814 340 611100 6949 Mackalisanti School Schools East Grand Forks MN0021814 340 611100 6940 Mackalisanti School Schools Ea				0.03			
6927 Chuck's Body Shop 10 811100 6928 Eagle Express 10 424900 6929 Eagle Lake Amoco 10 447100 6930 Hughes Automotive 10 811100 6931 Gene's Repair Inc 6 811100 6932 Pierce Enterprises 6 811200 6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 1 811200 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 136 611100 6942 Park Manufacturing ISTS 30 512100 6943 East Bethel Theatre 1STS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks MN0021814 420 3113300 6948 East Grand Forks MN0021814 340 611100 6948 East Grand Forks MN0021814 340 611100				0.03			
6928 Eagle Express 10 424900 6929 Eagle Lake Amoco 10 447100 6930 Hughes Automotive 10 811100 6931 Gene's Repair Inc 6 811100 6932 Pierce Enterprises 6 811200 6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 1 811200 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 3 238200 6943 East Bethel Theatre ISTS 30 512100 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100							
6929 Eagle Lake Amoco 10 447100 6930 Hughes Automotive 10 811100 6931 Gene's Repair Inc 6 811100 6932 Pierce Enterprises 6 811200 6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 1 811200 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100							
6930 Hughes Automotive 10 811100 6931 Gene's Repair Inc 6 811100 6932 Pierce Enterprises 6 811200 6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 0 1 811200 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Jank Alisanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company <		0 1					
6931 Gene's Repair Inc 6 811100 6932 Pierce Enterprises 6 811200 6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 1 811200 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 Ea							
6932 Pierce Enterprises 6 811200 6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 1 812100 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6940 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 1875 33 238200 6943 East Bethel Theatre ISTS 30 512100 6943 1875 30 512100 6945 1875 20 339900 6945 59/vester Lumber ISTS 20 34900 6946 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
6933 Allied Overhead Door 5 332300 6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 1 811200 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100							
6934 Skelgas 5 454300 6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 1 811200 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100							
6935 Peoples State Bank 4 522100 6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 1 811200 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 344100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100		1					
6936 Melchior Tree Service 2 561700 6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 1 811200 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100							
6937 Al's Hair Shop 0.00 1 812100 6938 Baurer's Specialty 1 811200 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100							
6938 Baurer's Specialty 1 811200 6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100				0.00			
6939 Hair Affair 0.00 1 812100 6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100				3.00			
6940 Judy's Cuts & Curls 0.00 1 812100 6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100				0.00			
6941 Anoka/Isanti School Dist. 15 ISTS 186 611100 6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100							
6942 Park Manufacturing ISTS 33 238200 6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100				3.00			
6943 East Bethel Theatre ISTS 30 512100 6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100							
6944 Arrow Fence & Sign ISTS 20 339900 6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100							
6945 Sylvester Lumber ISTS 20 444100 6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100							
6946 Peoples Bank of Commerce ISTS 4 522100 6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100		<u> </u>					
6947 American Crystal Sugar Company East Grand Forks 0.15 MN0021814 420 311300 6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100							
6948 East Grand Forks Public Schools East Grand Forks MN0021814 340 611100		·	East Grand Forks	0.15			
				3.10			
				0.27			

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
6950	American Federal Savings Bank	East Grand Forks		MN0021814	128	522100
6951	Vigen Construction, Inc.	East Grand Forks		MN0021814	125	236200
6952	Hugo's	East Grand Forks		MN0021814	115	445100
6953	Northwest Technical College	East Grand Forks		MN0021814	107	611500
	Cabela's	East Grand Forks		MN0021814	100	
	R. J. Zavoral & Sons, Inc.	East Grand Forks	0.06	MN0021814	80	
	Whitey's Cafe	East Grand Forks	0.00	MN0021814	70	
	Mc Donalds	East Grand Forks		MN0021814	65	
	Lumber Mart , Inc.	East Grand Forks		MN0021814	35	
6959	Mayo Manufacturing, Inc.	East Grand Forks		MN0021814	35	
	Pamida	East Grand Forks		MN0021814	35	452100
6961	PRACS Institute, Ltd.	East Grand Forks		MN0021814	25	621500
	Valley Truck Parts & Service	East Grand Forks		MN0021814	25	441300
	Bert's Truck Equipment, Inc.	East Grand Forks		MN0021814	24	
	MeritCare Clinic	East Grand Forks	0.03	MN0021814	22	
			0.03			
	MTS Systems Corp	St. Paul		MN0029882	1700	
	Eden Prairie School District #272	St. Paul		MN0029882	1200	
	Super Valu Stores Inc	St. Paul		MN0029882	1100	
6969	Best Buy Co Inc	St. Paul		MN0029882	900	443100
6970	GE Capital Fleet Service	St. Paul		MN0029882	800	532100
	Eaton Corp	St. Paul		MN0029882	642	
	American Family Insurance	St. Paul		MN0029882	470	
	TCF Financial Corporation	St. Paul		MN0029882	400	
	Anagram International Inc	St. Paul	2.58	MN0029882	375	
	Pillsbury Bakery	St. Paul		MN0029882	340	31180
6976	Perkin Elmer	St. Paul	0.26	MN0029882	335	33450
6978	Challenge Printing Inc	St. Paul		MN0029882	245	32310
	Viking Press	St. Paul		MN0029882	238	
	Jerry's Enterprises Inc	St. Paul		MN0030007	2000	
	Golden Valley Microwave Foods	St. Paul		MN0030007	650	
	Health Risk Management Inc	St. Paul		MN0030007	552	
	Dayton's	St. Paul		MN0030007	500	452100
6985	JC Penney Co	St. Paul		MN0030007	400	452100
6986	Norwest Funding	St. Paul		MN0030007	358	541600
	Nash Finch Co	St. Paul		MN0030007	350	445100
_	International Dairy Queen Inc	St. Paul		MN0030007	300	
		St. Paul			140	
	Roach Organization Inc			MN0030007		
	Techpower Inc	St. Paul		MN0030007	120	
6991	Kurk Trucking	Eitzen		MN0049531	85	
6992	Eitzen State Bank	Eitzen		MN0049531	11	52210
6993	Hammell Equipment	Eitzen		MN0049531	6	44420
	Mike's Meats	Eitzen	0.02	MN0049531	5	
	D&L's Bordertown Inn	Eitzen	0.02	MN0049531	3	
					3	
	Maggie's Dugout	Eitzen		MN0049531		
	MC Service	Eitzen		MN0049531	3	
	Wiebke Fur	Eitzen		MN0049531	3	
6999	Amundson Equipment	Elbow Lake		MN0051535	50	423800
	C. I. Construction	Elbow Lake		MN0051535	50	23610
7001	City of Elbow Lake	Elbow Lake	0.07	MN0051535	50	
7001	Cosmos Enterprises	Elbow Lake		MN0051535	50	
_	<u>'</u>					
	Elbow Lake Coop Grain	Elbow Lake		MN0051535	50	
	Elbow Lake Ford and Mercury, Inc.	Elbow Lake		MN0051535	50	
7005	ELEAH Medical Center	Elbow Lake	0.07	MN0051535	50	62110
7006	Farm and Home Oil Co.	Elbow Lake		MN0051535	50	42470
	Farm Power	Elbow Lake		MN0051535	50	
	Farmer's Co-op Oil Assn.	Elbow Lake	0.13	MN0051535	50	
	Grant County Offices		_		50	
_	,	Elbow Lake	0.07	MN0051535		
	Lake Region Veterinary Center, LLC	Elbow Lake		MN0051535	50	
	Leis Motors	Elbow Lake		MN0051535	50	
	MInnesota Rural Water	Elbow Lake		MN0051535	50	81330
7013	Runestone Telephone Association	Elbow Lake		MN0051535	50	51710
	West Central Area School	Elbow Lake		MN0051535	50	
_	West Central MN Community Action	Elbow Lake			50	
	· · · · · · · · · · · · · · · · · · ·			MN0051535		
	EM School District	Plainview		MN0055361	55	
7040	Gusa Electric	Plainview		MN0055361	8	
7018		1		NAN 10055004		22100
	Region Millworks	Plainview		MN0055361	8	321900
7019	Region Millworks Beck Implement	Plainview Plainview		MN0055361	6	

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
7022	All American Co-op	Plainview		MN0055361	5	
7023	Hope Medical Center	Plainview	0.01	MN0055361	5	
7024	Cutrite Customs	Plainview		MN0055361	4	
7025	DataSmart Computers	Plainview		MN0055361	4	811200
7026	Elgin Liquor Store	Plainview		MN0055361	4	445300
7027	People's St Bk of Plainview at Elgin	Plainview		MN0055361	4	522100
7028	US Post Office	Plainview		MN0055361	4	491100
7029	Elgin Vet Clinic	Plainview		MN0055361	2	541900
	Main Street Studio	Plainview		MN0055361	2	541900
	Bill Sims Accounting	Plainview		MN0055361	1	541200
	Elk River-ISD #728	Elk River		MN0020788	1160	
	Sherburne, County of	Elk River		MN0020788	490	
	Guardian Angels	Elk River		MN0020788	372	
	Wal-Mart	Elk River		MN0020788	325	
	Cub Foods	Elk River		MN0020788	200	
		-				
	Menards	Elk River		MN0020788	195	
	Tescom Corp	Elk River		MN0020788	189	
	Coborns	Elk River		MN0020788	180	
	Alltool Design & Manufacturing	Elk River		MN0020788	155	
	Cretex Companies	Elk River		MN0020788	130	
	E & O Tool and Plastics	Elk River	0.10	MN0020788	125	325200
7044	Elk River Machine Company	Elk River	0.00	MN0020788	80	332700
	Metal Craft Machine & Engineering	Elk River	0.00	MN0020788	52	332700
	J & J Machine	Elk River		MN0020788	45	335900
	Dynetic Systems	Elk River		MN0020788	35	
	MN Fabrication & Machine	Elk River		MN0020788	30	
	Harvest States Cooperative	Elkton		MNG580013	12	
	Farmers St Bk of Elkton	Elkton		MNG580013	9	
	The Port	Elkton		MNG580013	4	
	Deb's Hair Designs	Elkton		MNG580013	1	
	NRHEG School District	Ellendale		MN0041564	70	
	North Central Plastics Inc	Ellendale		MN0041564	50	
	Ellendale Farmers Union Co-op	Ellendale		MN0041564	20	
	Steve's Meat Market Inc	Ellendale		MN0041564	15	
7057	Parkview Manor Nursing Home	Ellsworth		MNG580015	66	
7058	Ellsworth Public School	Ellsworth		MNG580015	36	
7059	Domeyer Implement	Ellsworth		MNG580015	g	423800
7060	Ellsworth State Bank	Ellsworth		MNG580015	9	522100
7061	Short Stop	Ellsworth		MNG580015	8	445100
7062	Elmore Academy-YSI, Inc.	Elmore		MN0021920	50	923110
	Elmore Truck Accessories	Elmore	0.11	MN0021920	20	325211
	Pioneer Bank	Elmore		MN0021920	8	
	Ely Bloomenson Community Hosp	Ely		MN0020508	240	
	Vermilion Comm College	Ely		MN0020508	111	
	Ely Public Schools-Dist #696	Ely		MN0020508	109	
	Irresistible Ink/Hallmark Cards, Inc.	Ely		MN0020508	100	
		,				
	Sato Travel/Navigant	Ely		MN0020508	100	
	Leustek& Sons Inc	Ely		MN0020508	75	
	MN Dept of Revenue	Ely		MN0020508	57	
	Holiday Inn Suspree Resort	Ely		MN0020508	55	
	Iga Foodliner	Ely		MN0020508	50	
7074	US Forest Svc Ranger Station	Ely		MN0020508	50	115300
7075	Zup's Food Market	Ely		MN0020508	47	445100
7076	Ely, City of	Ely	0.06	MN0020508	43	921100
7077	Wintergreen Designs	Ely		MN0020508	41	315200
	St Louis County	Ely		MN0020508	39	
	Ely Medical Center	Ely		MN0020508	35	
	Piragis Northwoods Co.	Ely		MN0020508	35	
	Hardee's	Ely		MN0020508	30	
	Steger Designs	Ely		MN0020508	25	
	0 0			MN0020508	21	
	Pizza Hut	Ely			+	
	Ely Echo	Ely		MN0020508	20	
	Norwest Bank Ely	Ely		MN0020508	14	
	Boundary Waters State Bank	Ely		MN0020508	12	
	Lake Country Sales Inc.	Elysian		MN0041114	33	
=	Crestview Manor Health Care	Evansville		MNG580074	62	623100
	Evansville Public Schools	Evansville		MNG580074	50	611100 522100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
7091	Chris Mitchell CPA	Evansville		MNG580074	7	
7092	Englund Construction	Evansville		MNG580074	5	236100
7093	Quinn Construction	Evansville		MNG580074	3	236100
	Eveleth-Gilbert School	Eveleth		MN0023337	280	
	Arrowhead Health Care Centers	Eveleth		MN0023337	175	623100
	Days Inn	Eveleth		MN0023337	80	
	Minnesota Power	Eveleth		MN0023337	49	
	Iron Range Resources & Rehabilitation	Eveleth		MN0023337	46	
	Eveleth Health Services Park	Eveleth	0.06	MN0023337	45	
	Utility Systems of America	Eveleth		MN0023337	40	
	F.A.S.T. Inc.	Eveleth		MN0023337	35	
	Lundgren Motors	Eveleth		MN0023337	34	
	OSI Environmental, Inc.	Eveleth		MN0023337	27	562100
	Servicemaster & Merry Maids Chicagami Children's Center	Eveleth		MN0023337	21	561700 624400
	v	Eveleth		MN0023337	15	
	Five Seasons Sports Center	Eveleth		MN0023337	15	
	Wells Fargo Tufco, Inc.	Eveleth Eveleth		MN0023337 MN0023337	14	
	Dover-Eyota Public Schools	St. Charles		MN0046868	178	
	Dave Higgins Home Builder	St. Charles		MN0046868	26	
	Kwik Trip	St. Charles		MN0046868	12	
	Beckman Siding	St. Charles		MN0046868	11	238100
	Pennington Hardware	St. Charles		MN0046868	7	
	Petit Music	St. Charles		MN0046868	7	
	All American Elevator	St. Charles		MN0046868	5	
	Country Cafe	St. Charles		MN0046868	5	
	Country Curtains & Crafts	St. Charles		MN0046868	3	
	Fairfax Community Home Inc	Fairfax		MNG580060	68	
	Schweiss Distributing	Fairfax		MNG580060	50	444100
	GFW Middle School	Fairfax		MNG580060	38	
	Cherrington Corp	Fairfax	0.00	MNG580060	19	332700
7122	South Central Coop	Fairfax		MNG580060	18	424900
7123	Deming Construction	Fairfax		MNG580060	12	236200
7124	Wendinger Bldg & Remodeling	Fairfax		MNG580060	10	236100
7125	Hawkeye Tile	Fairfax		MNG580060	8	327100
7126	Fairmont Medical Center-Mayo Health Systems	Fairmont	0.40	MN0030112	620	
7127	Weigh-Tronix Inc	Fairmont	2.57	MN0030112	375	311821
	Fairmont Tamper	Fairmont		MN0030112	350	
	Lakeview Methodist Health Care Facility	Fairmont		MN0030112	215	
	W Hodgman & Sons Inc	Fairmont		MN0030112	200	
	REM Heartland	Fairmont		MN0030112	180	
	Aerospace Systems Div	Fairmont		MN0030112	143	
	Tyco Plastics Inc	Fairmont	0.23	MN0030112	135	
	MRCI/Tri-County Industries	Fairmont		MN0030112	115	
	Hancor Inc	Fairmont	0.07	MN0030112	85	
	Greenlee Fairmont	Fairmont		MN0030112	75	
	Rosen's Inc	Fairmont		MN0030112	35	
	Minnesota State Fair	St. Paul		MN0029815	2500	
	University of Minnesota	St. Paul		MN0029815 MN0029815	1500	
	Hewlett-Packard Hermes Floral	St. Paul St. Paul		MN0029815	300	
	Faribault Public Schools McQuay International	Faribault Faribault		MN0030121 MN0030121	560 480	
	MN State Corrections Facility	Faribault		MN0030121	470	
	Rust Consulting	Faribault		MN0030121	450	
	Rice, County of	Faribault	0.53	MN0030121	375	
	District One Hospital	Faribault		MN0030121	301	622100
	Wal-Mart	Faribault	0.20	MN0030121	290	
	Academies for the Deaf/Blind	Faribault		MN0030121	260	
	Met-Con Companies	Faribault		MN0030121	260	
	Hy-Vee Food Stores	Faribault		MN0030121	257	445100
	Mercury Minnesota Inc	Faribault	1.72	MN0030121	250	
	Crown Cork & Seal Co	Faribault	2	MN0030121	225	
	K-Bar Industries	Faribault		MN0030121	200	
7159						
	Viratec Thin Films Inc	Faribault		MN0030121	200	327200
7160		Faribault Faribault		MN0030121 MN0030121	200 175	
7160 7161	Viratec Thin Films Inc					622200

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
7165	Rainbow Foods	Faribault		MN0030121	135	
7166	Farmington Public Schools-ISD #192	St. Paul		MN0045845	595	611100
7167	Federal Aviation Administration	St. Paul		MN0045845	495	926100
7168	Dakota Electric Assn	St. Paul		MN0045845	230	221100
7169	Lexington Standard Corp	St. Paul	0.83	MN0045845	120	332900
7171	Duo Products Inc	St. Paul	0.07	MN0045845	90	325200
7172	Marschall Line Inc	St. Paul		MN0045845	68	485400
7173	Farmington, City of	St. Paul	0.09	MN0045845	63	921100
7174	Peerless Plastics	St. Paul	0.05	MN0045845	60	325200
7175	Controlled Air	St. Paul		MN0045845	37	238900
7176	PIC Inc	St. Paul		MN0045845	37	238900
7177	CG Construction	St. Paul		MN0045845	32	238100
7179	Lake Region Hospital	Fergus Falls	0.71	MN0050628	588	622110
7180	Otter Tail, County of	Fergus Falls		MN0050628	506	921190
7182	Fergus Falls Public Schools	Fergus Falls		MN0050628	334	611110
7183	Fergus Falls Regional Treatment Ctr	Fergus Falls		MN0050628	318	622210
	Fergus Falls Medical Group PA	Fergus Falls		MN0050628	242	
	Broen Memorial Home	Fergus Falls		MN0050628	230	
	Northern Contours	Fergus Falls	0.20	MN0050628	230	
	Pioneer Home Inc	Fergus Falls	0.20	MN0050628	204	
	ShoreMaster Inc	Fergus Falls	2 70	MN0050628	156	
	Minnesota State Community/Technical College	Fergus Falls		MN0050628	155	
	Veterans Home	Fergus Falls	1.71	MN0050628	151	623110
	Fergus Falls, City of	Fergus Falls		MN0050628	137	921190
	Lakeland Mental Health Center	Fergus Falls		MN0050628	137	
	Sara Lee Bakery Group	Fergus Falls	0.46			
	, ,		0.46	MN0050628	120	
	Lakes Country Service Cooperative	Fergus Falls	4.00	MN0050628	106	
	Banner Engineering Co	Fergus Falls	1.38	MN0050628	73	
	Otter Tail Coaches, Inc.	Fergus Falls	0.00	MN0050628	57	
	Thiele Engineering Co-Fergus Fls	Fergus Falls	0.92	MN0050628	55	
	Fair Meadow Nursing Home	Fertile		MN0052370	124	
	Fertile-Beltrami School	Fertile		MN0052370	90	
	Christian Motors	Fertile		MN0052370	22	
	Christian Transport	Fertile	1.14	MN0052370	22	
	TDS Fertilizer	Fertile		MN0052370	15	
	First St Bk of Fertile	Fertile		MN0052370	12	
	Bauer Honey	Fertile		MN0052370	11	
7206	Leiting Honey	Fertile		MN0052370	5	
	Floodwood Public Schools	Floodwood		MNG580048	50	
7208	Bridgeman's	Floodwood		MNG580048	15	
7209	First St Bk of Floodwood	Floodwood		MNG580048	15	522100
7210	Floodwood DAC	Floodwood		MNG580048	15	611500
7211	Floodwood Food-N-Fuel	Floodwood		MNG580048	10	447100
7212	Floodwood, City of	Floodwood	0.01	MNG580048	10	921100
7213	MN Dept of Transportation	Floodwood		MNG580048	10	926100
	Savanna Portage Supper Club	Floodwood		MNG580048	10	722100
7215	St Louis Co Hwy Dept	Floodwood		MNG580048	10	926100
	Foley Public Schools	Foley		MN0023451	204	
	Benton, County of	Foley	0.26	MN0023451	186	
	Foley Nursing Ctr	Foley	1.20	MN0023451	160	
	Willmar Poultry Co/Foley	Foley		MN0023451	60	
	Gor-Fol Mfg	Foley	0.09	MN0023451	53	
	Dombrovski Meats Inc	Foley		MN0023451	43	
	Coborn's Grocery	Foley	2.77	MN0023451	36	
	Rural American Bk-Foley/Gilman	Foley		MN0023451	26	
	Blow Molded Specialties	Foley	0.01	MN0023451	18	
	Foley Lumber Do-It Ctr	Foley	0.01	MN0023451	15	
	T.L.C. University	Foley		MN0023451	15	
	Mid-State Custom Cabinetry	Foley		MN0023451	12	
	Murphy Chevrolet	-		MN0023451	10	
	1 /	Foley		MN0023451		
	First Care Medical Services	Fosston			183	
	Fosston School District	Fosston	0.01	MN0022128	107	
	Stenberg Welding & Fabricating, Inc.	Fosston	0.04	MN0022128	88	
	Palubicki's Food & Deli	Fosston		MN0022128	60	
	Polk Solid Waste Management	Fosston		MN0022128	28	
	Don's Machine Shop	Fosston		MN0022128	17	
	Northern Food & Dairy	Fosston	1.16	MN0022128	16	
7236	Franklin Health Care Center	Franklin		MN0021083	82	623100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
7237 (Cedar Mountain Elementary School	Franklin		MN0021083	45	
7238	Good Time Transport	Franklin		MN0021083	15	493100
	Gedney Pickles	Franklin	0.56	MN0021083	12	
7240 F	Petro 19	Franklin		MN0021083	10	42490
7241 I	Minnesota Valley Telephone Company	Franklin		MN0021083	8	
7242 F	Franklin State Bank	Franklin		MN0021083	5	52210
7243 l	Longbranch Saloon	Franklin		MN0021083	5	722400
7244 F	Palmrya Mutual Insurance Co.	Franklin		MN0021083	5	52410
	Rocker's	Franklin		MN0021083	5	722400
7246 F	Franklin Post Office	Franklin		MN0021083	4	491100
7247 l	United Agri Products	Franklin		MN0021083	4	115100
7248 F	Franklin Locker Service	Franklin	0.17	MN0021083	3	31160
7249 \	Vicky's Farmsite Cafe	Franklin		MN0021083	3	72210
7250 F	Franklin Auction & Consignment	Franklin		MN0021083	2	45330
7251	All-Phase Electric	Franklin		MN0021083	1	23820
7252 F	Randy's Plumbing & Heating	Franklin		MN0021083	1	23820
7253 \	Wood Treasures	Franklin		MN0021083	1	32190
7258	Target	St. Paul		MN0029815	600	45210
7260 l	LaMaur	St. Paul		MN0029815	400	42380
7263 F	Park Construction Co	St. Paul		MN0029815	300	23730
	Parsons Electric Co	St. Paul		MN0029815	300	
7265 \	Wal-Mart	St. Paul		MN0029815	262	
7266 I	Holiday Plus	St. Paul		MN0029815	250	
	Home Depot	St. Paul		MN0029815	150	
	Menard Cashway Lumber	St. Paul		MN0029815	150	
	Maple Lawn Nursing Home	Fulda		MN0023507	65	
	Fulda Public Schools	Fulda		MN0023507	64	
	New Dawn Inc	Fulda		MN0023507	17	62390
	First NB-Fulda	Fulda		MN0023507	16	
	Interstate Power Co	Fulda		MN0023507	10	22110
	Holinka Distributing	Fulda		MN0023507	8	
	Ramerth Agricultural	Fulda		MN0023507	8	
	Fulda Electric	Fulda		MN0023507	7	
	Fulda Free Press	Fulda		MN0023507	7	51110
	M.G. Waldbaum	Gaylord	6.76	MN0051209	300	
	Eastside Ford	Gaylord	0.70	MN0051209	144	44110
	Sibley, County of	Gaylord	0.16	MN0051209	115	
	, , , , , , , , , , , , , , , , , , ,	-	0.10	MN0051209	105	
	Gaylord Lakeview Home	Gaylord				
	Sibley East Schools	Gaylord		MN0051209	100	
	Unidoor Corportation	Gaylord		MN0051209	60	
	Prarie House	Gaylord		MN0051209	28	
	Citizens St Bk of Gaylord	Gaylord		MN0051209	17	
	Tri-County Builders	Gaylord	0.00	MN0051209	15	
	Home Quality Foods	Gaylord	0.06	MN0051209	13	
7288 F		Gaylord		MN0051209	13	
	Anderson Drug	Gaylord		MN0051209	6	
_	Duebers	Gaylord		MN0051209	6	
	First National Bank of Gaylord	Gaylord		MN0051209	6	
	Gibbon Public School-GFW	Hector		MNG580020	50	
_	CJ's Family Restaurant	Hector		MNG580020	25	
	May-Wes Manufacturing	Hector	0.15	MNG580020	22	
	Northern Insulation	Hector		MNG580020	14	
7296	Ankers, Inc.	Hector		MNG580020	13	32530
7297	Texaco Super Stop and Wash, Inc.	Hector		MNG580020	12	44710
7298	South Central Coop	Hector		MNG580020	9	
7299	State Bk of Gibbon	Hector		MNG580020	9	52210
7300	Minnesota Valley Bank	Hector		MNG580020	7	52210
7301	Ag-Land Coop.	Hector		MNG580020	6	45430
7302	Starkey Labs Inc	Glencoe	0.37	MN0022233	476	33450
	Glencoe Regional Health Services	Glencoe	0.28	MN0022233	425	62210
	Telex Communications Inc	Glencoe		MN0022233	300	
	Glencoe-Silver Lake Schools Dist #422	Glencoe		MN0022233	270	
	Coborn's	Glencoe		MN0022233	65	
	Mark's Economart	Glencoe		MN0022233	63	
	McLeod County Social Svc Ctr	Glencoe		MN0022233	50	
7310					. 30	
	•	Glencoe	0.02	MN0022233	45	48210
7311	Twin Cities & Western Railroad Pamida Inc	Glencoe Glencoe	0.02	MN0022233 MN0022233	45 38	

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

7314 Security Bank & Tival Company Glencoe MN0022233 32 32 32 32 32 32	ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
7316 First Minnesoita Bank NA Glencoe MN002233 21 5220 7317 Supersevel Feed Glencoe MN002233 16 42600 7318 Supersevel Glencoe MN002233 16 42600 7320 7320 Glencoe Glencoe MN002233 16 42600 7320 Glencoe	7314		Glencoe				
7317 Supertsweet Feed			Glencoe	0.04	MN0022233	30	
7318 Young America Corp							
7319 Spectro							
7320 Gierwood School Dist at 249							
7321 Glacial Ridge Hospital 0.12 IMM0062710 130 62210 7322 IMASP Inc			Glencoe				
7322 WASP Inc				0.10			
7323 Clemwood Retirement Village 0.15 MN0052710 110 62310 7324 Pope, County of 0.15 MN0052710 90 54150 7326 Lakewiew Care Cir MN0052710 70 54250 7327 American Business Forms MN0052710 70 42400 7328 Clyde Machines Inc MN0052710 70 424100 7329 Clyde Machines Inc MN0052710 70 424200 7329 Clyde Machines Inc MN0052710 53 43210 7330 MHC Inc MN0052710 53 48210 7330 MHC Inc MN0052710 54 48210 7330 MHC Inc MN0052710 54 48210 7330 MHC Inc MN0052710 54 48210 7330 MHC Inc MN0052710 50 33320 7331 SBaS Roll Roller Inc MN0052710 61 33220 7332 Sbast Specialtes Inc MN0052710 8 33220 7333 Patri Si Rab Specialtes Inc 0.01 MN0052710 8 43520 7333 Patri Si Rab Specialtes Inc 0.01 MN0052710 7							
7332 Pope, County of				0.00			
7325 Carryland Computer & Consulting Inc MN0052710 80 63250 7326 Lakewiew Care Ctr MN0052710 75 42410 7326 Layek Machines Inc MN0052710 75 42410 7328 Cytek Machines Inc MN0052710 75 42410 7328 Cytek Machines Inc MN0052710 75 42410 7328 Cytek Machines Inc MN0052710 50 3330 7330 MHC Inc MN0052710 50 3330 7330 MHC Inc MN0052710 30 44510 7330 MHC Inc MN0052710 30 30 43510 7330 MHC Inc MN0052710 30 30 30 30 30 30 30				0.15			
7336 Lakeview Care Ctr				0.15			
7328 American Business Forms							
7328 Clyde Machines Inc		I .					
7329 Glenwood Bridge							
7330 MHC Inc							
7331 CP Rail Systems							
7332 Toms Food Pride				0.02			
7333 Bealers Livestock Equipment Ctr MonOp62710 20 333200 7334 RZ Maching 0.00 MN0052710 9 33220 7335 BAD Rollers Inc MN0052710 9 81120 7336 BOdeker Machining MN0052710 8 3320 7337 Mike's Fish & Seatood Inc 0.01 MN0052710 7 32520 7338 HBS Specialities Inc 0.01 MN0052710 6 33120 7338 HBS Specialities Inc MN0052710 6 33120 7340 Flydron Public Schools ISD #2164 Glyndon MN0020630 120 61110 7341 Clyndron Public Schools ISD #2164 Glyndon MN0020630 120 61110 7343 Slamari Glyndon MN0020630 12 62100 7343 Slamari Glyndon MN0020630 12 72210 7345 Clence Land-O-Lakes Glyndon MN0020630 11 72210 7346 Clence Land-O-Lakes Glyndon MN0020630 11 72210 7346 Clence Land-O-Lakes Glyndon MN0020630 11 72210				0.02			
7334 R/C Maching							
7336 BAD Rollers Inc				0.00			
7337 Mikes Fish & Seafood Inc							
7337 Mikes Fish & Seafood Inc							
7393 Jerel Mfg	7337	Mike's Fish & Seafood Inc		3.02	MN0052710	8	445200
7340 Total Fab Inc	7338	H&S Specialties Inc		0.01	MN0052710	7	325200
T341 Glyndon Public Schools-ISD #2164 Glyndon MN0020630 55 62180	7339	Jerel Mfg			MN0052710	6	331200
T342 Homecare of Minnesota Glyndon MN0020630 25 42490 7344 Glyndon Tastee Freez Glyndon MN0020630 21 42490 7345 Cenex Land-O-Lakes Glyndon MN0020630 11 42490 7345 Cenex Land-O-Lakes Glyndon MN0020630 11 42490 7345 Cenex Land-O-Lakes Glyndon MN0020630 11 56210 7347 Miguel's Glyndon MN0020630 11 56210 7347 Miguel's Glyndon MN0020630 11 72210 7349 Glyndon Highway Host Glyndon MN0020630 10 72210 7349 Glyndon Highway Host Glyndon MN0020630 10 72210 7349 Glyndon Highway Host Glyndon MN0020630 6 92110 7345 Glyndon Highway Host Glyndon MN0020630 6 92110 7350 Glyndon Glyndon MN0020630 5 49110 7351 Glyndon Glyndon MN0020630 4 43310 7352 Glyndon Glyndon MN0020630 4 43310 7352 Hill Lounge Glyndon MN0020630 4 42340 7354 O's Bar & Grill Glyndon MN0020630 3 44420 7354 O's Bar & Grill Glyndon MN0020630 3 44420 7354 O's Bar & Grill Glyndon MN0020630 3 43410 7355 Glyndon Glyndon MN0020630 2 43310 7355 Glyndon Garage Glyndon MN0020630 2 43310 7355 Glyndon Garage Glyndon Glyndo				0.03	MN0052710	5	332900
T343 Starmart			Glyndon		MN0020630	120	611100
7344 Glyndon Tastee Freez Glyndon MN0020630 12 72210	-		Glyndon		MN0020630		
7345 Cenex Land-O-Lakes Glyndon MN0020630 11 42490							
7346 Fuchs Sanitation		•	-				
T347 Miguel's		I .	-				
Tys48 Glyndon, City of Glyndon MN0020630 10 Tyz210							
T349 Glyndon, Cily of Glyndon 0.01 MN0020630 6 92110			,				
7350 US Post Office			,				
7351 Glyndon Self Storage Glyndon MN0020630 4 49310 7352 Hill Lounge Glyndon MN0020630 3 72240 7353 Eddy & Ginys Garden Ctr Glyndon MN0020630 3 7354 O's Bar & Grill Glyndon MN0020630 3 7355 Felton Farmers Elevator Glyndon MN0020630 2 7356 Felton Farmers Elevator Glyndon MN0020630 2 7356 Glyndon MN0020630 2 7357 Linda's Cut n Curl Glyndon MN0020630 2 7358 Northwestern St Bk of Ulen - Glyndon Glyndon MN0020630 2 7359 Schuman's Shaklee Glyndon MN0020630 2 7350 Brownie's Dairy Glyndon MN0020630 2 7350 Brownie's Dairy Glyndon MN0020630 2 7360 Brownie's Dairy Glyndon MN0020630 2 7360 Brownie's Dairy Glyndon MN0020630 1 7361 United Health Care St. Paul MN0029815 650 7365 Courage Center St. Paul MN0029815 650 7366 Dahlberg Inc St. Paul MN0029815 550 7366 Dahlberg Inc St. Paul 14.46 MN0029815 550 7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 350 7369 KARE TV St. Paul MN0029815 350 7370 CyberOptics St. Paul MN0029815 198 33450 7372 Alexander & Alexander Inc St. Paul MN0029815 198 33450 7373 Grow Biz Intl Inc St. Paul MN0029815 160 52410 7373 Grow Biz Intl Inc St. Paul MN0029815 150 53310 7375 Northrup King Co St. Paul MN0029815 140 23620 7376 I.S.D. #2311 Gonvick MN0020541 15 54190 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 54190 7378 Northrup King Co St. Paul MN0020541 15 54190 7379 Richards Publishing, Inc. Gonvick MN0020541 15 54190 7380 Northern State Bank Gonvick MN0020541 10 48550 7381 Lange Transport, Inc. Gonvick MN0020541 10 48550 7382 North Central Feed Gonvick MN0020541 2 44520 7383 Oranes Meat Market Gonvick O.76 MN0020541 2 44520 7383 Oranes Meat Market Gonvick O.				0.01			
7352 Hill Lounge			-				
7353 Eddy & Giny's Garden Ctr		, ,	-				
7354 O's Bar & Grill							
7355 Felton Farmers Elevator Glyndon MN0020630 2 493100 7356 Glyndon Garage Glyndon MN0020630 2 811100 7357 Linda's Cut n Curl Glyndon O.01 MN0020630 2 812100 7358 Northwestern St Bk of Ulen - Glyndon Glyndon MN0020630 2 522100 7359 Schuman's Shaklee Glyndon MN0020630 2 454300 7369 Schuman's Shaklee Glyndon O.06 MN0020630 2 454300 7360 United Health Care St. Paul MN0029815 1100 524100 7361 Tennant Co St. Paul MN0029815 650 333300 7365 Courage Center St. Paul MN0029815 550 633900 7366 Dahlberg Inc St. Paul 14.46 MN0029815 550 339100 7367 Red Line Health Care St. Paul 14.46 MN0029815 500 339100 7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 350 541700 7369 KARE TV St. Paul MN0029815 225 515100 7370 CyberOptics St. Paul MN0029815 198 334500 7371 Alexander & Alexander Inc St. Paul MN0029815 160 524100 7373 Grow Biz Intl Inc St. Paul MN0029815 150 533100 7374 MA Mortenson Co St. Paul MN0029815 150 533100 7375 Northrup King Co St. Paul MN0029815 140 236200 7376 Northrup King Co St. Paul MN0029815 140 236200 7377 Missor Products, Inc. Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7380 Northern State Bank Gonvick MN0020541 10 485500 7381 Lange Transport, Inc. Gonvick MN0020541 10 485500 7382 North Central Feed Gonvick Gonvick MN0020541 2 445200 7383 Cranes Meat Market Gonvick Gonvick MN0020541 2 445200 7383 Cranes Meat Market Gonvick Gonvick Gonvick MN0020541 2 445200 7383 Cranes Meat Market Gonvick Gonvick			-				
7356 Glyndon Garage Glyndon MN0020630 2 811100 7357 Linda's Cut n Curl Glyndon 0.01 MN0020630 2 812100 7358 Northwestern St Bk of Ulen - Glyndon Glyndon MN0020630 2 522100 7359 Schuman's Shaklee Glyndon MN0020630 2 454300 7360 Brownie's Dairy Glyndon 0.06 MN0020630 1 311500 7363 United Health Care St. Paul MN0029815 1100 524100 7364 Tennant Co St. Paul MN0029815 650 333300 7365 Courage Center St. Paul MN0029815 550 623900 7366 Daihlberg Inc St. Paul 14.46 MN0029815 550 623900 7367 Red Line Health Care St. Paul 14.46 MN0029815 500 339100 7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 550 541700 7369 KARE TV St. Paul MN0029815 225 515100 7370 CyberOptics St. Paul MN0029815 225 515100 7373 Grow Biz Intl Inc St. Paul MN0029815 198 334500 7374 MA Mortenson Co St. Paul MN0029815 160 524100 7375 CyberOptics St. Paul MN0029815 160 524100 7376 I.S.D. #2311 Gonvick MN0029815 130 541700 7377 Winsor Products, Inc. Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7380 Northern State Bank Gonvick MN0020541 15 541900 7381 Large Transport, Inc. Gonvick MN0020541 10 485500 7382 Northern State Bank Gonvick MN0020541 10 485500 7383 Cranes Meat Market Gonvick MN0020541 2 445200 7383 Cranes Meat Market Gonvick MN0020541 2 445200 7383 Cranes Meat Market Gonvick O.76 MN0020541 2 445200 7384 Cranes Meat Market Gonvick MN0020541 2 445200 7383 Cranes Meat Market Gonvick O.76 MN0020541 2 445200 7384 Cranes Meat Market Gonvick MN0020541 2 445200 7384 Cranes Meat Market Gonvick O.76 MN0020541 2 445200 7385 Cranes Meat Market Gonvick O.76 MN0020541 2 445200 7386 Cr							
7357 Linda's Cut n Curl Glyndon 0.01 MN0020630 2 812100 7358 Northwestern St Bk of Ulen - Glyndon Glyndon MN0020630 2 52210 7359 Schuman's Shaklee Glyndon MN0020630 2 454300 7360 Brownie's Dairy Glyndon 0.06 MN0020630 1 314500 7363 United Health Care St. Paul MN0029815 1100 524100 7364 Tennant Co St. Paul MN0029815 650 333300 7365 Courage Center St. Paul MN0029815 550 623900 7366 Dahlberg Inc St. Paul 14.46 MN0029815 500 339100 7367 Red Line Health Care St. Paul 1.83 MN0029815 350 541700 7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 270 441100 7369 KARE TV St. Paul MN0029815 225 541500 7372 Alexander & Alexander Inc St. Paul MN0029815 198 334500 7373 Grow Biz Intl Inc St. Paul MN0029815 150 53							
7358 Northwestern St Bk of Ulen - Glyndon Glyndon MN0020630 2 522100 7359 Schuman's Shaklee Glyndon MN0020630 2 454300 7360 Brownie's Dairy Glyndon 0.06 MN0020630 1 311500 7360 Brownie's Dairy Glyndon 0.06 MN0020630 1 311500 7361 Cramper Center St. Paul MN0029815 1100 524100 7364 Tennant Co St. Paul MN0029815 550 623900 7365 Courage Center St. Paul MN0029815 550 623900 7366 Dahlberg Inc St. Paul 14.46 MN0029815 550 623900 7367 Red Line Health Care St. Paul 1.83 MN0029815 350 541700 7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 225 515100 73769 KARE TV St. Paul MN0029815 225 51510 7372 Alexander & Alexander Inc St. Paul MN0029815		, ,	-	0.01			
7359 Schuman's Shaklee Glyndon MN0020630 2 454300 7360 Brownie's Dairy Glyndon 0.06 MN0020830 1 311500 7363 United Health Care St. Paul MN0029815 1100 524100 7364 Tennant Co St. Paul MN0029815 650 333300 7365 Courage Center St. Paul MN0029815 550 623900 7366 Dahlberg Inc St. Paul 14.46 MN0029815 500 33910 7367 Red Line Health Care St. Paul 11.83 MN0029815 350 541700 7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 270 44110 7369 KARE TV St. Paul MN0029815 225 51510 7370 CyberOptics St. Paul 0.15 MN0029815 198 33450 7372 Alexander & Alexander Inc St. Paul MN0029815 160 52410 7373 Grow Bick				0.01			
7360 Brownie's Dairy Gyndon 0.06 MN0020630 1 311500 7363 United Health Care St. Paul MN0029815 1100 524101 7364 Tennant Co St. Paul MN0029815 650 333301 7365 Courage Center St. Paul MN0029815 550 623901 7366 Dahlberg Inc St. Paul 14.46 MN0029815 500 339100 7367 Red Line Health Care St. Paul 1.83 MN0029815 350 541700 7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 220 441100 7368 KARE TV St. Paul MN0029815 225 515100 7370 CyberOptics St. Paul MN0029815 198 334500 7372 Alexander R. Alexander Inc St. Paul MN0029815 160 524100 7373 Grow Biz Intl Inc St. Paul MN0029815 150 533100 7374 MA Mortenson Co S							
7363 United Health Care St. Paul MN0029815 1100 524100 7364 Tennant Co St. Paul MN0029815 650 333300 7365 Courage Center St. Paul MN0029815 550 623900 7366 Dahlberg Inc St. Paul 14.46 MN0029815 500 339100 7367 Red Line Health Care St. Paul 1.83 MN0029815 350 541701 7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 270 441101 7369 KARE TV St. Paul MN0029815 225 515101 7370 CyberOptics St. Paul 0.15 MN0029815 198 334500 7372 Alexander & Alexander Inc St. Paul MN0029815 160 524100 7373 Grow Biz Intl Inc St. Paul MN0029815 150 53310 7374 MA Mortenson Co St. Paul MN0029815 140 23620 7375 Northrup King Co St. Paul MN0029815 <			,	0.06			
7364 Tennant Co St. Paul MN0029815 650 333300 7365 Courage Center St. Paul MN0029815 550 623900 7366 Dahlberg Inc St. Paul 14.46 MN0029815 500 339100 7367 Red Line Health Care St. Paul 1.83 MN0029815 350 541700 7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 270 441100 7369 KARE TV St. Paul MN0029815 225 515100 7370 CyberOptics St. Paul 0.15 MN0029815 198 334500 7372 Alexander & Alexander Inc St. Paul MN0029815 160 524100 7373 Grow Biz Intl Inc St. Paul MN0029815 150 53310 7374 MA Mortenson Co St. Paul MN0029815 140 236200 7375 Northrup King Co St. Paul MN0029815 130 541700 7376 I.S.D. #2311 Gonvi				0.00			
7365 Courage Center St. Paul MN0029815 550 623900 7366 Dahlberg Inc St. Paul 14.46 MN0029815 500 339100 7367 Red Line Health Care St. Paul 1.83 MN0029815 350 541700 7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 270 441100 7369 KARE TV St. Paul MN0029815 225 515100 7370 CyberOptics St. Paul 0.15 MN0029815 198 334500 7372 Alexander & Alexander Inc St. Paul MN0029815 160 524100 7373 Grow Biz Intl Inc St. Paul MN0029815 150 53310 7374 MA Mortenson Co St. Paul MN0029815 140 236200 7375 Northrup King Co St. Paul 0.14 MN0029815 130 541700 7376 I.S.D. #2311 Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541<							
7366 Dahlberg Inc St. Paul 14.46 MN0029815 500 339100 7367 Red Line Health Care St. Paul 1.83 MN0029815 350 541700 7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 270 441100 7369 KARE TV St. Paul MN0029815 225 515100 7370 CyberOptics St. Paul 0.15 MN0029815 198 334500 7372 Alexander & Alexander Inc St. Paul MN0029815 160 524100 7373 Grow Biz Intl Inc St. Paul MN0029815 150 533100 7374 MA Mortenson Co St. Paul MN0029815 140 236200 7375 Northrup King Co St. Paul 0.14 MN0029815 130 541700 7376 I.S.D. #2311 Gonvick MN0020541 100 611100 7377 Winsor Products, Inc. Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7380 Northern State Bank Gonvick MN0020541 15 511							
7367 Red Line Health Care St. Paul 1.83 MN0029815 350 541700 7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 270 441100 7369 KARE TV St. Paul MN0029815 225 515100 7370 CyberOptics St. Paul 0.15 MN0029815 198 334500 7372 Alexander & Alexander Inc St. Paul MN0029815 160 524100 7373 Grow Biz Intl Inc St. Paul MN0029815 150 533100 7374 MA Mortenson Co St. Paul MN0029815 140 236200 7375 Northrup King Co St. Paul 0.14 MN0029815 130 541700 7376 I.S.D. #2311 Gonvick MN0020541 100 611100 7377 Winsor Products, Inc. Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7380 Northern State				14.46			
7368 Jim Lupient Oldsmobile-GMC St. Paul MN0029815 270 441100 7369 KARE TV St. Paul MN0029815 225 515100 7370 CyberOptics St. Paul 0.15 MN0029815 198 334500 7372 Alexander & Alexander Inc St. Paul MN0029815 160 524100 7373 Grow Biz Intl Inc St. Paul MN0029815 150 533100 7374 MA Mortenson Co St. Paul MN0029815 140 236200 7375 Northrup King Co St. Paul 0.14 MN0029815 130 541700 7376 I.S.D. #2311 Gonvick MN0020541 100 611100 7377 Winsor Products, Inc. Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7379 Richards Publishing, Inc. Gonvick MN0020541 15 511100 7380 Northern State Bank Gonvick MN0020541 12 522100 7381 Lange Transport, Inc. Gonvick MN0020541 10 4855							
7370 CyberOptics St. Paul 0.15 MN0029815 198 334500 7372 Alexander & Alexander Inc St. Paul MN0029815 160 524100 7373 Grow Biz Intl Inc St. Paul MN0029815 150 533100 7374 MA Mortenson Co St. Paul MN0029815 140 236200 7375 Northrup King Co St. Paul 0.14 MN0029815 130 541700 7376 I.S.D. #2311 Gonvick MN0020541 100 611100 7377 Winsor Products, Inc. Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7379 Richards Publishing, Inc. Gonvick MN0020541 15 511100 7380 Northern State Bank Gonvick MN0020541 12 52210 7381 Lange Transport, Inc. Gonvick MN0020541 10 485500 7382 North Central Feed	7368	Jim Lupient Oldsmobile-GMC					
7372 Alexander & Alexander Inc St. Paul MN0029815 160 524100 7373 Grow Biz Intl Inc St. Paul MN0029815 150 533100 7374 MA Mortenson Co St. Paul MN0029815 140 236200 7375 Northrup King Co St. Paul 0.14 MN0029815 130 541700 7376 I.S.D. #2311 Gonvick MN0020541 100 611100 7377 Winsor Products, Inc. Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7379 Richards Publishing, Inc. Gonvick MN0020541 15 511100 7380 Northern State Bank Gonvick MN0020541 12 522100 7381 Lange Transport, Inc. Gonvick MN0020541 10 485500 7382 North Central Feed Gonvick MN0020541 424900 7383 Cranes Meat Market Gonvick 0.76 MN0020541 2 445200	7369	KARE TV	St. Paul		MN0029815	225	515100
7373 Grow Biz Intl Inc St. Paul MN0029815 150 533100 7374 MA Mortenson Co St. Paul MN0029815 140 236200 7375 Northrup King Co St. Paul 0.14 MN0029815 130 541700 7376 I.S.D. #2311 Gonvick MN0020541 100 611100 7377 Winsor Products, Inc. Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7379 Richards Publishing, Inc. Gonvick MN0020541 15 511100 7380 Northern State Bank Gonvick MN0020541 12 522100 7381 Lange Transport, Inc. Gonvick MN0020541 10 485500 7382 North Central Feed Gonvick MN0020541 4 424900 7383 Cranes Meat Market Gonvick 0.76 MN0020541 2 445200	7370	CyberOptics	St. Paul	0.15	MN0029815	198	334500
7374 MA Mortenson Co St. Paul MN0029815 140 236200 7375 Northrup King Co St. Paul 0.14 MN0029815 130 541700 7376 I.S.D. #2311 Gonvick MN0020541 100 611100 7377 Winsor Products, Inc. Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7379 Richards Publishing, Inc. Gonvick MN0020541 15 511100 7380 Northern State Bank Gonvick MN0020541 12 522100 7381 Lange Transport, Inc. Gonvick MN0020541 10 485500 7382 North Central Feed Gonvick MN0020541 4 424900 7383 Cranes Meat Market Gonvick 0.76 MN0020541 2 445200							
7375 Northrup King Co St. Paul 0.14 MN0029815 130 541700 7376 I.S.D. #2311 Gonvick MN0020541 100 611100 7377 Winsor Products, Inc. Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7379 Richards Publishing, Inc. Gonvick MN0020541 15 511100 7380 Northern State Bank Gonvick MN0020541 12 522100 7381 Lange Transport, Inc. Gonvick MN0020541 10 485500 7382 North Central Feed Gonvick MN0020541 4 424900 7383 Cranes Meat Market Gonvick 0.76 MN0020541 2 445200	7373	Grow Biz Intl Inc	St. Paul		MN0029815	150	533100
7376 I.S.D. #2311 Gonvick MN0020541 100 611100 7377 Winsor Products, Inc. Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7379 Richards Publishing, Inc. Gonvick MN0020541 15 511100 7380 Northern State Bank Gonvick MN0020541 12 522100 7381 Lange Transport, Inc. Gonvick MN0020541 10 485500 7382 North Central Feed Gonvick MN0020541 4 424900 7383 Cranes Meat Market Gonvick 0.76 MN0020541 2 445200	7374	MA Mortenson Co	St. Paul		MN0029815	140	236200
7377 Winsor Products, Inc. Gonvick MN0020541 18 311800 7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7379 Richards Publishing, Inc. Gonvick MN0020541 15 511100 7380 Northern State Bank Gonvick MN0020541 12 522100 7381 Lange Transport, Inc. Gonvick MN0020541 10 485500 7382 North Central Feed Gonvick MN0020541 424900 7383 Cranes Meat Market Gonvick 0.76 MN0020541 2 445200				0.14			
7378 Clearwater Veterinary Clinic Gonvick MN0020541 15 541900 7379 Richards Publishing, Inc. Gonvick MN0020541 15 511100 7380 Northern State Bank Gonvick MN0020541 12 522100 7381 Lange Transport, Inc. Gonvick MN0020541 10 485500 7382 North Central Feed Gonvick MN0020541 424900 7383 Cranes Meat Market Gonvick 0.76 MN0020541 2 445200							
7379 Richards Publishing, Inc. Gonvick MN0020541 15 511100 7380 Northern State Bank Gonvick MN0020541 12 522100 7381 Lange Transport, Inc. Gonvick MN0020541 10 485500 7382 North Central Feed Gonvick MN0020541 4 424900 7383 Cranes Meat Market Gonvick 0.76 MN0020541 2 445200							
7380 Northern State Bank Gonvick MN0020541 12 522100 7381 Lange Transport, Inc. Gonvick MN0020541 10 485500 7382 North Central Feed Gonvick MN0020541 4 424900 7383 Cranes Meat Market Gonvick 0.76 MN0020541 2 445200							
7381 Lange Transport, Inc. Gonvick MN0020541 10 485500 7382 North Central Feed Gonvick MN0020541 4 424900 7383 Cranes Meat Market Gonvick 0.76 MN0020541 2 445200							
7382 North Central Feed Gonvick MN0020541 4 424900 7383 Cranes Meat Market Gonvick 0.76 MN0020541 2 445200							
7383 Cranes Meat Market Gonvick 0.76 MN0020541 2 445200		•					
7384 EMD & Associates Winona MN0030147 850 334400				0.76			

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
7385	Knitcraft Corp	Winona		MN0030147	210	
	Winona Lighting Custom Div	Winona		MN0030147	100	
	Polymer Composites Inc	Winona	0.06	MN0030147	69	
	Brad Ragan Inc	Winona		MN0030147	65	
	Northern States Power Co	Winona		MN0030147	45	
	Winona Van Norman	Winona	0.09	MN0030147	44	
	Hiatt Manufacturing Inc	Winona		MN0030147	35	
	Mississippi Welders Supply Co	Winona		MN0030147	22	
	Winona Distributing	Winona		MN0030147	21	424800
	Zeches Institution Supply	Winona		MN0030147	16	
	United Building Ctr	Winona	0.40	MN0030147	15	
	Graceville Health Center	Graceville	0.16	MN0023540	120	
	Carlson Oil Co Graceville Public Schools	Graceville Graceville		MN0023540	50	
	Hoffman Implement	Graceville		MN0023540 MN0023540	40	
	Cook County Public Schools	Grand Marais		MN0020010	134	
	Cook Co North Shore Hospital	Grand Marais	0.07	MN0020010	111	622100
	Cook, County of	Grand Marais		MN0020010	107	921100
	Hedstrom Lumber Co	Grand Marais	0.10	MN0020010	100	
	Grand Marais Hotel Corp	Grand Marais		MN0020010	55	
	Grand Marais, City of	Grand Marais	0.06	MN0020010	45	
	US Forestry Dept	Grand Marais	5.50	MN0020010	33	
	Sven & Ole's	Grand Marais		MN0020010	32	
	East Bay Hotel & Dining Room	Grand Marais		MN0020010	30	
	IGA Foodliner	Grand Marais		MN0020010	25	
	Cook County Clinic	Grand Marais	0.03	MN0020010	22	621100
7411	Edwin E Thoreson Inc	Grand Marais		MN0020010	20	237300
7412	Grand Marais St Bk	Grand Marais		MN0020010	15	522100
7413	Johnson's Foods	Grand Marais		MN0020010	13	445100
7414	North Shore Fed CU-Grand Marais	Grand Marais		MN0020010	10	522100
7415	Cook County State Bank	Grand Marais		MN0020010	8	
	Birch Terrace Supper Club	Grand Marais		MN0020010	5	722100
	Grand Meadow School Dist #495	Grand Meadow		MN0023558	80	
	Meadow Manor Nursing Home	Grand Meadow		MN0023558	60	
	Valley Transportation Svc	Grand Meadow		MN0023558	36	
	Grumpy's Restaurant & Lounge	Grand Meadow		MN0023558	22	
	Featherlite Graphics	Grand Meadow		MN0023558	20	
	Osmundson Brothers Quarry	Grand Meadow		MN0023558	20	
	Harvest States	Grand Meadow		MN0023558	11	325300
	Home Telephone Co	Grand Meadow		MN0023558	9	
	First Farmers & Merchants State Bank	Grand Meadow		MN0023558	8	
	Skjenke Bom Lounge	Grand Meadow		MN0023558	7	
	Glynn's Motor Mart	Grand Meadow		MN0023558	6	
	The Meadows (Assisted Living) Helena Chemical Co	Grand Meadow		MN0023558	5	
	RJ Werner CPA	Grand Meadow Grand Meadow		MN0023558 MN0023558	5	
	Stier Grocery	Grand Meadow		MN0023558	5	
	The Diner	Grand Meadow		MN0023558	5	
	UPM/Blandin Paper Company	Grand Rapids		MN0022080	900	
	MN Independent School District #318	Grand Rapids		MN0022080	600	
	Itasca Medical Ctr	Grand Rapids	0.25	MN0022080	386	
	Arrowhead Promotion	Grand Rapids	0.23	MN0022080	315	
	Itasca, County of	Grand Rapids	0.44	MN0022080	310	
	Wal-Mart	Grand Rapids	0.11	MN0022080	185	
	Grand Rapids Medical Assoc	Grand Rapids	0.11	MN0022080	171	622100
	Potlatch	Grand Rapids	0	MN0022080	162	
	All Season Vehicle	Grand Rapids		MN0022080	120	
	Itasca County Nursing Home	Grand Rapids		MN0022080	120	623100
	Target	Grand Rapids		MN0022080	120	
	Itasca Community College	Grand Rapids		MN0022080	106	
	K Mart	Grand Rapids		MN0022080	100	
	Northprint International Inc	Grand Rapids		MN0022080	100	
7447	MN Diversified Industries	Grand Rapids		MN0022080	80	
7448	Grand Rapids, City of	Grand Rapids	0.09	MN0022080	65	921100
7449	Itasca Clinic	Grand Rapids	0.09	MN0022080	63	621100
7450	Lake Country Power	Grand Rapids		MN0022080	47	221100
7451	North Homes, Inc	Grand Rapids		MN0022080	45	624200
7452	Herald Review	Grand Rapids		MN0022080	39	511100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
7453	Timberline Manufacturing Inc	Grand Rapids		MN0022080	35	
7454	Full Circle Image	Grand Rapids		MN0022080	25	339900
7455	United Power Assn	Grand Rapids		MN0022080	19	221100
7456	Mesaba Aviation	Grand Rapids		MN0022080	18	481100
7457	Cole Forest Products Inc	Grand Rapids		MN0022080	15	423300
7458	Grey Owl Foods	Grand Rapids		MN0022080	13	44510
	Granite Falls Hospital & Manor	Granite Falls	0.15	MN0021211	235	62210
	Yellow Medicine East Schools-#2190	Granite Falls	00	MN0021211	210	
	Prairie's Edge Resort and Casino	Granite Falls		MN0021211	180	
	Fagen Inc	Granite Falls	0.00	MN0021211	85	
		Granite Falls				
	Yellow Medicine, County of		0.12	MN0021211	85	
	MN West Community & Tech College	Granite Falls		MN0021211	65	
	Project Turnabout Treatment Ctr	Granite Falls		MN0021211	60	
	Granite Falls, City of	Granite Falls	0.06	MN0021211	45	
7467	United Parcel Service	Granite Falls		MN0021211	45	48840
7468	Sunsource	Granite Falls		MN0021211	40	33360
7469	Marr Machines	Granite Falls	0.87	MN0021211	30	33910
	Affiliated Comm. Medical Ctr	Granite Falls		MN0021211	25	
	Specialty Systems	Granite Falls		MN0021211	25	
	Parr Piping	Granite Falls		MN0021211	24	
	Granite Fluid Power	Granite Falls	0.35	MN0021211	21	33399
	Minnesota Feed Distributors	Granite Falls		MN0021211	20	
7475	Grasston Co-op Feed Mill	Grasston		MNG580052	4	49310
7476	Greenbush Nursing Home	Greenbush		MN0044431	95	62310
7477	Greenbush Middle River School	Greenbush		MN0044431	92	61110
	Greenbush, City of	Greenbush	0.05	MN0044431	37	92110
	Central Boiler	Greenbush	0.00	MN0044431	35	
	Buffalo Bituminous	St. Paul		MN0029882	70	
	North American Inc	St. Paul		MN0029882	55	
	Rels Manufacturing	St. Paul		MN0029882	25	
7483	EPA Audio Visual	St. Paul		MN0029882	15	
7484	Coast to Coast	St. Paul		MN0029882	11	444100
7485	Greenworks Inc	St. Paul		MN0029882	11	56170
7486	Holiday Station	St. Paul		MN0029882	10	447100
	Pinnacle Construction Co	St. Paul		MN0029882	10	
	Rockford Texaco	St. Paul		MN0029882	10	
	Torgerson Well Co	St. Paul		MN0029882	8	
	ů .					
	Brinkman Accounting	St. Paul		MN0029882	5	
	Rockford Cabinet Shop	St. Paul		MN0029882	4	
7492	Buffie Chiropractic	St. Paul		MN0029882	3	
7493	Coffee Time & More Inc	St. Paul		MN0029882	3	722100
7494	American Hair Design	St. Paul	0.00	MN0029882	1	81210
	Country Clipper	St. Paul	0.00	MN0029882	1	812100
	Kittson Memorial Hospital	Hallock		MN0020729	150	
	Kittson, County of	Hallock		MN0020729	96	
			0.13			
	Hallock Public Schools-ISD #2171	Hallock		MN0020729	91	
	Johnson Oil Co	Hallock		MN0020729	38	
	Farmers Store of Hallock	Hallock		MN0020729	30	
7501	Northwestern St Bk of Hallock	Hallock		MN0020729	25	52210
	C&M Ford Sales	Hallock		MN0020729	19	
	Great Lakes Transmission	Hallock		MN0020729	15	
	Otter Tail Power Co	Hallock		MN0020729	15	
	Brink, Sobolik, Severson	Hallock		MN0020729	12	
	Western Implement	Hallock		MN0020729	12	
	Viking Gas Transmission	Hallock		MN0020729	7	
	American Federal Savings Bank	Hallock		MN0020729	6	
	Majestic Oaks			ISTS	250	71390
7510	Knapp Woodworking Inc			ISTS	190	33710
	New Market			ISTS	94	44510
	Telar Industries Inc			ISTS	75	
	Crosstown Masonry			ISTS	70	
	Oxboro Medical		0.04	ISTS	58	
			0.04			
	Professional Technologies			ISTS	51	32620
	Northwest Dairy Forwarding Co			ISTS	42	
7517	Halvorson Concrete Inc			ISTS	40	
	Electric Forklift Supply			ISTS	36	33690
7518	Liectric i orkint Supply					
	Blaine Heating Air Cond Inc			ISTS	35	23820

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
	Ham Lake Lanes & Lounge			ISTS	35	
	Crosstown St Bk of Ham Lake			ISTS	32	
7523	Illinois Fixture & Wood			ISTS	30	423300
7524	LaMachine Shop Inc			ISTS	30	333200
7525	Kenco Construction			ISTS	22	236100
7526	Rapid Sports Center			ISTS	20	451100
	Dahlquist Machine		0.00	ISTS	19	332700
7528	Safety Speed Cut		0.12	ISTS	18	
	Mueller & Sons Inc	Hamburg		MN0025585	100	
	State Bk of Hamburg	Hamburg		MN0025585	5	
	Waconia Farm Supply	Hamburg		MN0025585	5	
	Manthy Welding	Hamburg		MN0025585	1	
	Molded Foam Products	Hamburg		MN0025585	1	424600
	Hancock Concrete Products Inc	Hancock		MN0023582	75	
	Hancock Public Schools-Dist #768	Hancock		MN0023582	45	
	Hancock, City of	Hancock	0.05	MN0023582	35	
	Prairie Waivered Community Svcs	Hancock		MN0023582	35	
	Hancock Co-op Inc	Hancock		MN0023582	13	
	By-Lo Gas & Groceries	Hancock		MN0023582	8	
	1st American St Bk of MN	Hancock		MN0023582	6	
	Owl's Nest Cafe	Hancock		MN0023582	6	
	Hancock Equipment	Hancock		MN0023582	5	
	Jeppe's Happy Hour Bar	Hancock		MN0023582	5	
	US Post Office	Hancock		MN0023582	5	
	Another Man's Treasure	Hancock		MN0023582	3	
	Hancock Telephone Co	Hancock		MN0023582	3	
	Hancock Upholstery	Hancock		MN0023582	3	
	Riverside Express	Hancock		MN0023582	3	
	North Metro Landscaping Inc	Waverly		MN0021326	57	
	Diamond Tool Inc	Waverly	0.00	MN0021326	30	
	Burschville Construction Inc	Waverly		MN0021326	25	
	Spraungel Construction Inc	Waverly		MN0021326	23	
	Mik-Patti's Grill & Bar	Waverly		MN0021326	22	
	Haugen Lumber Co	Waverly		MN0021326	15	
	Tom Thumb	Waverly		MN0021326	12	
	Hilltop Bar	Waverly		MN0021326	11	722100
	Mavco Inc	Waverly		MN0021326	11	238900
	Miller Trucking & Landscape	Waverly		MN0021326	10	
	West Air Inc	Waverly		MN0021326	10	
	Roy C Inc	Waverly		MN0021326	9	
	CL Paulson & Associates Inc	Waverly		MN0021326	7	
	Len's Lawn Service	Waverly		MN0021326	5	
	Rockford State Bank - Hanover	Waverly		MN0021326	5	
	T&S Trucking Inc	Waverly	0.26	MN0021326	5	
	Caprice Woodcraft Inc	Waverly		MN0021326	4	
	Hanover Hardware	Waverly		MN0021326	4	
	Fillmore Central Schools	Harmony		MN0022322	145	611100
	Harmony/Gundersen Lutheran Health Care Facility	Harmony		MN0022322	70	
	Harmony Enterprises Inc	Harmony	0.00	MN0022322	50	
	Minnowa Construction	Harmony		MN0022322	50	
	Root River Education District	Harmony		MN0022322	24	
	Harmony Agri Services Inc	Harmony		MN0022322	20	
	Harmony IGA Store	Harmony		MN0022322	20	
	City of Harmony	Harmony	0.02	MN0022322	12	
	Bluff Country Coverings Inc	Harmony		MN0022322	10	
	Pederson Brothers	Harmony		MN0022322	10	
	Harmony Telephone Co	Harmony		MN0022322	8	
	Morem Electric, Inc.	Harmony		MN0022322	5	
	Dakota, County of	St. Paul		MN0029955	2034	921140
	School District 200	St. Paul		MN0029955	650	
	Wal-Mart	St. Paul		MN0029955	186	
	Hastings, City of	St. Paul		MN0029955	118	
	Cub Foods	St. Paul		MN0029955	105	
	Hayfield Window & Door Co	Hayfield		MN0023612	140	
	Hayfield Public School District	Hayfield		MN0023612	115	
	Field Crest Nursing Home	Hayfield		MN0023612	110	
	Innovative Food Processors, Inc	Hayfield		MN0023612	54	
7593	Huntting Elevator Co	Hayfield	0.23	MN0023612	23	311200

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
7594	Citizens State Bank	Hayfield		MN0023612	18	522100
	Century Plastics	Hayfield	0.02	MN0023612	10	326100
	VIVO	Hayfield	0.01	MN0023612	7	
	Central Co-op	Hayfield		MN0023612	6	424600
7599	Hemenway Ironworks		0.00	ISTS	18	
7600	Hayward Machinery			ISTS	10	333200
	Farmers Elevator			ISTS	8	493100
7602	Nick's Grocery			ISTS	7	445100
7603	Crop Mate			ISTS	4	
7604	Americana Natl Bank			ISTS	2	522100
7605	Suttle Apparatus Corp	Hector		MN0025445	180	334200
7606	Buffalo Lake-Hector Schools	Hector		MN0025445	80	611100
7607	United Grain and Energy - Hector	Hector		MN0025445	54	
7608	Loftness Farm Equipment Inc	Hector		MN0025445	40	423800
7609	Olinger Trucking Inc.	Hector	1.29	MN0025445	25	484100
7610	Communications Systems Inc	Hector		MN0025445	20	517100
7611	Ralph-Larson Chevrolet	Hector		MN0025445	20	441100
7612	Prairie View	Hector		MN0025445	18	623300
7613	Interstate Telcom Consulting Inc	Hector		MN0025445	17	517100
7614	United Grain & Energy Convenience Store	Hector		MN0025445	16	447100
	Rural American Bank	Hector		MN0025445	9	522100
7616	Cenex/LOL Agronomy	Hector		MN0025445	8	115100
	City of Hector	Hector	0.01	MN0025445	8	
	Hendricks Hospital/Nursing Home	Hendricks		MN0021121	160	
	Hendricks Public Schools	Hendricks	00	MN0021121	40	
	NB Golf Carts	Hendricks		MN0021121	16	
	Hendricks Clinic	Hendricks	0.02	MN0021121	14	
	Kirkvold Oil Co	Hendricks	0.02	MN0021121	13	
	Larson Food	Hendricks		MN0021121	12	
	Hendricks Assembly Co	Hendricks		MN0021121	7	
	First Security Bk Hendricks	Hendricks		MN0021121	6	
	Gilbert Machinery & Salvage Inc	Hendricks		MN0021121	6	
	Hendricks Farmers Elevator	Hendricks		MN0021121	5	
	Hendricks Farmers Lumber	Hendricks		MN0021121	5	
	Norman County West Public Schools	Hendrum		MN0021121	43	
	Nepstad Oil Co	Hendrum		MN0021644	8	
	Viking Bk	Hendrum		MN0021644	6	
	Cenex	Hendrum		MN0021644	3	
	Hendrum Elevator					
	Hendrum, City of	Hendrum Hendrum	0.00	MN0021644 MN0021644	3	
	Immanuel Lutheran Church	Hendrum	0.00	MN0021644	3	
					3	
	Schnabel Insurance	Hendrum Hendrum		MN0021644		
	Simplot			MN0021644	3	
	Community Pride Publications	Hendrum		MN0021644	2	
	Hendrum Standard	Hendrum		MN0021644	2	
	Jyl's Diner	Hendrum		MN0021644	2	
	Last Chance Saloon	Hendrum		MN0021644	2	
	US Post Office	Hendrum		MN0021644	2	
	Hellerud-Larson Law Office	Hendrum		MN0021644	1	
	Joanne's Hairstyling	Hendrum	0.00	MN0021644	1	
	Norman Co. Abstracting/Accounting	Hendrum		MN0021644	1	
	Opheim & Rantala Law Office	Hendrum		MN0021644	1	
	Rowell Family Chiropractic	Hendrum		MN0021644	1	
	Henning Health Care	Henning		MN0041131	82	
	Henning Public School	Henning		MN0041131	60	
	Henning Hatchery, Jenny-O	Henning		MN0041131	35	
	First NB of Henning	Henning		MN0041131	22	
	Earl B Olson	Henning	1.13	MN0041131	20	
	Future Products	Henning		MN0041131	18	
7654	North American Crop Underwriters Inc	Henning		MN0041131	13	524100
7655	Mid-Central Equipment	Henning		MN0041131	11	333200
7656	Pro-Ag Farmers Coop	Henning		MN0041131	8	
7657	Cenex	Henning		MN0041131	6	424900
7658	C & C Outfitters	Henning		MN0041131	3	
	Hermantown Public Schools	Duluth		MN0049786	250	
	Menards	Duluth		MN0049786	154	
7661	Wal-Mart	Duluth		MN0049786	150	
	Sam's Club	Duluth		MN0049786	142	

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
7663	Natural Resource & Research Institute	Duluth	75.54	MN0049786	140	541700
	Curtis Oil & Tire	Duluth		MN0049786	120	811100
	Eggebrecht Chevrolet Geo	Duluth		MN0049786	70	441100
	Knox Lumber Co	Duluth		MN0049786	50	444100
	Arrowhead Concrete Works Inc	Duluth		MN0049786	25	327300
	Duluth Dodge Oldsmobile	Duluth		MN0049786	20	441100
	Hibbing Taconite Co	Hibbing		MN0030643	780	212200
	Reptron	Hibbing		MN0030643	603	334400
	University Regional Medical Ctr - Mesabi	Hibbing	0.35	MN0030643	540	622100
	Hibbing Public Schools-ISD #701	Hibbing		MN0030643	425	611100
	Hibbing Community College	Hibbing		MN0030643	200	611200
	L&M Radiator Inc	Hibbing		MN0030643 MN0030643	186	332300
	Leisure Hills	Hibbing	0.10		176	623100 621100
	SMDC-Duluth Clinic - Hibbing Fairview - Mesaba Clinic	Hibbing Hibbing		MN0030643 MN0030643	140 125	621100
	Golden Crest Nursing Home	Hibbing	0.17	MN0030643	118	623100
	Intermet Hibbing Foundary	Hibbing		MN0030643	103	333200
	Manney's Shopper Inc	Hibbing		MN0030643	103	511100
	Hibbing Public Utilities Comm	Hibbing		MN0030643	83	221100
	Ameripride	Hibbing		MN0030643	65	812300
	Industrial Rubber	Hibbing		MN0030643	60	326200
	DMR Electronics	Hibbing		MN0030643	49	334400
	Dom-Ex	Hibbing		MN0030643	49	423800
	Daily Tribune	Hibbing		MN0030643	42	511100
	Barr Engineering	Hibbing		MN0030643	40	541300
	Taconite Engineering	Hibbing		MN0030643	36	541300
	Grand Casino Inc	Hinckley		MN0023701	1730	713200
	Tobie's Restaurant	Hinckley		MN0023701	198	722100
	Hinckley-Finlayson Public Schools	Hinckley		MN0023701	165	611100
	Cassidy's Restaurant	Hinckley		MN0023701	65	722100
	Burger King	Hinckley		MN0023701	47	722100
	Daggett's Super Valu	Hinckley		MN0023701	40	445100
	Hardee's	Hinckley		MN0023701	30	722100
	Brokema Beltway	Hinckley		MN0023701	18	326200
	Bernicks Distribution	Hinckley		MN0023701	10	
	Good Samaritan Center	Hoffman		MN0021199	77	623100
	Hoffman Aseptic Packaging Co	Hoffman	1.35	MN0021199	60	311400
7701	Hoffman Co-op Oil Assn	Hoffman		MN0021199	24	424900
7702	Runestone Telephone Assn	Hoffman		MN0021199	19	517100
7703	Grant County DAC	Hoffman		MN0021199	16	624300
7704	Farmers St Bk of Hoffman	Hoffman		MN0021199	10	522100
7705	Arnquist Home Center	Hoffman		MN0021199	9	442100
7706	Hoffman Lumber Company	Hoffman		MN0021199	9	444100
	Ron's Supermarket	Hoffman		MN0021199	8	445100
7708	Hoffman Co-op Grain Assn	Hoffman		MN0021199	5	493100
7709	Western Consolidated Cooperative	Appleton	0.14	MN0023728	25	424510
	City of Holloway	Appleton		MN0023728	4	921190
7711	Holloway Cafe	Appleton		MN0023728	3	
7712	SUPERVALU Minneapolis Div	St. Paul		MN0029815	1540	424410
7713	NAPCO International Inc	St. Paul		MN0029815	900	333600
	Thermotech	St. Paul		MN0029815	325	334200
7715	Sungard Financial Systems	St. Paul		MN0029815	150	518200
	Magstar Technologies	St. Paul		MN0029815	115	481100
	Parts Plus/Kunz Oil	St. Paul		MN0029815	90	211100
	Rainbow Foods	St. Paul		MN0029815	78	445100
	Edco Products Inc	St. Paul		MN0029815	60	453200
	Ace Communications Group	Houston		MN0023736	80	517100
	Valley View Nursing Home	Houston		MN0023736	75	623100
	Houston Public Schools	Houston		MN0023736	70	611100
	Fortress Bank N.A.	Houston		MN0023736	16	
	Houston, City of	Houston	0.02	MN0023736	14	
	Root River Market Cooperative	Houston		MN0023736	13	
	High Plains Cenex	Houston		MN0023736	12	
	Houston Dental Clinic	Houston		MN0023736	12	
	Bluff Country Financial Services	Houston		MN0023736	10	
	Farmers Coop Elevator	Houston		MN0023736	8	
	Hoskins Electric	Houston		MN0023736	8	
7704	Houston County Recycling	Houston		MN0023736	8	562100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
7732	Valley Veterinary Clinic	Houston		MN0023736	6	541900
7733	Texaco-Houston Food Mart	Houston		MN0023736	5	
	Dura Supreme Inc	Howard Lake		MN0051926	300	
	Gage Letter Shop	Howard Lake		MN0051926	175	
	Howard Lake School Dist. #880	Howard Lake		MN0051926	130	
	Howard Lake Care Ctr Inc	Howard Lake		MN0051926	80	
	Munson Feed Co	Howard Lake		MN0051926	30	
	Gerry's Super Valu	Howard Lake		MN0051926	25	
	American Feeds	Howard Lake	0.11	MN0051926	20	
	Innocast Bronze	Howard Lake		MN0051926	20	
	Howard Lake, City of	Howard Lake	0.02	MN0051926	14	
	Stonstegard Foods	Howard Lake		MN0051926	7	
	Minnesota Power/Syl Laskin County Inn & Suites	Hoyt Lakes		MN0020206 MN0020206	40	
	Floe Manufacturing	Hoyt Lakes Hoyt Lakes	0.00	MN0020206	20 15	
	Belcorp	Hoyt Lakes	0.00	MN0020206	13	
	Mesabi Drug/Ben Franklin	Hoyt Lakes		MN0020206	13	
	Hoyt Lakes IGA	Hoyt Lakes		MN0020206	10	
	Wilson Tool	St. Paul	0.00	MN0029815	520	
	Schweiters Properties	St. Paul	0.00	MN0029815	190	
	American Structural Metal, Inc.	St. Paul		MN0029815	40	
	Glamos Wire	St. Paul		MN0029815	40	
	Granger's, Inc.	St. Paul		MN0029815	30	
	Industrial Painting	St. Paul		MN0029815	20	
	Como Lube	St. Paul		MN0029815	15	
7760	Hutchinson Area Health Care	Hutchinson	0.43	MN0055832	667	622100
7761	Hutchinson Schools - ISD 423	Hutchinson		MN0055832	423	611100
7762	Wal-Mart	Hutchinson		MN0055832	400	452100
7763	Cash Wise Foods	Hutchinson		MN0055832	240	445100
	Hutchinson Utilities Commission	Hutchinson		MN0055832	219	221100
7765	Target	Hutchinson		MN0055832	160	452100
	Menards	Hutchinson		MN0055832	147	423700
	Hutchinson Medical Ctr	Hutchinson	0.19	MN0055832	140	
	Goebel Fixture Co	Hutchinson		MN0055832	130	
	Hutchinson Mfg Sales Inc	Hutchinson	0.00	MN0055832	110	
	Shopko	Hutchinson		MN0055832	110	
	City of Hutchinson	Hutchinson	0.14	MN0055832	101	921100
	More 4 / Econo Foods	Hutchinson		MN0055832	100	
	Ag Systems Inc	Hutchinson		MN0055832	75	
	K Mart	Hutchinson		MN0055832	75	
	Hutchinson Telephone Co	Hutchinson		MN0055832	70	
	Applebee's Neighborhood Grill	Hutchinson		MN0055832 MN0055832	63	
	Burger King Hutchinson Auto Center	Hutchinson Hutchinson		MN0055832	53 50	
	McDonald's	Hutchinson		MN0055832	45	
	Impressions	Hutchinson		MN0055832	43	
	Provesta Flavor Ingredients	Hutchinson	2.05	MN0055832	44	
	Hillyard Floor Care-Supply Company	Hutchinson	2.00	MN0055832	43	
	Hardee's	Hutchinson		MN0055832	40	
	Haugen Furniture	Hutchinson		MN0055832	40	
	Lampligher Lounge	Hutchinson		MN0055832	35	
	New Dimension Plating	Hutchinson	0.39	MN0055832	35	
	United States Post Office	Hutchinson	5.50	MN0055832	34	491100
	Hutchinson Leader	Hutchinson		MN0055832	31	511100
7789	American Energy Systems, Inc.	Hutchinson		MN0055832	30	339900
	Richard Larson Builders / ABC Seamless Siding	Hutchinson		MN0055832	30	236200
7791	Crow River Press Inc	Hutchinson		MN0055832	28	511100
7793	International Falls School Dist #361	International Falls		MN0020257	305	
7794	United Health Care	International Falls		MN0020257	300	524298
7795	Falls Memorial Hospital	International Falls	0.19	MN0020257	160	622110
	Koochiching, County of	International Falls		MN0020257	120	
	International Bildrite Inc	International Falls		MN0020257	64	
	Rainy River Comm College	International Falls	0.62	MN0020257	56	
	International Falls, City of	International Falls		MN0020257	55	
	Duluth Clinic - Int' Falls	International Falls		MN0020257	50	
	Ric Jig Tackle	International Falls		MN0020257	50	
	Shannon's Plumbing & Heating	International Falls		MN0020257	50	
7803	Daily Journal	International Falls	0.05	MN0020257	40	511110

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
7804	Bergstrom Wood Products Inc	International Falls		MN0020257	25	321920
	Wagner Construction Inc	International Falls		MN0020257	20	
	Coca Cola Bottling	International Falls	0.46	MN0020257	16	
	Mannco Trucking	International Falls	0.01	MN0020257	16	
	Wenberg Transfer	International Falls		MN0020257	13	
7809	CHS Cooperatives	St. Paul		MN0029815	900	325300
	Inver Grove Hts School District #199	St. Paul		MN0029815	458	611100
7812	Evergreen Industries	St. Paul		MN0029815	300	444100
7813	Inver Hills Community College	St. Paul		MN0029815	300	611300
7814	BFI Waste Services	St. Paul		MN0029815	140	562100
7815	Southview Chevrolet	St. Paul		MN0029815	138	441100
7816	Inver Grove Heights, City of	St. Paul	0.18	MN0029815	130	921100
7817	Inver Grove Ford	St. Paul		MN0029815	100	441100
7818	Lofton Label Inc	St. Paul		MN0029815	100	322100
7819	Kerasotes Theater	St. Paul		MN0029815	90	512100
7820	Outback Steakhouse	St. Paul		MN0029815	81	722100
7821	Damon's of Minnesota	St. Paul		MN0029815	75	722100
7822	Applebee's Neighborhood Grill	St. Paul		MN0029815	60	722100
7823	Bituminous Roadways Inc	St. Paul		MN0029815	40	237300
	Divine Providence Community Home	Ivanhoe		MN0023825	152	623300
	Lincoln, County of	Ivanhoe	0.09	MN0023825	65	
	Lincoln HI Public Schools	Ivanhoe		MN0023825	55	
	USDA- Lincoln County Office	Ivanhoe		MN0023825	15	
	Lyon County Coop	Ivanhoe		MN0023825	8	
	AGCO-Ag Chem Division	Jackson		MNG580063	900	
	Core Source	Jackson		MNG580063	180	
	Technical Services-Electronics	Jackson		MNG580063	144	
	Jackson County Central Schools	Jackson		MNG580063	129	
	Good Samaritan Ctr	Jackson		MNG580063	101	
	Best Western Country Manor Inn	Jackson		MNG580063	93	
	Jackson Medical Center	Jackson	0.05	MNG580063	80	
	New Fashion Pork	Jackson	0.00	MNG580063	70	
	Accent Insurance Recovery Solutions	Jackson		MNG580063	50	
	Erickson Trucks 'n Parts	Jackson	3 /18	MNG580063	46	
	Kema-Asa Auto Plaza	Jackson	3.40	MNG580063	43	
	Ag Forte, LLC	Jackson		MNG580063	40	
	Vet's Oil Co	Jackson		MNG580063	40	
	Livewire Printing Co	Jackson		MNG580063	38	
	Pioneer HI-Bred Intl	Jackson		MNG580063	33	
	B&H Manufacturing Inc	Jackson		MNG580063	33	
	Farmers Co-op Assn	Jackson		MNG580063	28	
	Janesville-Waldorf-Pemberton Schools	Janesville		MNG580003	100	
		Janesville		MNG580025	60	
	Janesville Nursing Home					
	Southern Valley Co-op/Cenex Trinity Lutheran School	Janesville Janesville		MNG580025	30	
	Morton Building Inc		0.00	MNG580025	29	
	0	Janesville	0.00	MNG580025	25	
	Janesville St Bk	Janesville		MNG580025	14	
	Dill Company	Janesville		MNG580025	11	
	Janesville Elevator Construction Inc	Janesville		MNG580025	11	
	Pipestone-Jasper Elementary School	Jasper		MNG580026	30	
	Jasper Farmers Elevator	Jasper		MNG580026	17	
	Jasper Mini-Mall	Jasper	0.00	MNG580026	12	
	Jasper St Bk	Jasper		MNG580026	12	
	Rodman Welding & Mfg Inc	Jasper	0.06	MNG580026	8	
	Three Straw Cafe	Jasper		MNG580026	8	
	Jasper Foods	Jasper		MNG580026	7	
	Jasper Lanes & Recreation	Jasper		MNG580026	6	
	Jasper Stone Company	Jasper		MNG580026	5	
	Pipestone Embroidery	Jasper		MNG580026	5	
	Hi-Fat Specialities Co Inc	Jasper		MNG580026	3	
	Jasper, City of	Jasper	0.00	MNG580026	2	
7866	Jordan Public School District #717	Jordan		MN0020869	154	
7867	Valley Plumbing Inc	Jordan		MN0020869	140	
7868	SM Hentges & Sons Inc	Jordan		MN0020869	130	237300
7869	Minnesota Valley Electric Coop	Jordan		MN0020869	97	
7870	Dyna-Fab Inc	Jordan	0.00	MN0020869	75	332700
	OK Corral Inc	Jordan		MN0020869	72	722100
7871	OR Corrai inc	oordari				

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
	Radermacher Super Valu	Jordan		MN0020869	55	
7874	US Transformer Inc	Jordan		MN0020869	50	335300
7875	Wolf Motors Ford	Jordan		MN0020869	50	441100
7876	RBE Electronics Inc	Jordan	0.03	MN0020869	37	334500
7877	Mc Donalds	Jordan		MN0020869	35	
	Community Bank Minnesota Valley	Jordan		MN0020869	34	
	Engel Diversified Industries	Jordan	0.00	MN0020869	30	
	Valleyview Board & Lodge	Jordan		MN0020869	28	
	Siwek Lumber & Millwork	Jordan		MN0020869	25	
	Valley Bank MN	Jordan		MN0020869	24	
	Continental Lift Truck	Jordan		MN0020869	20	
	Cedar Ridge Arabians	Jordan		MN0020869	15	
	Burger King	Jordan		MN0020869	14	
	Jordan Texaco	Jordan		MN0020869	10	
	Kasson-Mantorville Public Schools	Kasson		MN0050725	200	
	Erdman Supermarket Inc	Kasson		MN0050725	90	
	Swenke CO	Kasson	0.00	MN0050725	50	
	Images On Metal	Kasson		MN0050725	44	
	Kasson-Mayo Family Practice	Kasson		MN0050725	35	
	Kasson, City of	Kasson	0.04	MN0050725	27	
	Kasson State Bank	Kasson		MN0050725	24	
	Daniel's Restaurant	Kasson	2.55	MN0050725	21	
	Hiawathaland Tool Inc Plastic	Kasson	0.02	MN0050725	21	
	Burger King	Kasson		MN0050725	20	
	Kasson Lumber CO	Kasson		MN0050725	20	
	Tri-Star Manufacturing	Kasson	0.02	MN0050725	12	
	Eastwood State Bank	Kasson		MN0050725	6	
	National Steel Pellet Co	Keewatin	3.26	MN0022012	461	331100
	Iron Range Raceway	Keewatin		MN0022012	16	
	Tackle Tamer Products Inc	Keewatin	0.00	MN0022012	5	
	Kelliher Public School	Kelliher		MNG580068	55	
	Kelliher Care Center	Kelliher		MNG580068	40	
	Erickson Mills	Kelliher		MNG580068	15	
	Thor's Bar/Bradley's Cafe	Kelliher		MNG580068	14	
7907	Village One Stop	Kelliher		MNG580068	13	
	Citizens St Bank of Kelliher	Kelliher		MNG580068	7	
	Kelliher, City of	Kelliher	0.01	MNG580068	7	
	Kelliher Shopping Center	Kelliher		MNG580068	4	
	Kelliher Auto Sales	Kelliher		MNG580068	3	
	Skoe Logging	Kelliher		MNG580068	3	
	Beck Lumber Co	Kelliher		MNG580068	2	
	Log Cabin Crafts	Kelliher		MNG580068	2	
	Nelson Car Wash/Laundromat	Kelliher		MNG580068	2	
	Kelliher Looks	Kelliher	0.00	MNG580068	1	
	Kittson Central School	Kennedy		MNG580028	35	
	Urbaniak Implement	Kennedy		MNG580028	22	
	VFW Post 3828	Kennedy		MNG580028	10	
	Bowman Industries	Kennedy		MNG580028	8	
	Harvest States	Kennedy		MNG580028	7	
	Petersburg Chevrolet	Kennedy		MNG580028	4	
	Foldcraft-Plymold Co.	Kenyon		MN0021628	200	
	I.S.D. No. 2172	Kenyon		MN0021628	119	
	Kenyon Sunest Home	Kenyon	2.5-	MN0021628	89	
	City of Kenyon	Kenyon	0.05	MN0021628	38	
	Peterson FordCo.	Kenyon		MN0021628	29	
	Security State Bank	Kenyon		MN0021628	24	
	KMS School Dist. #775	Kerkhoven		MN0020583	79	
	Carlson Manufacturing	Kerkhoven	0.55	MN0020583	32	
	Crop Production Service	Kerkhoven		MN0020583	25	
	Rustad Bus Service	Kerkhoven	2	MN0020583	20	
	Glacial Plains Cooperative	Kerkhoven	0.03	MN0020583	5	
	USC Public Schools	Kiester		MN0039721	41	
	Kiester Implement	Kiester		MN0039721	14	
	Kiester Grain & Feed	Kiester		MN0039721	6	
	Kinbrae Supper Club			ISTS	10	
	Apple Growers	La Crescent		MN0020621	300	
	La Crescent School Dist #300	La Crescent		MN0020621	193	
7940	Winona Knits	La Crescent		MN0020621	118	315100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
7941	La Crescent Health Care Center	La Crescent		MN0020621	100	623100
	Truss Specialists Inc	La Crescent		MN0020621	100	
	Houston County Group Homes	La Crescent		MN0020621	80	
7944	Ready Bus Line Company	La Crescent		MN0020621	55	
7945	Hardee's	La Crescent		MN0020621	42	
7946	Bauer's Market & Nursery	La Crescent		MN0020621	35	444200
7947	Voss & Sons Construction	La Crescent		MN0020621	23	236100
7948	La Crescent St Bk	La Crescent		MN0020621	19	522100
7949	Corky's Pizza & Ice Cream	La Crescent		MN0020621	15	722100
7950	Wieser Precast/Doric Vaults	La Crescent		MN0020621	12	327300
7951	Subway	La Crescent		MN0020621	11	722100
7952	Franciscan Skemp Healthcare	La Crescent	0.01	MN0020621	8	62110
7953	Lake Benton Public School	Lake Benton		MN0023884	45	61110
7954	Veire's Farm & Home	Lake Benton		MN0023884	20	42490
	Country House	Lake Benton		MN0023884	18	
	Lincoln-Pipestone Rural Water	Lake Benton		MN0023884	11	
	Presbyterian Family Foundation, Inc.	Lake Benton		MN0023884	11	62140
	City of Lake Benton	Lake Benton	0.01	MN0023884	10	
	Lake Benton Farmers Elevator	Lake Benton	0.01	MN0023884	10	
	Zond Maintenance Corp.	Lake Benton		MN0023884	10	
	Journal Printing Co.	Lake Benton		MN0023884	7	323100
	First Security Bank	Lake Benton		MN0023884	6	
	,	Lake City		MN0020664	409	
	Hearth Technologies		0.04			
	Lake City Medical Center - Mayo Health System	Lake City	0.21	MN0020664	319	
	Lake City Schools-ISD#813	Lake City		MN0020664	180	
	Valley Craft Inc	Lake City		MN0020664	150	
	Lake City, City of	Lake City	0.20	MN0020664	140	
	Wild Wings Inc	Lake City		MN0020664	100	
	Fiesta Foods	Lake City		MN0020664	82	
	J&B Pallet Recycling Inc	Lake City		MN0020664	39	
	Horizon Milling	Lake City	7.67	MN0020664	37	31120
	Ag Partners	Lake City		MN0020664	32	
7974	Burger King	Lake City		MN0020664	30	
7975	Pepin Mfg Inc	Lake City		MN0020664	27	33320
7976	American Bk Lake City	Lake City		MN0020664	25	52210
7977	Acrotech Inc	Lake City	0.02	MN0020664	22	32520
7978	Pepin Heights Orchard Inc	Lake City		MN0020664	22	11130
7979	Lake City Federal Savings and Loan Association	Lake City		MN0020664	17	52210
7980	Haas Woodworks	Lake City		MN0020664	16	33710
7981	Land O'Lakes Inc	Lake City	0.94	MN0020664	15	
	Engineering Laboratory Design	Lake City		MN0020664	12	33910
	Automation Services, Inc.	Lake City		MN0020664	9	
	Duncan's Inc/Even Par Enterprises Inc	Lake City	0.01	MN0020664	2	
	Sunnyside Nursing Home	Lake Park		MN0023892	89	
7087	Colonial Manor Nursing Home	Lakefield		MN0020427	72	
	Lakefield Public Schools-ISD #325	Lakefield		MN0020427	59	
	Hussong Manufacturing, Inc.	Lakefield		MN0020427	48	
	Hage Oil Co	Lakefield		MN0020427	25	
	Co-op Agriculture Ctr	Lakefield		MN0020427	20	
	Hi-Lo Club	Lakefield		MN0020427	20	
	Habilitative Services	Lakefield		MN0020427	16	
	Mosley Sheet Metal & Plumbing	Lakefield		MN0020427	13	
	Immanuel Lutheran School	Lakefield		MN0020427	12	
	Doman-Rose	Lakefield		MN0020427	6	
	Shiely Company			ISTS	10	21230
		St. Paul		MN0030007	1120	61110
7998	Lakeville Public School District #194				160	44110
7998 8003	Belzer's Chev-Dodge-KIA	St. Paul		MN0030007		
7998 8003 8004	Belzer's Chev-Dodge-KIA Rosemount Office Systems Inc	St. Paul St. Paul		MN0030007	155	33720
7998 8003 8004 8005	Belzer's Chev-Dodge-KIA Rosemount Office Systems Inc Hearth and Home Technologies	St. Paul	1.05			33720 33290
7998 8003 8004 8005	Belzer's Chev-Dodge-KIA Rosemount Office Systems Inc	St. Paul St. Paul	1.05	MN0030007	155	33720 33290
7998 8003 8004 8005 8006	Belzer's Chev-Dodge-KIA Rosemount Office Systems Inc Hearth and Home Technologies	St. Paul St. Paul St. Paul		MN0030007 MN0030007	155 153	33720 33290 33630
7998 8003 8004 8005 8006 8007	Belzer's Chev-Dodge-KIA Rosemount Office Systems Inc Hearth and Home Technologies Carquest Distribution Ctr	St. Paul St. Paul St. Paul St. Paul	0.10	MN0030007 MN0030007 MN0030007	155 153 130	33720 33290 33630 32520
7998 8003 8004 8005 8006 8007	Belzer's Chev-Dodge-KIA Rosemount Office Systems Inc Hearth and Home Technologies Carquest Distribution Ctr National Polymers Inc	St. Paul St. Paul St. Paul St. Paul St. Paul	0.10 0.09	MN0030007 MN0030007 MN0030007 MN0030007	155 153 130 125	33720 33290 33630 32520 32520
7998 8003 8004 8005 8006 8007 8009	Belzer's Chev-Dodge-KIA Rosemount Office Systems Inc Hearth and Home Technologies Carquest Distribution Ctr National Polymers Inc Imperial Plastics Inc Rexam Flexible & Medical Pkg	St. Paul	0.10 0.09 0.19	MN0030007 MN0030007 MN0030007 MN0030007 MN0030007 MN0030007	155 153 130 125 115 113	33720 33290 33630 32520 32520 32610
7998 8003 8004 8005 8006 8007 8009 8010 8011	Belzer's Chev-Dodge-KIA Rosemount Office Systems Inc Hearth and Home Technologies Carquest Distribution Ctr National Polymers Inc Imperial Plastics Inc Rexam Flexible & Medical Pkg J&E Mfg CO	St. Paul	0.10 0.09 0.19	MN0030007 MN0030007 MN0030007 MN0030007 MN0030007 MN0030007 MN0030007	155 153 130 125 115 113 91	33720 33290 33630 32520 32520 32610 54170
7998 8003 8004 8005 8006 8007 8009 8010 8011 8012	Belzer's Chev-Dodge-KIA Rosemount Office Systems Inc Hearth and Home Technologies Carquest Distribution Ctr National Polymers Inc Imperial Plastics Inc Rexam Flexible & Medical Pkg J&E Mfg CO New Morning Windows	St. Paul	0.10 0.09 0.19	MN0030007 MN0030007 MN0030007 MN0030007 MN0030007 MN0030007 MN0030007 MN0030007	155 153 130 125 115 113 91 80	33720 33290 33630 32520 32520 32610 54170 44410
7998 8003 8004 8005 8006 8007 8009 8010 8011 8012	Belzer's Chev-Dodge-KIA Rosemount Office Systems Inc Hearth and Home Technologies Carquest Distribution Ctr National Polymers Inc Imperial Plastics Inc Rexam Flexible & Medical Pkg J&E Mfg CO	St. Paul	0.10 0.09 0.19 0.48	MN0030007 MN0030007 MN0030007 MN0030007 MN0030007 MN0030007 MN0030007	155 153 130 125 115 113 91	337200 332900 336300 325200 325200 326100 541700 444100 323100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

BOTH Two City De Castings Co	ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
BOTT Luther Seminary				,gu			
8019 Univ of MN Academic Computing Ctr			St. Paul		MN0029815	165	611500
8020 Newmech St. Paul	8018	Bolger Publications & Printing	St. Paul		MN0029815	110	511100
8021 Midwest Editions	8019	Univ of MN Academic Computing Ctr	St. Paul		MN0029815	85	611300
8022 MG MG Grath Inc	8020	Newmech	St. Paul		MN0029815	80	238900
8022 Childran's Home Society	8021	Midwest Editions	St. Paul		MN0029815	50	323100
8024 International Operating Engineers St. Paul	8022	MG Mc Grath Inc	St. Paul	0.24	MN0029815	35	332900
8025_JAL Amoco							
BODE Superamerica				0.04			
BOZT Scripphin Communications St. Paul MN0029815 6 515200							
B022 Lauderdale Hollows St. Paul MN0029815 5 531100							
8029 City Gables St. Paul		·					
8030 Lauderdale, City of St. Paul 0.01 MN0028815 5 921100 8031 Twin City Chinese Christian Church St. Paul MN0028815 4 133100 8033 Western Remodeling St. Paul MN0028815 4 236100 8033 Rapt Printing St. Paul MN0028815 3 232100 8034 Rose Hill Investments St. Paul MN0028915 2 231100 8036 Central Health Care Inc Le Center MN0023931 100 223100 8037 Le Stueur, County of Le Center 0.14 MN0023931 100 223100 8038 Rosul American Foods Le Center MN0023931 70 311800 8038 Royal American Foods Le Center MN0023931 70 311800 8039 Fiberglass Fabrications Le Center MN0023931 47 332300 8040 European Roasterie Le Center MN0023931 40 311900 8041 Armar Corp Le Center MN0023931 40 311900 8041 Armar Corp Le Center MN0023931 40 311900 8042 Havy Ag Services Le Center MN0023931 30 315100 8043 Brotlosna & Associates Le Center MN0023931 30 315100 8044 Throlosna & Associates Le Center MN0023931 25 311900 8045 Rotlosna & Associates Le Center MN0023931 25 311900 8046 Ranibow Woodworks Le Center MN0023931 3 31500 8047 LaRoy Products Corp. Le Roy MN0021041 75 811100 8048 LeRoy Cooperative Public Schools Le Roy MN0021041 75 811100 8049 Watts on First Le Roy MN0021041 75 811100 8049 Watts on First Le Roy MN0021041 25 222100 8050 Hars State Bank Le Roy MN0021041 24 22210 8050 Harson Tire Le Roy MN0021041 24 23 236200 8050 LeRoy Union & Metal Le Roy MN0021041 15 811100 8050 LeRoy Woodworks Le Roy MN0021041 15 811100 8050 LeRoy Mn0021041 15 82800 8050 LeRoy Mn0021041 15 82800 8050 LeRoy Mn0021041 16 832800 8050 LeRoy Mn0021041 16 832800 8050 LeRoy Mn0021051 16 809 809 174800 8050 LeRoy Mn0021051 16 809 809 174800 8050 LeRoy Mn0021051 16 809 809 174800 8050 Lero Mn002395 16 809							
8031 Twin City Chinese Christian Church St. Paul MN0029815 4 28100 8032 Western Remodeling St. Paul MN0029815 3 23100 8033 Rapit Printing St. Paul MN0029815 3 23100 8034 Rose Hill Investments St. Paul MN0029815 2 531100 8034 Rose Hill Avestments St. Paul MN0029815 2 531100 8036 Central Health Care Inc Le Center MN0023931 100 223100 8037 Le Sueur, County of Le Center O.14 MN0023931 100 223100 8036 St. Paul MN0023931 100 223100 8039 Royal American Foods Le Center MN0023931 70 311800 8039 Fiberglass Fabrications Le Center MN0023931 77 332300 8039 Fiberglass Fabrications Le Center MN0023931 73 332300 8040 European Rossterie Le Center O.78 MN0023931 40 311900 8041 Armar Corp Le Center MN0023931 34 337100 8042 Hay Ag Services Le Center MN0023931 30 3115100 8043 Glotien Eye Products Le Center MN0023931 28 339800 8044 Throison & Associates Le Center MN0023931 28 339800 8045 Throison & Associates Le Center MN0023931 28 339800 8046 Throison & Associates Le Center MN0023931 8 311600 8047 LeRoy Products Corp. Le Roy MN0023931 8 331700 8047 LeRoy Products Corp. Le Roy MN0023931 8 331700 8049 West's on Firm Public Schools Le Roy MN0021041 75 722100 8050 First State Bank Le Roy MN0021041 25 722100 8051 Hanson Tire Le Roy MN0021041 26 722100 8051 Hanson Tire Le Roy MN0021041 28 322900 8052 LeRoy York Metal Le Roy MN0021041 19 432900 8053 LeRoy York State Bank Le Roy MN0021041 19 432900 8054 Lerok York For Firm Le Roy MN0021041 19 432900 8055 LeRoy Norther Equipment Le Roy MN0021041 19 432900 8055 LeRoy Norther Equipment Le Roy MN0021041 19 432900 8056 LeRoy Norther Equipment Le Roy MN0021041 19 432900 8056 LeRoy Products Corp Di Le Roy MN0021041 19 432900 8056 LeRoy Products Corp Di Le Roy MN0021041 19 432900 8056 LeRoy Roma				0.04			
8032 Western Remodeling St. Paul				0.01			
8033 Rapir Printing							
B034 Coretar Health Care Inc							
8036 Central Health Care Inc							
B037 Le Sueur, County of Le Center							
8038 Royal American Foods Le Center MN0023931 70 311800 8039 Fibrigalss Fabrications Le Center 0.78 MN0023931 40 313900 8040 European Roasterie Le Center 0.78 MN0023931 40 311900 8041 Golden Eye Products Le Center MN0023931 30 115100 8043 Golden Eye Products Le Center MN0023931 28 339900 8044 Throlson & Associates Le Center MN0023931 12 511100 8045 Camas Inc Le Center MN0023931 12 511100 8045 Lender Verbild Schools Le Center MN0023931 837100 8047 LeRoy Products Corp. Le Roy MN0021041 128 339900 8048 LeRoy-Ostrander Public Schools Le Roy MN0021041 75 611100 8049 Watts on First Le Roy MN0021041 25 722100 8051 Hanson Tire Le Roy MN0021041 23 322200 8052 LeRoy Operative Le Roy MN0021041 24 52210				0.14			
8039 Frberglass Fabrications				0.14			
BO40 European Roasterie Le Center 0.78 MN0023931 40 311900 8041 Hwy Ag Services Le Center MN0023931 33 337100 8042 Hwy Ag Services Le Center MN0023931 30 115100 8043 Golden Eve Products Le Center MN0023931 28 339900 8044 Throlson & Associates Le Center MN0023931 12 511100 8045 Camas inc Le Center MN0023931 12 511100 8045 Camas inc Le Center MN0023931 8 311600 8045 Camas inc Le Center MN0023931 8 311600 8046 Rainbow Woodworks Le Center MN0023931 9 337100 8047 LeRoy Products Corp. Le Roy MN0021041 128 339900 8048 LeRoy-Octatander Public Schools Le Roy MN0021041 75 611100 8049 Warts on First Le Roy MN0021041 25 722100 8050 First Slate Bank Le Roy MN0021041 25 722100 8051 Hanson Tire Le Roy MN0021041 23 325200 8052 LeRoy Ion Model Metal Le Roy MN0021041 23 325200 8052 LeRoy Ion Metal Le Roy MN0021041 18 332900 8054 Rebrogrig Equipment Le Roy MN0021041 15 424900 8054 Eroky Copperative Le Roy MN0021041 15 424900 8055 LeRoy MN0021041 11 4249800 8056 Leroy MN0021041 10 459900 8056 Roy MN0021041 10 459900 8056 Leroy Leroy MN0021041 10 459900 8056 Leroy MN0021041 10 459900 10 Leroy MN0021041 10 459900 10 Leroy MN0021041 10 459900		,					
Bod1 Armar Corp		0	<u> </u>	0.78			
Bo42 Hwy Ag Services				0.70			
B043 Golden Eye Products		· · · · · · · · · · · · · · · · · · ·					
B044 Throlson & Associates							
Bol45 Carmas Inc			1				
Bod-6 Rainbow Woodworks				0.45			
Bo47 LeRoy Products Corp. Le Roy MN0021041 75 511100							
B048 LeRoy-Ostrander Public Schools Le Roy MN0021041 75 611100 8049 Watt's on First Le Roy MN0021041 25 722100 8050 First State Bank Le Roy MN0021041 24 522100 8051 Hanson Tire Le Roy MN0021041 23 326200 8052 LeRoy Iron & Metal Le Roy MN0021041 23 326200 8052 LeRoy Cooperative Le Roy MN0021041 15 424900 8054 LeRoy Cooperative Le Roy MN0021041 15 424900 8054 LeRoy Cooperative Le Roy MN0021041 11 423800 8054 LeRoy Ampride/Coop Oil Le Roy MN0021041 11 423800 8055 LeRoy Ampride/Coop Oil Le Roy MN0021041 11 423900 8056 Amoco Food Shop Le Roy MN0021041 10 453900 8056 Amoco Food Shop Le Roy MN0021041 9 325300 8058 Brownlow's Red Owl Le Roy MN0021041 9 445100 8059 Le Sueur Inc Le Sueur MN0022152 640 331500 8059 Le Sueur Inc Le Sueur MN0022152 640 331500 8051 Le Sueur/s Inc Le Sueur MN0022152 165 623100 8051 Le Sueur/s Inc Le Sueur MN0022152 175 611100 8062 Davisco International, Inc. Le Sueur MN0022152 175 611100 8063 M. G. Waldbaum Inc Le Sueur MN0022152 120 311500 8064 Daone Pet Care Le Sueur MN0022152 55 3111100 8066 Unimin Corp Le Sueur MN0022152 50 212300 8066 General Mills Ag Research Le Sueur MN0022152 26 325400 8066 Bimeda, Inc. Le Sueur MN0022152 28 561900 8066 Bimeda, Inc. Le Sueur MN0022152 29 325400 8067 Technipac, Inc Le Sueur MN0022152 21 423800	8047	LeRoy Products Corp.					
B050 First State Bank					MN0021041	75	611100
B051 Hanson Tire	8049	Watt's on First	Le Roy		MN0021041	25	722100
8052 LeRoy Iron & Metal Le Roy 0.12 MN0021041 18 332900 8053 LeRoy Cooperative Le Roy MN0021041 15 424900 8054 Inches 424900 8056 Inches 424900 Inches 424900 8057 Inches 424900 Inches 424900	8050	First State Bank	Le Roy		MN0021041	24	522100
8053 LeRoy Cooperative Le Roy MN0021041 15 424900 8054 Isenberg Equipment Le Roy MN0021041 11 423800 8055 LeRoy Ampride/Coop Oil Le Roy MN0021041 11 424900 8056 Amoco Food Shop Le Roy MN0021041 10 453900 8057 Agrillance Le Roy MN0021041 9 325300 8058 Brownlow's Red Owl Le Roy MN0021041 9 325300 8058 Brownlow's Red Owl Le Roy MN0021041 9 445100 8059 Le Sueur Inc Le Sueur MN0022152 640 331500 8060 Minnesota Valley Health Ctr Le Sueur MN0022152 185 622100 8061 Le Sueur/Henderson Schools Le Sueur MN0022152 185 622100 8061 Le Sueur/Henderson Schools Le Sueur MN0022152 175 611100 8062 Davisco International, Inc. Le Sueur MN0022152 170 311500 8062 Davisco International, Inc. Le Sueur MN0022152 110 112300 8064 Doane Pet Care Le Sueur MN0022152 110 112300 8066 Doane Pet Care Le Sueur MN0022152 55 311100 8065 Unimin Corp Le Sueur MN0022152 50 212300 8066 General Mills Ag Research Le Sueur 1.39 MN0022152 30 311400 8067 Technipac, Inc Le Sueur MN0022152 30 311400 8067 Technipac, Inc Le Sueur MN0022152 28 561900 8068 Bimeda, Inc. Le Sueur MN0022152 28 561900 8069 It Takes Two Le Sueur MN0022152 23 424100 8070 Distel Grain Le Sueur MN0022152 21 423800 8071 Le Sueur Publishing Le Sueur MN0022152 21 511100 8072 MicroStore Le Sueur MN0022152 21 511100 8073 Seaver Companies Le Sueur MN0022152 21 541500 8075 Mobilcrete Inc Le Sueur MN0022152 21 541500 8075 Mobilcrete Inc Le Sueur MN0022152 21 541500 8075 Mobilcrete Inc Le Sueur MN0023957 200 32900 8076 Johnson Aggregates Le Sueur MN0023957 200 32900 8076 Johnson Aggregates Le Sueur MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 350 334400 8080 Formative Engineering Corp Lester Prairie	8051	Hanson Tire	Le Roy		MN0021041	23	326200
8054 Isenberg Equipment	8052	LeRoy Iron & Metal	Le Roy	0.12	MN0021041	18	332900
8055 LeRoy Ampride/Coop Oil Le Roy MN0021041 11 424900 8056 Amoco Food Shop Le Roy MN0021041 10 453900 8057 Agrillance Le Roy MN0021041 9 325300 8058 Rrownlow's Red Owl Le Roy MN0021041 9 445100 8059 Le Sueur Inc Le Sueur MN0022152 640 331500 8060 Minnesota Valley Health Ctr Le Sueur MN0022152 185 623100 8061 Le Sueur/Henderson Schools Le Sueur MN0022152 175 611100 8062 Davisco International, Inc. Le Sueur MN0022152 175 611100 8062 Davisco International, Inc. Le Sueur MN0022152 120 311500 8064 Doane Pet Care Le Sueur MN0022152 110 112300 8064 Doane Pet Care Le Sueur MN0022152 55 311100 8065 Unimin Corp Le Sueur MN0022152 50 212300 8066 General Mills Ag Research Le Sueur MN0022152 30 311400 8067 Technipac, Inc Le Sueur MN0022152 28 561900 8068 Birneda, Inc. Le Sueur MN0022152 28 561900 8068 Birneda, Inc. Le Sueur MN0022152 28 561900 8069 It Takes Two Le Sueur MN0022152 23 424100 8070 Distel Grain Le Sueur MN0022152 21 423800 8071 Le Sueur Le Sueur MN0022152 21 423800 8073 Seaver Companies Le Sueur MN0022152 21 541500 8073 Seaver Companies Le Sueur MN0022152 21 541500 8075 Mobilicrete Inc Le Sueur MN0022152 21 541500 8075 Mobilicrete Inc Le Sueur MN0022152 15 238100 8076 Mobilicrete Inc Le Sueur MN0022152 15 238100 8076 Le Sueur MN0022152 15 238100 8076 Le Sueur MN0022152 15 238100 8076 Mobilicrete Inc Le Sueur MN0023967 75 424600 8076 Lester Prairie MN0023967 75 424600 8076 Lester			Le Roy		MN0021041	15	424900
B056 Amoco Food Shop	8054	Isenberg Equipment			MN0021041	11	423800
B057 Agriliance							424900
Bobs Brownlow's Red Owl			-				
8059 Le Sueur Inc		<u> </u>	-				
8060 Minnesota Valley Health Ctr							
B861 Le Sueur/Henderson Schools Le Sueur MN0022152 175 611100 8062 Davisco International, Inc. Le Sueur 7.49 MN0022152 120 311500 8063 M. G. Waldbaum Inc Le Sueur MN0022152 110 112300 8064 Doane Pet Care Le Sueur MN0022152 55 311100 8065 Unimin Corp Le Sueur MN0022152 50 212300 8066 General Mills Ag Research Le Sueur MN0022152 30 311400 8067 Technipac, Inc Le Sueur MN0022152 28 561900 8068 Birneda, Inc. Le Sueur MN0022152 26 325400 8069 It Takes Two Le Sueur MN0022152 23 424100 8070 Distel Grain Le Sueur MN0022152 21 423800 8071 Le Sueur Publishing Le Sueur MN0022152 21 511100 8072 MicroStore Le Sueur MN0022152 21 541500 8073 Seaver Companies Le Sueur MN0022152 21 446100 8074 Le Sueur Farmers Elevator Le Sueur MN0022152 15 238100 8075 Johnson Aggregates Le Sueur MN0022152 15 238100 8076 Johnson Aggregates Le Sueur MN0022152 15 238100 8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 35 325200 8080 Formative Engineering Corp Lester Prairie MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 350 812900 8083 Lewiston Public School Dis							
8062 Davisco International, Inc. Le Sueur 7.49 MN0022152 120 311500 8063 M. G. Waldbaum Inc Le Sueur MN0022152 110 112300 8064 Doane Pet Care Le Sueur MN0022152 55 311100 8065 Unimin Corp Le Sueur MN0022152 50 212300 8066 General Mills Ag Research Le Sueur 1.39 MN0022152 30 311400 8067 Technipac, Inc Le Sueur MN0022152 28 561900 8068 Bimeda, Inc. Le Sueur MN0022152 26 325400 8069 It Takes Two Le Sueur MN0022152 26 325400 8070 Distel Grain Le Sueur MN0022152 21 423800 8071 Le Sueur Publishing Le Sueur MN0022152 21 511100 8072 MicroStore Le Sueur MN0022152 21 511100 8073 Seaver Companies Le Sueur MN0022152 21 446100 8074 Le Sueur Farmers Elevator Le Sueur MN0022152 21 446100 8075 Mobilcrete Inc Le Sueur MN0022152 15 238100 8075 Mobilcrete Inc Le Sueur MN0022152 15 238100 8076 Johnson Aggregates Le Sueur MN0022152 10 212300 8078 Poly Foam Inc Lester Prairie MN0023957 75 424600 8079 Lester Prairie MN0023957 75 424600 8080 Formative Engineering Corp Lester Prairie MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 135 611100 8080 Lewiston Public School District #857 Lewiston MN0023965 135 611100 8080 Lewiston Public School District #857 Lewiston MN0023965 135 611100 8080 Lewiston Public School District #857 Lewiston MN0023965 135 611100 8080 Lewiston Public School District #857 Lewiston MN0023965 135 611100 8080 Lewiston Public School District #857 Lewiston MN0023965 135 611100 8080 Lewiston Public School District #857 Lewiston MN0023965 135 611100 8080 Lewiston Public School District #857 Lewiston MN0023965 135 611100 MODES 135 611100 MODES 135 611100 MODES 135 611100 MODES							
8063 M. G. Waldbaum Inc Le Sueur MN0022152 110 112300 8064 Doane Pet Care Le Sueur MN0022152 55 311100 8065 Unimin Corp Le Sueur MN0022152 50 212300 8066 General Mills Ag Research Le Sueur 1.39 MN0022152 30 311400 8067 Technipac, Inc Le Sueur MN0022152 28 561900 8068 Bimeda, Inc. Le Sueur MN0022152 26 325400 8069 It Takes Two Le Sueur MN0022152 23 424100 8070 Distel Grain Le Sueur MN0022152 21 423800 8071 Le Sueur Publishing Le Sueur MN0022152 21 511100 8072 MicroStore Le Sueur MN0022152 21 541500 8073 Seaver Companies Le Sueur MN0022152 21 541500 8074 Le Sueur Farimes Elevator Le Sueur MN0022152 15							
8064 Doane Pet Care Le Sueur MN0022152 55 311100		·		7.49			
Substitute							
8066 General Mills Ag Research Le Sueur 1.39 MN0022152 30 311400 8067 Technipac, Inc Le Sueur MN0022152 28 561900 8068 Birneda, Inc. Le Sueur MN0022152 26 325400 8069 It Takes Two Le Sueur MN0022152 23 424100 8070 Distel Grain Le Sueur MN0022152 21 423800 8071 Le Sueur Publishing Le Sueur MN0022152 21 511100 8072 MicroStore Le Sueur MN0022152 21 541500 8073 Seaver Companies Le Sueur MN0022152 21 446100 8074 Le Sueur Farmers Elevator Le Sueur MN0022152 15 424500 8075 Mobilcrete Inc Le Sueur MN0022152 15 238100 8076 Johnson Aggregates Le Sueur MN0022152 10 212300 8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 75 424600 8080 Formative Engineering Corp Lester Prairie MN0023957 30 53200 8081 Riverside Electronics Ltd							
8067 Technipac, Inc Le Sueur MN0022152 28 561900 8068 Bimeda, Inc. Le Sueur MN0022152 26 325400 8069 It Takes Two Le Sueur MN0022152 23 424100 8070 Distel Grain Le Sueur MN0022152 21 423800 8071 Le Sueur Publishing Le Sueur MN0022152 21 511100 8072 MicroStore Le Sueur MN0022152 21 541500 8073 Seaver Companies Le Sueur MN0022152 21 446100 8074 Le Sueur Farmers Elevator Le Sueur MN0022152 15 424500 8075 Mobilcrete Inc Le Sueur MN0022152 15 238100 8076 Johnson Aggregates Le Sueur MN0022152 10 212300 8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 75							
8068 Bimeda, Inc. Le Sueur MN0022152 26 325400 8069 It Takes Two Le Sueur MN0022152 23 424100 8070 Distel Grain Le Sueur MN0022152 21 423800 8071 Le Sueur Publishing Le Sueur MN0022152 21 511100 8073 MicroStore Le Sueur MN0022152 21 541500 8073 Seaver Companies Le Sueur MN0022152 21 446100 8074 Le Sueur Farmers Elevator Le Sueur MN0022152 15 424500 8075 Mobilcrete Inc Le Sueur MN0022152 15 238100 8076 Johnson Aggregates Le Sueur MN0022152 10 212300 8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 5 424600 8079 Lester Prairie Public School Dist #424 Lester Prairie MN0023957 60 611100 8081 Riverside Electronics Ltd Lewiston MN0023965 360 <td< td=""><td></td><td>Ü</td><td></td><td>1.39</td><td></td><td></td><td></td></td<>		Ü		1.39			
8069 It Takes Two Le Sueur MN0022152 23 424100 8070 Distel Grain Le Sueur MN0022152 21 423800 8071 Le Sueur Publishing Le Sueur MN0022152 21 511100 8072 MicroStore Le Sueur MN0022152 21 541500 8073 Seaver Companies Le Sueur MN0022152 21 446100 8074 Le Sueur Farmers Elevator Le Sueur MN0022152 15 424500 8075 Mobilcrete Inc Le Sueur MN0022152 15 238100 8076 Johnson Aggregates Le Sueur MN0022152 10 212300 8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 75 424600 8079 Lester Prairie Public School Dist #424 Lester Prairie MN0023957 60 611100 8081 Riverside Electronics Ltd Lewiston MN0023965 360 334400 8082 Herff/Jones Lewiston Public School District #857 Lewiston							
8070 Distel Grain Le Sueur MN0022152 21 423800 8071 Le Sueur Publishing Le Sueur MN0022152 21 511100 8072 MicroStore Le Sueur MN0022152 21 541500 8073 Seaver Companies Le Sueur MN0022152 21 446100 8074 Le Sueur Farmers Elevator Le Sueur MN0022152 15 424500 8075 Mobilcrete Inc Le Sueur MN0022152 15 238100 8076 Johnson Aggregates Le Sueur MN0022152 10 212300 8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 75 424600 8079 Lester Prairie Public School Dist #424 Lester Prairie MN0023957 60 611100 8080 Formative Engineering Corp Lester Prairie 0.03 MN0023957 35 325200 8081 Riverside Electronics Ltd							
8071 Le Sueur Publishing Le Sueur MN0022152 21 511100 8072 MicroStore Le Sueur MN0022152 21 541500 8073 Seaver Companies Le Sueur MN0022152 21 446100 8074 Le Sueur Farmers Elevator Le Sueur MN0022152 15 424500 8075 Mobilcrete Inc Le Sueur MN0022152 15 238100 8076 Johnson Aggregates Le Sueur MN0022152 10 212300 8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 75 424600 8079 Lester Prairie Public School Dist #424 Lester Prairie MN0023957 60 611100 8080 Formative Engineering Corp Lester Prairie 0.03 MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 360 334400 8082 Herff/Jones			<u> </u>				
8072 MicroStore Le Sueur MN0022152 21 541500 8073 Seaver Companies Le Sueur MN0022152 21 446100 8074 Le Sueur Farmers Elevator Le Sueur MN0022152 15 424500 8075 Mobilcrete Inc Le Sueur MN0022152 15 238100 8076 Johnson Aggregates Le Sueur MN0022152 10 212300 8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 75 424600 8079 Lester Prairie Public School Dist #424 Lester Prairie MN0023957 60 611100 8080 Formative Engineering Corp Lester Prairie 0.03 MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 360 334400 8082 Herff/Jones Lewiston MN0023965 350 812900 8083 Lewiston Public School Distric							
8073 Seaver Companies Le Sueur MN0022152 21 446100 8074 Le Sueur Farmers Elevator Le Sueur MN0022152 15 424500 8075 Mobilcrete Inc Le Sueur MN0022152 15 238100 8076 Johnson Aggregates Le Sueur MN0022152 10 212300 8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 75 424600 8079 Lester Prairie Public School Dist #424 Lester Prairie MN0023957 60 611100 8080 Formative Engineering Corp Lester Prairie 0.03 MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 360 334400 8082 Herff/Jones Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 135 611100		0					
8074 Le Sueur Farmers Elevator Le Sueur MN0022152 15 424500 8075 Mobilcrete Inc Le Sueur MN0022152 15 238100 8076 Johnson Aggregates Le Sueur MN0022152 10 212300 8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 75 424600 8079 Lester Prairie Public School Dist #424 Lester Prairie MN0023957 60 611100 8080 Formative Engineering Corp Lester Prairie 0.03 MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 360 334400 8082 Herff/Jones Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 135 611100							
8075 Mobilcrete Inc Le Sueur MN0022152 15 238100 8076 Johnson Aggregates Le Sueur MN0022152 10 212300 8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 75 424600 8079 Lester Prairie Public School Dist #424 Lester Prairie MN0023957 60 611100 8081 Riverside Electronics Corp Lester Prairie 0.03 MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 360 334400 8082 Herff/Jones Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 135 611100		·					
8076 Johnson Aggregates Le Sueur MN0022152 10 212300 8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 75 424600 8079 Lester Prairie Public School Dist #424 Lester Prairie MN0023957 60 611100 8080 Formative Engineering Corp Lester Prairie 0.03 MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 360 334400 8082 Herff/Jones Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 135 611100							
8077 Lester Building Systems Div Lester Prairie MN0023957 200 321900 8078 Poly Foam Inc Lester Prairie MN0023957 75 424600 8079 Lester Prairie Public School Dist #424 Lester Prairie MN0023957 60 611100 8080 Formative Engineering Corp Lester Prairie 0.03 MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 360 334400 8082 Herff/Jones Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 135 611100							
8078 Poly Foam Inc Lester Prairie MN0023957 75 424600 8079 Lester Prairie Public School Dist #424 Lester Prairie MN0023957 60 611100 8080 Formative Engineering Corp Lester Prairie 0.03 MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 360 334400 8082 Herff/Jones Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 135 611100							
8079 Lester Prairie Public School Dist #424 Lester Prairie MN0023957 60 611100 8080 Formative Engineering Corp Lester Prairie 0.03 MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 360 334400 8082 Herff/Jones Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 135 611100		8 7					
8080 Formative Engineering Corp Lester Prairie 0.03 MN0023957 35 325200 8081 Riverside Electronics Ltd Lewiston MN0023965 360 334400 8082 Herff/Jones Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 135 611100			<u> </u>				
8081 Riverside Electronics Ltd Lewiston MN0023965 360 334400 8082 Herff/Jones Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 135 611100			<u> </u>	0.03			
8082 Herff/Jones Lewiston MN0023965 350 812900 8083 Lewiston Public School District #857 Lewiston MN0023965 135 611100				2.50			
8083 Lewiston Public School District #857 Lewiston MN0023965 135 611100			<u> </u>				
			<u> </u>				

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

BOBS Minnesotia Product Innovators Lewiston O.Z.MN0023865 24 337900 2006 Lewiston Nature To Lewiston MN0023865 23 37900 2007	ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
B007 Lewiston Auto Co	8085	Minnesota Product Innovators		0.02	MN0023965		
8088 Minnesota Drafting & Design Leviston MN0023995 14 541300 8098 Livusiton Food & Produce Leviston MN0023995 13 244900 8091 Berson Farm Service Leviston MN0023995 12 333200 8091 Berson Farm Service Leviston MN0023995 12 333200 8092 Chisaga Lakes School District Leviston MN0023995 12 343900 8092 Chisaga Lakes School District Leviston MN0023995 10 244900 8092 Chisaga Lakes School District Leviston MN0023995 10 244900 8092 Chisaga Lakes School District Leviston MN0023995 10 244900 8096 Androphics 10 249900 8096 An	8086	Lewiston Monument Co	Lewiston		MN0023965	22	327900
8090 Leviston Feet & Produce	8087	Lewiston Auto Co	Lewiston		MN0023965	20	441100
8000 Lewiston Implement Inc	8088	Minnesota Drafting & Design	Lewiston		MN0023965	14	541300
8091 Berson Farm Service	8089	Lewiston Feed & Produce	Lewiston			13	
8092 Chisago Lakes School District	8090	Lewiston Implement Inc	Lewiston		MN0023965	12	
B093 Plastic Products Inc							
B095 State of NN Correctional Facility St. Paul MN0020815 600 922100 8096 Asd County Juvenile Center St. Paul MN0020815 260 453200 8097 Anota County Juvenile Center St. Paul MN0020815 160 922200 8098 Synovis Interventional Systems St. Paul NN0020815 160 922200 8098 Month County Juvenile Center St. Paul NN0020815 160 922200 8098 Month Countrel Protection St. Paul NN0020815 100 334500 9399 Molfin Countrel Protection St. Paul NN0020815 100 334500 9399 Molfin Countrel Protection St. Paul NN0020815 100 238200 9309 Molfin Fire Protection St. Paul NN0020815 100 238200 9309 Molfin Fire Protection St. Paul NN0020815 100 238200 9309 Molfin St. Paul NN0020815 100 238200 9309 9							
8095 State of MN Correctional Facility			,				
8086 AcGraphics				1.39			
B097 Anoka County Juvenile Center St. Paul MN0028915 160 922100 8098 Synovis Interventional Systems St. Paul 0.12 Mn0028915 150 334500 8099 Molin Concrete Products Co St. Paul MN0028915 130 334500 8109 Rehbein Transit Inc St. Paul MN0028915 130 485400 8101 Summit Fire Protection St. Paul MN0028915 130 238200 8102 Roll-Fe Systems Inc St. Paul MN0028915 70 333900 8103 Custom Mfg & Engineering St. Paul MN0028915 70 333900 8103 Custom Mfg & Engineering St. Paul 0.05 MN0028915 50 325200 8105 City of Lismore Lismore MN0580076 20 238900 8105 City of Lismore Lismore MN0580076 10 325300 8106 Star Co-op Pentilizer Lismore MN0580076 10 325300 8106 Star Co-op Pentilizer Lismore MN0580076 10 325300 8109 Heartman Mutual Insurance Co. Lismore MN0580076 10 236100 8109 Heartman Mutual Insurance Co. Lismore MN0580076 10 236100 8109 Heartman Mutual Insurance Co. Lismore MN0580076 10 226100 8111 Parmers Union Co-op Oil Co. Lismore MN0580076 5 424900 8111 Valid Lumber Company Lismore MN0580076 5 424900 8112 Roll Lumber Company Lismore MN0580076 5 424900 8112 Roll Lumber Company Lismore MN0580076 4 44500 8112 Roll Lumber Company Lismore MN0580076 4 44500 8113 Roll Sol Locker & Market Lismore MN0580076 4 44500 8114 Roll Lumber Company Lismore MN0580076 4 44500 8115 Roll Lumber Company Lismore MN0580076 2 33500 8115 Roll Lumber Company Lismore MN0580076 4 44500 8115 Roll Lumber Company Lismore MN0580076 4 44500 8115 Roll Lumber Company Lismore MN0580076 1 44110 8118 Romper Trucking Lismore MN0580076 1 44110 8118 Romper Roll Roll Roll Roll Roll Roll Roll Rol							
8098 Synovis Interventional Systems St. Paul 0.12 MN0028915 130 334500 8099 Molin Concrete Products Co St. Paul MN0028915 135 327300 8100 Rohbein Transil Inc St. Paul MN0028915 130 485400 8101 Summil Fire Protection St. Paul MN0028915 130 38200 8102 Nol-Tec Systems Inc St. Paul MN0028915 70 333900 8102 Nol-Tec Systems Inc St. Paul MN0028915 70 333900 8103 Custom Mig & Engineering St. Paul 0.05 MN0028915 70 333900 8104 Loostrock Digging Service Lismore MN0580076 20 238800 8104 Loostrock Digging Service Lismore 0.02 MN05890076 14 921100 8106 5 Star Co-op Fertilizer Lismore 0.02 MN05890076 14 921100 8106 5 Star Co-op Fertilizer Lismore MN0580076 10 235300 8107 B & Construction Lismore MN0580076 10 235100 8109 State Bank of Lismore Lismore MN0580076 10 235100 8109 State Bank of Lismore Lismore MN0580076 5 22100 8110 Fertilizer Lismore MN0580076 5 22100 8110 Fertilizer Lismore MN0580076 5 22100 8111 Ved Lumber Company Lismore MN0580076 5 42490 11 Ved Lumber Company Lismore MN0580076 4 42490 11 Ved Lumber Company Lismore MN0580076 2 23400 11 Ved Lumber Company Lismore MN0580076 2 23400 11 Ved Lumber Company Lismore MN0580076 1 44710 11 Ved Lumber Company Lismore MN0580076 1 44710 11 Ved Lumber Company Lismore MN0580076 1 44710 11 Ved Lumber Company Listofield MN0023973 175 21110 11 Ved Lumber Company Listofield MN0023973 175 21110 11 Ved Lumber Company Listofield MN0023973 175 21110 11 Ved Lumber Compan							
8099 Molin Concrete Products Co							
8100 Rebbein Transi Inc				0.12			
8101 Summit Fire Protection St. Paul MN0029815 70 333900 8103 Custom Mtg & Engineering St. Paul 0.05 MN0029815 70 333900 8103 Custom Mtg & Engineering St. Paul 0.05 MN0029815 60 325200 8105 City of Lismore Lismore MNCS80076 20 238900 8105 City of Lismore Lismore 0.02 MNCS80076 10 325300 8107 B & L Construction Lismore MNCS80076 11 325300 8107 B & L Construction Lismore MNCS80076 10 325300 8107 B & L Construction Lismore MNCS80076 7 524100 8109 Estate Bank of Lismore Lismore MNCS80076 7 524100 8109 Estate Bank of Lismore Lismore MNCS80076 6 522100 8110 Farmers Union Co-op Cit Co. Lismore MNCS80076 5 424900 8111 Verial Company Lismore MNCS80076 5 424900 8113 Pob Stocker & Market Lismore MNCS80076 5 424900 8113 Bob's Looker & Market Lismore MNCS80076 4 44500 8113 Bob's Looker & Market Lismore 0.02 MNCS80076 4 44500 8113 Bob's Looker & Market Lismore MNCS80076 2 335300 8115 Lismore Cellular Inc. Lismore MNCS80076 2 335300 8115 Lismore Cellular Inc. Lismore MNCS80076 2 334200 8115 Lismore Cellular Inc. Lismore MNCS80076 3 342400 8118 Kemper Trucking Lismore MNCS80076 3 342400 8118 Kemper Trucking Lismore MNCS80076 1 447100 8119 linnovex, Inc. Lichfield MN0023973 376 611100 8121 Mayestran Lutheran Homes Lichfield MN0023973 376 611100 8121 Mayestran Lutheran Homes Lichfield MN0023973 376 611100 8123 Mayestran Lutheran Homes Lichfield MN0023973 376 611100 8128 Mayer County Memorial Hospital Lichfield MN0023973 377 331500 8128 Mayer County Memorial Hospital Lichfield MN0023973 377 331500 8128 Mayer County Memorial Hospital Lichfield MN0023973 377 331500							
8102 No1-rec Systems Inc St. Paul MN0029815 60 332500 8104 Loosbrock Digging Service Lismore MNGS80076 14 291100 8106 IS Vol Lismore Lismore MNGS80076 14 291100 8106 IS Vol Lonstruct Lismore MNGS80076 14 291100 8107 IS AL Construction Lismore MNGS80076 10 325300 8107 IS AL Construction Lismore MNGS80076 10 325300 8109 Istael Bank of Lismore Lismore MNGS80076 10 325300 8109 Istael Bank of Lismore Lismore MNGS80076 6 522100 8110 Farmers Union Co-op Oil Co. Lismore MNGS80076 5 524100 8111 Veld Lumber Company Lismore MNGS80076 5 424900 8112 Adrian Co-op Elevator Lismore MNGS80076 5 424900 8113 Bot's Locker & Market Lismore MNGS80076 4 424900 8113 Bot's Locker & Market Lismore MNGS80076 4 424900 8114 Electric Motor Center Lismore MNGS80076 4 424900 8115 Lismore Agency Lismore MNGS80076 2 335300 8116 Lismore Agency Lismore MNGS80076 2 334200 8117 Lims Service Lismore MNGS80076 2 334200 8118 Kemper Trucking Lismore MNGS80076 1 447100 8119 Innove, Inc. Lismore MNGS80076 1 447100 8119 Innove, Inc. Litchfield MN0023973 400 425100 8120 Litchfield School District 465 Litchfield MN0023973 376 611100 8121 Mayustana Lutheran Homes Litchfield MN0023973 175 921100 8122 Meeker County Memorial Hospital Litchfield MN0023973 175 921100 8122 Meeker County Memorial Hospital Litchfield MN0023973 175 321100 8122 Meeker County Memorial Hospital Litchfield MN0023973 176 632100 8123 First District Association Litchfield MN0023973 176 632100 8125 Review Processor MN0023973 176 632100 8126 Townsater Trailers, Inc. Litchfield MN0023973 179 332500 8127 Custom Products of Litchfield MN0023973 170 332500 8128 Forther Packer County Memorial Hospital Litchfield MN0023973 179 332500 8129 Affacter Company Litchfield MN0023973 170 332500 8139 Alta							
B102 Custom Mig & Engineering							
Briol Clogy of Lismore				0.05			
B105 City of Lismore				0.05			
B100 S Star Co-op Fertilizer				0.02			
B107 B & L. Construction Lismone MNC580076 7. 524100		,		0.02			
B108 Heartland Mutual Insurance Co. Lismore MNG580076 7 524100							
B109 State Bank of Lismore Lismore MNG680076 6 522100							
8110 Farmers Union Co-op Oil Co. Lismore MNG880076 5 424900 8111 Veld Lumber Company Lismore MNG880076 5 4444100 8112 Adrian Co-op Elevator Lismore MNG880076 4 424900 8113 Bob's Locker & Market Lismore 0.02 MNG880076 2 335300 8115 Lismore Cellular Inc. Lismore MNG580076 2 53400 8115 Lismore Agency Lismore MNG580076 2 53400 8115 Lismore James Cellular Inc. Lismore MNG580076 2 334200 8117 Jim's Service Lismore MNG580076 1 447100 8118 Kemper Trucking Lismore 0.0 MNG580076 1 448100 8120 Intelfield School District 465 Litchfield MN0023973 400 425100 8120 Intelfield School District 465 Litchfield MN0023973 245 623100 8121 Augustana Lutheran Homes Litchfield MN0023973 245 623100 8122 First District Association Litchfield 10.74 MN0023973 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
B111 Veld Lumber Company							
8112 Adrian Co-op Elevator Lismore 0.02 MNG580076 4 424900 8113 Bob Locker & Market Lismore 0.02 MNG580076 2 335300 8115 Lismore Cellular Inc. Lismore MNG580076 2 335300 8115 Lismore Cellular Inc. Lismore MNG580076 2 334200 8117 Jim's Service Lismore MNG580076 1 3447100 8118 Kemper Trucking Lismore 0.05 MNG580076 1 447100 8118 Kemper Trucking Lismore 0.05 MNG580076 1 484100 8119 Innovex, Inc. Litchfield MN0023973 400 425100 8120 Litchfield School District 465 Litchfield MN0023973 376 611100 8121 Augustana Lutheran Homes Litchfield 0.25 MN0023973 175 921100 8122 Meeker County Litchfield 0.25 MN0023973 175 921100 8123 First District Association Litchfield 10.74 MN0023973 172 311500 8124 Meeker County Memorial Hospital Litchfield 0.10							
B113 BD\s Locker & Market Lismore 0.02 MNG580076 2 335300 8115 Lismore Agency Lismore MNG580076 2 35300 8115 Lismore Agency Lismore MNG580076 2 524100 8116 Lismore Cellular Inc. Lismore MNG580076 2 524100 8117 Lismore MNG580076 1 334200 8117 Lismore MNG580076 1 437100 8118 Kemper Trucking Lismore 0.05 MNG580076 1 448100 8119 Innovex, Inc. Lichfield MN0023973 400 425100 8120 Lichfield School District 465 Lichfield MN0023973 376 611100 8122 Mayustana Lutherar Homes Lichfield MN0023973 245 623100 8122 Mayustana Lutherar Homes Lichfield MN0023973 245 623100 8122 Mayustana Lutherar Homes Lichfield 0.25 MN0023973 175 921100 8123 First District Association Litchfield 0.10 MN0023973 175 921100 8124 Meeker County Memorial Hospital Lichfield 0.10 MN0023973 175 921100 8125 Minnesota Rubber Litchfield 0.10 MN0023973 175 622100 8126 Mono23973 175 0622100 8126 Mono23973 175 0622100 8126 Mono23973 175 0622100 8126 Mono23973 175 0622100 8127 Custom Products of Litchfield Litchfield MN0023973 173 3389900 8128 Msparboe Companye Litchfield MN0023973 104 332300 8128 Msparboe Companye Litchfield MN0023973 90 112300 8129 Anderson Chemical Company Litchfield MN0023973 63 424600 8130 Mohoson Bros. Corporation Litchfield MN0023973 30 112300 8131 Litchfield Garment Company Litchfield MN0023973 35 561900 8131 Litchfield MN0023973 35 561900 8131 Msparboe Companye Litchfield Msparboe Companye Litchfield Msparboe Companye Litchfield Msparboe Companye Litchfield Msparboe Companye Litc							
B114 Electric Motor Center		·		0.02			
B115 Lismore Agency				0.02			
8116 Lismore Cellular Inc.		1					
B117 Jim's Service							
B118 Kemper Trucking		I.					
8119 Innovex, Inc. Litchfield MN0023973 400 425100 8120 Litchfield School District 465 Litchfield MN0023973 376 611100 8121 Augustana Lutheran Homes Litchfield MN0023973 175 623100 8122 Meeker County Litchfield 0.25 MN0023973 175 921100 8123 First District Association Litchfield 10.74 MN0023973 172 311500 8124 Meeker County Memorial Hospital Litchfield 0.10 MN0023973 150 622100 8125 Minnesota Rubber Litchfield MN0023973 107 336200 8126 Towmaster Trailers, Inc. Litchfield MN0023973 104 332300 8127 Custom Products of Litchfield Litchfield MN0023973 104 332300 8128 Sparboe Companies Litchfield MN0023973 63 424600 8139 Anderson Chemical Company Litchfield MN0023973 63 424600 8131 Litchfield Sparboe Company Litchfield MN0023973 47 315200 8132 Berk Packaging Solutions <td></td> <td></td> <td></td> <td>0.05</td> <td></td> <td></td> <td></td>				0.05			
8120 Litchfield School District 465 Litchfield MN0023973 376 611100 8121 Augustana Lutheran Homes Litchfield MN0023973 245 623100 8123 Meeker County Litchfield 0.25 MN0023973 175 921100 8123 First District Association Litchfield 10.74 MN0023973 172 311500 8125 Minnesota Rubber Litchfield 0.10 MN0023973 150 622100 8125 Minnesota Rubber Litchfield MN0023973 150 622100 8126 Towmaster Trailers, Inc. Litchfield 8.10 MN0023973 107 336200 8126 Towmaster Trailers, Inc. Litchfield MN0023973 107 336200 8128 Sparboe Companies Litchfield MN0023973 107 336200 8128 Sparboe Companies Litchfield MN0023973 104 332300 8129 Anderson Chemical Company Litchfield MN0023973 60 237300 8139 Anderson Chemical Company Litchfield MN0023973 60 237300 8131 Litchfield Garment Company Litchfield MN0023973 47 315200 8131 Eber Packaging Solutions Litchfield MN0023973 35 561900 8133 Modern Quilters Litchfield MN0023973 35 561900 8133 Modern Quilters Litchfield MN0023973 35 561900 8135 Sumberland St. Paul MN0023973 35 314100 8136 Arden Fasteners St. Paul MN0023915 130 339900 8137 Frattalone Excavating St. Paul MN0023815 130 339900 8138 Bally's US Swim & Fitness St. Paul MN0023815 100 713900 8139 Olsen Thielen & Co Ltd St. Paul MN0023815 100 713900 8140 Kath Companies St. Paul MN0023815 77 442100 8144 McKesson Drug St. Paul MN0023815 77 442100 8144 Ci Title St. Paul MN0023815 77 442100 8144 Ci Title St. Paul MN0023815 77 442100 8145 Carest Foundation St. Paul MN0023815 77 442100 8146 Care							
Betzer County	8120	Litchfield School District 465	Litchfield		MN0023973	376	611100
8123 First District Association	8121	Augustana Lutheran Homes	Litchfield		MN0023973	245	623100
8124 Meeker County Memorial Hospital Litchfield 0.10 MN0023973 123 339900 8125 Minnesota Rubber Litchfield MN0023973 123 339900 8126 Townsater Trailers, Inc. Litchfield 8.10 MN0023973 107 336200 8127 Custom Products of Litchfield Litchfield MN0023973 104 332300 8128 Sparboe Companies Litchfield MN0023973 90 112300 8128 Anderson Chemical Company Litchfield MN0023973 63 424600 8130 Johnson Bros. Corporation Litchfield MN0023973 66 237300 8131 Litchfield Gamment Company Litchfield MN0023973 47 315200 8131 Litchfield Gamment Company Litchfield MN0023973 47 315200 8133 Modern Quilters Litchfield MN0023973 35 561900 8133 Modern Quilters Litchfield MN0023973 35 561900 8133 Modern Quilters Litchfield MN0023973 35 314100 8135 Slumberland St. Paul MN0029815 240 442100 8136 Arden Fasteners St. Paul MN0029815 240 442100 8136 Arden Fasteners St. Paul MN0029815 110 238900 8137 Frattalone Excavating St. Paul MN0029815 110 238900 8138 Bally's US Swim & Fitness St. Paul MN0029815 100 713900 8139 Lost Paul MN0029815 100 713900 8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN0029815 62 561700 8144 Levitz Furniture St. Paul MN0029815 62 561700 8144 CI Title St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0020761 650 622100 8140 Kath Corporation Little Falls MN0020761 347 343600 8149 WCO Little Falls MN0020761 105 623100 8150 Falls Fabricatin	8122	Meeker County	Litchfield	0.25	MN0023973	175	921100
8125 Minnesota Rubber Litchfield MN0023973 123 339900 8126 Townsater Trailers, Inc. Litchfield 8.10 MN0023973 107 336200 8127 Custom Products of Litchfield Litchfield MN0023973 104 332300 8128 Sparboe Companies Litchfield MN0023973 90 112300 8129 Anderson Chemical Company Litchfield MN0023973 60 237300 8130 Johnson Bros. Corporation Litchfield MN0023973 60 237300 8131 Litchfield Garment Company Litchfield MN0023973 47 315200 8132 Berk Packaging Solutions Litchfield MN0023973 35 561900 8135 Burberland St. Paul MN0023973 35 314100 8136 Arden Fasteners St. Paul MN0029815 240 442100 8136 Braterian St. Paul MN0029815 130 339900 8137 Frattlatione Excavating <t< td=""><td>8123</td><td>First District Association</td><td>Litchfield</td><td>10.74</td><td>MN0023973</td><td>172</td><td>311500</td></t<>	8123	First District Association	Litchfield	10.74	MN0023973	172	311500
8126 Towmaster Trailers, Inc. Litchfield 8.10 MN0023973 107 336200 8127 Custom Products of Litchfield Litchfield MN0023973 104 332300 8128 Sparboe Companies Litchfield MN0023973 90 112300 8129 Anderson Chemical Company Litchfield MN0023973 63 424600 8130 Johnson Bros. Corporation Litchfield MN0023973 60 237300 8131 Litchfield Garment Company Litchfield MN0023973 47 315200 8132 Berk Packaging Solutions Litchfield MN0023973 35 561900 8133 Modern Quilters Litchfield MN0023973 35 561900 8135 Slumberland St. Paul MN0023973 35 314100 8136 Arden Fasteners St. Paul MN0029815 130 339900 8137 Frattalone Excavating St. Paul MN0029815 110 238900 8138 Bally's US Swim & Fitness St. Paul MN0029815 100 238900 8140 Kath Companies St. Paul MN0029815 100 541200 8141 Levitz Furniture St. Paul MN0029815 80 441300 8	8124	Meeker County Memorial Hospital	Litchfield	0.10	MN0023973	150	622100
8127 Custom Products of Litchfield Litchfield MN0023973 104 332300 8128 Sparboe Companies Litchfield MN0023973 90 112300 8139 Anderson Chemical Company Litchfield MN0023973 63 424600 8130 Johnson Bros. Corporation Litchfield MN0023973 60 237300 8131 Litchfield Garment Company Litchfield MN0023973 35 561900 8132 Berk Packaging Solutions Litchfield MN0023973 35 561900 8133 Modern Quilters Litchfield MN0023973 35 514100 8135 Slumberland St. Paul MN0023973 35 314100 8135 Slumberland St. Paul MN0029815 240 44210 8136 Arden Fasteners St. Paul MN0029815 130 339900 8137 Freatilane Excavating St. Paul MN0029815 100 713900 8138 Bally's US Swim & Fitness St. Pa	8125	Minnesota Rubber	Litchfield		MN0023973	123	339900
8128 Sparboe Companies Litchfield MN0023973 90 112300 8129 Anderson Chemical Company Litchfield MN0023973 63 424600 8130 Johnson Bros. Corporation Litchfield MN0023973 60 237300 8131 Litchfield Garment Company Litchfield MN0023973 47 315200 8132 Berk Packaging Solutions Litchfield MN0023973 35 561900 8133 Modern Quilters Litchfield MN0023973 35 561900 8135 Slumberland St. Paul MN0029815 240 442100 8136 Arden Fasteners St. Paul MN0029815 130 339900 8137 Frattalone Excavating St. Paul MN0029815 110 238900 8138 Bally's US Swim & Fitness St. Paul MN0029815 100 713900 8139 Olsen Thielen & Co Ltd St. Paul MN0029815 100 541200 8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN00298	8126	Towmaster Trailers, Inc.	Litchfield	8.10	MN0023973	107	336200
8129 Anderson Chemical Company Litchfield MN0023973 63 424600 8130 Johnson Bros. Corporation Litchfield MN0023973 60 237300 8131 Litchfield Garment Company Litchfield MN0023973 47 315200 8132 Berk Packaging Solutions Litchfield MN0023973 35 561900 8133 Modern Quilters Litchfield MN0023973 35 314100 8135 Slumberland St. Paul MN0029815 240 442100 8136 Arden Fasteners St. Paul MN0029815 130 339900 8137 Frattalone Excavating St. Paul MN0029815 110 238900 8138 Bally's US Swim & Fitness St. Paul MN0029815 100 713900 8139 Olsen Thielen & Co Ltd St. Paul MN0029815 100 713900 8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN0029815 77 442100 8142 McKesson Drug St. Paul MN0029815 67	8127	Custom Products of Litchfield	Litchfield		MN0023973	104	332300
8130 Johnson Bros. Corporation Litchfield MN0023973 60 237300 8131 Litchfield Garment Company Litchfield MN0023973 47 315200 8132 Berk Packaging Solutions Litchfield MN0023973 35 561900 8133 Modern Quilters Litchfield MN0023973 35 314100 8135 Slumberland St. Paul MN0029815 240 442100 8136 Arden Fasteners St. Paul MN0029815 130 339900 8137 Frattalone Excavating St. Paul MN0029815 100 713900 8138 Bally's US Swim & Fitness St. Paul MN0029815 100 713900 8139 Olsen Thielen & Co Ltd St. Paul MN0029815 100 713900 8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN0029815 67 424200 8143 Peterson Maintenance St. Paul MN0029815 62 561700 8144 CI Title St. Paul MN0029815 54 5411					MN0023973	90	
8131 Litchfield Garment Company Litchfield MN0023973 47 315200 8132 Berk Packaging Solutions Litchfield MN0023973 35 561900 8133 Modern Quilters Litchfield MN0023973 35 314100 8135 Slumberland St. Paul MN0029815 240 442100 8136 Arden Fasteners St. Paul MN0029815 130 339900 8137 Frattalone Excavating St. Paul MN0029815 110 238900 8138 Bally's US Swim & Fitness St. Paul MN0029815 100 713900 8138 Bally's US Swim & Fitness St. Paul MN0029815 100 713900 8139 Olsen Thielen & Co Ltd St. Paul MN0029815 100 713900 8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN0029815 67 424200 8142 McKesson Drug St. Paul MN						63	
8132 Berk Packaging Solutions Litchfield MN0023973 35 561900 8133 Modern Quilters Litchfield MN0023973 35 314100 8135 Slumberland St. Paul MN0029815 240 442100 8136 Arden Fasteners St. Paul MN0029815 130 339900 8137 Frattalone Excavating St. Paul MN0029815 110 238900 8138 Bally's US Swim & Fitness St. Paul MN0029815 100 713900 8139 Olsen Thielen & Co Ltd St. Paul MN0029815 100 541200 8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN0029815 77 442100 8142 McKesson Drug St. Paul MN0029815 67 424200 8143 Peterson Maintenance St. Paul MN0029815 62 561700 8144 Ci Title St. Paul MN0029815 5		·					
8133 Modern Quilters Litchfield MN0023973 35 314100 8135 Slumberland St. Paul MN0029815 240 442100 8136 Arden Fasteners St. Paul MN0029815 130 339900 8137 Frattalone Excavating St. Paul MN0029815 110 238900 8138 Bally's US Swim & Fitness St. Paul MN0029815 100 713900 8139 Olsen Thielen & Co Ltd St. Paul MN0029815 100 541200 8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN0029815 77 442100 8142 McKesson Drug St. Paul MN0029815 67 424200 8143 Peterson Maintenance St. Paul MN0029815 62 561700 8144 Cl Title St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 54 <td></td> <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td></td>		. ,					
8135 Slumberland St. Paul MN0029815 240 442100 8136 Arden Fasteners St. Paul MN0029815 130 339900 8137 Frattalone Excavating St. Paul MN0029815 110 238900 8138 Bally's US Swim & Fitness St. Paul MN0029815 100 713900 8139 Olsen Thielen & Co Ltd St. Paul MN0029815 100 7541200 8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN0029815 77 442100 8142 McKesson Drug St. Paul MN0029815 67 424200 8143 Peterson Maintenance St. Paul MN0029815 62 561700 8144 Cl Title St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 47 443100 8146 Larson Boats Little Falls MN0020761 935 <td></td> <td></td> <td>1 - 1 - 1</td> <td></td> <td></td> <td></td> <td></td>			1 - 1 - 1				
8136 Arden Fasteners St. Paul MN0029815 130 339900 8137 Frattalone Excavating St. Paul MN0029815 110 238900 8138 Bally's US Swim & Fitness St. Paul MN0029815 100 713900 8139 Olsen Thielen & Co Ltd St. Paul MN0029815 100 541200 8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN0029815 77 442100 8142 McKesson Drug St. Paul MN0029815 67 424200 8143 Peterson Maintenance St. Paul MN0029815 62 561700 8144 Cl Title St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 47 443100 8146 Larson Boats Little Falls MN0020761 935 336600 8147 Unity Family Health Care Little Falls MN0020761 376 33600 8149 IWCO Little Falls MN0020761 347 341800							
8137 Frattalone Excavating St. Paul MN0029815 110 238900 8138 Bally's US Swim & Fitness St. Paul MN0029815 100 713900 8139 Olsen Thielen & Co Ltd St. Paul MN0029815 100 541200 8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN0029815 77 442100 8142 McKesson Drug St. Paul MN0029815 67 422400 8143 Peterson Maintenance St. Paul MN0029815 62 561700 8144 CI Title St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 47 443100 8146 Larson Boats Little Falls MN0020761 935 336600 8147 Unity Family Health Care Little Falls 0.42 MN0020761 650 622100 8148 IWCO Little Falls MN0020761 376 336600 8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
8138 Bally's US Swim & Fitness St. Paul MN0029815 100 713900 8139 Olsen Thielen & Co Ltd St. Paul MN0029815 100 541200 8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN0029815 77 442100 8142 McKesson Drug St. Paul MN0029815 67 424200 8143 Peterson Maintenance St. Paul MN0029815 62 561700 8144 CI Title St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 47 443100 8146 Larson Boats Little Falls MN0029815 47 443100 8146 Larson Boats Little Falls MN0020761 935 336600 8147 Unity Family Health Care Little Falls MN0020761 650 622100 8148 Crestliner Inc Little Falls MN0020761 376 336600 8149 IWCO Little Falls MN0020761 347 541800 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
8139 Olsen Thielen & Co Ltd St. Paul MN0029815 100 541200 8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN0029815 77 442100 8142 McKesson Drug St. Paul MN0029815 67 424200 8143 Peterson Maintenance St. Paul MN0029815 62 561700 8144 CI Title St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 47 443100 8146 Larson Boats Little Falls MN0020761 935 336600 8147 Unity Family Health Care Little Falls 0.42 MN0020761 350 622100 8148 Crestliner Inc Little Falls MN0020761 376 336600 8149 IWCO Little Falls MN0020761 347 541800 8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 8151 Lutheran Care Center Little Falls MN0020761 105 623100							
8140 Kath Companies St. Paul MN0029815 80 441300 8141 Levitz Furniture St. Paul MN0029815 77 442100 8142 McKesson Drug St. Paul MN0029815 67 424200 8143 Peterson Maintenance St. Paul MN0029815 62 561700 8144 CI Title St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 47 443100 8146 Larson Boats Little Falls MN0020761 935 336600 8147 Unity Family Health Care Little Falls 0.42 MN0020761 650 622100 8148 Crestliner Inc Little Falls MN0020761 376 336600 8149 IWCO Little Falls MN0020761 347 541800 8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 8151 Lutheran Care Center Little Falls MN0020761 105 623100 8152 Minnesota Power Little Falls MN0020761 75 221100		,					
8141 Levitz Furniture St. Paul MN0029815 77 442100 8142 McKesson Drug St. Paul MN0029815 67 424200 8143 Peterson Maintenance St. Paul MN0029815 62 561700 8144 CI Title St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 47 443100 8146 Larson Boats Little Falls MN0020761 935 336600 8147 Unity Family Health Care Little Falls 0.42 MN0020761 650 622100 8148 Crestliner Inc Little Falls MN0020761 376 336600 8149 IWCO Little Falls MN0020761 347 541800 8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 8151 Lutheran Care Center Little Falls MN0020761 105 623100 8152 Minnesota Power Little Falls MN0020761 75 221100							
8142 McKesson Drug St. Paul MN0029815 67 424200 8143 Peterson Maintenance St. Paul MN0029815 62 561700 8144 Cl Title St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 47 443100 8146 Larson Boats Little Falls MN0020761 935 336600 8147 Unity Family Health Care Little Falls 0.42 MN0020761 650 622100 8148 Crestliner Inc Little Falls MN0020761 376 336600 8149 WCO Little Falls MN0020761 347 541800 8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 8151 Lutheran Care Center Little Falls MN0020761 105 623100 8152 Minnesota Power Little Falls MN0020761 75 221100							
8143 Peterson Maintenance St. Paul MN0029815 62 561700 8144 Cl Title St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 47 443100 8146 Larson Boats Little Falls MN0020761 935 336600 8147 Unity Family Health Care Little Falls 0.42 MN0020761 650 622100 8148 Crestliner Inc Little Falls MN0020761 376 336600 8149 IWCO Little Falls MN0020761 347 541800 8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 8151 Lutheran Care Center Little Falls MN0020761 105 623100 8152 Minnesota Power Little Falls MN0020761 75 221100							
8144 Cl Title St. Paul MN0029815 54 541100 8145 Gopher Electronics Co St. Paul MN0029815 47 443100 8146 Larson Boats Little Falls MN0020761 935 336600 8147 Unity Family Health Care Little Falls 0.42 MN0020761 650 622100 8148 Crestliner Inc Little Falls MN0020761 376 336600 8149 IWCO Little Falls MN0020761 347 541800 8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 8151 Lutheran Care Center Little Falls MN0020761 105 623100 8152 Minnesota Power Little Falls MN0020761 75 221100							
8145 Gopher Electronics Co St. Paul MN0029815 47 443100 8146 Larson Boats Little Falls MN0020761 935 336600 8147 Unity Family Health Care Little Falls 0.42 MN0020761 650 622100 8148 Crestliner Inc Little Falls MN0020761 376 336600 8149 IWCO Little Falls MN0020761 347 541800 8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 8151 Lutheran Care Center Little Falls MN0020761 105 623100 8152 Minnesota Power Little Falls MN0020761 75 221100							
8146 Larson Boats Little Falls MN0020761 935 336600 8147 Unity Family Health Care Little Falls 0.42 MN0020761 650 622100 8148 Crestliner Inc Little Falls MN0020761 376 336600 8149 IWCO Little Falls MN0020761 347 541800 8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 8151 Lutheran Care Center Little Falls MN0020761 105 623100 8152 Minnesota Power Little Falls MN0020761 75 221100							
8147 Unity Family Health Care Little Falls 0.42 MN0020761 650 622100 8148 Crestliner Inc Little Falls MN0020761 376 336600 8149 IWCO Little Falls MN0020761 347 541800 8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 8151 Lutheran Care Center Little Falls MN0020761 105 623100 8152 Minnesota Power Little Falls MN0020761 75 221100							
8148 Crestliner Inc Little Falls MN0020761 376 336600 8149 IWCO Little Falls MN0020761 347 541800 8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 8151 Lutheran Care Center Little Falls MN0020761 105 623100 8152 Minnesota Power Little Falls MN0020761 75 221100				0.42			
8149 IWCO Little Falls MN0020761 347 541800 8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 8151 Lutheran Care Center Little Falls MN0020761 105 623100 8152 Minnesota Power Little Falls MN0020761 75 221100		· ·		0.42			
8150 Falls Fabricating Inc Little Falls MN0020761 117 331200 8151 Lutheran Care Center Little Falls MN0020761 105 623100 8152 Minnesota Power Little Falls MN0020761 75 221100							
8151 Lutheran Care Center Little Falls MN0020761 105 623100 8152 Minnesota Power Little Falls MN0020761 75 221100							
8152 Minnesota Power Little Falls MN0020761 75 221100							
			Little Falls	0.81			

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	
	Pete & Joy's Bakery	Little Falls		MN0020761	40	
	Little Falls Machine Inc	Little Falls		MN0020761	37	
	Precision Tool Technologies	Little Falls	0.29	MN0020761	10	
	Littlefork Medical Ctr	Littlefork		MN0021181	80	
	Littlefork Public School Dist #362	Littlefork	2.22	MN0021181	35	
	Green Forest Products Inc	Littlefork		MN0021181	15	
	Larson Timber Products	Littlefork	0.00	MN0021181	6	
	Hart Press Inc	Long Prairie	11.00	MN0020303	640	
	Long Prairie Packing Co	Long Prairie		MN0020303 MN0020303	275 250	
	Long Prairie Memorial Hospital Todd, County of	Long Prairie Long Prairie		MN0020303	250	
	Dan's Prize Inc	Long Prairie		MN0020303	188	
	Long Prairie-Grey Eagle Schools	Long Prairie	1.52	MN0020303	180	
	Central Bi-Products Rendering	Long Prairie	4.40	MN0020303	110	
	Daybreak Foods Inc	Long Prairie	7.70	MN0020303	80	
	Cathedral Press	Long Prairie		MN0020303	30	
	Lake Country CNC Machinery	Long Prairie	0.03	MN0020303	25	
	R-Way Trucking	Long Prairie	0.00	MN0020303	22	
	Chassis Liner	Lucan	0.00	MN0031348	36	
	BrauHaus	Lucan	0.00	MN0031348	14	
	State Bank of Lucan	Lucan		MN0031348	11	
	Northern States	Lucan		MN0031348	10	
8176	Meadowland Cooperative	Lucan		MN0031348	5	
	Gold'n Plump Poultry	Luverne	6.10	MN0020141	316	311600
	Luverne Public Schools	Luverne		MN0020141	250	611300
8179	Luverne Commmunity Hospital	Luverne	0.12	MN0020141	182	622100
8180	Minnesota Veterans Home	Luverne		MN0020141	155	623100
8181	Berkley Information Services	Luverne		MN0020141	130	
8182	Mary Jane Brown Home	Luverne		MN0020141	120	
	Rock, County of	Luverne		MN0020141	105	
	Continental Western - Tri-State Ins.	Luverne		MN0020141	95	
	Luverne Medical Center	Luverne	0.06	MN0020141	45	
	Papik Motors	Luverne		MN0020141	40	
	Luverne, City of	Luverne	0.05	MN0020141	37	921100
	Hills Stainless Steel	Luverne		MN0020141	32	
	Green Lea Manor Nursing Home	Mabel		MN0020877	85	
	Mabel/Canton High School	Mabel		MN0020877	36	
	Community First NB - Mabel	Mabel		MN0020877	10	
	Mabel Farm Equipment	Mabel		MN0020877	10	
	Hagen Lumber Co	Mabel		MN0020877	7	
	Mabel Cooperative Telephone Co	Mabel	0.04	MN0020877	7	
	Mabel, City of	Mabel Mabel	0.01	MN0020877 MN0020877	5	
	Neuman Plumbing Nelson Electric	Mabel		MN0020877	3	
	Tony Downs Foods CO	Madelia	17.00	MN0024040	300	
	House Of Print	Madelia	17.00	MN0024040	150	
	Luther Memorial Home	Madelia		MN0024040	92	
	Madelia Community Hospital	Madelia	0.05	MN0024040	70	
	Feder Plumbing Heating & Ac	Madelia	0.03	MN0024040	40	
	Wolf Etter & Co.	Madelia		MN0024040	26	
	Madelia Clinic	Madelia	0.03	MN0024040	21	
	Gopher Concrete	Madelia	0.00	MN0024040	18	
	Preferred Printing	Madelia		MN0024040	10	
	Ryter Corp	Madelia	5.40	MN0024040	10	
	Forstner Fire Apparatus	Madelia		MN0024040	7	
	Gappa Electric	Madelia		MN0024040	7	
	Lac qui Parle Health Services	Madison	0.11	MN0051764	175	
	Lac qui Parle Valley School District 2853	Madison		MN0051764	165	
	County of Lac Qui Parle	Madison	0.07	MN0051764	50	
8213	Municipal Castings Inc	Madison		MN0051764	30	331500
	Madison Bottling Co.	Madison	1.89	MN0051764	28	312100
8215	Madison Implement Co.	Madison		MN0051764	20	115100
8216	Jubilee Foods	Madison		MN0051764	19	
8217	Klein NB of Madison	Madison		MN0051764	18	522100
8218	City of Madison	Madison	0.02	MN0051764	17	921100
8219	United Prairie Bank of Madison	Madison		MN0051764	12	522100
	USDA Service Center	Madison		MN0051764	12	
8221	Kuehl Motors Inc	Madison		MN0051764	10	441100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
8222	Lund Implement Co.	Madison		MN0051764	10	115100
8223	State Line Farmers/Harvest States Coop	Madison		MN0051764	10	311200
8224	Rice Home Medical Services	Madison		MN0051764	6	621900
8225	Madison Chamber of Commerce	Madison		MN0051764	2	
	Shooting Star Casino	Mahnomen		MN0024066	873	713200
	Mahnomen Hospital/Nursing Home	Mahnomen	0.08	MN0024066	124	622100
	Mahnomen Public School	Mahnomen		MN0024066	110	611100
	Mahnomen, County of	Mahnomen	0.12	MN0024066	84	921100
	Wild Rice Electric Co-op Inc	Mahnomen		MN0024066	41	221100
	First NB in Mahnomen	Mahnomen		MN0024066	20	522100
	Golden Eagle Bingo Lodge	Mahnomen		MN0024066	19	713900
	Stardust Suites	Mahnomen		MN0024066	18	721100
	Harvest States Agri-Center	Mahnomen	0.00	MN0024066	17	424900
	Mahnomen, City of	Mahnomen		MN0024066	16	921100
	Winter Truck Lines	Mahnomen	0.83	MN0024066	16	484100
	Mahnomen Concrete Products	Mahnomen		MN0024066	14	327300
	White Earth Tribal Community College	Mahnomen		MN0024066	10	611200
	Mahtomedi School District #832	St. Paul		MN0029815	254	611100
	St Andrews Church	St. Paul		MN0029815	85	813100
	Dairy Queen	St. Paul		MN0029815	27	722100
	Picadilly Restaurant	St. Paul		MN0029815	27	722100
	Jethro's Char-House & Pub St Jude of the Lake	St. Paul		MN0029815 MN0029815	25	722100
		St. Paul			20	611100
	Freedom Valu Center	St. Paul		MN0029815	19	424900
	3 Seasons Restaurant	St. Paul	0.00	MN0029815	16	722100
	Mahtomedi, City of	St. Paul	0.02	MN0029815	11	921100
	Wildwood Branch Library	St. Paul		MN0029815	11	519100
	Carbone's Pizza	St. Paul St. Paul		MN0029815 MN0029815	10	722100
	Lakeside Club Restaurant				9	722100
	Auto Edge	St. Paul		MN0029815	6	811100 811100
	Wildwood Service	St. Paul		MN0029815	6	
	Flame Bar	St. Paul		MN0029815	5	722400
	Liquor Barrel	St. Paul		MN0029815	5	445300
	Zachman's Water Care	St. Paul	1.00	MN0029815	5	424600 622100
	Immanuel-St Joseph's-Mayo Health System	Mankato	1.00	MN0030171	1540	
	Minnesota State University at Mankato	Mankato		MN0030171 MN0030171	1400 1325	611300
	Mankato Rehabilitation Center Inc	Mankato		MN0030171	675	624300 561400
	Young America Corporation	Mankato		MN0030171	644	623100
	The Thro Company Blue Earth County	Mankato Mankato	0.52	MN0030171	370	921100
	HickoryTech	Mankato	0.32	MN0030171	363	517100
	Midwest Wireless	Mankato		MN0030171	293	517100
	Southern Minn. Construction Co.	Mankato		MN0030171	293	236200
	City of Mankato	Mankato	0.27	MN0030171	263	921100
	Harry Meyering Center	Mankato	0.37	MN0030171	255	624100
	Cenex/Harvest States	Mankato	0.00	MN0030171	202	311200
	Minnesota Elevator Inc	Mankato	0.00	MN0030171	200	333300
	Schwickert Company	Mankato		MN0030171	200	238100
	Johnson Worldwide Associates	Mankato		MN0030171	185	336900
	Atlantis Plastics	Mankato	0.31	MN0030171	178	326100
	Coughlan Companies	Mankato	0.51	MN0030171	160	511100
	Crysteel Manufacturing, Inc.	Mankato	12 11	MN0030171	160	336200
	E-Travel Experts	Mankato	12.11	MN0030171	160	561400
	El Microcircuits	Mankato		MN0030171	158	334400
	Hubbard Feeds, Inc.	Mankato		MN0030171	150	311100
	Katolight Corporation	Mankato		MN0030171	134	444100
	Free Press Co	Mankato		MN0030171	132	511100
	AgStar Farm Credit Services	Mankato		MN0030171	130	522100
	Perfecseal Mankato	Mankato	3 61	MN0030171	125	339100
	Crown Cork & Seal Co	Mankato	3.01	MN0030171	123	331300
	Tru Serv Corporation	Mankato		MN0030171	120	423700
	Vetter Stone Company	Mankato		MN0030171	114	
	Dotson Co Inc	Mankato	0.77	MN0030171	112	332900
	Dodge, County of	Mantorville		MN0021059	132	921100
	Hubbell House	Mantorville	0.19	MN0021059	100	722100
	Mantorville, City of	Mantorville	0.00	MN0021059	3	
	Independent School District #279	St. Paul	0.00	MN0021039	3000	611110
	Scimed Life Systems Inc	St. Paul	2 01	MN0029815	3000	334510
0231	Comica End Cysterns inc	Ot. i dul	2.01	1711 40023010	3000	334310

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

8292 United Parcel Service St. Paul MN0029815 300 8298 Hanson Concrete Products St. Paul MN0029815 300 8297 Walmart St. Paul MN0029815 300 8297 Walmart St. Paul MN0029815 300 8299 Cub Foods St. Paul MN0029815 250 8300 Minespolis Auto Auction St. Paul MN0029815 250 8301 REO Plastics St. Paul 1.43 MN0029815 250 8302 Tiller Corporation St. Paul MN0029815 250 8303 U.S. West Dex St. Paul 0.76 MN0029815 220 8304 Champps Americana St. Paul MN0029815 225 8306 Data Recognition Corp St. Paul MN0029815 220 8307 Blarc Each Each St. St. Paul MN0029815 220 8308 Data Recognition Corp St. Paul MN0029815 220 8300 Brate Recognition Corp St. Paul MN0029815 220 8300 Brate Recognition Corp Hutchinson MN0024082 25 8300 Brate Recognition Corp	MNI002091E		
8299 Hanson Concrete Products	IVIINUU29613	9815 900	49211
8299 (Walmart St. Paul MN002815 270 8299 (Walmart) St. Paul MN002815 270 8301 REO Plastics St. Paul MN002815 250 8301 REO Plastics St. Paul MN002815 250 8302 U.S. West Dex St. Paul MN002815 250 8303 U.S. West Dex St. Paul MN002815 225 8304 Champp's Americana St. Paul MN002815 225 8305 Target St. Paul MN002815 225 8306 Target St. Paul MN002815 225 8307 St. Judie Medical St. Paul MN002815 225 8307 St. Judie Medical St. Paul MN002815 220 8307 St. Judie Medical St. Paul MN002492 125 8308 Ematellos Pizza Hutchinson MN002492 125 8309 Ematellos Pizza Hutchinson MN002492 125 8311 Frodrat Technologies Inc Hutchinson MN002492 85 8311 Frodrat Technologies Inc Hutchinson MN002492	MN0029815	300	23899
8299 Cub Foods	MN0029815	9815 300	44419
8300 Mineapolis Auto Auction	MN0029815	9815 300	45211
8301 REO Plastics	MN0029815	9815 270	44511
8302 Tiller Corporation St. Paul	MN0029815	9815 250	44122
8303 U.S. West Dex St. Paul MN0029815 236 8304 Champp's Americana St. Paul MN0029815 225 8305 Data Recognition Corp St. Paul MN0029815 225 8307 St. Jude Medical St. Paul MN0029815 220 8308 Maple Lake Public School Dist #881 Hutchinson MN0024082 125 8309 Bernatello's Pitza Hutchinson MN0024082 125 8310 Hance Cable Testing Hutchinson MN0024082 15 8311 Product Technologies Inc Hutchinson MN0024082 70 8312 Cedar Lake Engineering Hutchinson 0.28 MN0024082 50 8313 Sun Pata Inc Hutchinson 0.08 MN0024082 50 8314 Priording County Hutchinson 0.00 MN0024082 28 8315 Maple Lake Lamber Co Hutchinson MN0024082 23 8316 Maple Lake Lake Hutchinson MN0024082 20 8317 Wingfu County Community Action Hutchinson MN0024082 20 8318 Dental Resources, Inc. Hutchinson MN0024082	1.43 MN0029815	9815 250	32521
8303 U.S. West Dex St. Paul MN0029815 236 8304 Champp's Americana St. Paul MN0029815 225 8305 Data Recognition Corp St. Paul MN0029815 225 8307 St. Jude Medical St. Paul MN0029815 220 8308 Maple Lake Public School Dist #881 Hutchinson MN0024082 125 8309 Bernatello's Pitza Hutchinson MN0024082 125 8310 Hance Cable Testing Hutchinson MN0024082 15 8311 Product Technologies Inc Hutchinson MN0024082 70 8312 Cedar Lake Engineering Hutchinson 0.28 MN0024082 50 8313 Sun Pata Inc Hutchinson 0.08 MN0024082 50 8314 Priording County Hutchinson 0.00 MN0024082 28 8315 Maple Lake Lamber Co Hutchinson MN0024082 23 8316 Maple Lake Lake Hutchinson MN0024082 20 8317 Wingfu County Community Action Hutchinson MN0024082 20 8318 Dental Resources, Inc. Hutchinson MN0024082	MN0029815	9815 250	21239
8306 Target St. Paul MN0028815 225 8306 Data Recognition Corp St. Paul 0.04 MN0028815 220 8308 Maple Lake Public School Dist #881 Hutchinson MN0024082 125 8308 Bematello S Pizza Hutchinson 2.59 MN0024082 185 8310 I Product Technologies Inc Hutchinson MN0024082 85 8311 Product Technologies Inc Hutchinson MN0024082 70 8312 Cedar Lake Engineering Hutchinson 0.26 MN0024082 50 8313 Sun Pate Inc Hutchinson MN0024082 50 8315 Maple Lake Lumber Co Hutchinson 0.00 MN0024082 28 8316 Security St Bank of Maple Lake Hutchinson MN0024082 20 8317 Wingfit County Community Action Hutchinson MN0024082 20 8316 Sapit Design E Design R Distribution, Inc. Hutchinson MN0024082 13 8310 Cabite Design R Distribution, Inc. Hutchinson MN0024082 12 8311 Cabite Design R Distribution, Inc. Hutchinson MN0024082 12 8321 Cabite	0.76 MN0029815	9815 230	32311
8305 Target St. Paul 0.04 MN0028915 225 8306 Data Recognition Corp St. Paul 0.04 MN0028915 220 8308 Data Recognition Corp St. Paul MN0028915 200 8308 Benatellos Pizza Hutchinson 2.59 MN0024082 125 8308 Benatellos Pizza Hutchinson MN0024082 85 8311 Product Technologies Inc Hutchinson MN0024082 70 8312 Cedar Lake Engineering Hutchinson 0.26 MN0024082 50 8313 Sun Patol Inc Hutchinson MN0024082 50 8314 Rhino, Inc. Hutchinson 0.06 MN0024082 28 8315 Maple Lake Lumber Co Hutchinson MN0024082 28 8316 Security St Bank of Maple Lake Hutchinson MN0024082 20 8317 Wright County Community Action Hutchinson MN0024082 20 8318 Dental Resources, Inc. Hutchinson MN0024082 19 8319 Cabiret Design & Distribution, Inc. Hutchinson MN0024082 12 8321 (CaW Spinning Hutchinson MN0024082 </td <td>MN0029815</td> <td>9815 225</td> <td>72211</td>	MN0029815	9815 225	72211
8306 Data Recognition Corp St. Paul	MN0029815		45211
8307 St. Jude Medical St. Paul			51821
B309 Bapte Lake Public School Dist #881 Hutchinson 2.59 MN0024082 125 3309 Bernatello's Pizza Hutchinson 2.59 MN0024082 135 3310 Hance Cable Testing Hutchinson MN0024082 85 3311 Hance Cable Testing Hutchinson MN0024082 70 3312 Cedar Lake Engineering Hutchinson 0.26 MN0024082 50 3313 Sun Patio Inc Hutchinson MN0024082 50 3313 Sun Patio Inc Hutchinson MN0024082 50 3314 Rhino, Inc. Hutchinson MN0024082 25 3314 Rhino, Inc. Hutchinson MN0024082 28 3315 Maple Lake Lumber Co Hutchinson MN0024082 23 3318 Security St Bank of Maple Lake Hutchinson MN0024082 23 3318 Security St Bank of Maple Lake Hutchinson MN0024082 29 3319 Dental Resources, Inc. Hutchinson MN0024082 19 3319 Dental Resources, Inc. Hutchinson MN0024082 19 3319 Dental Resources, Inc. Hutchinson MN0024082 13 3320 Maple Lake Marine, Inc. Hutchinson MN0024082 13 3321 CaW Spinning Hutchinson MN0024082 10 3322 Law Spinning Hutchinson MN0024082 10 3322 Law Spinning Hutchinson MN0024082 10 3323 Lohse Transfer Hutchinson MN0024082 10 3323 Lohse Transfer Hutchinson MN0024082 9 3324 St. Timothy Catholic School Hutchinson MN0024082 9 3325 Wight Aero Inc Hutchinson MN0024082 9 3326 Wight Aero Inc Hutchinson MN0024082 9 3326 Wight Aero Inc Hutchinson MN0024082 9 3326 Wight Aero Inc Hutchinson MN0024082 7 3331 Maple Lake Bakery Hutchinson MN0024082 5 3331 Maple Lake Bakery Hutchinson MN0024082 5 3331 Maple Lake Bakery Hutchinson MN0024082 5 3331 Maple Lake Baker			54172
Bassing Bernatello's Pizza			61110
Baston Hance Cable Testing Hutchinson MN0024082 70			31140
B311 Product Technologies Inc			22110
Ba112 Cedar Lake Engineering			33150
Ba13 Sun Patio Inc Hutchinson MN0024082 28			54170
Ba314 Rhino, Inc.			33660
Ba316 Maple Lake Lumber Co			
Ba16 Security St Bank of Maple Lake			33270
8318 Dental Resources, Inc. Hutchinson 0.00 MN0024082 19 8318 Dental Resources, Inc. Hutchinson 0.00 MN0024082 14 8319 Cabinet Design & Distribution, Inc. Hutchinson MN0024082 13 8320 Maple Lake Marine, Inc. Hutchinson MN0024082 12 8321 C&W Spinning Hutchinson 0.05 MN0024082 10 8322 H&H Archery Supply Hutchinson 0.00 MN0024082 10 8323 Lohse Transfer Hutchinson 0.00 MN0024082 9 8324 St. Timothy Catholic School Hutchinson MN0024082 9 8325 Wright Aero Inc Hutchinson MN0024082 9 8326 City of Maple Lake Hutchinson 0.01 MN0024082 8 8327 Lake Region Co-op Oil Hutchinson MN0024082 8 8328 LDM Electric Hutchinson MN0024082 7 8329 Maple Lake Recovery Center Hutchinson 0.03 MN0024082 7 8331 Roger's Amoco, Inc. Hutchinson MN0024082 7 8332 Advanced Chairmats, Inc. Hutchinson <td< td=""><td></td><td></td><td>44410</td></td<>			44410
8318 Dental Resources, Inc. Hutchinson 0.00 MN0024082 14			52210
8319 Cabinet Design & Distribution, Inc.			62420
8320 Maple Lake Marine, Inc.	0.00 MN0024082	1082 14	33910
8321 C&W Spinning	MN0024082	13	32190
B322 H&H Archery Supply	MN0024082	1082 12	44120
B322 H&H Archery Supply	0.05 MN0024082	1082	54170
8323 Lohse Transfer			33990
8324 St. Timothy Catholic School Hutchinson MN0024082 9 8325 Wright Aero Inc Hutchinson MN0024082 9 8326 City of Maple Lake Hutchinson 0.01 MN0024082 8 8327 Lake Region Co-op Oil Hutchinson MN0024082 8 8328 LDM Electric Hutchinson MN0024082 7 8329 Maple Lake Bakery Hutchinson 0.03 MN0024082 7 8330 Maple Lake Recovery Center Hutchinson MN0024082 7 8331 Roger's Amoco, Inc. Hutchinson MN0024082 7 8332 Advanced Chairmats, Inc. Hutchinson MN0024082 5 8333 Jude Candy & Tobacco Co Hutchinson MN0024082 5 8334 Madigan's Bar & Grill Hutchinson MN0024082 5 8335 New Designs Hairstyling Hutchinson 0.01 MN0024082 5 8336 TMS Machining Hutchinson 0.01 MN0024082 5 8337 A-Meat Shoppe Hutchinson 0.02 MN0024082 4 8338 Elletson Manufacturing Hutchinson MN0024082 4<	0.00 MN0024082	4082 9	48410
8325 Wright Aero Inc Hutchinson MN0024082 9 8326 City of Maple Lake Hutchinson 0.01 MN0024082 8 8327 Lake Region Co-op Oil Hutchinson MN0024082 7 8328 LDM Electric Hutchinson MN0024082 7 8329 Maple Lake Bakery Hutchinson MN0024082 7 8330 Maple Lake Recovery Center Hutchinson MN0024082 7 8331 Roger's Amoco, Inc. Hutchinson MN0024082 7 8332 Advanced Chairmats, Inc. Hutchinson MN0024082 7 8333 Jude Candy & Tobacco Co Hutchinson MN0024082 5 8334 Madigan's Bar & Grill Hutchinson MN0024082 5 8335 New Designs Hairstyling Hutchinson 0.01 MN0024082 5 8336 TMS Machining Hutchinson 0.01 MN0024082 5 8337 A-Meat Shoppe Hutchinson 0.02 MN0024082 4 8338 Elletso			61110
8326 City of Maple Lake Hutchinson 0.01 MN0024082 8 8327 Lake Region Co-op Oil Hutchinson MN0024082 8 8328 LDM Electric Hutchinson MN0024082 7 8329 Maple Lake Bakery Hutchinson 0.03 MN0024082 7 8330 Maple Lake Recovery Center Hutchinson MN0024082 7 8331 Roger's Amoco, Inc. Hutchinson MN0024082 7 8332 Advanced Chairmats, Inc. Hutchinson MN0024082 5 8333 Jude Candy & Tobacco Co Hutchinson MN0024082 5 8334 Madigan's Bar & Grill Hutchinson MN0024082 5 8335 New Designs Hairstyling Hutchinson 0.01 MN0024082 5 8336 TMS Machining Hutchinson 0.01 MN0024082 5 8337 A-Meat Shoppe Hutchinson 0.02 MN0024082 4 8338 Elletson Manufacturing Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082			48120
B327 Lake Region Co-op Oil Hutchinson MN0024082 8			92110
8328 LDM Electric Hutchinson MN0024082 7 8329 Maple Lake Bakery Hutchinson 0.03 MN0024082 7 8330 Maple Lake Recovery Center Hutchinson MN0024082 7 8331 Roger's Amoco, Inc. Hutchinson MN0024082 7 8332 Advanced Chairmats, Inc. Hutchinson MN0024082 5 8333 Jude Candy & Tobacco Co Hutchinson MN0024082 5 8334 Madigan's Bar & Grill Hutchinson MN0024082 5 8335 New Designs Hairstyling Hutchinson 0.01 MN0024082 5 8336 TMS Machining Hutchinson 0.00 MN0024082 5 8337 A-Meat Shoppe Hutchinson 0.00 MN0024082 4 8338 Elletson Manufacturing Hutchinson MN0024082 4 8339 H&H Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 3			42490
8329 Maple Lake Bakery Hutchinson 0.03 MN0024082 7 8330 Maple Lake Recovery Center Hutchinson MN0024082 7 8331 Roger's Amoco, Inc. Hutchinson MN0024082 7 8332 Advanced Chairmats, Inc. Hutchinson MN0024082 5 8333 Jude Candy & Tobacco Co Hutchinson MN0024082 5 8334 Madigan's Bar & Grill Hutchinson MN0024082 5 8335 New Designs Hairstyling Hutchinson 0.01 MN0024082 5 8336 TMS Machining Hutchinson 0.00 MN0024082 5 8337 A-Meat Shoppe Hutchinson 0.02 MN0024082 5 8338 Elletson Manufacturing Hutchinson MN0024082 4 8339 H&H Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342			23820
8330 Maple Lake Recovery Center Hutchinson MN0024082 7 8331 Roger's Amoco, Inc. Hutchinson MN0024082 7 8332 Advanced Chairmats, Inc. Hutchinson MN0024082 5 8333 Jude Candy & Tobacco Co Hutchinson MN0024082 5 8334 Madigan's Bar & Grill Hutchinson MN0024082 5 8335 New Designs Hairstyling Hutchinson 0.01 MN0024082 5 8336 TMS Machining Hutchinson 0.00 MN0024082 5 8337 A-Meat Shoppe Hutchinson 0.02 MN0024082 4 8338 Elletson Manufacturing Hutchinson MN0024082 4 8339 H&H Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082			
8331 Roger's Amoco, Inc. Hutchinson MN0024082 7 8332 Advanced Chairmats, Inc. Hutchinson MN0024082 5 8333 Jude Candy & Tobacco Co Hutchinson MN0024082 5 8334 Madigan's Bar & Grill Hutchinson MN0024082 5 8335 New Designs Hairstyling Hutchinson 0.01 MN0024082 5 8336 TMS Machining Hutchinson 0.00 MN0024082 5 8337 A-Meat Shoppe Hutchinson 0.02 MN0024082 4 8338 Elletson Manufacturing Hutchinson MN0024082 4 8339 H&B Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344			44520
8332 Advanced Chairmats, Inc. Hutchinson MN0024082 5 8333 Jude Candy & Tobacco Co Hutchinson MN0024082 5 8334 Madigan's Bar & Grill Hutchinson 0.01 MN0024082 5 8335 New Designs Hairstyling Hutchinson 0.01 MN0024082 5 8336 TMS Machining Hutchinson 0.00 MN0024082 5 8337 A-Meat Shoppe Hutchinson 0.02 MN0024082 4 8338 Elletson Manufacturing Hutchinson MN0024082 4 8339 H&H Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8346			62420
8333 Jude Candy & Tobacco Co Hutchinson MN0024082 5 8334 Madigan's Bar & Grill Hutchinson 0.01 MN0024082 5 8335 New Designs Hairstyling Hutchinson 0.01 MN0024082 5 8336 TMS Machining Hutchinson 0.00 MN0024082 5 8337 A-Meat Shoppe Hutchinson 0.02 MN0024082 4 8338 Elletson Manufacturing Hutchinson MN0024082 4 8339 H&H Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8			44710
8334 Madigan's Bar & Grill Hutchinson MN0024082 5 8335 New Designs Hairstyling Hutchinson 0.01 MN0024082 5 8336 TMS Machining Hutchinson 0.00 MN0024082 5 8337 A-Meat Shoppe Hutchinson 0.02 MN0024082 4 8338 Elletson Manufacturing Hutchinson MN0024082 4 8339 H&H Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 <t< td=""><td></td><td></td><td>33990</td></t<>			33990
8335 New Designs Hairstyling Hutchinson 0.01 MN0024082 5 8336 TMS Machining Hutchinson 0.00 MN0024082 5 8337 A-Meat Shoppe Hutchinson 0.02 MN0024082 4 8338 Elletson Manufacturing Hutchinson MN0024082 4 8339 H&H Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson <t< td=""><td>MN0024082</td><td></td><td>45420</td></t<>	MN0024082		45420
8336 TMS Machining Hutchinson 0.00 MN0024082 5 8337 A-Meat Shoppe Hutchinson 0.02 MN0024082 4 8338 Elletson Manufacturing Hutchinson MN0024082 4 8339 H&H Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349	MN0024082		72210
8337 A-Meat Shoppe Hutchinson 0.02 MN0024082 4 8338 Elletson Manufacturing Hutchinson MN0024082 4 8339 H&H Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350	0.01 MN0024082	1082 5	81210
8338 Elletson Manufacturing Hutchinson MN0024082 4 8339 H&H Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3	0.00 MN0024082	1082 5	33270
8338 Elletson Manufacturing Hutchinson MN0024082 4 8339 H&H Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3	0.02 MN0024082	4082 4	44520
8339 H&H Sport Shop Hutchinson MN0024082 4 8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3	MN0024082	1082 4	33690
8340 Hegle Door Hutchinson MN0024082 4 8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3			45110
8341 Lake Region Co-op-Fertilizer Plant Hutchinson MN0024082 4 8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3			23890
8342 Maple Lake Post Office Hutchinson MN0024082 4 8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3			11510
8343 American Roto Tool Hutchinson 0.00 MN0024082 3 8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3			49110
8344 Black's Linemen Supply Hutchinson MN0024082 3 8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3			33270
8345 Elletson Bowl & Recreation Center Hutchinson MN0024082 3 8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3			42390
8346 Kloster Industrial Assets, Inc. Hutchinson MN0024082 3 8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3			
8347 Lady Bug Bookstore Hutchinson MN0024082 3 8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3			71390
8348 Maple Lake Cafe Hutchinson MN0024082 3 8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3			56190
8349 Maple Lake Legion #131 Hutchinson MN0024082 3 8350 Mooney Bus Company Hutchinson MN0024082 3			45120
8350 Mooney Bus Company Hutchinson MN0024082 3			72210
			81340
8351 Nahours Novelty, Inc. Hutchinson MN0024082 3	MN0024082	4082 3	48540
Tratorinicon	MN0024082	4082 3	71320
8352 Old Times Newsletter Hutchinson MN0024082 3	MN0024082	1082 3	51110
8353 Paumen General Supply Hutchinson MN0024082 3	MN0024082	1082 3	44130
8354 Quinlan Dental Hutchinson MN0024082 3			62120
8356 Health East St. Paul 0.62 MN0029815 950			62210
8357 Dayton's St. Paul MN0029815 450			45210
8358 Maplewood School District #622 St. Paul MN0029815 400			61110
8359 Sears Roebuck St. Paul MN0029815 350			45210
8360 Cub Foods East St. Paul MN0029815 250			44510
8361 Cub Foods West St. Paul MN0029815 250	MN0029815		44510
8363 Volunteers of America St. Paul MN0029815 190	MN0029815 MN0029815		45210 62330

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
8364	Home Depot	St. Paul	_ 3	MN0029815	185	
8365	Menards	St. Paul		MN0029815	180	444100
8366	Kohl's Department Store	St. Paul		MN0029815	160	452100
8367	Health Partners	St. Paul	0.20	MN0029815	150	621100
8368	Rainbow Foods	St. Paul		MN0029815	130	
	Hermanson Dental Service	St. Paul	3.61	MN0029815	125	
8370	Best Western Inn	St. Paul		MN0029815	100	
	Truck Utilities & Mfg Co	St. Paul		MN0029815	60	
	Countryside Volkswagen & Saab	St. Paul		MN0029815	50	
	US Bank Corporation	Marshall		MN0022179	450	
	Hy-Vee Foods	Marshall		MN0022179	400	
	Weiner Memorial Medical Ctr	Marshall	0.25	MN0022179	385	
	Southwest Minnesota State University	Marshall		MN0022179	375	
	Archer Daniels Midland Company	Marshall	0.00	MN0022179	325	
	Marshall Public Schools	Marshall		MN0022179	320	
	REM Service Inc	Marshall		MN0022179	183	
	BH Electronics Inc	Marshall	0.11	MN0022179	93	
	Best Western Marshall Inn	Marshall		MN0022179	90	
	Marshall Independent	Marshall		MN0022179	83	
	McGregor Public Schools	McGregor		MN0024023	137	
	Floe Intl & Hoyt McGregor Payroll	McGregor		MN0024023	72	
	Savamco	McGregor		MN0024023	50	
	Covenant Pines Bible Camp	McGregor		MN0024023	46	
	Savanna Pallets	McGregor		MN0024023	30	
	CMA Camp	McGregor		MN0024023	24	
	Savanna Golf & Supper Club	McGregor		MN0024023	20	
	McGregor Clinic	McGregor	0.03	MN0024023	19	
	Fireside Inn	McGregor		MN0024023	17	722100
	Ukura's Big Dollar	McGregor		MN0024023	14	
	Medford Outlet Center	Medford		MN0024112	350	453900
	Medford Furniture Outlet	Medford		MN0024112	75	442100
	Medford Public School	Medford		MN0024112	69	
	Olympic Fire Protection	Medford		MN0024112	50	
	Fabricated Wood Products	Medford		MN0024112	38	
	McDonald's	Medford		MN0024112	38	
	Straight River Enterprises	Medford		MN0024112	33	
	Triple E Manufacturing	Medford		MN0024112	22	
	Yule Transport	Medford		MN0024112	18	
	Poly Pak Plastics	Medford	0.03	MN0024112	15	
	Americanna Community Bank	Medford		MN0024112	9	
	Our Place	Medford		MN0024112	7	
	Bob Anhorn Service Inc.	Medford	0.01	MN0024112	5	
	Pat Simmons Real Estate	Medford		MN0024112	5	
	CJ Foods	Medford		MN0024112	4	
	ISD #740, Melrose	Melrose	0.11	MN0020290	183	
	CentraCare Health Services	Melrose	0.11	MN0020290	175	
	Central MN Federal Credit Union	Melrose		MN0020290	68	
	diversiCOM/Melrose Telephone Co	Melrose		MN0020290	64	
	Stearns Electric Association	Melrose		MN0020290	61	221100
	Ernie's Jubilee Foods	Melrose	2.27	MN0020290	54	
	CentraCare Clinic	Melrose		MN0020290	35	
	Croop Bine Agree Nursing Home	Melrose	0.04	MN0020290	30	
	Green Pine Acres Nursing Home	Menahga		MNG580032	120	
	Menahga Public Schools	Menahga		MNG580032	110	
	Cooperative Sampo Bulk Dlvry Salo Manufacturing	Menahga Menahga	0.03	MNG580032 MNG580032	38	
			0.03	MNG580032	18	
	First NB of Menahga Menahga Concrete Products	Menahga		MNG580032 MNG580032	16	
	WW Products	Menahga Menahga		MNG580032 MNG580032	15	
	Dairyland Equipment	-		MNG580032	6	
	Huntersville Wood Products	Menahga Menahga		MNG580032	3	
	Northland Insurance Co	St. Paul		MN0029815		
	Solvay Animal Health Inc	St. Paul		MN0029815	456	
	General Pump/US	St. Paul		MN0029815	175	
	Milaca Public Schools - Dist. #912	Milaca		MN0029815	60 220	
	Gorecki Manufacturing	Milaca		MN0024147	196	
	Mille Lacs, County of	Milaca		MN0024147	188	
	Elim Nursing Home	Milaca		MN0024147	160	
0430	Liiii rausing rionic	iviliaca		IVII NUUZ4 141	100	023100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
	Medtronic Inc	Milaca		MN0024147	144	
8438	Olson's Super Valu	Milaca		MN0024147	80	445100
8439	Fairview Clinic - Milaca	Milaca	0.06	MN0024147	45	621100
8440	Coin-Tainer Co	Milaca		MN0024147	41	423400
8441	Bremix Concrete Co	Milaca		MN0024147	35	327300
8442	Milaca Mills	Milaca		MN0024147	27	315100
8443	First NB of Milaca	Milaca		MN0024147	24	522100
8444	Milaca, City of	Milaca	0.03	MN0024147	24	921100
	East Central Electric Assn - Milaca	Milaca		MN0024147	16	
	Milaca Building Center	Milaca		MN0024147	12	
	Princeton Bank - Milaca	Milaca		MN0024147	10	
	Viking Gas Transmission	Milaca		MN0024147	8	
	Milan Elementary School	Milan		MN0020753	35	
	Milan Community Child Care Center	Milan		MN0020753	5	
	Prairie State Bank	Milan		MN0020753	5	
	Strand of Milan, Inc	Milan		MN0020753	5	
	Fragodt Floor Covering II	Milan		MN0020753	4	
	Glacial Plains Elevator	Milan		MN0020753	4	
	John's Machine Shop	Milan		MN0020753	4	
	More Cafe	Milan		MN0020753	4	
	Milan Legion	Milan		MN0020753	3	
	Streed Mobil	Milan		MN0020753	3	
	CNS Creations	Milan		MN0020753	2	
	Milan Beach Resort	Milan		MN0020753	2	
	Milan Blacksmith Shop	Milan		MN0020753	2	
	Milan Post Office	Milan		MN0020753	2	
	Phoenix Type Projeta Land Financial Croup	Milan		MN0020753	2	
	Prairie Land Financial Group	Milan		MN0020753	2	
	Brian's Auto Service & Repair	Milan St. Paul		MN0020753	1	
	University of Minnesota Dayton Hudson Corp	St. Paul		MN0029815 MN0029815	34317 22600	611300 452100
	, ,	St. Paul		MN0029815	14725	
	First Bank System Inc	St. Paul	1.50		10472	
	Hennepin, County of Norwest Corporation	St. Paul	1.50	MN0029815 MN0029815	10472	
	Grand Metropolitan Inc	St. Paul		MN0029815	7700	
	Minneapolis, City of	St. Paul	10.54	MN0029815	7500	
	Northern States Power Co	St. Paul	10.54	MN0029815	7362	
	US Post Office - Main	St. Paul		MN0029815	4000	
	US West Communications	St. Paul		MN0029815	2100	
	CP Wainman Pioneers-America	St. Paul		MN0029815	2000	
	Norwest Bk MN NA	St. Paul		MN0029815	2000	
	Regional Kidney Disease Center	St. Paul		MN0029815	2000	
	Target	St. Paul		MN0029815	1900	
	Minneapolis Children's Med Ctr	St. Paul	1.10	MN0029815	1700	
	American Express Financial Advisors Inc.	St. Paul	1.10	MN0029815	1592	
	Minnegasco	St. Paul		MN0029815	1377	
	Minneota Manor Health Care Ctr	Minneota		MNG580033	150	
	Superior Truss & Components	Minneota		MNG580033	110	
	Schott Corp	Minneota		MNG580033	103	
	Minneota Public Schools	Minneota		MNG580033	85	
	St Edward's School	Minneota		MNG580033	15	611100
	Ufkin's	Minneota		MNG580033	10	
	Cargill	St. Paul		MN0029882	3400	115100
	Carlson Companies Inc	St. Paul		MN0029882	3100	
	Allina Health System	St. Paul		MN0029882	1200	
	DataCard Corp	St. Paul		MN0029882	1000	
	Advantek Inc	St. Paul		MN0029882	600	
8499	Opportunity Partners	St. Paul		MN0029882	500	
	Scicom Data Service	St. Paul	0.03	MN0029882	195	
8501	Minnetrista School District #277	St. Paul		MN0029882	169	
8502	Burl Oaks Golf Club	St. Paul		MN0029882	10	
	Jennie-O Turkey Store	Montevideo	10.71	MN0020133	325	
	Montevideo Public Schools	Montevideo		MN0020133	300	
	SL-Montevideo Technology Inc.	Montevideo	2.05	MN0020133	218	
	Friendship Homes of Minnesota	Montevideo		MN0020133	200	
	Luther Haven Nursing Home	Montevideo		MN0020133	193	623110
8508	REM Southwest Services	Montevideo		MN0020133	150	624120
8509	Micro Dynamics Corporation	Montevideo	2.71	MN0020133	140	334419

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
8510	Chippewa County-Monte Hospital	Montevideo		MN0020133	138	622110
8511	Chippewa County	Montevideo		MN0020133	135	921110
8512	Wal-Mart	Montevideo		MN0020133	130	452112
8513	Chandler Industries Inc.	Montevideo		MN0020133	110	332710
8514	County Market	Montevideo		MN0020133	80	445110
	United Steel Products Co	Montgomery		MN0024210	272	332300
	Montgomery Public Schools	Montgomery		MN0024210	150	611100
	Knish Construction	Montgomery		MN0024210	37	238100
	Fred's IGA Foods	Montgomery		MN0024210	25	445100
	Holy Redeemer School	Montgomery		MN0024210	25	611100
	Barnett Bros Construction	Montgomery		MN0024210	23	238900
	First Natl Bank of Montgomery	Montgomery		MN0024210	23	522100
	Paradigm Sports Inc	Montgomery		MN0024210	19	339900
	Montgomery, City of	Montgomery		MN0024210	16	921100
	Casey's General Store	Montgomery	0.00	MN0024210	15 13	445200 444100
	HE Westerman Lumber Co	Montgomery		MN0024210		522100
	Rural American Bank - Montgomery & Lonsdale Skluzacek Amoco	Montgomery		MN0024210 MN0024210	13	447100
8529		Montgomery Montgomery		MN0024210	10	333200
	Minnesota Valley Ag	Montgomery		MN0024210	9	424900
	Cemstone	Montgomery		MN0024210	4	327300
	Monticello Public Schools	Monticello		MN0020567	450	611100
	Monticello-Big Lake Hospital	Monticello	0.28	MN0020567	432	622100
	Fulfillment Systems Inc	Monticello	0.20	MN0020567	212	561900
	Sunny Fresh Foods Inc	Monticello	10.82	MN0020567	191	311600
	Cub Foods	Monticello	2	MN0020567	156	445100
	Big K-Mart	Monticello		MN0020567	111	452100
	Maus Foods	Monticello		MN0020567	106	445100
8540	Standard Iron & Wire Works Inc	Monticello	0.00	MN0020567	85	332700
	Bondhus Corp	Monticello		MN0020567	81	332200
	Fingerhut Corp	Monticello		MN0020567	75	454100
8543	Hoglund Transportation Inc	Monticello		MN0020567	74	485400
8544	Tapper's Inc	Monticello		MN0020567	72	337100
8545	Fay-Mar Tube & Metal Fabricators Inc	Monticello	0.33	MN0020567	48	332900
8546	Aroplax Corp	Monticello	0.03	MN0020567	43	325200
8547	JME of Monticello	Monticello	2.12	MN0020567	41	484100
	Hoglund Bus Co	Monticello		MN0020567	38	423800
	Electro Industries Inc	Monticello		MN0020567	37	339900
	Vector Tool & Mfg Inc	Monticello		MN0020567	34	332700
	Suburban Manufacturing Inc.	Monticello	0.00	MN0020567	31	332700
	Dahlheimer Distributing Co. Inc.	Monticello		MN0020567	24	424800
	Rainbow Enterprises, Inc.	Monticello	0.03	MN0020567	24	335900
	TDS Telecom	Monticello		MN0020567	19	517100
	D & D, Inc.	Monticello		MN0020567	18	485400
	Tire Service Equipment Mfg. Co.	Monticello		MN0020567	18	336300
	AME Group - Monticello Plant	Monticello		MN0020567	16	327300
	Groebner & Associates, Inc.	Monticello	0.04	MN0020567	16	423900
	Lake Tool Inc.	Monticello		MN0020567	14	325200
	Polycast Specialties Inc.	Monticello		MN0020567	14 12	326200 541700
	Clow Stamping Co.	Monticello		MN0020567	12	
	Custom Canopy Inc. Jones Manufacturing of Monticello, Inc.	Monticello Monticello	0.06	MN0020567		332900 339900
	Willi Hahn Corpation/Wiha Tools	Monticello		MN0020567 MN0020567	12	423700
	B & B Metal Stamping	Monticello	0.03	MN0020567	6	541700
	Ataboy Manufacturing, Inc.	Monticello		MN0020567	5	332900
	EDMA	Monticello		MN0020567	3	
	Eden Electronics	Montrose	0.00	MN0024228	25	335300
	Best Disposal Services	Montrose		MN0024228	22	562100
	Knight Colors & Chemicals	Montrose		MN0024228	15	423800
	Citizens State Bank	Montrose		MN0024228	13	522100
	Hank's Pattern	Montrose	0.06	MN0024228	8	332900
	MN Dept. of Natural Resources	Montrose	1.00	MN0024228	8	924100
	Fitzsimmons	Montrose		MN0024228	5	541600
	US Post Office	Montrose		MN0024228	5	491100
	Countryview Realty	Montrose		MN0024228	4	531200
	Montrose Dental Office	Montrose		MN0024228	4	621200
8578	Jeff Ex	Montrose		MN0024228	3	811100
8579	All Season Repair	Montrose		MN0024228	2	811100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
8580	Green Ink	Montrose		MN0024228	2	323100
	Jerry Braegelmann	Montrose		MN0024228	2	
	Marketons Body Shop	Montrose		MN0024228	2	
	Montrose Chirporactic	Montrose		MN0024228	2	
	Brenny Trucking	Montrose	0.05	MN0024228	1	
	Chantland Classic & Quality	Montrose		MN0024228	1	
	Scott's Glass & Mirror	Montrose		MN0024228	1	
	Moorhead Public Schools-ISD #152	Moorhead		MN0049069	815	
	Minnesota State University Moorhead	Moorhead		MN0049069	800	
	Concordia College - Moorhead	Moorhead		MN0049069	613	
	Eventide Lutheran Home	Moorhead	0.40	MN0049069	452	
	American Crystal Sugar Co	Moorhead		MN0049069	380	
	Clay, County of Moorhead, City of	Moorhead Moorhead		MN0049069	365 254	
	ASP Inc	Moorhead	0.30	MN0049069 MN0049069	200	
	Moorhead Electric Inc	Moorhead		MN0049069	171	
	Northwest Tech College - Moorhead	Moorhead		MN0049069	163	
	Camas	Moorhead		MN0049069	150	
	Sunmart	Moorhead		MN0049069	125	
	Moorhead Health Care Ctr	Moorhead		MN0049069	115	
	Herberger's Department Store	Moorhead		MN0049069	94	
	K Mart	Moorhead		MN0049069	83	
	Best Western Red River Inn	Moorhead		MN0049069	77	
	Target	Moorhead		MN0049069	76	
	Abbott Arne Schwindt	Moorhead		MN0049069	55	
8605	Hornbacher's Foods	Moorhead		MN0049069	46	445100
8606	Mercy Hospital and Health Care Center	Moose Lake	0.25	MN0020699	380	622100
	Minnesota Correctional Facility-Moose Lake	Moose Lake		MN0020699	338	922100
8608	Moose Lake Public Schools	Moose Lake		MN0020699	78	611100
8609	Lake State Federal Credit Union	Moose Lake		MN0020699	58	522100
8610	Moose Lake Government	Moose Lake	0.07	MN0020699	52	921100
8611	Gateway Family Health Clinic	Moose Lake	0.05	MN0020699	40	621100
	First National Bank	Moose Lake		MN0020699	27	
	Emergency Response Center	Moose Lake	0.04	MN0020699	26	
	Americinn	Moose Lake		MN0020699	17	
	Moose Lake-Minnesota Real Estate	Moose Lake		MN0020699	12	
	Moose Lake Power	Moose Lake		MN0020699	10	
	Moose Lake Star Gazette	Moose Lake		MN0020699	6	
	Arrowhead Leader Newspaper	Moose Lake	0.40	MN0020699	5	
	Kanabec County Hospital	Mora	0.16	MN0021156	250	
	Mora School District	Mora	0.40	MN0021156	250	
8621	Industries, Inc.	Mora Mora		MN0021156	195 120	
	Bluewater	Mora	0.10	MN0021156 MN0021156		
	Mora Medical Center	Mora	0.00	MN0021156	75 62	
	Pamida	Mora	0.06	MN0021156	50	
	Peoples National Bank	Mora		MN0021156	35	
	City of Mora	Mora	0.05	MN0021156	33	
	Kanabec County	Mora		MN0021156	30	
	Ingenuity, Inc	Mora		MN0021156	13	
	Morgan Public School Dist #636	Morgan	0.00	MN0020443	80	
	Gil-Mor Manor Nursing Home	Morgan		MN0020443	79	
	Harvest Land Cooperative	Morgan		MN0020443	35	
	Wayne's	Morgan		MN0020443	24	
	Morgan Grain & Feed	Morgan		MN0020443	14	
	Beckers Super Valu	Morgan		MN0020443	12	
	Dicks Sports Ctr	Morgan		MN0020443	5	
	MaB'sCafe	Morgan		MN0020443	5	
	B&L Industries	Morgan		MN0020443	4	
8639	Clements Lumber Inc	Morgan		MN0020443	4	
8640	Morgan Messenger	Morgan		MN0020443	3	
	Jeff's Garage	Morgan		MN0020443	1	
8642	NRP Plastics	Morgan	0.00	MN0020443	1	
	University of MN - Morris	Morris		MN0021318	449	
	Prairie Community Svc	Morris		MN0021318	238	
	Stevens Community Medical Ctr	Morris	0.14	MN0021318	210	
	Morris Public Schools	Morris		MN0021318	176	
8647	West Wind Village	Morris		MN0021318	162	623100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

Best Rivy Eros Paving Inc.	ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
B869 Stevens, Country of Morris 0.19 MN0021318 133 227300 B860 Nives Morris Morris Morris MN0021318 133 227300 B861 Nives Morris MN0021318 119 322300 B861 Nives Morris MN0021318 119 323300 B862 Stevens Morris MN0021318 50 723301 B864 Morris MN0021318 50 723301 B865 Morris MN0021318 47 221100 B866 Morris MN0021318 47 221100 B867 Prairie Control of the control o				i _kga			
B650 Riley Bros. Construction Morris MN0021318 130 329200 B651 Weshfort Industries Morris MN0021318 75 333100 B652 Superfor Industries Morris MN0021318 75 333100 B652 Superfor Industries Morris MN0021318 75 333100 B655 Wesh Super Valu Morris MN0021318 76 333100 4451		· · · · · · · · · · · · · · · · · · ·		0.19			
8862 Superior Industries Morris MN0021318 76 333100 8654 Mic Donalds Morris MN0021318 50 722100 8655 MSDA Solt Lab Morris MN0021318 49 224100 8656 MSDA Solt Lab Morris MONDER MN0021318 47 722100 8658 Plante Lan Dismond Super Club Morris MN0021318 47 722100 8658 Plante Lan Dismond Super Club Morris MN0021318 47 722100 8658 Missolv Landon Casino Morton MN0021318 28 541800 8660 Jackpot Lunction Casino Morton N0051282 30 339100 8661 Allimate Medical Morton Q.25 MN0051282 40 339100 8662 Plexor Morton MN00051282 30 233900 8663 Jackpot Unident Casino Morton MN00051282 30 339100 8664 Structure Morton MN00051282 30 339100 8665 Plackport Morton MN00051282 30 32 33900							
8655 Willes Super Valu Morris MN0021318 60 425100 8656 USDA Soil Lab Morris MN0021318 49 224100 8655 USDA Soil Lab Morris Morris MN0021318 49 224100 8656 Morris, City of Morris MN0021318 47 224100 8657 Prairie Inn Morris MN0021318 47 272400 8658 Michael Solar So	8651	WesMor Industries	Morris		MN0021318	119	332400
B855 M.D. Oziralds	8652	Superior Industries	Morris		MN0021318	75	333100
8855 USDA Sail Lab Morris 0.07 MN0021318 49 924100 8856 Morris, City of Morris 0.07 MN0021318 47 721100 8655 Prairie Inn Morris MN0021318 47 721100 8659 West Centrul Envirormental Consulting Morris MN0021318 28 54 1600 860 Jackpot Junction Casall Morris MN0021318 28 54 1600 860 Jackpot Junction Casall Morris MN0021318 28 54 1600 860 Jackpot Junction Casall Morris MN0021318 28 54 1600 860 Althreade Medical Morris MN0051222 30 41 3000 8633 Redyall Morris Morris MN0051222 30 41 3100 8643 Redyal Morris MN0051232 30 41 3100 6867 Midwest Medical Services 51. Paul MN00051232 30 41 3100 8667 Midwest Medical Services St. Paul MN0002815 512 22 200 68 17 20 68 17 20 68 17 20 68 17 20 68 17 20 68 17 20	8653	Willie's Super Valu	Morris		MN0021318	60	445100
8655 Morts City of Morris Mor	8654	Mc Donalds	Morris		MN0021318	50	722100
8685 Prairie Inn Morris MN0021318 47 721100 8685 West Central Environmental Consulting Morris MN0021318 28 541600 8686 Justicot Junction Casalina Morton MN0021318 28 541600 8661 Altimate Medical Morton MN0051292 40 339100 8663 Jackpot Junction Casalina Morton MN0051292 30 423900 8663 Redpoil Morton MN0051292 30 423900 8663 Redpoil Morton MN002815 615 722300 8664 Sysso Minnesota SL Paul MN002815 615 722300 8667 Microse Medical Services SL Paul MN002815 165 722300 8667 Microse Medical Services SL Paul 9.65 MN002815 165 72200 8677 Viran Express SL Paul 7.24 MN002815 140 484100 8677 Viran Express SL Paul 15 MN002815 100 484100 8674 Statur of St Paul SL Paul MN0028815 101 713900	8655	USDA Soil Lab	Morris		MN0021318	49	924100
Bes8 Mot Lounge/Diamond Supper Club Morris MN0021318 49 722400 8659 West Central Environmental Consulting Morris MNN0051292 500 713200 8660 Alachaet Medical Morton MN0051292 40 339100 8662 Flexor Morton MN0051292 40 339100 8662 Flexor Morton MN0051292 40 339100 8663 Redpoil Morton MN0051292 40 339100 8663 Redpoil Morton MN0051292 40 419100 8664 Flexor Morton MN0051292 40 419100 8664 Flexor Morton MN0051292 40 419100 8664 Flexor MN0061281 51 5722300 6666 MN006281 51 572230 6666 MN006281 51 572230 6666 MN006281 51 572230 6667 MN006281 51 51 51 51 51 51 51	8656	Morris, City of	Morris	0.07	MN0021318	47	
BESS Wost Contral Environmental Consulting Morris MN0021318 28 541600 BESS Laskey Junction Casalana Morton MN0051292 40 339100 339100 34910			Morris		MN0021318	47	
8869 Jackpot Junction Casino Morton MN0051292 500 713200 8861 Altmate Medical Morton 0.25 MN0051292 40 339100 8862 Flexor Morton MN0051292 30 423900 8663 Reclyall Morton MN0028915 615 722300 8664 Sysco Minnesota St. Paul MN0029815 152 261600 8668 Mounds View School Dist. St. Paul MN0029815 182 261600 8668 Mounds View School Dist. St. Paul 9.05 SMN0029815 175 484100 8670 Tylon Companies St. Paul 9.24 Mn0028815 176 484100 8671 Distorion Medical Systems St. Paul 0.15 MN0029815 120 487100 8672 Marmad Supper Club & Banquet Ctr St. Paul 0.15 MN0029815 170 719000 8673 Marmad of S. Paul St. Paul MN0029815 170 719000 8674 Statum of S. Paul MN0029815 29 332700 8677 Jance Die Company St. Paul MN0029815 40 332700 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
8861 Altmate Medical Monton 0.28 MN0051292 30 339100 8863 Redpoll Monton MN0051292 30 423900 8864 Sysco Minnesota St. Paul MN00529515 15 722300 8867 Midwest Medical Services St. Paul MN0029815 192 621600 8868 Misunds View School Dist. St. Paul MN0029815 182 621600 8868 Misunds View School Dist. St. Paul 9.05 MN0029815 183 611100 8867 Vistra Express St. Paul 9.05 MN0029815 140 484100 8670 Vistra Express St. Paul 7.24 MN0029815 140 484100 8671 Disetronic Medical Systems St. Paul 0.15 MN0029815 140 484100 8672 Mismand Supper Club & Banquet Ctr St. Paul MN0029815 110 713900 8673 Cert Mismand Supper Club & Banquet Ctr St. Paul MN0029815 30 41110 8673 Colf Hill & Sons St. Paul MN0029815 30 41110 8670 Vistra Mismand Sylvarie Mismand Mi							
8862 Flexor Monton MN0051292 30 423900 8663 Repoll Monton MN0051292 10 811400 8664 Sysco Minnesota St. Paul MN0028915 15 722200 8668 Mounds View School Dist. St. Paul MN0028915 192 C21600 8668 Mounds View School Dist. St. Paul MN0028915 183 C1100 61100 8669 Typon Companies St. Paul 9.05 MN0028915 175 444100 8670 Distortion Medical Systems St. Paul 7.24 MN0028915 140 484100 8670 Distortion Medical Systems St. Paul 9.15 MN0028915 120 641700 8671 Distortion Medical Systems St. Paul MN0028915 120 641700 8671 Distortion Mn0028915 120 441700 8671 Distortion Mn0028915 120 441700 8671 Distortion Mn0028915 120 441100 8671 Distortion Mn0028915							
8683 Redpoll Morton MN0051292 10 811400 8667 Midwest Medical Services St. Paul MN0029815 152 72300 8667 Midwest Medical Services St. Paul MN0029815 192 621600 8668 Mounds View School Dist. St. Paul MN0029815 183 611100 8669 Tyson Companies St. Paul 9.05 MN0029815 176 484100 8670 Viztra Express St. Paul 7.24 MN0029815 140 484100 8671 Disetronic Medical Systems St. Paul 0.15 MN0029815 140 484100 8672 Mizermad Supper Club & Banquet Cir St. Paul MN0029815 110 713900 8673 Diel-Comm St. Paul MN0029815 80 441100 8675 Diel-Comm St. Paul MN0029815 80 441100 8677 Joneo Die Company St. Paul MN0029815 40 332200 8678 Cleff Hill & Sons St. Paul MN0029815 40 332200 8679 U.S. Geological Survey St. Paul Montain Iron MN0029815 40 321100 8681 Mountain Iron Bull School Dist. #712 Mountain Iron MN0049835 10 411110 <td></td> <td></td> <td></td> <td>0.25</td> <td></td> <td></td> <td></td>				0.25			
8686 Sysco Minnesota St. Paul MN0029815 192 621600 8667 Midwest Medical Services St. Paul MN0029815 192 621600 8668 Mounds View School Dist. St. Paul MN0029815 175 484100 8660 Tyson Companies St. Paul 9.5 MN0029815 175 484100 8671 Disstornic Medical Systems St. Paul 1.2 MN0029815 120 541700 8672 Mermaid Supper Club & Banquet Ctr St. Paul MN0029815 120 541700 8673 Martin of St Paul St. Paul MN0029815 100 713900 8674 Saturn of St Paul St. Paul MN0029815 100 713900 8675 Jell-Comm St. Paul MN0029815 52 332700 8677 Jones Cole Company St. Paul 0.00 MN0029815 52 332700 8678 U.S. Geological Survey St. Paul 0.06 MN0029815 40 333300 8679 U.S. Geological Survey St. Paul 0.06 MN0029815 40 333300 8682 L&M St.							
8667 Midwest Medical Services St. Paul MN0022815 192 627600 8668 Dryson Companies St. Paul 9.05 MN0022815 1175 484100 8670 Vistan Express St. Paul 7.24 MN0022815 140 484100 8671 Disestronic Medical Systems St. Paul 0.15 MN0022815 120 544700 8672 Mermad Supper Club & Banquet Ctr St. Paul MN0022815 110 74300 8673 Dell-Comm St. Paul MN0022815 80 441100 8675 Dell-Comm St. Paul MN0022815 74 517100 8677 Jonco Die Company St. Paul MN0022815 74 517100 8679 U.S. Geological Survey St. Paul M00040835 10 411100 8687 B.G.Hill & Sons St. Paul 0.06 MN002815 40 221100 8683 Monation from Chains in row MN0040835 10 411100 8684 LS Malphy Mountain from MN0040835 50 444130 8685 Monation from Chains of Cooperative Mountain from MN00406835 30		·					
B668 Mounds View School Dist. St. Paul MN0029815 175 484100 8670 Vitran Express St. Paul 7,24 MN0029815 175 484100 8670 Vitran Express St. Paul 7,24 MN0029815 120 544700 8672 Mermad Supper Club & Banquet Ctr St. Paul MN0029815 120 544700 8672 Mermad Supper Club & Banquet Ctr St. Paul MN0029815 100 713900 8673 Saturn of St Paul St. Paul MN0029815 100 713900 8673 Saturn of St Paul MN0029815 100 713900 8675 Delt-Cornm St. Paul MN0029815 52 332700 8675 Cell-Cornm St. Paul MN0029815 40 333200 8675 Cell-Cornm MN0040835 55 444130 8685 Mountain Incombination MN0040835 55 444130 8685 Mountain Incombination MN0040835 55 444130 8685 Mountain Incombination MN0040835 55 444131 8686 Mountain Incombination MN0040835 50 484121 8686 Mountain Incombination MN0040835 30 482111 8686 Mountain Incombination MN0040835 30 482111 8686 Mountain Incombination MN0040835 30 61170 8687 Aronhead Library System Mountain Incombination MN0040835 30 61170 8687 Aronhead Library System Mountain Incombination MN0040835 30 61170 8687 Aronhead Library System Mountain Incombination MN0040835 30 61170 8689 M							
B669 Tyson Companies							
B670 Vitran Express							
8671 Disertonic Medical Systems St. Paul 0.15 MN0028915 120 541700 8672 Mermaid Supper Club & Banquet Cir St. Paul MN0028915 180 411700 8674 Saturn of St Paul St. Paul MN0028915 74 511700 8677 Jonco Die Company St. Paul 0.00 MN0028915 52 332700 8678 (G. Full & Sons St. Paul 0.00 MN0028915 40 332700 8678 (G. Full & Sons St. Paul M00028915 40 332700 8678 (G. Full & Sons) St. Paul M00028915 40 3232700 8678 (G. Full & Sons) St. Paul 0.06 MN0028915 40 321100 867 (G. Full & Sons) Mountain Iron M00028915 40 321100 868 (G. Full & Sons) Mountain Iron MN0040835 51 444130 868 (G. Full & Sons) Mountain Iron MN0040835 55 444130 888 (G. Full & Sons) Mountain Iron MN0040835 30 611710 888 (G. Full & Sons) Mountain Iron MN0040835 3							
8672 Mermaid Supper Club & Banquet Ctr St. Paul MN0028915 80 41100 8674 Seturn of St Paul St. Paul MN0028915 74 517100 8675 Delb-Comm St. Paul MN0028915 74 517100 8678 CG Hill & Sons St. Paul MN0028915 52 332700 8678 LS. Geological Survey St. Paul MN0028915 40 921100 8678 LS. Geological Survey St. Paul 0.08 MN0028915 40 921100 8681 Mountain Iron Burling Individual St. Geological Survey St. Paul 0.08 MN0028915 40 921100 8682 MMSupply Mountain Iron MN0040835 51 444130 8681 Montain Iron MN0040835 55 444131 8686 Individual St. St. St. St. St. Mountain Iron MN0040835 50 444131 8686 Individual St.							
8674 Saturn of St Paul MN00229815 80 441100 8677 Jonco Die Company St Paul 0.00 MN00229815 52 332700 8678 CG Full & Sons St Paul 0.00 MN00229815 52 332700 8678 CG Full & Sons St Paul 0.00 MN00229815 40 332200 8678 LG Full & Sons St Paul 0.06 MN00229815 40 921100 868 Hourstain Fron Sull School Dist. #712 Mountain Iron MM0040835 51 110 felt 1110 8682 L&M Supply Mountain Iron MN0040835 55 444130 8683 Monson Trucking Mountain Iron MN0040835 55 444130 8684 CH Industry Sales & Svc Mountain Iron MN0040835 45 811310 8685 DW&P Raincad Mountain Iron Mountain Iron MN0040835 30 482111 8687 Arrowhead Library System Mountain Iron MN0040835 30 482111 8688 Mountain Iron, City of Mountain Iron MN0040835 28 921140 8689 Benchmark Engineering Mountain Iron		,		0.15			
8675 Deli-Comm							
B677 Jonco Die Company		1					
B678 CC Hill & Sons							
8679 U.S. Geological Survey St. Paul 0.06 MN0028815 40 921100 8681 Mountain Inory Manutain Inory Mountain Inor MN0040835 55 444130 8683 Monson Trucking Mountain Iron MN0040835 55 444130 8684 GE Industry States & Svc Mountain Iron MN0040835 45 813130 8685 DW&P Railroad Mountain Iron 0.49 MN0040835 30 482111 8685 DWM2 Realized Mountain Iron MN0040835 30 611710 8687 Arrowhead Library System Mountain Iron MN0040835 20 611710 8688 Mountain Iron, City of Mountain Iron MN0040835 26 921140 8689 Benchmark Engineering Mountain Iron 0.00 MN0040835 25 541330 8690 IGood Samaritan Village Mountain Lake MNC580035 109 611100 8691 Good Samaritan Village Mountain Lake MNC580035 64 3331100 8693 Bargen Inc Mountain Lake MNC580035 50 237300 8693 Bargen Inc Mountain Lak				0.00			
8681 Mountain Iron/Buhl School Dist. #712 Mountain Iron MN0040835 51 10 611110 8682 LaM Supply Mountain Iron MN0040835 55 444130 8683 Monson Trucking Mountain Iron MN0040835 50 444121 8684 GE Industry Sales & Svc Mountain Iron 0.49 MN0040835 30 482111 8685 DWAP Railroad Mountain Iron 0.49 MN0040835 30 482111 8686 Northeast Service Cooperative Mountain Iron MN0040835 28 921190 8687 Arrowhead Library System Mountain Iron MN0040835 28 921190 8688 Mountain Iron, City of Mountain Iron MN0040835 26 921140 8689 Benchmark Engineering Mountain Iron 0.00 MN0040835 25 941330 8690 Mm, Lake Public Schoots Mountain Lake MNG580035 109 611100 8691 Good Samaritan Village Mountain Lake MNG580035 100 623100 8693 Bargen Inc Mountain Lake MNG580035 64 333100 8694 Verutide Home Mountain Lake MNG580035 50 623100 8697 Iribebert Greenbowses Inc Mountain Lake							
8682 L&M Supply Mountain Iron MN0040835 55 444130 8683 Monson Trucking Mountain Iron MN0040835 50 448121 8684 GE Industry Sales & Svc Mountain Iron MN0040835 30 482111 8685 DW&P Railroad Mountain Iron 0.49 MN0040835 30 611710 8686 Northeast Service Cooperative Mountain Iron MN0040835 30 611710 8688 Mountain Iron, City of Mountain Iron MN0040835 28 921190 8688 Benchmark Engineering Mountain Iron MN0040835 28 921190 8699 Mr. Lake Public Schools Mountain Iron 0.00 MN0040835 25 541330 8690 Mr. Lake Public Schools Mountain Lake MNG580035 109 611100 8691 Ealzer, Inc. Mountain Lake MNG580035 100 623100 8692 Baizer, Inc. Mountain Lake MNG580035 50 237300 8694 Eventide Home Mountain Lake MNG580035 50 237300 8695 Min. Lake Furniture Mountain Lake		,		0.06			
8683 Monson Trucking Mountain Iron MN0040835 50 484121 8684 GE Industry Sales & Svc Mountain Iron MN0040835 45 811310 8685 DW&P Railroad Mountain Iron 0.49 MN0040835 30 482111 8687 Arrowhead Library System Mountain Iron MN0040835 28 921190 8688 Mountain Iron, City of Mountain Iron 0.00 MN0040835 26 921140 8689 Menchmark Engineering Mountain Iron 0.00 MN0040835 25 541330 8690 Min, Lake Public Schools Mountain Lake MNG580035 109 611100 8691 Egood Samaritan Village Mountain Lake MNG580035 100 621100 8692 Balzer, Inc. Mountain Lake MNG580035 64 333100 8694 Eventide Home Mountain Lake MNG580035 50 623100 8695 Min, Lake Furniture Mountain Lake MNG580035 50 623100 8697 Hielbert Greenhouses Inc Mountain Lake MNG580035 30 1311400 8698 Fast Distributing Moun							
8684 GE Industry Sales & Svc Mountain Iron MM0040835 45 811310 8685 DW&P Railroad Mountain Iron 0.49 MN0040835 30 482111 8686 Northeast Service Cooperative Mountain Iron MN0040835 30 611710 8688 Montheast Service Cooperative Mountain Iron MN0040835 28 921190 8688 Monthair Iron, City of Mountain Iron MN0040835 26 921140 8689 Benchmark Engineering Mountain Iron 0.00 MN0040835 25 541330 8690 Min Lake Public Schools Mountain Lake MNG580035 109 611100 8691 Good Samaritan Village Mountain Lake MNG580035 100 623100 8692 Balzer, Inc. Mountain Lake MNG580035 64 333100 8693 Balzer, Inc. Mountain Lake MNG580035 50 623700 8694 Eventide Home Mountain Lake MNG580035 50 623100 8695 Kinh. Lake Furniture Mountain Lake MNG580035 30 111140 8697 Hiebert Greenhouses Inc <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
8685 DWAP Railroad Mountain Iron 0.49 MN0040835 30 482111 8686 Northeast Service Cooperative Mountain Iron MN0040835 30 611710 8687 Arrowhead Library System Mountain Iron MN0040835 28 921190 8688 Mountain Iron, City of Mountain Iron MN0040835 26 921440 8689 Benchmark Engineering Mountain Lake MNG580035 109 611100 8691 Good Samaritan Village Mountain Lake MNG580035 109 611100 8692 Balzer, Inc. Mountain Lake MNG580035 64 333100 8693 Bargen Inc Mountain Lake MNG580035 50 237300 8694 Eventide Home Mountain Lake MNG580035 50 237300 8695 Mr. Lake Furniture Mountain Lake MNG580035 35 337100 8697 Fast Distributing Mountain Lake MNG580035 30 111400 8698 Kennel-Aire Mfg Co Mountain Lake MNG580035 30 33200 8699 Fast Distributing Mountain Lake <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
8686 Northeast Service Cooperative Mountain Iron MN0040835 30 611710 8687 Arrowhead Library System Mountain Iron MN0040835 28 921190 8688 Mountain Iron, City of Mountain Iron MN0040835 26 92140 8689 Benchmark Engineering Mountain Iron 0.00 MN0040835 25 541330 8690 Mint. Lake Public Schools Mountain Lake MN0580035 109 611100 8691 Good Samaritan Village Mountain Lake MN0580035 100 623100 8692 Balzer, Inc. Mountain Lake MN0580035 50 237300 8693 Ester Inc. Mountain Lake MN0580035 50 237300 8694 Eventide Home Mountain Lake MN0580035 50 623100 8695 Mint. Lake Furniture Mountain Lake MN0580035 30 3111400 8697 Hiebert Greenhouses Inc Mountain Lake MN0580035 30 332600 8698 Kennel-Aire Mig Co Mountain Lake MN0580035 30 332600 8700 Mint. Lake Publisting Mount		-					
8687 Arrowhead Library System Mountain Iron MN0040835 28 921190 8688 Mountain Iron, City of Mountain Iron MN0040835 26 921140 8689 Benchmark Engineering Mountain Iron 0.00 MN0040835 25 541330 8690 Mtn. Lake Public Schools Mountain Lake MN0580035 109 611100 8691 Good Samatina Village Mountain Lake MN0580035 100 623100 8692 Batzer, Inc. Mountain Lake MN0580035 64 333100 8693 Bargen Inc Mountain Lake MN0580035 50 237300 8695 Mtn. Lake Furniture Mountain Lake MN0580035 35 337100 8697 Hiebert Greenhouses Inc Mountain Lake MN0580035 30 317100 8698 Kennel-Aire Mfg Co Mountain Lake MN0580035 30 332600 8699 Fast Distributing Mountain Lake MN0580035 25 333100 8700 Mtn. Lake Christian School Mountain Lake MN0580035 25 333100 8701 Watonwan Enterprises Mountain				0.49			
8688 Mountain Iron, Cify of Mountain Iron MN0040835 26 921140 8689 Benchmark Engineering Mountain Iron 0.00 MN0040835 25 541330 8690 Mrb. Lake Public Schools Mountain Lake MNG580035 109 611100 8691 Good Samaritan Village Mountain Lake MNG580035 64 333100 8692 Bazler, Inc. Mountain Lake MNG580035 64 333100 8693 Bargen Inc Mountain Lake MNG580035 50 237300 8694 Eventide Home Mountain Lake MNG580035 50 237300 8695 Mrb. Lake Furniture Mountain Lake MNG580035 35 337100 8697 Hiebert Greenhouses Inc Mountain Lake MNG580035 30 311400 8698 Kennel-Aire Mig Co Mountain Lake MNG580035 30 332600 8700 Mth. Lake Christian School Mountain Lake MNG580035 25 333100 8701 Watonwan Enterprises Mountain Lake MNG580035 10 337100 8702 Fast Wings Mountain Lake		·					
8689 Benchmark Engineering Mountain Iron 0.00 MN0040835 25 541330 8690 Mtn. Lake Public Schools Mountain Lake MNG580035 109 611100 8691 Good Samaritan Village Mountain Lake MNG580035 100 623100 8693 Bargen Inc Mountain Lake MNG580035 50 237300 8694 Eventide Home Mountain Lake MNG580035 50 237300 8695 Mtn. Lake Furniture Mountain Lake MNG580035 35 337100 8697 Hiebert Greenhouses Inc Mountain Lake MNG580035 30 311400 8698 Kennel-Aire Mfg Co Mountain Lake MNG580035 30 311400 8699 Fast Distributing Mountain Lake MNG580035 30 332600 8699 Fast Distributing Mountain Lake MNG580035 25 611100 8701 Watonwan Enterprises Mountain Lake MNG580035 25 611100 8702 Fast Wings Mountain Lake MNG580035 10 337100 8703 Murdock Elementary School Murdock M							
8690 Mm. Lake Public Schools Mountain Lake MNG580035 100 611100 8691 Good Samaritan Village Mountain Lake MNG580035 100 623100 8692 Balzer, Inc. Mountain Lake MNG580035 64 333100 8693 Bargen Inc Mountain Lake MNG580035 50 237300 8694 Eventide Home Mountain Lake MNG580035 50 623100 8695 Mtn. Lake Furniture Mountain Lake MNG580035 35 337100 8695 Mtn. Lake Furniture Mountain Lake MNG580035 30 111400 8697 Hiebert Greenhouses Inc Mountain Lake MNG580035 30 111400 8698 Kennel-Aire Mtg Co Mountain Lake MNG580035 30 111400 8699 Fast Distributing Mountain Lake MNG580035 25 333100 8700 Mtn. Lake School Mountain Lake MNG580035 25 331100 8701 Watonwan Enterprises Mountain Lake MNG580035 25 611100 8702 Fast Wings Mountain Lake MNG580035				0.00			
8691 Good Samaritan Village Mountain Lake MNG580035 100 623100 8692 Balzer, Inc. Mountain Lake MNG580035 64 333100 8693 Bargen Inc Mountain Lake MNG580035 50 237300 8694 Eventide Home Mountain Lake MNG580035 50 623100 8695 Mn. Lake Furniture Mountain Lake MNG580035 35 337100 8697 Hiebert Greenhouses Inc Mountain Lake MNG580035 30 131400 8698 Kennel-Aire Mfg Co Mountain Lake MNG580035 30 332600 8699 Fast Distributing Mountain Lake MNG580035 25 333100 8700 Mm. Lake Christian School Mountain Lake MNG580035 25 611100 8701 Watonwan Enterprises Mountain Lake MNG580035 10 337100 8702 Fast Wings Mountain Lake MNG580035 43 332900 8703 Murdock Elementary School Murdock MN0580035 43 332900 8704 S704 Signal Paines Murdock MN0052990				0.00			
8692 Balzer, Inc. Mountain Lake MNG580035 64 333100 8693 Bargen Inc Mountain Lake MNG580035 50 237300 8694 Eventide Home Mountain Lake MNG580035 50 623100 8695 Mtn. Lake Furniture Mountain Lake MNG580035 35 337100 8698 Member Greenhouses Inc Mountain Lake MNG580035 30 111400 8698 Kennel-Aire Mfg Co Mountain Lake MNG580035 30 111400 8698 Kennel-Aire Mfg Co Mountain Lake MNG580035 30 111400 8700 Mth. Lake Christian School Mountain Lake MNG580035 25 331100 8701 Watonwan Enterprises Mountain Lake MNG580035 25 611100 8702 Fast Wings Mountain Lake MNG580035 25 611100 8702 Fast Wings Mountain Lake MNG580035 4 332900 8703 Murdock Elementary School Murdock <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
8693 Bargen Inc Mountain Lake MNG580035 50 237300 8694 Eventide Home Mountain Lake MNG580035 50 623100 8695 Mrt. Lake Furniture Mountain Lake MNG580035 35 337100 8697 Hiebert Greenhouses Inc Mountain Lake MNG580035 30 111400 8698 Kennel-Aire Mfg Co Mountain Lake MNG580035 30 332600 8699 Fast Distributing Mountain Lake MNG580035 25 333100 8700 Mtn. Lake Christian School Mountain Lake MNG580035 25 611100 8701 Watonwan Enterprises Mountain Lake MNG580035 25 611100 8702 Fast Wings Mountain Lake 0.03 MNG580035 4 332900 8703 Murdock Elementary School Murdock MN0052990 40 611110 8704 Dooley's Petroleum Murdock MN0052990 14 424710 8705 Glacial Plains Cooperative							
8694 Eventide Home Mountain Lake MNG580035 50 623100 8695 Min. Lake Furniture Mountain Lake MNG580035 35 337100 8697 Hiebert Greinhouses Inc Mountain Lake MNG580035 30 111400 8698 Kennel-Aire Mfg Co Mountain Lake MNG580035 30 332600 8700 Min. Lake Christian School Mountain Lake MNG580035 25 611100 8701 Watonwan Enterprises Mountain Lake MNG580035 10 337100 8702 Fast Wings Mountain Lake MNG580035 10 337100 8703 Murdock Elementary School Murdock MN0052090 40 611110 8703 Murdock Elementary School Murdock MN0052990 14 424710 8705 Glacial Plains Cooperative Murdock MN0052990 11 424510 8706 Riley Bus Service Murdock MN0052990 12 42510 8707 First State Bank of Murdock							
8695 Mtn. Lake Furniture Mountain Lake MNG580035 35 337100 8697 Hiebert Greenhouses Inc Mountain Lake MNG580035 30 111400 8698 Kennel-Aire Mfg Co Mountain Lake MNG580035 30 332600 8699 Fast Distributing Mountain Lake MNG580035 25 333100 8700 Mtn. Lake Christian School Mountain Lake MNG580035 25 611100 8701 Watonwan Enterprises Mountain Lake MNG580035 10 337100 8702 Fast Wings Mountain Lake 0.03 MNG580035 4 332900 8703 Murdock MNG580035 4 332900 8703 Murdock Elementary School Murdock MN0052990 40 611110 8704 Dooley's Petroleum Murdock MN0052990 14 424710 8705 Riley Bus Service Murdock MN0052990 11 424510 8707 First State Bank of Murdock Murdock MN0053		ŭ .					
8697 Hiebert Greenhouses Inc Mountain Lake MNG580035 30 111400 8698 Kennel-Aire Mfg Co Mountain Lake MNG580035 30 332600 8699 Fast Distributing Mountain Lake MNG580035 25 333100 8700 Mth. Lake Christian School Mountain Lake MNG580035 25 611100 8701 Watonwan Enterprises Mountain Lake MNG580035 10 337100 8702 Fast Wings Mountain Lake MNG580035 10 337100 8703 Murdock Lelementary School Murdock MNG580035 4 332900 8703 Murdock Elementary School Murdock MN0052990 40 611110 8704 Dooley's Petroleum Murdock 0.06 MN0052990 14 424710 8705 Glacial Plains Cooperative Murdock 0.06 MN0052990 9 14 424710 8705 First State Bank of Murdock Murdock MN0052990 9 9 485510							
8698 Kennel-Aire Mfg Co Mountain Lake MNG580035 30 332600 8699 Fast Distributing Mountain Lake MNG580035 25 333100 8700 Mtn.Lake Christian School Mountain Lake MNG580035 25 611100 8701 Watonwan Enterprises Mountain Lake MNG580035 10 337100 8702 Fast Wings Mountain Lake 0.03 MNG580035 4 332900 8703 Murdock Elementary School Murdock MN0052990 40 611110 8704 Dooley's Petroleum Murdock MN0052990 14 424710 8705 Glacial Plains Cooperative Murdock 0.06 MN0052990 11 424510 8706 Riley Bus Service Murdock MN0052990 9 485510 8707 First State Bank of Murdock Murdock MN0052990 9 485510 8707 First State Bank of Murdock Murdock MN0052990 6 522110 8708 Nashwauk Dairy Queen Nashwauk MN0053392 40 722100 8709 Nashwauk Schools-ISD 319 Nashwauk MN00533							
8699 Fast Distributing Mountain Lake MNG580035 25 333100 8700 Mtn. Lake Christian School Mountain Lake MNG580035 25 611100 8701 Watonwan Enterprises Mountain Lake MNG580035 10 337100 8702 Fast Wings Mountain Lake 0.03 MNG580035 4 332900 8703 Murdock Elementary School Murdock MN0052990 40 611110 8704 Dooley's Petroleum Murdock MN0052990 14 424710 8705 Glacial Plains Cooperative Murdock 0.06 MN052990 11 424510 8705 Riley Bus Service Murdock MN0052990 9 485510 8707 First State Bank of Murdock Murdock MN0052990 6 522110 8708 Nashwauk Dairy Queen Nashwauk MN0053392 40 722100 8710 Fred's IGA Nashwauk MN0053392 35 611100 8711 Nashwauk, City of Nashwauk MN0053392 13 921100 8712 Latvala Lumber Co Nashwauk MN0053392 12							
8700 Mtn.Lake Christian School Mountain Lake MNG580035 25 611100 8701 Watonwan Enterprises Mountain Lake MNG580035 10 337100 8702 Fast Wings Mountain Lake 0.03 MNG580035 4 332900 8703 Murdock Elementary School Murdock MN0052990 40 611110 8704 Dooley's Petroleum Murdock MN0052990 14 424710 8705 Glacial Plains Cooperative Murdock 0.06 MN0052990 11 424510 8706 Riley Bus Service Murdock MN0052990 9 485510 8707 First State Bank of Murdock Murdock MN0052990 6 522110 8707 First State Bank of Murdock Murdock MN0052990 6 522110 8708 Nashwauk Dairy Queen Nashwauk MN0053392 40 722100 8709 Nashwauk Schools-ISD 319 Nashwauk MN0053392 35 611100 8711 Nashwauk, City of							
8701 Watonwan Enterprises Mountain Lake MNG580035 10 337100 8702 Fast Wings Mountain Lake 0.03 MNG580035 4 332900 8703 Murdock Elementary School Murdock MN0052990 40 611110 8704 Dooley's Petroleum Murdock MN0052990 14 424710 8705 Glacial Plains Cooperative Murdock 0.06 MN0052990 11 424510 8706 Riley Bus Service Murdock MN0052990 9 485510 8707 First State Bank of Murdock Murdock MN0052990 6 522110 8708 Nashwauk Dairy Queen Nashwauk MN0053392 40 722100 8709 Nashwauk Schools-ISD 319 Nashwauk MN0053392 35 611100 8710 Fred's IGA Nashwauk MN0053392 24 445100 8711 Nashwauk, City of Nashwauk 0.02 MN0053392 13 921100 8712 Latvala Lumber Co Nashwauk							
8702 Fast Wings Mountain Lake 0.03 MNG580035 4 332900 8703 Murdock Elementary School Murdock MN0052990 40 611110 8704 Dooley's Petroleum Murdock MN0052990 14 424710 8705 Glacial Plains Cooperative Murdock 0.06 MN0052990 11 424510 8706 Riley Bus Service Murdock MN0052990 9 485510 8707 First State Bank of Murdock Murdock MN0052990 6 522110 8708 Nashwauk Dairy Queen Nashwauk MN0053392 40 722100 8709 Nashwauk Schools-ISD 319 Nashwauk MN0053392 35 611100 8710 Fred's IGA Nashwauk MN0053392 24 445100 8711 Nashwauk, City of Nashwauk 0.02 MN0053392 13 921100 8712 Latvala Lumber Co Nashwauk MN0053392 12 444100 8713 American Bk of Nashwauk Nashwauk							
8703 Murdock Elementary School Murdock MN0052990 40 611110 8704 Dooley's Petroleum Murdock MN0052990 14 424710 8705 Glacial Plains Cooperative Murdock 0.06 MN0052990 11 424510 8706 Riley Bus Service Murdock MN0052990 9 485510 8707 First State Bank of Murdock Murdock MN0052990 6 522110 8708 Nashwauk Dairy Queen Nashwauk MN0053392 40 722100 8709 Nashwauk Schools-ISD 319 Nashwauk MN0053392 35 611100 8710 Fred's IGA Nashwauk MN0053392 24 445100 8711 Nashwauk, City of Nashwauk 0.02 MN0053392 13 921100 8712 Latvala Lumber Co Nashwauk MN0053392 12 444100 8713 American Bk of Nashwauk Nashwauk MN0053392 12 44100 8714 AFSCME Union Hdqtrs				0.03			
8704 Dooley's Petroleum Murdock MN0052990 14 424710 8705 Glacial Plains Cooperative Murdock 0.06 MN0052990 11 424510 8706 Riley Bus Service Murdock MN0052990 9 485510 8707 First State Bank of Murdock Murdock MN0052990 6 522110 8708 Nashwauk Dairy Queen Nashwauk MN0053392 40 722100 8709 Nashwauk Schools-ISD 319 Nashwauk MN0053392 35 611100 8711 Fred's IGA Nashwauk MN0053392 24 445100 8711 Nashwauk, City of Nashwauk 0.02 MN0053392 13 921100 8712 Latvala Lumber Co Nashwauk MN0053392 12 444100 8713 American Bk of Nashwauk Nashwauk MN0053392 10 522100 8714 AFSCME Union Hdqtrs Nashwauk 0.02 MN0053392 7 813900 8715 Data Processing Nashwauk				0.03			
8705 Glacial Plains Cooperative Murdock 0.06 MN0052990 11 424510 8706 Riley Bus Service Murdock MN0052990 9 485510 8707 First State Bank of Murdock Murdock MN0052990 6 522110 8708 Nashwauk Dairy Queen Nashwauk MN0053392 40 722100 8709 Nashwauk Schools-ISD 319 Nashwauk MN0053392 35 611100 8710 Fred's IGA Nashwauk MN0053392 24 445100 8711 Nashwauk, City of Nashwauk 0.02 MN0053392 13 921100 8712 Latvala Lumber Co Nashwauk MN0053392 12 444100 8713 American Bk of Nashwauk Nashwauk MN0053392 10 522100 8714 AFSCME Union Hdqtrs Nashwauk 0.02 MN0053392 7 813900 8715 Data Processing Nashwauk MN0053392 5 518200 8716 Blue Goose Restaurant Alexandria MN0040738 25 722100 8717 Nelson Creamery Alexandria MN0040738 <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></td<>		-					
8706 Riley Bus Service Murdock MN0052990 9 485510 8707 First State Bank of Murdock Murdock MN0052990 6 522110 8708 Nashwauk Dairy Queen Nashwauk MN0053392 40 722100 8709 Nashwauk Schools-ISD 319 Nashwauk MN0053392 35 611100 8710 Fred's IGA Nashwauk MN0053392 24 445100 8711 Nashwauk, City of Nashwauk 0.02 MN0053392 13 921100 8712 Latvala Lumber Co Nashwauk MN0053392 12 444100 8713 American Bk of Nashwauk Nashwauk MN0053392 10 522100 8714 AFSCME Union Hdqtrs Nashwauk 0.02 MN0053392 7 813900 8715 Data Processing Nashwauk MN0053392 5 518200 8716 Blue Goose Restaurant Alexandria MN0040738 25 722100 8718 Corral & Crystal Bar <				0.06			
8707 First State Bank of Murdock Murdock MN0052990 6 522110 8708 Nashwauk Dairy Queen Nashwauk MN0053392 40 722100 8709 Nashwauk Schools-ISD 319 Nashwauk MN0053392 35 611100 8710 Fred's IGA Nashwauk MN0053392 24 445100 8711 Nashwauk, City of Nashwauk 0.02 MN0053392 13 921100 8712 Latvala Lumber Co Nashwauk MN0053392 12 444100 8713 Arerican Bk of Nashwauk Nashwauk MN0053392 10 522100 8714 AFSCME Union Hdqtrs Nashwauk 0.02 MN0053392 7 813900 8715 Data Processing Nashwauk 0.02 MN0053392 5 518200 8716 Blue Goose Restaurant Alexandria MN0040738 25 722100 8717 Nelson Creamery Alexandria 1.06 MN0040738 17 311500 8718				0.00			
8708 Nashwauk Dairy Queen Nashwauk MN0053392 40 722100 8709 Nashwauk Schools-ISD 319 Nashwauk MN0053392 35 611100 8710 Fred's IGA Nashwauk MN0053392 24 445100 8711 Nashwauk, City of Nashwauk 0.02 MN0053392 13 921100 8712 Latvala Lumber Co Nashwauk MN0053392 12 444100 8713 Arerican Bk of Nashwauk Nashwauk MN0053392 10 522100 8714 AFSCME Union Hdqtrs Nashwauk 0.02 MN0053392 7 813900 8715 Data Processing Nashwauk MN0053392 5 518200 8716 Blue Goose Restaurant Alexandria MN0040738 25 722100 8717 Nelson Creamery Alexandria 1.06 MN0040738 17 311500 8718 Corral & Crystal Bar Alexandria MN0040738 4 722400 8719 Diamond Jim's </td <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td>		,					
8709 Nashwauk Schools-ISD 319 Nashwauk MN0053392 35 611100 8710 Fred's IGA Nashwauk MN0053392 24 445100 8711 Nashwauk, City of Nashwauk 0.02 MN0053392 13 921100 8712 Latvala Lumber Co Nashwauk MN0053392 12 444100 8713 American Bk of Nashwauk Nashwauk MN0053392 10 522100 8714 AFSCME Union Hdqtrs Nashwauk 0.02 MN0053392 7 813900 8715 Data Processing Nashwauk MN0053392 5 518200 8716 Blue Goose Restaurant Alexandria MN0040738 25 722100 8717 Nelson Creamery Alexandria 1.06 MN0040738 17 311500 8718 Corral & Crystal Bar Alexandria MN0040738 4 722400 8719 Diamond Jim's Alexandria MN0040738 4 722400 8720 Medtox Laboratory Inc							
8710 Fred's IGA Nashwauk MN0053392 24 445100 8711 Nashwauk, City of Nashwauk 0.02 MN0053392 13 921100 8712 Latvala Lumber Co Nashwauk MN0053392 12 444100 8713 American Bk of Nashwauk Nashwauk MN0053392 10 522100 8714 AFSCME Union Hdqtrs Nashwauk 0.02 MN0053392 7 813900 8715 Data Processing Nashwauk MN0053392 5 518200 8716 Blue Goose Restaurant Alexandria MN0040738 25 722100 8717 Nelson Creamery Alexandria 1.06 MN0040738 17 311500 8718 Corral & Crystal Bar Alexandria MN0040738 9 722400 8719 Diamond Jim's Alexandria MN0040738 4 722400 8720 Medtox Laboratory Inc St. Paul MN0029815 450 621511							
8711 Nashwauk, City of Nashwauk 0.02 MN0053392 13 921100 8712 Latvala Lumber Co Nashwauk MN0053392 12 444100 8713 American Bk of Nashwauk Nashwauk MN0053392 10 522100 8714 AFSCME Union Hdqtrs Nashwauk 0.02 MN0053392 7 813900 8715 Data Processing Nashwauk MN0053392 5 518200 8716 Blue Goose Restaurant Alexandria MN0040738 25 722100 8717 Nelson Creamery Alexandria 1.06 MN0040738 17 311500 8718 Corral & Crystal Bar Alexandria MN0040738 9 722400 8719 Diamond Jim's Alexandria MN0040738 4 722400 8720 Medtox Laboratory Inc St. Paul MN0029815 450 621511							
8712 Latvala Lumber Co Nashwauk MN0053392 12 444100 8713 American Bk of Nashwauk Nashwauk MN0053392 10 522100 8714 AFSCME Union Hdqtrs Nashwauk 0.02 MN0053392 7 813900 8715 Data Processing Nashwauk MN0053392 5 518200 8716 Blue Goose Restaurant Alexandria MN0040738 25 722100 8717 Nelson Creamery Alexandria 1.06 MN0040738 17 311500 8718 Corral & Crystal Bar Alexandria MN0040738 9 722400 8719 Diamond Jim's Alexandria MN0040738 4 722400 8720 Medtox Laboratory Inc St. Paul MN0029815 450 621511				0.02			
8713 American Bk of Nashwauk Nashwauk MN0053392 10 522100 8714 AFSCME Union Hdqtrs Nashwauk 0.02 MN0053392 7 813900 8715 Data Processing Nashwauk MN0053392 5 518200 8716 Blue Goose Restaurant Alexandria MN0040738 25 722100 8717 Nelson Creamery Alexandria 1.06 MN0040738 17 311500 8718 Corral & Crystal Bar Alexandria MN0040738 9 722400 8719 Diamond Jim's Alexandria MN0040738 4 722400 8720 Medtox Laboratory Inc St. Paul MN0029815 450 621511				0.02			
8714 AFSCME Union Hdqtrs Nashwauk 0.02 MN0053392 7 813900 8715 Data Processing Nashwauk MN0053392 5 518200 8716 Blue Goose Restaurant Alexandria MN0040738 25 722100 8717 Nelson Creamery Alexandria 1.06 MN0040738 17 311500 8718 Corral & Crystal Bar Alexandria MN0040738 9 722400 8719 Diamond Jim's Alexandria MN0040738 4 722400 8720 Medtox Laboratory Inc St. Paul MN0029815 450 621511							
8715 Data Processing Nashwauk MN0053392 5 518200 8716 Blue Goose Restaurant Alexandria MN0040738 25 722100 8717 Nelson Creamery Alexandria 1.06 MN0040738 17 311500 8718 Corral & Crystal Bar Alexandria MN0040738 9 722400 8719 Diamond Jim's Alexandria MN0040738 4 722400 8720 Medtox Laboratory Inc St. Paul MN0029815 450 621511				0.02			
8716 Blue Goose Restaurant Alexandria MN0040738 25 722100 8717 Nelson Creamery Alexandria 1.06 MN0040738 17 311500 8718 Corral & Crystal Bar Alexandria MN0040738 9 722400 8719 Diamond Jim's Alexandria MN0040738 4 722400 8720 Medtox Laboratory Inc St. Paul MN0029815 450 621511				0.02			
8717 Nelson Creamery Alexandria 1.06 MN0040738 17 311500 8718 Corral & Crystal Bar Alexandria MN0040738 9 722400 8719 Diamond Jim's Alexandria MN0040738 4 722400 8720 Medtox Laboratory Inc St. Paul MN0029815 450 621511		0					
8718 Corral & Crystal Bar Alexandria MN0040738 9 722400 8719 Diamond Jim's Alexandria MN0040738 4 722400 8720 Medtox Laboratory Inc St. Paul MN0029815 450 621511				1.06			
8719 Diamond Jim's Alexandria MN0040738 4 722400 8720 Medtox Laboratory Inc St. Paul MN0029815 450 621511				1.00			
8720 Meditox Laboratory Inc St. Paul MN0029815 450 621511		-					

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	
	Hypro Corp Lear Inc	St. Paul		MN0029815	250	33391
	Extendicare Homes, Inc	St. Paul		MN0029815	175	62331
	Next Day Gourmet	St. Paul		MN0029815	175	42349
	Print Craft	St. Paul		MN0029815	175	32311
	Sparta Foods	St. Paul		MN0029815	175	31199
8727	Donatelle Plastics	St. Paul		MN0029815	150	32619
8728	Cub Foods	St. Paul		MN0029815	125	44511
8729	Trend Enterprises, Inc	St. Paul		MN0029815	125	56211
	Minnesota Masonic Homes North Ridge	St. Paul		MN0029815	1050	62311
	Egan Companies	St. Paul		MN0029815	625	23820
	Gage In-Store Marketing	St. Paul		MN0029815	350	33990
	Intermet	St. Paul		MN0029815	340	33150
		St. Paul				45430
	Simon Delivers, Inc.			MN0029815	240	
	St Therese Care Center	St. Paul		MN0029815	200	62310
	Paddock Laboratories	St. Paul		MN0029815	165	32540
	Ambassador Nursing Home	St. Paul		MN0029815	160	62310
8742	Navarre Corp	St. Paul		MN0029815	150	45410
8743	Gaines & Hanson Printing Co	St. Paul		MN0029815	140	32310
8745	Clariant Corporation	St. Paul	0.10	MN0029815	120	32520
	Oildyne Division	St. Paul		MN0029815	120	33390
	DisplayMasters Inc	St. Paul		MN0029815	115	71130
	Pac One	St. Paul		MN0029815	110	56190
		St. Paul		MN0029815	100	54160
	Mello Smello-Internatural Designs Inc					
	New London-Spicer Public Schools	Spicer		MN0052752	240	61110
	Glenoaks Care Ctr	Spicer		MN0052752	70	6231
8753	Hillcrest Restaurant	Spicer		MN0052752	42	7221
8754	Cable Spinning Equipment Co Inc	Spicer		MN0052752	40	4236
8755	Peterson Bus Svc	Spicer		MN0052752	35	4855
8756	Berry Test Sets	Spicer		MN0052752	23	4236
	Mid-State Telephone	Spicer		MN0052752	22	5171
	Big Store Grocery	Spicer		MN0052752	20	4451
	Farmers St Bk of New London	Spicer		MN0052752	19	5221
	McBroom Construction	Spicer		MN0052752	17	2381
	Rambow Inc	Spicer		MN0052752	17	3345
	American Legion Post #537	Spicer		MN0052752	15	8134
8763	Concrete Products	Spicer		MN0052752	15	3273
8764	United Minnesota Bk	Spicer		MN0052752	12	5221
3765	Dahmes Stainless	Spicer		MN0052752	9	4238
	New Prague Public Schools	New Prague		MN0020150	375	6111
	Chart Industries/MVE	New Prague		MN0020150	300	3327
	Queen Of Peace Hospital	New Prague		MN0020150	285	6221
	·					
	Mala Strana Health Care Ctr	New Prague		MN0020150	135	6231
	Econofoods	New Prague		MN0020150	77	4451
	Scott Equipment	New Prague		MN0020150	70	4238
8772	Con Agra	New Prague	6.88	MN0020150	67	3112
8773	Schumacher's New Prague	New Prague		MN0020150	60	7211
8774	Suel Printing Co.	New Prague		MN0020150	37	3231
	MN Valley Ag Coop	New Prague		MN0020150	31	4247
	Busch Bro, Machining	New Prague		MN0020150	25	3332
	Community Security Bank	New Prague		MN0020150	23	5221
	State Bank of New Prague	New Prague		MN0020150	23	5221
	RaDon Inc	New Prague		MN0020150	22	3159
	Marquette Bank	New Prague		MN0020150	21	5221
8781	Kratochvil Construction	New Prague		MN0020150	20	2362
8784	New Ulm Medical Center	New Ulm	0.31	MN0030066	480	6221
8785	New Ulm Public Schools-ISD#88	New Ulm		MN0030066	281	6111
8786	J & R Schugal Trucking Inc	New Ulm	11.38	MN0030066	220	4841
	Minnesota Valley Testing Laboratories	New Ulm		MN0030066	130	5413
	Dittrich Specialties	New Ulm		MN0030066	125	3344
	Holm Industries	New Ulm		MN0030066	120	3399
	Caterpillar Paving Co	New Ulm		MN0030066	97	3331
	PGI Mailers	New Ulm		MN0030066	85	5619
	Winding's Inc	New Ulm		MN0030066	84	3353
8794	MTS Automation	New Ulm		MN0030066	75	3353
	QMC Technologies	New Ulm		MN0030066	70	3353
	D & A Truck Line	New Ulm		MN0030066	50	4841
8797						
	Palm Beach Marinecraft	New Ulm		MN0030066	48	3366

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	employee_count 38 372	•
8803 Telnet Systems Inc New York Mills MN0054330 8804 Elders Home Inc New York Mills MN0054330	372	
8804 Elders Home Inc New York Mills MN0054330	512	336600
	142	561900
8805 New York Mills Schools-ISD #553 New York Mills MN0054330	124	
1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	88	
8806 Otter Tail-Wadena CAC New York Mills MN0054330	53	
8807 Embroidery Studio New York Mills MN0054330	26	
8808 Modern Assemblies New York Mills MN0054330	8	
8809 Fritz Co St. Paul 0.03 MN0029815	100	
8810 Northern States Power Co St. Paul MN0029815	100	
8811 Knox Lumber Co St. Paul MN0029815	93	
8812 Tinucci's Restaurant & Catering St. Paul MN0029815	70	
8813 Metro Gravel St. Paul MN0029815	39	
8814 Diversified Manufacturing Corp St. Paul 0.04 MN0029815	35	
8815 Newport Cold Storage St. Paul 0.02 MN0029815	35	
8816 MidAmerica Bk St. Paul MN0029815	21	
8817 Hewitt Machine & Mfg Inc Searles MNG580037	60	
8818 Nicollet Public Schools Searles MNG580037 8819 Schmidts' Meat Market Searles 0.16 MNG580037	55	
	35	
8820 Nicollet Manufacturing Searles MNG580037 8821 Davisco International Searles 0.65 MNG580037	15 14	
8821 Davisco International Searies 0.65 MNG580037 8822 Nicollet St Bk Searles MNG580037	14	
8822 Nicollet St BK Searles MNG580037 8823 Nicollet-New Ulm Vet Clinic Searles MNG580037	9	
	8	
8824 George's City Meats Searles 0.04 MNG580037 8825 Crystal Co-op Searles MNG580037	7	
8826 Nicollet Plumbing & Heating Searles MNG580037	7	
8827 North Branch Schools-ISD #138 North Branch MN0024350	382	
8828 Tanger Factory Outlet North Branch MN0024350	300	
8829 Green Acres Country Care Ctr North Branch MN0024350	150	
8830 Nelson's Country Market North Branch MN0024350	80	
8831 Superior Engineering Inc North Branch 0.00 MN0024350	50	
8832 Branch Manufacturing Co North Branch 0.00 MN0024350	49	
8833 Peterson's North Branch Mill North Branch MN0024350	47	
8834 Swede O Inc North Branch 1.10 MN0024350	38	
8835 Central Chevrolet Chrysler Inc North Branch MN0024350	35	
8836 Zinpro North Branch MN0024350	25	
8837 AmericInn Motel & Suites North Branch MN0024350	20	
8838 Community NB of Branch North Branch MN0024350	20	
8839 First National Bank of North Branch North Branch MN0024350	20	
8840 Lamperts Lumber North Branch MN0024350	20	
8841 Olson Power & Equipment North Branch MN0024350	18	424900
8842 Slumberland North Branch MN0024350	16	
8843 Heatco, Inc North Branch MN0024350	15	
8844 Jennings DeWan & Anderson North Branch MN0024350	14	541100
8845 Anderson Koch Ford North Branch MN0024350	13	441100
8846 Realty World Dresel North Branch MN0024350	10	531200
8847 Reider Machine North Branch 0.00 MN0024350	9	332700
8848 Menne Printing & Graphics DBA Kopy Boy North Branch MN0024350	5	323100
8849 Product Fabricators Inc North Branch 0.03 MN0024350	5	332900
8850 Chisago County Household Hazard Waste Facility North Branch MN0024350	3	
8851 G&K Builders North Branch MN0024350	2	236200
8852 Carlson Craft Social 3.63 ISTS	1093	323119
8853 Carlson Craft Commercial 2.17 ISTS	653	323119
8854 Kato Engineering/Reliance Electric ISTS	476	
8855 Precision Press 1.17 ISTS	353	323119
8856 Taylor Corp ISTS	335	
8857 Mico Inc ISTS	310	
8858 Carlson Craft - Catalog Division 0.79 ISTS	237	323119
8859 So Central Tech College - Mankato ISTS	212	
8860 Masterpiece Studios 0.66 ISTS	200	323119
8861 CGI - Commercial 0.52 ISTS	156	
8862 Fine Impressions Inc 0.51 ISTS	155	
8863 Carlson Craft Specialty Products 0.48 ISTS	144	323119
8864 Wis-Pak Inc 3.92 ISTS	135	
8865 Thin Film Technology 2.19 ISTS	130	
8866 Great Papers 0.38 ISTS	113	323119
8867 Ponci-Cola Bottling Co	85	
8867 Pepsi-Cola Bottling Co 2.47 ISTS	80	325900

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	
8869	Lindsay Window & Door Co			ISTS	50	327200
	Golden Heart Daycare			ISTS	35	
8871	Valley Bank			ISTS	35	
8872	Interactive Technologies Inc	St. Paul		MN0029815	400	335300
8873	Target	St. Paul		MN0029815	360	452100
8874	Aetrium Inc	St. Paul		MN0029815	150	334400
8875	Lillie Suburban Newspapers Inc	St. Paul		MN0029815	125	511100
8876	Berwald Roofing Inc	St. Paul		MN0029815	80	238100
	Delta Engineering Inc	St. Paul		MN0029815	80	541300
	Postal Employees Credit Union	St. Paul		MN0029815	67	522100
	Ground Round	St. Paul		MN0029815	60	
	Custom Millwork	St. Paul		MN0029815	50	
	TA Schifsky & Sons Inc	St. Paul		MN0029815	45	
	Heritage National Bank	St. Paul		MN0029815	26	
	St Olaf College	Northfield		MN0029813	840	
	0					
	Malt-O-Meal Co	Northfield		MN0024368	811	311200
	Carleton College	Northfield		MN0024368	678	
	Sheldahl Inc	Northfield		MN0024368	550	
	Northfield Public Schools-ISD#659	Northfield		MN0024368	500	
8889	Northfield Hospital	Northfield	0.22	MN0024368	332	622100
8890	Northfield, City of	Northfield	0.28	MN0024368	200	921100
8891	Three Links Care Ctr	Northfield		MN0024368	180	623100
	Allina Medical Clinic	Northfield		MN0024368	170	
	Cardinal Insulated Glass	Northfield		MN0024368	140	327200
	Frigoscandia Equipment	Northfield		MN0024368	130	
	Laura Baker School	Northfield		MN0024368	125	
	Main Stream Publications	Northfield		MN0024368	108	
	Northfield Retirement Ctr	Northfield		MN0024368	96	
	College City Beverage	Northfield		MN0024368	67	424800
	Northome Healthcare Ctr	Northome		MN0049158	91	623100
	Northome School Dist #363	Northome		MN0049158	46	
	Ellen's Cafe	Northome		MN0049158	10	
8902	Northland Community Bank	Northome		MN0049158	8	522100
8903	Northland Medical Center	Northome	0.01	MN0049158	8	
8904	Developmental Achievement Ctr	Northome		MN0049158	7	611500
8905	Northome True Value	Northome		MN0049158	7	452900
8906	Northome Grocery	Northome		MN0049158	5	445100
	Bongards' Creameries	Norwood Young America	17.17	MN0024392	275	
	Tino's (Division of SSE Manufacturing)	Norwood Young America		MN0024392	185	
	School District #108	Norwood Young America		MN0024392	149	
	State Bank of Norwood Young America	Norwood Young America		MN0024392	23	
	Lano's Equipment	Norwood Young America		MN0024392	22	
		St. Paul			300	
	Andersen Window Corporation			MN0029998		
	MCF - Oak Park Heights	St. Paul		MN0029998	280	
	Stillwater Area High School	St. Paul		MN0029998	215	
	Routson Motors	St. Paul		MN0029998	160	
8916	Rainbow Foods	St. Paul		MN0029998	125	445100
	Wal-Mart	St. Paul		MN0029998	125	453900
8918	Stillwater Motors	St. Paul		MN0029998	105	441100
	United States Postal Service Carrier Annex	St. Paul		MN0029998	100	
	Menards	St. Paul		MN0029998	60	
	MN Dept of Transportation	St. Paul		MN0029815	300	
	Washington County Human Svcs	St. Paul		MN0029815	176	
	Ryder Student Transportation	St. Paul		MN0029815	140	
	,					
	Rainbow Foods	St. Paul		MN0029815	135	
	Menard's	St. Paul		MN0029815	120	
	Classic Manufacturing	St. Paul		MN0029815	100	33270
	Polar Plastics Inc	St. Paul		MN0029815	75	
	Spartan Promotional Group Inc	St. Paul		MN0029815	55	31320
8931	Ogilvie Public Schools	Ogilvie		MN0021997	115	
8932	Camco Inc	Ogilvie		MN0021997	35	
8933	Tower Bar & Lounge	Ogilvie		MN0021997	10	72240
	Bill's Well Drilling	Ogilvie		MN0021997	7	
	Double J Cafe	Ogilvie		MN0021997	7	
	Henschel's Thriftway	Ogilvie		MN0021997	7	445100
	Co-op Feed Mill	Ogilvie		MN0021997	6	
	US Post Office	Ogilvie		MN0021997 MN0021997	6	
0020		LIUMA		IVIINUU/1997	ı b	4911()(
	Junnila Dental Office	Ogilvie		MN0021997	5	

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
	Princeton Bank - Ogilvie	Ogilvie		MN0021997	5	522100
8941	Vasko Rubbish Removal	Ogilvie		MN0021997	4	
	Northpost Inc	Ogilvie	0.00	MN0021997	2	
	Oklee Public Schools	Oklee		MNG580038	55	
	Oklee Farmers Elevator	Oklee		MNG580038	9	
	Security St Bk of Oklee	Oklee		MNG580038	8	
	Oklee Lumber	Oklee		MNG580038	5	
	Renville, County of	Olivia	0.27	MN0020907	190	
	BOLD Schools ISD #2534	Olivia	2.05	MN0020907	144	
	Renville County Hospital	Olivia	0.05	MN0020907	81	622100
	Olivia Healthcare Center	Olivia		MN0020907	68	
	Mycogen Seed Co Olivia, City of	Olivia	0.05	MN0020907	50	
	Prairie Family Practice	Olivia Olivia		MN0020907 MN0020907	34 24	
	Sheep Shedde Restaurant	Olivia	0.03	MN0020907	22	
	Terry's Holiday Market	Olivia		MN0020907	22	
	Elk River Concrete Products	Olivia		MN0020907	16	
	Sunrise Packaging, Inc.	Olivia		MN0020907	15	
	Dekalb Genetics Corporation	Olivia		MN0020907	12	
	Precision Soya of Minnesota LLC	Olivia		MN0020907	12	
	Ortonville Public School Dist #62	Ortonville		MN0051152	214	
	Ortonville Area Health Services	Ortonville	0.12	MN0051152	180	
	Ortonville, City of	Ortonville		MN0051152	96	
	Big Stone County	Ortonville		MN0051152	65	
	Hasslen Construction Co	Ortonville	2.50	MN0051152	60	
	Pepsi-Cola	Ortonville	2.09	MN0051152	31	312100
8966	Bill's SuperValue Plus	Ortonville		MN0051152	30	445100
	Minnwest Bk Ortonville	Ortonville		MN0051152	21	522100
8968	Dallas Hanson Construction	Ortonville		MN0051152	18	236100
8969	Northside Medical Center	Ortonville		MN0051152	17	524100
8970	Econolodge	Ortonville		MN0051152	15	721100
	Pizza Ranch	Ortonville		MN0051152	15	722100
	Ortonville Stone Company	Ortonville		MN0051152	14	
	US Post Office	Ortonville		MN0051152	10	
	CenBank	Ortonville		MN0051152	8	
	Osakis Public Schools	Osakis		MN0020028	96	
	Community Memorial Home	Osakis		MN0020028	90	
	Rollie's Sales & Service	Osakis		MN0020028	38	
	Just Like Grandma's	Osakis		MN0020028	34	
	Lind-Rite Precision Engineering Inc	Osakis	0.00	MN0020028	24	
	Food-N-Fuel	Osakis	0.00	MN0020028	17	447100
	Hensley Inc First NB of Osakis	Osakis Osakis	0.83	MN0020028	16 14	
	Home Quality Foods	Osakis		MN0020028 MN0020028	13	
	St Agnes School	Osakis		MN0020028	12	
	Osakis Clinic	Osakis	0.01	MN0020028	11	621100
	Osakis Creamery Assn	Osakis		MN0020028	11	311500
	Osakis, City of	Osakis		MN0020028	10	
	Thrifty White Drug	Osakis		MN0020028	9	
	Mark's Welding, Inc.	Osakis		MN0020028	5	
	Osakis Silo Co.	Osakis		MN0020028	5	
	Maus Fabrication, Inc.	Osakis		MN0020028	3	
	Osseo Public Schools	St. Paul		MN0029815	330	
	Berkshire Residence	St. Paul		MN0029815	125	
	Ceramic Industrial Coatings	St. Paul		MN0029815	55	
	Osseo Maple Grove Press	St. Paul		MN0029815	50	
8997	Riverwood Conference Center	Otsego		MN0064190	85	
	Otsego Elementary School	Otsego		MN0064190	75	611100
	Long Haul Trucking	Otsego		MN0064190	35	
	Rainbow Daycare & Preschool	Otsego		MN0064190	19	
	F&F Food Mart	Otsego		MN0064190	18	
	Bank of Elk River at Otsego	Otsego		MN0064190	15	
	Darkenwald Inc	Otsego		MN0064190	14	
	Fun City	Otsego		MN0064190	12	
	Tom Thumb	Otsego		MN0064190	10	
	Lef Co Farm Inc	Otsego		MN0064190	7	
	Elk River Box Factory	Otsego		MN0064190	6	
9008	Apex Business Center	Otsego		MN0064190	5	493100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
9009	Riverbend Park	Otsego		MN0064190	5	721200
9010	Marquette Bank of Otsego	Otsego		MN0064190	4	522100
9011	Riverview Liquorette	Otsego		MN0064190	4	445300
9012	Viracon/Curvlite Inc	Owatonna		MN0051284	1650	327200
9013	Federated Insurance Co	Owatonna		MN0051284	1475	
	Truth Hardware	Owatonna	1.75	MN0051284	901	
	Spx Corp-Otc Div	Owatonna		MN0051284	800	
	Owatonna Public School District 761	Owatonna	0.02	MN0051284	750	
	Wenger Corp	Owatonna		MN0051284	460	
	Jostens	Owatonna		MN0051284	376	
	Cybex Corp	Owatonna		MN0051284	358	
	Cabela's	Owatonna		MN0051284	353	
	Spx Corp-Power Team Div	Owatonna		MN0051284	350	
	Steele County	Owatonna		MN0051284	317	
	Owatonna Hospital	Owatonna	0.14	MN0051284	215	
9024	Chiquita Processed Foods	Owatonna	9.90	MN0051284	213	311400
9025	Mustang Manufacturing Co	Owatonna		MN0051284	200	423800
9026	National Computer Systems	Owatonna		MN0051284	180	323100
9028	Owatonna Clinic	Owatonna	0.20	MN0051284	145	621100
	Blount Inc	Owatonna		MN0051284	137	
	Qwest	Owatonna	0.00	MN0051284	130	-
	Wal-Mart	Owatonna		MN0051284	123	
	Hy-Vee Food Store	Owatonna		MN0051284	123	
						-
	Target	Owatonna		MN0051284	122	
	Case Wise Foods	Owatonna		MN0051284	120	
	City of Owatonna	Owatonna	0.16	MN0051284	115	
	Slidell, Inc.	Owatonna		MN0051284	108	
9037	McQuay International	Owatonna		MN0051284	103	333400
9038	Lamb-Weston/RDO Frozen		25.57	MN0056332	550	311400
9039	St. Joseph's Area Health Services		0.19	MN0056332	300	622100
	Independent School District #309			MN0056332	270	611100
	Straight River Manufacturing			MN0056332	211	
	J&B Foods			MN0056332	175	
	Heritage Living Center			MN0056332	170	
	Hubbard County		0.22	MN0056332	164	
			0.23			
	North Star Orthodontics		0.00	MN0056332	96	
	Dakota Clinic		0.08	MN0056332	56	
	Citizens Bank			MN0056332	43	
	Northwoods Bank			MN0056332	43	
9049	L&M Fleet Suppy			MN0056332	40	
9050	Wonewok Conference Center (3M)			MN0056332	34	721100
9051	City of Park Rapids		0.04	MN0056332	32	921100
9052	Candle Enterprises			MN0056332	28	339900
9053	State Bank of Park Rapids			MN0056332	27	522100
	Itasca-Mantrap Electric Co-op			MN0056332	25	
	Thielen Motors, Inc.			MN0056332	24	-
	Darchuk's Fabrication		0.00	MN0056332	20	
	Americinn of Park Rapids		0.00	MN0056332	17	
	Straight River Real Estate			MN0056332	16	
	MN DNR-Forestry			MN0056332	11	
	St William's Nursing Home				110	
	Parkers Prairie Schools-ISD #547				78	
9062	Kennys Candy Co		0.02		66	
9063	Daniels Food Equipment Inc		0.21		30	332900
	Carlson Trucking Inc		1.03		20	
	Dick's Standard Service				17	-
	Midwest Telephone Co				14	
	Parkers Bus Co Inc				14	
	Nibblers Inn				13	
	Midwest Bank, NA				12	
			0.00			
	Parkers Prairie, City of		0.02		12	
	Madison's Food Store Inc				11	
	Parkers Trumm Drug				10	
	US Post Office				10	
9074	Prairie Implement Inc				9	
9075	Paynesville Community Hospital	Paynesville	0.12	MN0020168	190	622100
		-		MN0020168	148	-
9076	Paynesville School Dist 741	Paynesville		101110020100	140	011100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

9079	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
	Stearns Manufacturing Co	Paynesville		MN0020168	60	423900
	Good Samaritan Care Ctr	Paynesville		MN0020168	48	
9080	Master Mark Plastic Products	Paynesville	0.03	MN0020168	40	325200
9081	Quality Checked Plastics	Paynesville	0.03	MN0020168	40	325200
9082	United Parcel Svc	Paynesville		MN0020168	34	492100
9083	Jerry's Jack & Jill	Paynesville		MN0020168	28	445100
9084	Wally's G & T Foods	Paynesville		MN0020168	22	445100
	Louis Industries Inc	Paynesville		MN0020168	20	
	Paynesville, City of	Paynesville	0.03	MN0020168	19	
	Farmer's Union	Paynesville	0.00	MN0020168	17	
			2.25			
	West Central Turkeys Inc	Pelican Rapids	2.25	MN0022225	750	
	Pelican Rapids Schools-ISD 548	Pelican Rapids		MN0022225	153	
	Good Samaritan Center	Pelican Rapids		MN0022225	96	
	Meritcare Pelican Rapids	Pelican Rapids	0.12	MN0022225	92	
9092	Lake Region Co-op Electrical	Pelican Rapids		MN0022225	72	
9093	Gerald N Evenson Inc	Pelican Rapids	0.00	MN0022225	70	484100
9094	Attachments International Inc.	Pelican Rapids	0.17	MN0022225	25	332900
	Blue Water Restaurant & Sports Bar	Pelican Rapids		MN0022225	50	
	Bridges Bistro & Tavern	Pelican Rapids		MN0022225	50	
	BTD Manufacturing Inc.	Pelican Rapids		MN0022225	50	
	Card Brokers of America	Pelican Rapids		MN0022225	50	
	I .	·	0.07			
	City of Pelican Rapids	Pelican Rapids	0.07	MN0022225	50	
	Larry's Supermarket	Pelican Rapids		MN0022225	50	
	Minn-Dak Transport Inc.	Pelican Rapids	0.00	MN0022225	50	
9102	Pelican Drug	Pelican Rapids		MN0022225	50	446100
9103	Pelican Super Valu	Pelican Rapids		MN0022225	50	445100
9104	Southtown Citgo	Pelican Rapids		MN0022225	50	447100
	KLN Enterprises Inc.	Perham	10.02	MN0024473	517	
	Perham Memorial Hospital & Home	Perham		MN0024473	295	
	Perham Public School	Perham	0.13	MN0024473	260	
	Arvig Communication Systems	Perham		MN0024473	238	
	Royal Resources	Perham		MN0024473	107	
	Tuffy's Pet Foods	Perham		MN0024473	80	
9111	Grocery Stores	Perham		MN0024473	70	
9112	Perham Co-op Creamery	Perham	3.75	MN0024473	60	311500
9113	Primera Foods	Perham		MN0024473	60	112300
9114	Hammers Construction	Perham		MN0024473	50	236100
	United Community Bank	Perham		MN0024473	46	
	Land O'Lakes	Perham		MN0024473	44	
	Bauck Busing	Perham	2.13	MN0024473	32	
	•		0.04			
	City of Perham	Perham	0.04	MN0024473	31	
	CC&I Engineering	Perham		MN0024473	30	
9120	RD Offutt Co.	Perham		MN0024473	30	
9121	Manion Lumber	Pillager		MN0048909	75	423300
9122	Pillager Public School- ISD116	Pillager		MN0048909	64	611110
	Lakes Employment Opportunities	Pillager		MN0048909	6	
	School District 578	Pine City		MN0021784	205	
	Imation	Pine City		MN0021784	200	
	Pine Technical college	Pine City		MN0021784	150	
	Lakeside Medical Center, Inc.	Pine City		MN0021784	135	
	Pine County	Pine City		MN0021784	135	
9129	Product Fabrication	Pine City	0.79	MN0021784	115	332900
	Atscott Manufacturing	Pine City	0.19	MN0021784	100	333500
9130	Shafer electronic	Pine City		MN0021784	40	
		Pine City		MN0021784	35	
9131	Hunt Bus Service	FILE CITY				
9131 9132	Hunt Bus Service DAKA			MN0021784	25	
9131 9132 9133	DAKA	Pine City	1 20	MN0021784 MN0024511	25	
9131 9132 9133 9134	DAKA DS Manufacturing Inc	Pine City Pine Island	1.89	MN0024511	170	332800
9131 9132 9133 9134 9135	DAKA DS Manufacturing Inc Pine Haven Care Ctr	Pine City Pine Island Pine Island		MN0024511 MN0024511	170 150	332800 623100
9131 9132 9133 9134 9135 9136	DAKA DS Manufacturing Inc Pine Haven Care Ctr Land O'Lakes Inc	Pine City Pine Island Pine Island Pine Island Pine Island		MN0024511 MN0024511 MN0024511	170 150 130	332800 623100 445200
9131 9132 9133 9134 9135 9136 9137	DAKA DS Manufacturing Inc Pine Haven Care Ctr Land O'Lakes Inc Pine Island Public Schools	Pine City Pine Island Pine Island Pine Island Pine Island Pine Island	0.65	MN0024511 MN0024511 MN0024511 MN0024511	170 150 130 123	332800 623100 445200 611100
9131 9132 9133 9134 9135 9136 9137 9138	DAKA DS Manufacturing Inc Pine Haven Care Ctr Land O'Lakes Inc Pine Island Public Schools Progressive Tool & Mfg Co	Pine City Pine Island	0.65	MN0024511 MN0024511 MN0024511 MN0024511 MN0024511	170 150 130 123 59	332800 623100 445200 611100 332700
9131 9132 9133 9134 9135 9136 9137 9138	DAKA DS Manufacturing Inc Pine Haven Care Ctr Land O'Lakes Inc Pine Island Public Schools	Pine City Pine Island Pine Island Pine Island Pine Island Pine Island	0.65	MN0024511 MN0024511 MN0024511 MN0024511	170 150 130 123	332800 623100 445200 611100 332700
9131 9132 9133 9134 9135 9136 9137 9138 9139	DAKA DS Manufacturing Inc Pine Haven Care Ctr Land O'Lakes Inc Pine Island Public Schools Progressive Tool & Mfg Co	Pine City Pine Island	0.65	MN0024511 MN0024511 MN0024511 MN0024511 MN0024511	170 150 130 123 59	332800 623100 445200 611100 332700 424500
9131 9132 9133 9134 9135 9136 9137 9138 9139 9140	DAKA DS Manufacturing Inc Pine Haven Care Ctr Land O'Lakes Inc Pine Island Public Schools Progressive Tool & Mfg Co Pine Island Farmer's Elevator Whispering Pines Good Samaritan	Pine City Pine Island	0.65	MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0046388	170 150 130 123 59 36 170	332800 623100 445200 611100 332700 424500 623100
9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141	DAKA DS Manufacturing Inc Pine Haven Care Ctr Land O'Lakes Inc Pine Island Public Schools Progressive Tool & Mfg Co Pine Island Farmer's Elevator Whispering Pines Good Samaritan Pine River Public Schools	Pine City Pine Island Pine Risland Pine River Pine River	0.65	MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0046388 MN0046388	170 150 130 123 59 366 170 165	332800 623100 445200 611100 332700 424500 623100 611100
9131 9132 9133 9134 9135 9136 9137 9138 9140 9141 9142	DAKA DS Manufacturing Inc Pine Haven Care Ctr Land O'Lakes Inc Pine Island Public Schools Progressive Tool & Mfg Co Pine Island Farmer's Elevator Whispering Pines Good Samaritan Pine River Public Schools Houston Ford Inc	Pine City Pine Island Pine River Pine River Pine River	0.65	MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0046388 MN0046388 MN0046388	170 150 130 123 59 366 170 165	332800 623100 445200 611100 332700 424500 623100 611100 441100
9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143	DAKA DS Manufacturing Inc Pine Haven Care Ctr Land O'Lakes Inc Pine Island Public Schools Progressive Tool & Mfg Co Pine Island Farmer's Elevator Whispering Pines Good Samaritan Pine River Public Schools Houston Ford Inc Jerry's Super Valu	Pine City Pine Island Pine River Pine River Pine River Pine River	0.65	MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0046388 MN0046388 MN0046388 MN0046388	170 150 130 123 59 36 170 165 46	332800 623100 445200 611100 332700 424500 623100 611100 441100
9131 9132 9133 9134 9135 9136 9137 9138 9140 9141 9142 9143 9144	DAKA DS Manufacturing Inc Pine Haven Care Ctr Land O'Lakes Inc Pine Island Public Schools Progressive Tool & Mfg Co Pine Island Farmer's Elevator Whispering Pines Good Samaritan Pine River Public Schools Houston Ford Inc	Pine City Pine Island Pine River Pine River Pine River	0.65	MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0024511 MN0046388 MN0046388 MN0046388	170 150 130 123 59 366 170 165	332800 623100 445200 611100 332700 424500 623100 611100 441100 445100 336600

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
9146	Pipestone/Jasper School Dist.	Pipestone		MN0054801	250	611100
	Pipestone County Medical Ctr	Pipestone	0.11	MN0054801	175	622100
9148	Good Samaritan Village	Pipestone		MN0054801	170	623100
9149	Ellison Meat Co	Pipestone	8.50	MN0054801	150	311600
9150	Hank's Foods	Pipestone		MN0054801	50	445100
9151	First NB of Pipestone	Pipestone		MN0054801	43	522100
9152	Juba's Inc	Pipestone		MN0054801	36	445100
9153	Pipestone Publishing Co	Pipestone		MN0054801	35	511100
9154	Pamida Discount Ctr	Pipestone		MN0054801	32	452100
9155	M&M Distributing Co	Pipestone		MN0054801	26	424900
9156	Pipestone Veterinary Clinic	Pipestone		MN0054801	25	541900
9157	Pepsi-Cola Bottling Co	Pipestone	1.55	MN0054801	23	312100
9159	Plainview Community Schools	Plainview		MN0055361	155	611100
9160	Hillcrest Community Care Center	Plainview		MN0055361	100	623100
9161	Plato Woodwork			ISTS	120	444100
9162	Plato Home Center			ISTS	14	444100
9163	Carlson	St. Paul		MN0029815	2225	561510
	Prudential Insurance Co	St. Paul		MN0029815	1600	
	US West Communications	St. Paul		MN0029815	700	
	Boston Scientific	St. Paul	0.40	MN0029815	600	
	Select Comfort Corp	St. Paul	0.40	MN0029815	475	
	US Food Service	St. Paul		MN0029815	400	
	Fortis Health	St. Paul		MN0029815	390	
	Deltak Corp	St. Paul		MN0029815	370	
	Turck Inc	St. Paul		MN0029815	370	
	Wagner Spray Tech Inc	St. Paul	0.53	MN0029815	265	
			0.53			325510
	Banner Engineering Corp	St. Paul	0.27	MN0029815	260	
	Nu-Aire Inc	St. Paul	0.27	MN0029815	250	
	West Health	St. Paul	5.04	MN0029815	220	
	LSI Corp of America	St. Paul		MN0029815	215	
	McQuay Intl	St. Paul	0.67	MN0029815	190	
	Olympic Steel Co	St. Paul		MN0029815	190	423510
	Scoville Press Inc	St. Paul		MN0029815	175	
	Fillmore, County of	Preston	0.28	MN0020745	200	
	Good Samaritan Nursing Home	Preston		MN0020745	105	
	Fillmore Central School District #2198	Preston		MN0020745	90	
	Root River Hardwoods	Preston		MN0020745	65	
	Foremost Farms USA	Preston		MN0020745	32	
	Pro-Corn Ethanol	Preston		MN0020745	29	
	Dahl's IGA	Preston		MN0020745	23	
	F&M Community Bk	Preston		MN0020745	20	
	Fillmore County DAC	Preston		MN0020745	20	
9193	Byrne & Company Ltd	Preston		MN0020745	18	541200
	Country Hearth Inn	Preston		MN0020745	12	721100
9195	Fillmore County Journal	Preston		MN0020745	12	511100
9196	Crystal Cabinet Works Inc			MN0024538	600	337100
9197	Princeton Public School Dist #477			MN0024538	450	611100
9198	Fairview Northland Reg Hosp		0.27	MN0024538	413	622100
9199	Plastics Products		0.28	MN0024538	350	325200
	Westling Mfg Inc			MN0024538	329	
	Elim Retirement & Nursing Home			MN0024538	190	
	United States Distilled Prods		10.12	MN0024538	150	
	ECM Publishers Inc		10.12	MN0024538	142	
	Coborns, Inc.			MN0024538	120	
	Smith System Mfg Co			MN0024538	85	
	Automated Flight Svc Station			MN0024538	76	
	Sladek's Food Pride			MN0024538	64	
	Pamida Inc			MN0024538	59	
	Bremer Bank			MN0024538	45	
	Princeton Auto Center			MN0024538	30	
	Prior Lake Ind School Dist #719	St Doul				
		St. Paul		MN0029882 MN0029882	549	
	County Market	St. Paul	0.00		155	
	Prior Lake, City of	St. Paul	0.09	MN0029882	65	
	Prior Lake State Bank	St. Paul		MN0029882	40	
	ISD \$704	Duluth		MN0049786	300	
	Blackwood's Bar and Grill	Duluth		MN0049786	88	
	McDonald's	Duluth		MN0049786	42	
9219	Country Kitchen	Duluth		MN0049786	30	722100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
	Country Inn & Suites	Duluth		MN0049786	25	
	Lamar Advertising	Duluth		MN0049786	25	541800
	AmericInn Hotel	Duluth		MN0049786	23	
	Carlson Bros/ Electric Constructors	Duluth		MN0049786	21	811200
	Spirit Mountain Lodge	Duluth		MN0049786	20	
	Proctor Federal Credit Union	Duluth		MN0049786	19	
	First National Bank	Duluth		MN0049786	17	522100
	Proctor Medical Center	Duluth	0.01	MN0049786	11	621100
	Jerry Waldholm Excavating	Duluth	0.01	MN0049786	10	
	Vision Ease	Duidin		ISTS	400	
	Connexus Energy					
	07		0.04	ISTS	230	
	Anderson & Dahlen		0.31	ISTS	160	
	ALTRON, Inc			ISTS	104	
	Command Tooling		0.00	ISTS	84	
	ACE Solid Waste			ISTS	80	
	Zero Zone Refrigeration			ISTS	59	
	Heritage Millwork			ISTS	45	
9239	Grosslein Beverage Inc.		2.90	ISTS	43	312100
	Airgas North Central			ISTS	42	211100
9241	RJM / General Paper Products			ISTS	40	322200
	Artistic Marble	Randall		MN0024562	10	327900
9243	Bernel's Shoe Store	Randall		MN0024562	10	448200
9244	Gosch's Meat Market	Randall	0.04	MN0024562	10	
	Petro Plus	Randall	0.0 .	MN0024562	10	
	Homark Co	Red Lake Falls		MN0024602	120	
	Red Lake Falls Public Schools	Red Lake Falls		MN0020613	95	
	Red Lake, County of	Red Lake Falls	0.10	MN0020613	68	
	Hillcrest Nursing Home		0.10			
		Red Lake Falls		MN0020613	55	
	Red Lake Electric Coop	Red Lake Falls		MN0020613	23	
	Red Lake County St Bank	Red Lake Falls		MN0020613	22	
	Tailored Wear	Red Lake Falls		MN0020613	14	
	Northwest Mfg	Red Lake Falls		MN0020613	10	
9254	Treasure Island Casino	Red Wing		MN0024571	1875	
9255	Red Wing Shoe Co	Red Wing		MN0024571	1200	316200
9257	Fairview Red Wing Medical Center	Red Wing	0.29	MN0024571	450	622100
9258	Norwood	Red Wing		MN0024571	349	339900
9259	SB Foot Tanning Co	Red Wing		MN0024571	266	316100
9260	Jostens Diploma Division	Red Wing		MN0024571	253	323100
	DB Industries Inc	Red Wing		MN0024571	228	315900
	Express Services	Red Wing		MN0024571	226	
	DAYCO PTI Inc	Red Wing		MN0024571	167	
	St James Hotel	Red Wing		MN0024571	150	
	Fairview Seminary Home	Red Wing		MN0024571	120	
	Riedell Shoes Inc	Red Wing		MN0024571	86	
	Schwan's Technology	Red Wing				
				MN0024571	77	
	Goodhue Public Health	Red Wing		MN0024571	72	
	Artesyn Technologies	Redwood Falls		MN0020401	320	
	Redwood Falls Schools-ISD #2897	Redwood Falls		MN0020401	225	
	Schult Homes Corp	Redwood Falls		MN0020401	195	
	Redwood, County of	Redwood Falls		MN0020401	183	
9273	Redwood Area Municipal Hospital	Redwood Falls	0.07	MN0020401	112	622100
9275	Affilliated Area Medical Center	Redwood Falls	0.08	MN0020401	58	621100
9276	Minnesota Valley Bank	Redwood Falls		MN0020401	56	522100
9277	Service Enterprises	Redwood Falls		MN0020401	55	624300
9278	Redwood Falls, City of	Redwood Falls	0.08	MN0020401	54	921100
	Activeaid Inc	Redwood Falls		MN0020401	40	
	Warrior Manufacturing Co	Redwood Falls		MN0020401	29	
	Larry Schefus Trucking Inc	Redwood Falls	1.09	MN0020401	21	484100
	Heartland Wood Products	Redwood Falls	1.00	MN0020401	20	
	Redwood Metal Works	Redwood Falls	0.00	MN0020401	14	
		Redwood Falls		MN0020401	8	
	Monsanto Pioneer Hi-Bred Intl Inc				+	
		Redwood Falls		MN0020401	6	
	Southern Minnesota Beet Sugar	Renville	0.13	MN0020737	380	
	Renville County West School District # 2890.	Renville		MN0020737	118	
	Ren Villa Nursing Home	Renville		MN0020737	110	
	Golden Oval Egg	Renville		MN0020737	70	
	ValAdCo	Renville		MN0020737	55	
9291	Coop Farmers Elevator	Renville		MN0020737	40	424900

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
9292	Farmer's Coop Oil	Renville		MN0020737	31	
9293	K&M Mfg & Repair Co	Renville		MN0020737	27	423800
9294	H&L Motors	Renville		MN0020737	21	441100
9295	Renville, City of	Renville	0.02	MN0020737	15	921100
9296	Wacker Implement	Renville		MN0020737	14	
9297	Community Electric	Renville		MN0020737	9	
	Varpness Implement	Renville		MN0020737	9	
	TransDistribution Inc	Renville		MN0020737	8	
	Multifoods Specialty Distribution	Rice		MN0056481	350	
	Ferche Millwork Inc	Rice		MN0056481	200	
	Rice Elementary School	Rice		MN0056481	65	
	Lake State Industries	Rice		MN0056481	25	
	Prairie Farm Company	Rice		MN0056481	25	
	Central Marble	Rice	0.50	MN0056481	22	
	Aura Lens Products Inc	Rice	0.58	MN0056481	20	
	Gopher State Contractors Inc	Rice		MN0056481	20	
	Classic Craft Woodworking	Rice		MN0056481	15	
	Rice Farm Supply	Rice		MN0056481	15	
	Wollak's Hardware & Equipment	Rice		MN0056481	13	
	Benton Cooperative Telephone Co	Rice		MN0056481	11	
	Richfield Public Schools-ISD #280	St. Paul	^	MN0029815	588	
	Richfield, City of	St. Paul	0.77	MN0029815	550	
	Copy Duplicating Products	St. Paul		MN0029815	450	
	M & I Bank	St. Paul		MN0029815	237	
	Rainbow Foods	St. Paul		MN0029815	200	
	Metro Sales	St. Paul		MN0029815	185	
	Richfield Health Ctr Chi Chi's Mexican Restaurant	St. Paul St. Paul		MN0029815	120 118	
				MN0029815	115	
	Champps K Mort	St. Paul St. Paul		MN0029815 MN0029815	115	
	K Mart Best Buy	St. Paul		MN0029815	100	
	Menards	St. Paul		MN0029815	100	
	Jerry's	Richmond		MN0029613	30	
	Richmond Bus Service	Richmond		MN0024597	25	
	Plantenberg Market & Meats	Richmond		MN0024597	22	
	State Bk of Richmond	Richmond		MN0024597	14	
	Nick Keller Masonry	Richmond		MN0024597	12	
	Richmond Marine & Sports	Richmond		MN0024597	10	
	Riverside Coliseum	Richmond		MN0024597	10	
	Torah Cafe	Richmond		MN0024597	10	
	Casey's General Store	Richmond	0.00	MN0024597	9	
	Meierhofer Real Estate	Richmond	0.00	MN0024597	8	
	Wenner Plumbing & Heating	Richmond		MN0024597	8	
	Granite City Concrete	Richmond		MN0024597	7	
	Richmond Body Shop	Richmond		MN0024597	7	
	Richmond Concrete Products	Richmond		MN0024597	7	
	Janssen Masonry	Richmond		MN0024597	6	
	Jennings Well Drilling	Richmond		MN0024597	6	
	Richmond Area Medical Clinic	Richmond	0.01	MN0024597	6	
	Jill's Cafe	Richmond	0.01	MN0024597	5	
	Richmond Mobil	Richmond		MN0024597	5	
	Wenner Hardware	Richmond		MN0024597	5	
	Robbinsdale Schools-ISD #281	St. Paul		MN0024397	2080	
	Rainbow Foods	St. Paul		MN0029815	175	
	Robbinsdale, City of	St. Paul	0.10	MN0029815	74	
	Twin City Federal Bank	St. Paul	0.10	MN0029815	60	
	US Bank - Robbinsdale	St. Paul		MN0029815	42	
	Robbinsdale Farm & Garden	St. Paul		MN0029815	40	
	Burmeister Electric Co	St. Paul		MN0029815	25	
	American Legion Post #251	St. Paul		MN0029815	21	
	Citizens Independent Bank	St. Paul		MN0029815	17	
	Mayo Medical Ctr	Rochester	16.71	MN0024619	25736	
	IBM Corp	Rochester	10.71	MN0024619	4600	
	Rochester Public Schools	Rochester		MN0024619	2150	
	Olmsted, County of	Rochester	1 67	MN0024619	1189	
	HyVee Store	Rochester	1.07	MN0024619	1050	
	Olmsted Medical Center	Rochester	0.60	MN0024619	925	
	Rochester, City of	Rochester		MN0024619	800	
9000	Troonostor, Oity or	1.001100101	1.12	1711 4002 40 13	1 300	321100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
9361	Sunstone Hotel Properties	Rochester		MN0024619	800	
9362	Pemstar Inc	Rochester		MN0024619	680	335300
9365	Rochester Community and Technical College	Rochester		MN0024619	550	611300
9368	Rochester Meats Inc	Rochester	12.75	MN0024619	225	311600
9369	IBM Credit Union	Rochester		MN0024619	213	522100
9370	HIMEC Inc	Rochester	1.34	MN0024619	194	332900
	JDS Uniphase	Rochester		MN0024619	125	519100
	Gauthier Industries Inc	Rochester	0.46	MN0024619	88	
	Crossroads Cafe	1100110010		ISTS	7	
	Heineman's L & G Products			ISTS	5	
	Anderson Relics & Antiques			ISTS	4	
	Tim's 66 & Cafe			ISTS	3	
	Rockford Public Schools-ISD #883	Rockford		MN0024627	205	
	Wright-Hennepin Coop Electric Assn	Rockford		MN0024627	180	
	Byerly's Bakery	Rockford		MN0024627	90	
	DiversiFoam Products	Rockford				
				MN0024627	80	
	Domino's Pizza	Rockford		MN0024627	15	
	Rockford State Bank	Rockford		MN0024627	15	
	Rollingstone Schools-ISD #861	Rollingstone		MNG580078	10	
	Eastwood Bank	Rollingstone		MNG580078	8	
	Rollingstone Co-op	Rollingstone		MNG580078	8	
9386	Rollingstone Lumber	Rollingstone		MNG580078	7	321900
9387	H&M Plumbing	Rollingstone		MNG580078	5	238200
9388	Rollingstone Feed & Grain	Rollingstone		MNG580078	5	424900
	Bonnie Rae's Cafe & Grocery	Rollingstone		MNG580078	4	
	Ginny's Supper Club	Rollingstone		MNG580078	4	
	Stoos Electric	Rollingstone		MNG580078	4	
	Southland Elementary School	Rose Creek		MNG580072	30	
	JD Driver Construction	Rose Creek		MNG580072	17	
		Rose Creek			9	
	Huntting Elevator			MNG580072		
	Woody's	Rose Creek		MNG580072	9	
	Stroup Distributing	Rose Creek		MNG580072	6	
	Dave's Plumbing & Heating	Rose Creek		MNG580072	5	
	Brenda's Market	Rose Creek		MNG580072	4	
9399	Rose Creek, City of	Rose Creek	0.01	MNG580072	4	
9400	Farmers St Bk of Adams at Rose Creek	Rose Creek		MNG580072	3	522100
9401	Southland Oil	Rose Creek		MNG580072	3	424900
9402	Tradexpos	Rose Creek		MNG580072	3	711300
	Ulven Hardware	Rose Creek		MNG580072	3	444100
	Rose Creek Equipment	Rose Creek		MNG580072	1	
	Polaris Industries	Roseau		MNG580039	2100	
	Roseau Public Schools	Roseau		MNG580039	190	
	Roseau Area Hospital	Roseau	0.11	MNG580039	165	
	Roseau, County of	Roseau		MNG580039	103	
	Woodland Container Corp	Roseau	0.14	MNG580039	60	
	REM-Roseau	Roseau		MNG580039	50	
	Wally's Supermarket	Roseau		MNG580039	47	
	Citizens St Bk of Roseau	Roseau		MNG580039	45	
	Farmer's Union Oil Co	Roseau		MNG580039	40	
	Pamida Discount Ctr	Roseau		MNG580039	35	
9415	Roseau Clinic	Roseau	0.04	MNG580039	29	621100
9416	Roseau Electric Co-op Inc	Roseau		MNG580039	26	221100
9417	Roseau, City of	Roseau	0.04	MNG580039	25	921100
9418	Occupational Development Ctr	Roseau		MNG580039	23	624300
9419	Rosemount School District #196	St. Paul		MN0025488	2900	611100
9421	Dakota County Technical College	St. Paul		MN0025488	775	
	Spectro Alloys Corp	St. Paul		MN0025488	110	
	Reese Enterprises Inc	St. Paul	0.08	MN0025488	100	
	Genz-Ryan	St. Paul	0.00	MN0025488	90	
	Dakota County HRA	St. Paul	0.00	MN0025488	60	
	·		0.06	MN0025488		
	Knutson Services Inc	St. Paul	0.00		60	
	Rosemount, City of	St. Paul	0.08	MN0025488	60	
	CF Industries	St. Paul		MN0025488	46	
	Cub Foods	St. Paul		MN0025488	40	
	Peoples Natural Gas	St. Paul		MN0025488	40	
	Carlson Tractor & Equipment Co	St. Paul		MN0025488	35	
9434	Von Hanson's Meat Market	St. Paul	0.13	MN0025488	30	445200
9435	MN Dept, of Transportation	St. Paul		MN0029815	1500	926120

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
	Beltmann Group	St. Paul		MN0029815	956	
9437	Unisys	St. Paul		MN0029815	900	541519
9438	HealthSpan Home Care & Hospice	St. Paul		MN0029815	800	621610
9439	McGough Construction	St. Paul		MN0029815	800	236220
9440	Marshall Fields	St. Paul		MN0029815	700	452111
9441	MN Dept. of Education	St. Paul		MN0029815	500	923110
9442	Sara Lee Baking Co	St. Paul	1.92	MN0029815	500	311813
9443	JC Penney	St. Paul		MN0029815	400	452111
	Veritas	St. Paul		MN0029815	400	
	Byerly's	St. Paul		MN0029815	300	
	Heartland Home Health & Hospice	St. Paul		MN0029815	300	
	City of Roseville	St. Paul		MN0029815	281	921190
	Bonestroo Rosene Anderlik & Associates	St. Paul		MN0029815	270	
	Kraft - Sather Trucking	Round Lake	0.00	MN0051713	350	
	Round Lake Public School	Round Lake		MN0051713	30	
	Round Lake Farmer's Co-op	Round Lake	201	MN0051713	10	
	City of Round Lake	Round Lake	0.01	MN0051713	6	
	Round Lake Pit Stop	Round Lake		MN0051713	6	
	United Prairie Bank	Round Lake	0.00	MN0051713	6	
	Metalcrafters of Round Lake	Round Lake	0.03	MN0051713	4	
	Hatt Trick Lounge Heath Auto Sales	Round Lake		MN0051713 MN0051713	3	
	United Prairie Insurance	Round Lake		MN0051713 MN0051713	3	
	Farmers Insurance Agency Spessard Repair	Round Lake Round Lake		MN0051713 MN0051713	2	
	Doeden Plumbing & Heating	Round Lake		MN0051713	1	238200
	Head Over Heals Hair Studio	Round Lake	0.00	MN0051713	1	812100
	Head Quarters	Round Lake		MN0051713	1	812100
	Royalton Public School District #485	Royalton	0.00	MNG580040	102	
	Newmans' Manufacturing Inc	Royalton	0.00	MNG580040	30	
	EZ Stop Store	Royalton	0.00	MNG580040	19	
	Majaski Machine Shop	Royalton	0.00	MNG580040	10	
	Royalton Lumber & Hardware	Royalton	0.00	MNG580040	8	
9470	Bea's Cafe	Royalton		MNG580040	6	
9471	Royal Ag Service	Royalton		MNG580040	2	
	TRW Electronics	Rushford		MN0024678	450	425100
	Good Shepherd Home	Rushford		MN0024678	100	
9474	Riverside Electronics Ltd	Rushford		MN0024678	100	425100
	Rushford-Peterson Public Schools	Rushford		MN0024678	75	611100
9476	Farmer's Cooperative Elevator	Rushford		MN0024678	25	111100
9477	SEMCAC	Rushford		MN0024678	25	624200
9478	Rushford IGA	Rushford		MN0024678	22	
	Dahl's Autoworks	Rushford		MN0024678	15	441200
	Carlson's Ready Mix	Rushford		MN0024678	12	327300
	Jim Norstad Construction	Rushford		MN0024678	12	
	Rushford State Bank	Rushford		MN0024678	12	
	City of Rushford	Rushford	0.02	MN0024678	11	921100
	Norman's Electric	Rushford		MN0024678	10	
	SEMDC	Rushford		MN0024678	10	
	M&M Lawn & Leisure	Rushford		MN0024678	9	
	National Bank of Rushford	Rushford		MN0024678	9	
	Woxland's Plumbing and Heating	Rushford		MN0024678	8	
	Tri-County Record	Rushford		MN0024678	7	
	J&L Wood Products	Rushford		MN0024678	5	
	Lutz Printing, Inc	Rushford		MN0024678	5	
	Rushford TV & Repairs	Rushford		MN0024678	4	
	Ken's Farm Equip. Builders & Repair			ISTS ISTS	10	
	Norman's Electric Service Inc Norse Products Inc			ISTS	8	
	Cenex/Land O'Lakes			ISTS	6	
	Jim's Building Center			ISTS	6	
	Peterson State Fish Hatchery			ISTS	6	
	Brown's Tire & Battery Inc			ISTS	5	
	Hi Tec Rebuilders			ISTS	5	
	Norstad Construction			ISTS	5	
	DM Construction			ISTS	3	
	United FArmer's Co-op	Rushmore		MN0025836	12	
	Gary's Electric	Rushmore		MN0025836	8	
0007	1 ,					_00200

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit No	employee_count	NAICS Code
9505	Daryl's Service	Rushmore		MN0025836	5	
9506	First State Bank of Rushmore	Rushmore		MN0025836	4	522100
9507	City of Rushmore	Rushmore	0.00	MN0025836	3	921100
	Petersen Car Service	Rushmore		MN0025836	3	811100
9509	Rushmore Gas Service Co.	Rushmore		MN0025836	3	424900
9510	Rushmore Head Start Center	Rushmore		MN0025836	3	
	Rushmore Post Office	Rushmore		MN0025836	3	
	Buss Construction	Rushmore		MN0025836	2	
	Prin's Trucking	Rushmore	0.10	MN0025836	2	
	Rushmore Cafe	Rushmore		MN0025836	2	
	Albert's Trucking	Rushmore	0.05	MN0025836	1	
	Don's Plumbing & Heating	Rushmore		MN0025836	1	
	Harlan's Auto Repair	Rushmore		MN0025836	1	
	Deutschland Meats	Sanborn	0.00	MN0024805	16	
	Farmers Golf & Health Club	Sanborn		MN0024805	12	
	Sanborn Farmers Elevator	Sanborn		MN0024805	10	
	Central Publications	Sanborn		MN0024805	8	
	Meadowland Coop	Sanborn Sanborn		MN0024805	8	
	Rope & Spurr Ballroom Kircher Construction			MN0024805		
		Sanborn Sanborn		MN0024805 MN0024805	5	
	Tom & Jerry's Corner Bar				5	
	First Security Bank	Sanborn		MN0024805 MN0024805		
	Gramstad Lumber	Sanborn			4	
	Swede's Surplus	Sanborn		MN0024805	4 2	
	Hogen Construction Federal Correctional Institution	Sanborn		MN0024805		
	Sandstone Public Schools-ISD #2580	Sandstone		MN0056910	273	
	Pine Medical Center	Sandstone Sandstone	0.12	MN0056910 MN0056910	212 190	
		Sandstone	0.12		60	
	Chris' Fairway Pine County	Sandstone	0.04	MN0056910 MN0056910	28	
	St Croix Boys Camp	Sandstone	0.04	MN0056910	28	
	Arrowhead Rotor & Stator	Sandstone		MN0056910	23	
	First NB of the North	Sandstone		MN0056910	20	
	Jan & Gary's Restaurant	Sandstone		MN0056910	18	
	Conoco- Sandstone	Sandstone		MN0056910	16	
	United Parcel Service	Sandstone		MN0056910	15	
	Amoco- Sandstone	Sandstone		MN0056910	11	
	Duluth Clinic- Sandstone	Sandstone	0.01	MN0056910	11	621100
	Moose Lake Federal CU- Sandstone	Sandstone	0.01	MN0056910	10	
	Minnesota Power	Sandstone		MN0056910	8	
	Gateway Family Health Center	Sandstone	0.01	MN0056910	7	
	Total Service Station- Sandstone	Sandstone	0.0.	MN0056910	6	
	International Paper	St. Cloud		MN0040878	547	
	Independent School Distric #748t	St. Cloud		MN0040878	384	
	De Zurik	St. Cloud	2.41	MN0040878	350	
	Country Manor Health Care	St. Cloud		MN0040878	248	
	Care Call	St. Cloud		MN0040878	241	561900
9552	Coborn's	St. Cloud		MN0040878	113	445100
9553	McDonald's	St. Cloud		MN0040878	83	
	Merrill Corporation	St. Cloud		MN0040878	65	
	St. Francis Xavier	St. Cloud		MN0040878	50	
	Payne Lynch and Associates	St. Cloud		MN0040878	36	
	City of Sartell	St. Cloud	0.05	MN0040878	35	
9558	Sauk Centre ISD # 743	Sauk Centre		MN0024821	178	
	St. Michaels Hospital & Nursing Home	Sauk Centre		MN0024821	172	
9560	Standard Iron & Wire Works, Inc.	Sauk Centre		MN0024821	60	331500
	Holy Family School	Sauk Centre		MN0024821	47	611500
	Truckers Inn - Fuel & Restaurant	Sauk Centre		MN0024821	40	447100
9563	Independant Bankers Assoc. of America	Sauk Centre		MN0024821	35	
9564	Kane Transport	Sauk Centre	0.00	MN0024821	31	484100
9565	Sauk Centre Welding & Machine Works	Sauk Centre	0.00	MN0024821	30	
9566	Cabinet Components	Sauk Centre		MN0024821	25	337100
9567	O.C.I.	Sauk Centre		MN0024821	25	
9568	Central Minnesota Finishing	Sauk Centre		MN0024821	23	
9569	Engle Fabrication	Sauk Centre		MN0024821	21	325500
	Sauk Centre, City of	Sauk Centre	0.03	MN0024821	21	921100
	Sauk Centre Fleet Supply	Sauk Centre		MN0024821	20	
9572	Vocational Biographies	Sauk Centre		MN0024821	20	511100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
9573	Kohorst Trucking	Sauk Centre	0.00	MN0024821	18	
9574	D.H.I.A.	Sauk Centre	1.06	MN0024821	17	
9575	Beuning Ag Service	Sauk Centre		MN0024821	16	333200
9576	Schwan's Ice Cream	Sauk Centre	0.94	MN0024821	15	311500
9577	Sauk Centre Coop Creamery	Sauk Centre	0.75	MN0024821	12	311500
	Bauerly Brothers	St. Cloud		MN0040878	721	237300
	Sauk Rapids Schools-ISD #47	St. Cloud		MN0040878	425	611100
	Stearns Manufacturing Co	St. Cloud		MN0040878	331	451100
	Komo Machine Inc	St. Cloud	0.00	MN0040878	197	332700
	X-Cel Optical Co	St. Cloud	0.00	MN0040878	186	
	·	1 - 1 - 1 - 1				
	Custom Eyes	St. Cloud		MN0040878	142	
	Trimpac Inc	St. Cloud		MN0040878	110	
	CSI Ltd	St. Cloud		MN0040878	97	
	Crystal Cabinet Works Inc.	St. Cloud		MN0040878	96	
9587	Huisken Meats	St. Cloud	4.08	MN0040878	72	
9588	C&L Distributing Inc	St. Cloud		MN0040878	53	424800
9589	Custom Caseworks Inc	St. Cloud		MN0040878	32	238300
	WF Scarince Inc	St. Cloud		MN0040878	29	
	Ron's Cabinets Inc	St. Cloud		MN0040878	28	
	Heat N Glo Fireplace Products	St. Paul		MN0030007	261	327300
		St. Paul				
	Fabcon Inc			MN0030007	250	
	Waste Management Inc	St. Paul		MN0030007	150	
	Northern Inc	St. Paul		MN0030007	105	
9598	Continental Hydraulics Div	St. Paul		MN0030007	100	
9599	Master Electric Co Inc	St. Paul		MN0030007	100	23820
9600	Cargill Inc	St. Paul		MN0030007	78	424900
9601	Road Machinery & Supplies Co	St. Paul		MN0030007	75	336900
	Hennepin Transfer Inc	St. Paul		MN0030007	65	
	Burnsville Heating & Air Conditioning	St. Paul		MN0030007	50	
	Metal Products Inc	St. Paul	0.34	MN0030007	49	
			0.34			
	Hot-Shot Products Co	St. Paul		MN0030007	40	
	Pomp's Tire Service	St. Paul		MN0030007	40	
	BFI Tire Recyclers	St. Paul		MN0030007	30	
	Continental Grain Co	St. Paul		MN0030007	30	
9609	Dustcoating	St. Paul		MN0030007	30	238100
9611	Richards Asphalt Co	St. Paul		MN0030007	20	324100
9612	Sebeka Public Schools	Sebeka		MN0024856	102	611100
9613	Caring Hands Inc	Sebeka		MN0024856	25	621600
	Sebeka DAC	Sebeka		MN0024856	20	
	Anderson Homes	Sebeka		MN0024856	15	
	Sebeka, City of	Sebeka	0.02	MN0024856	14	
			0.02			
	Ma's Country Cafe	Sebeka		MN0024856	13	
	Security St Bk of Sebeka	Sebeka		MN0024856	12	
	West Central Telephone Assn	Sebeka		MN0024856	12	
9620	Shafer Contracting Co	Shafer		MN0030848	250	
9621	Shafer Electronics Co	Shafer		MN0030848	105	42510
9622	F&M Plastics Inc	Shafer		MN0030848	20	424600
9623	Choice Deli	Shafer	0.04	MN0030848	10	44520
	Bernie's Cafe	Shafer		MN0030848	6	
	Shafer 1 Stop	Shafer		MN0030848	5	
	•					
	Shafer Automotive & Truck Repair	Shafer		MN0030848	5	
	Bargainquest	Shafer		MN0030848	4	
	Crossroads Tavern	Shafer		MN0030848	4	
9629	US Post Office	Shafer		MN0030848	4	491100
9631	Valleyfair Amusement Park	St. Paul		MN0029882	1200	71310
9633	Scott, County of	St. Paul	0.70	MN0029882	495	92110
9634	K Mart Distribution Ctr	St. Paul		MN0029882	424	45210
	Shakopee School District #720	St. Paul		MN0029882	390	
	Certain Teed Corp	St. Paul		MN0029882	300	
	Northstar Auto Auction	St. Paul		MN0029882	220	
			0.00			
	Empak	St. Paul	0.08	MN0029882	100	
9647	Belae Brands	St. Paul		MN0029882	80	
	Mid-America Plastics Inc	St. Paul	0.06	MN0029882	80	
		OL		MN0024872	160	61110
9648	Martin County West Schools	Sherburn		WII 4002-4072	100	
9648 9649	Martin County West Schools Community Options & Resources	Sherburn		MN0024872	110	621400
9648 9649 9650	Community Options & Resources	Sherburn		MN0024872	110	
9648 9649 9650 9651						221100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
9654	Cargo Carriers Inc.	Sherburn		MN0024872	10	
9655	Farmers St Bk of Sherburn	Sherburn		MN0024872	8	
9656	Jamboree Foods	Sherburn		MN0024872	8	
	Nu-Way Co-op	Sherburn		MN0024872	8	
	Country Cafe	Sherburn		MN0024872	6	
	Cup and Saucer	Sherburn		MN0024872	6	
	Sherburn, City of	Sherburn	0.01	MN0024872	6	
	Dorschner Refrigeration, Oil & Tire	Sherburn		MN0024872	4	
	Land Services	Sherburn		MN0024872	4	
	Sherburn Nursery & Floral	Sherburn		MN0024872	4	
	State Farm Ins	Sherburn		MN0024872	4	
	Watonwan Farm Service	Sherburn		MN0024872	3	
	Super Target	St. Paul	0.07	MN0029815	312	
	EMPI TSU Inc.	St. Paul	8.67	MN0029815	300	
	TSI Inc	St. Paul		MN0029815	300	
	Rainbow Foods	St. Paul		MN0029815	225	
	Curtis 1000	St. Paul St. Paul		MN0029815	180	
	Kozlak's Royal Oak Restaurant			MN0029815	100	
	PAR Systems	St. Paul St. Paul	0.11	MN0029815		
	Shoreview, City of		0.11	MN0029815	75	
	Dynamark Inc	St. Paul St. Paul		MN0029815 MN0029815	60	
	Hampton Inn					
	Nardini Fire Equipment Co	St. Paul	0.00	MN0029815	34	
	Minuteman International Inc.	St. Paul	0.03	MN0029815	23	
	Northern States Power Co	St. Paul		MN0029882	90	
	Minnetonka Country Club	St. Paul		MN0029882	50	
	Minnesota Veterans Home	Silver Bay		MN0024899	115	
	Silver Bay Public Schools	Silver Bay		MN0024899	60	
	Zups Big Dollar	Silver Bay	0.00	MN0024899	26	
	Bay Area Health Ctr	Silver Bay	0.03	MN0024899	21	621100 236100
	Van House Construction	Silver Bay	0.00	MN0024899	20	
	Silver Bay, City of North Shore Oil & Propane	Silver Bay	0.03	MN0024899	18	
		Silver Bay		MN0024899	16	
	Northwoods Cafe	Silver Bay Silver Bay		MN0024899	16	
	North Shore Fed CU-Silver Bay	Silver Bay		MN0024899	13	
	Julie's Variety & Hardware	Silver Bay		MN0024899 MN0024899	8	
	Ye Old Store John's Sanitary Removal	-			7	
		Silver Bay		MN0024899		
	Commercial St Bank-Silver Bay Bay Side Shopper & Printing	Silver Bay Silver Bay		MN0024899 MN0024899	5	
	Silver Lake, City of	Silver Lake	0.06	MN0024699	46	
	Glencoe-Silver Lake Schools	Silver Lake	0.00	MN0024902	41	611100
	American Selected Products	Silver Lake		MN0024902	30	
	First Community Bank Silver Lake	Silver Lake		MN0024902	8	
	Murray County Public Schools	Slayton		MN0024902	160	
	Murray County Hospital	Slayton	0.06	MN0024911	88	
	Slayton Manor Care Center	Slayton	0.00	MN0024911	80	
	Murray County Courthouse	Slayton		MN0024911	79	
	Finley Engineering	Slayton		MN0024911	60	
	Murray County Developmental Achieve	Slayton		MN0024911	45	
	Murray County St Bk	Slayton		MN0024911	30	
	United Parcel Service	Slayton		MN0024911	29	
	Center For Regional Development	Slayton		MN0024911	23	
	Page 1 Printers	Slayton		MN0024911	21	323100
	Prairie View	Slayton		MN0024911	21	621400
	Sam's Super Value	Slayton		MN0024911	19	
	United Prairie Bk Slayton	Slayton		MN0024911	18	
	Norwood Promotional Products	Sleepy Eye		MNG580041	556	
	Christensen Farms	Sleepy Eye		MNG580041	350	
	Mathiowetz Construction Company	Sleepy Eye		MNG580041	150	
	Sleepy Eye Care Ctr	Sleepy Eye		MNG580041	140	
	Sleepy Eye Schools-ISD #84	Sleepy Eye		MNG580041	125	
	Divine Providence Community Home	Sleepy Eye		MNG580041	83	
	St Mary's School	Sleepy Eye		MNG580041	75	
	Farmers Elevator Company	Sleepy Eye		MNG580041	73	
	Sleepy Eye Municipal Hospital	Sleepy Eye	0.05	MNG580041	71	
	Orchid Inn & Motor Lodge	Sleepy Eye	0.05	MNG580041	65	
	Jubilee Foods - Sleepy Eye	Sleepy Eye		MNG580041	55	
9121	Junier i oous - sieepy Eye	oleepy ⊏ye		I PUUOCOPIIIvi	55	443100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
9728	Hardee's - Sleepy Eye	Sleepy Eye		MNG580041	39	722100
9729	Miller Sellner Implement Inc	Sleepy Eye		MNG580041	35	
9730	Haala Industries	Sleepy Eye	0.00	MNG580041	34	
	Anderson Custom Processing Inc	Sleepy Eye		MNG580041	32	
	Stimpert Enterprises Inc	Sleepy Eye		MNG580041	14	
	Sportsman's Guide	St. Paul		MN0029815	800	
	South St Paul School District #6	St. Paul		MN0029815	540	
	HealthEast Care Center	St. Paul		MN0029815	205	
	American Bottling	St. Paul	10.12	MN0029815	150	
	Allstate Sales Corp	St. Paul		MN0029815	107	
	South Saint Paul, City of	St. Paul	0.14	MN0029815	100	
	Bremer Bank	St. Paul		MN0029815	50	
	Cherokee Manufacturing	St. Paul		MN0029815	50	
	Twin City Bagels	St. Paul		MN0029815	50	
	Jennie-O Turkey Store	Spicer		MN0052752	71	112330
	Marketing Concepts, Inc.	Spicer		MN0052752	68	
	Melvins on the Lake	Spicer		MN0052752	65	
	Jahnke Foods	Spicer		MN0052752	45	
	G. Michaels Bar & Grill	Spicer		MN0052752	42	
	Green Lake Nursery	Spicer		MN0052752	18	
	United Prairie Bank	Spicer		MN0052752	16	
	Northern Engraving Co	Spring Grove		MN0021440	210	
	Tweeten/Lutheran Health Care Ctr	Spring Grove		MN0021440	126	
	Spring Grove Public Schools	Spring Grove		MN0021440	63	
	Roverud Construction Inc	Spring Grove		MN0021440	60	
	Sodko, Inc./Shooting Star Native Seeds	Spring Grove		MN0021440	28	
	Red's IGA	Spring Grove		MN0021440 MN0021440	25	
	Solie Services, Inc	Spring Grove			25	
	Houston County Group Homes	Spring Grove		MN0021440	20	
	Jennings State Bank La Crosse Clock Company & Cabinetry	Spring Grove		MN0021440 MN0021440	20	
		Spring Grove Spring Grove	0.00	MN0021440	16	
	Spring Grove, City of Thompson Inc		0.02			
	About the Horse	Spring Grove Spring Grove		MN0021440 MN0021440	15	
	Kwik Trip Inc	Spring Grove		MN0021440	7	
	Spring Grove Coop Telephone Co	Spring Grove		MN0021440	7	
	Kraus Oil Co Inc	Spring Grove		MN0021440	6	
	Sani-Blast/Sani-Brush Co	Spring Grove		MN0021440	6	
	Ladsten Auto Body & Sales	Spring Grove		MN0021440	5	
	Booman Chiropractic Clinic	Spring Grove		MN0021440	4	
	Marv's Body Shop & Camper Sales	Spring Grove		MN0021440	4	
	Spring Grove Bottling Works Inc	Spring Grove	0.27	MN0021440	4	
	Health Partners	St. Paul		MN0021440	160	
	Spring Lake Park Lumber Co	St. Paul	0.22	MN0029815	20	
	Presbyterian Homes	St. Paul		MN0029882	400	
	Lord Fletcher's Of The Lake	St. Paul		MN0029882	150	
	Minnetonka Mist	St. Paul		MN0029882	65	
	Meisel Hardware	St. Paul		MN0029882	50	
	Burnet	St. Paul		MN0029882	30	
	Lehmann Farms	St. Paul	1 16	MN0029882	25	
	Rockvam Boat Yards Inc	St. Paul	1.10	MN0029882	20	
	Ace Hardware	St. Paul		MN0029882	10	
	All Stars	St. Paul		MN0029882	10	
	Spring Valley Public Schools	Spring Valley		MN0051934	108	
	Spring Valley Specialties	Spring Valley		MN0051934	34	
	Spring Valley, City of	Spring Valley	0.04	MN0051934	32	
	Kappers Fabricating Inc	Spring Valley		MN0051934	30	
	Spring Valley Cheese Inc	Spring Valley		MN0051934	30	
	Coleman Powermate, Inc.	Springfield	1.07	MN0024953	275	
	St John Lutheran Home	Springfield		MN0024953	235	
	Springfield Public Schools	Springfield		MN0024953	100	
	Ochs Brick & Tile Co	Springfield		MN0024953	80	
	Springfield Medical Center/Mayo Health System	Springfield	0.05	MN0024953	80	
	Barron Fabrications Inc	Springfield	0.00	MN0024953	50	
	L & S Electric	Springfield		MN0024953	50	
	Salonek Construction	Springfield		MN0024953	30	
	Genuine Woodcraft	Springfield		MN0024953	6	
	Norwesco Inc	St. Paul	0.03	MN0024933	40	
5000	1 55555	J	0.00		+0	020200

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
9801	Identi-Graphics	St. Paul		MN0029882	25	339900
9802	Holiday	St. Paul		MN0029882	20	447100
9804	Wolf Sales	St. Paul		MN0029882	15	337100
9805	Thurk Bros Chevrolet	St. Paul		MN0029882	13	441100
9806	Suburban Mold	St. Paul	0.01	MN0029882	10	325200
9807	Cunningham Advertising Inc	St. Paul		MN0029882	9	
	Tonka Mills/Nylac	St. Paul	0.01	MN0029882	9	325600
	St Boni Ford	St. Paul		MN0029882	8	
	St Charles Schools-ISD #858	St. Charles		MN0046868	115	611100
	Whitewater Healthcare Ctr	St. Charles		MN0046868	93	623100
	Excel Manufacturing Inc	St. Charles		MN0046868	49	333900
	Mike's Food Center	St. Charles		MN0046868	31	445100
	St Charles Equipment	St. Charles		MN0046868	13	333200
	Subway	St. Charles		MN0046868	11	722100
	US Post Office	St. Charles		MN0046868	11	491100
	Kwik Trip	St. Charles		MN0046868	10	447100
	Merchants Bank - St Charles	St. Charles		MN0046868	10	522100
	Twin Valley Ag	St. Charles		MN0046868	9	
	Ag Specialists	St. Charles		MN0046868	8	325300
	Brownell Drug	St. Charles		MN0046868	8	446100
	Eastwood Bk	St. Charles		MN0046868	8	522100
	Wolter & Raak Ltd	St. Charles	4.00	MN0046868	8	541200 622100
	St Cloud Hospital / Centra Care Health Systems	St. Cloud		MN0040878	2899	
	Minnesota, State of	St. Cloud St. Cloud	2.90	MN0040878	2062	921100
	Frigidaire Co Freezer Products			MN0040878	1755	443100
	Fingerhut Corp St Cloud Public School Dist #742	St. Cloud St. Cloud		MN0040878 MN0040878	1089 973	454100
	Veterans Adm Medical Ctr	St. Cloud	0.53	MN0040878	821	611100 622100
	Bankers Systems Inc	St. Cloud	0.55	MN0040878	728	453200
	Stearns, County of	St. Cloud	0.90	MN0040878	639	921100
	Nahan Printing	St. Cloud	0.30	MN0040878	527	323100
	Merrill May Inc	St. Cloud		MN0040878	486	323100
	Antioch Compay / Creative Memories	St. Cloud		MN0040878	450	323100
	St. Cloud, City of	St. Cloud	0.57	MN0040878	407	921100
	Woodcraft Industries Inc	St. Cloud	0.0.	MN0040878	406	321900
	Swift-Eckrich, Inc.	St. James	22.47	MN0024759	550	311600
	St James Automotive	St. James		MN0024759	200	336300
	St. James Public Schools	St. James		MN0024759	194	611100
	S-T Industries	St. James	0.00	MN0024759	120	332700
9844	Watonwan Farm Services	St. James		MN0024759	60	424900
9845	Tony Downs Foods CO	St. James	2.56	MN0024759	55	311400
9846	Runge Trucking	St. James	2.07	MN0024759	40	484100
9847	St. James, City of	St. James	0.05	MN0024759	36	921100
9848	United Parcel Service	St. James		MN0024759	35	492100
9849	St. James Publishing Company	St. James		MN0024759	19	511100
9850	Olson Industries	St. James	0.16	MN0024759	14	332800
9851	Dynamic Tool & Engineering	St. James	0.00	MN0024759	10	332700
	Nelson Truck Hoods	St. James		MN0024759	8	336300
9853	A+ Designs	St. James		MN0024759	7	
9854	Parts Supply & Machine	St. James		MN0024759	6	333200
9855	Don Ling's Printers	St. James		MN0024759	5	323100
	St. James Concrete	St. James		MN0024759	5	327300
	College of St Benedict's	St. Cloud		MN0040878	450	611300
9859	Convent of St Benedict	St. Cloud		MN0040878	102	813100
	W Gohman Construction Co	St. Cloud		MN0040878	45	236200
	MCO Lens Crafting	St. Cloud	0.90	MN0040878	31	339100
	St Joseph Parish/School	St. Cloud		MN0040878	23	813100
	SuperAmerica	St. Cloud		MN0040878	21	447100
	Vic West Steel	St. Cloud		MN0040878	20	332300
	St. Joseph, City of	St. Cloud	0.03	MN0040878	19	
	First St Bk of St Joseph	St. Cloud		MN0040878	18	522100
	La Playette Bar & Restaurant	St. Cloud		MN0040878	18	
	Accu Serv	St. Cloud		MN0040878	16	518200
	Scherer & Sons Trucking	St. Cloud	0.78	MN0040878	15	
	Metro Plumbing & Heating	St. Cloud		MN0040878	13	
	St Joe Gas & Bait	St. Cloud		MN0040878	13	
	Sunset Manufacturing	St. Cloud	0.07	MN0040878	10	332900
9873	Park Nicollet Health Services	St. Paul		MN0029815	4500	621111

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
	St Louis Park Public Schools	St. Paul		MN0029815	762	
	TravelersExpress/MoneyGram	St. Paul		MN0029815	450	
	St. Louis Park, City of	St. Paul		MN0029815	252	
9879	Midwest Plastic Components	St. Paul	1.14	MN0029815	200	
9880	Onvoy	St. Paul		MN0029815	200	517110
9881	Benilde-St. Margaret's High School	St. Paul		MN0029815	140	611110
9883	Quadion Minnesota Rubber	St. Paul		MN0029815	103	326299
9884	Walser Automotive Group	St. Paul		MN0029815	95	441110
9885	As Soon As Possible, Inc.	St. Paul	0.27	MN0029815	80	32311
	General Office Products	St. Paul		MN0029815	75	
	Appliance Recycling Centers of America, Inc.	St. Paul		MN0029815	70	
	Groves Academy	St. Paul		MN0029815	65	
	william j. Business Interiors	St. Paul		MN0029815	61	53242
	Commercial Furniture Services/Brokers	St. Paul		MN0029815	60	
	Adolfson & Peterson Construction	St. Paul	0.00	MN0029815	50	
	J & B Wholesale and Distribution	St. Michael	0.00	MN0020222	400	
	Builder's Carpet	St. Michael		MN0020222	100	
	Jet Edge	St. Michael		MN0020222	85	
	Marksman Metals	St. Michael	0.15	MN0020222	75	
	B & D Plumbing, Heating and Air Conditioning	St. Michael		MN0020222	50	
	Russell's Of Course	St. Michael		MN0020222	45	
9900	Progressive Contractors Inc. (PCI)	St. Michael		MN0020222	40	23810
9902	State of Minnesota	St. Paul	1.50	MN0029815	13671	92110
9903	St Paul Public Schools	St. Paul		MN0029815	6567	61110
	Health East Care System/ St. Joesph's Hospital	St. Paul	3.30	MN0029815	5080	
	Marsden Building Maintenance	St. Paul	0.00	MN0029815	4000	
	Ramsey, County of	St. Paul	5 30	MN0029815	3770	
	St. Paul, City of	St. Paul		MN0029815	3400	
		St. Paul	4.70		3200	
	US Post Office		4.05	MN0029815		
	St Paul Ramsey Med Ctr-Health Partners	St. Paul	1.95	MN0029815	3000	
	St Paul Companies Inc	St. Paul		MN0029815	2650	
	Minnesota Mutual Life Ins Co	St. Paul		MN0029815	2400	
	Control Data Systems Inc	St. Paul		MN0029815	1800	
9917	Cardiac Pacemakers Export Inc	St. Paul	1.16	MN0029815	1500	
9919	Conseco Finance Corp.	St. Paul		MN0029815	1142	52210
9920	Lawson Software	St. Paul		MN0029815	1000	54150
9921	Ashland Petroleum Co	St. Paul		MN0029815	215	32410
9922	Super Mom's Kitchen	St. Paul		MN0029815	140	31180
	Garelick Manufacturing Co	St. Paul		MN0029815	105	
	St Peter Regional Treatment	St. Peter		MN0022535	830	
	Gustavus Adolphus College	St. Peter		MN0022535	628	
	St. Peter Public Schools	St. Peter		MN0022535	283	
	St. Peter Community Hospital	St. Peter	0.17	MN0022535	262	
	Nicollet, County of	St. Peter	0.35	MN0022535	250	
	Alumacraft Boat Co	St. Peter		MN0022535	150	
	Citizens Scholarship Fnd. of America	St. Peter		MN0022535	150	
	Econofoods	St. Peter		MN0022535	100	
9932	Taytronics Inc	St. Peter		MN0022535	100	
9933	St. Peter, City of	St. Peter	0.12	MN0022535	85	92110
9934	St. Peter Clinic	St. Peter	0.05	MN0022535	35	62110
9935	Royal Concrete Pipe Inc	Stacy		MN0024970	70	32730
	Sub-Tronics Inc	Stacy		MN0024970	70	
	Wyoming Machine Inc	Stacy	0.00	MN0024970	65	
	Promotional Mailings	Stacy	5.00	MN0024970	50	
	Pretty Bird Intl	Stacy		MN0024970	20	
	Lakewood Health System	Staples	0.30	MN0024970	450	
	Staples Motley School District		0.29			
		Staples		MN0024988	230	
	Stern Rubber & Company	Staples		MN0024988	140	
	Central Lakes Tech College - Staples	Staples		MN0024988	81	61130
	McKechnie Tooling & Engineer	Staples	0.00	MN0024988	66	
	First Integrity Bank	Staples		MN0024988	49	
	Twin City Optical	Staples		MN0024988	41	
9948	Ultra Color Inc	Staples		MN0024988	33	81290
9949	Precision Polishing	Staples	0.17	MN0024988	15	33280
	Douglas Corporation	Staples		MN0024988	13	
	Staples Precision Metalcraft	Staples		MN0024988	7	
	Starbuck School Dist #6046-42	Starbuck	0.00	MN0024300	95	
9952						

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
9954	Minnewaska District Hospital	Starbuck	0.04	MN0021415	56	
9955	Dy Cast Specialties Corp	Starbuck		MN0021415	40	
9956	Starbuck Creamery	Starbuck	1.50	MN0021415	24	311500
9957	Farmers Union Oil Co	Starbuck		MN0021415	15	424900
9958	First NB of Starbuck	Starbuck		MN0021415	15	522100
9959	Glacial Wood Products	Starbuck		MN0021415	12	423300
9960	Tom's Food Pride	Starbuck		MN0021415	12	445100
9961	Starbuck Cement Products	Starbuck		MN0021415	5	327300
9962	Form a Feed Inc	Stewart		MNG580077	60	112900
9963	McLeod West	Stewart		MNG580077	40	517100
	McCormick Implement	Stewart		MNG580077	18	
	Farmer's Cooperative Elevator	Stewart		MNG580077	9	
	Stewart Energy Products	Stewart	0.04	MNG580077	7	
	Stewartville Public Schools	Stewartville	0.0.	MN0020681	196	
	Halcon Corp	Stewartville		MN0020681	180	
	Rochester Medical Corp	Stewartville	1.08	MN0020681	170	
	Stewartville Care Center	Stewartville	1.00	MN0020681	120	
	Geotek Inc.	Stewartville	0.46	MN0020681	41	
			0.46			
	All American Co-op	Stewartville		MN0020681	30	
	Stewartville, City of	Stewartville		MN0020681	20	
	Jimmy's Dressing	Stewartville	0.38	MN0020681	17	311400
	Rochester Petroleum Equipment, Inc.	Stewartville		MN0020681	15	
9976	Washington, County of	St. Paul	1.36	MN0029998	970	
9977	Stillwater Public Schools-ISD #834	St. Paul		MN0029998	920	611100
9978	UFE Inc	St. Paul	0.64	MN0029998	800	325200
9979	Cub Foods	St. Paul		MN0029998	550	445100
9981	Design Fabricated Parts Inc	St. Paul		MN0029998	330	336300
	DiaSorin	St. Paul	1.31	MN0029998	250	
	Target	St. Paul		MN0029998	197	
	WR Medical Electronics	St. Paul	0.04	MN0029998	50	
	Lonnie Lovness	St. Paul	0.04	MN0029998	24	
	Stillwater Gazette Inc	St. Paul		MN0029998	24	
	Ideal Tool & Machine	St. Paul	0.00		18	
		St. Paul	0.00	MN0029998		
	Copy Cat Digital Imaging Ctr			MN0029998	15	
	K-Sun Corp	St. Paul		MN0029998	15	
	Heritage Embroidery & Design	St. Paul		MN0029998	14	
	Minnesota Wine Growers Co-op	St. Paul	0.67	MN0029998	10	
	Aiple Marine Co Inc	St. Paul		MN0029998	9	
9993	Ammerman Co Inc	St. Paul		MN0029998	8	
9994	Sherburne Gold & Gems Jewelry	St. Paul		MN0029998	5	339900
9995	H&I Wood Specialties	St. Paul		MN0029998	1	337100
9996	Muller Boat Co	Taylors Falls		MN0053309	150	713900
9997	Adventure Mini Golf	Taylors Falls		MN0053309	20	713900
9998	Jericho Trucking	Taylors Falls		MN0053309	15	
	CJ's Conoco	Taylors Falls		MN0053309	10	
	Croix Management	Taylors Falls		MN0053309	10	
	Springs Inn	Taylors Falls		MN0053309	10	
	Chisago House	Taylors Falls		MN0053309	9	
	· ·	,	0.00			
	Merit Machine	Taylors Falls	0.00	MN0053309	9	
	Border Bar & Grill	Taylors Falls		MN0053309	8	
	General Store	Taylors Falls		MN0053309	7	
	Hanson & Holt	Taylors Falls		MN0053309	7	
10007	Log Jam Restaurant	Taylors Falls		MN0053309	7	722100
10008	Wild River Electric	Taylors Falls		MN0053309	7	238200
10009	Bench Street Antiques	Taylors Falls		MN0053309	6	453300
10010	Camp Waub O Jeeg	Taylors Falls		MN0053309	6	721200
10011	Romaynes Restaurant & Bar	Taylors Falls		MN0053309	6	722100
	Barb's Hair Care	Taylors Falls	0.01	MN0053309	5	
	Pines Motel & Apartments	Taylors Falls	1.01	MN0053309	5	
	Schooney Ice Cream	Taylors Falls	0.02	MN0053309	5	
	Dr Frank Crain	Taylors Falls	0.02	MN0053309	4	
	Arctic Cat , Incorporated	Thief River Falls		MN0021431	1500	
	Digi-Key Corporation					
	· · ·	Thief River Falls	200	MN0021431	1170	
	Northwest Medical Center	Thief River Falls	0.30	MN0021431	457	
	Seven Clans Casino Hotel & Indoor Waterpark	Thief River Falls		MN0021431	400	
	Thief River Falls Schools-Dist. 564	Thief River Falls		MN0021431	340	
10021	Pennington, County of	Thief River Falls	0.33	MN0021431	235	921100
10021						

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
10023	Dakota Clinic	Thief River Falls	0.24	MN0021431	175	621100
	Northland Comm & Technical College	Thief River Falls		MN0021431	175	611300
10025	Thief River Falls, City of	Thief River Falls	0.16	MN0021431	115	
	CP Rail (Soo Line)	Thief River Falls	0.04	MN0021431	100	482100
	Dean Foods/Land O'Lakes	Thief River Falls	6.24	MN0021431	100	
	Hugo's	Thief River Falls		MN0021431	95	
	Best Western Inn	Thief River Falls		MN0021431	90	
	K Mart	Thief River Falls		MN0021431	88	
	Independent Machine Service	Thief River Falls		MN0021431	55	
	School District	Tracy		MN0021725	135	
	Tracy Medical Services	Tracy	0.07	MN0021725	53	
	City of Tracy	Tracy	0.06	MN0021725	40	921100
	Tracy Food Pride	Tracy		MN0021725	37	445100
	North Star Homes	Tracy		MN0021725	24	339900
10037	7 Tracy State Bank	Tracy		MN0021725	23	522100
10038	Harvest States	Tracy		MN0021725	19	111100
10039	Tracy Minntronix	Tracy		MN0021725	12	238200
10040	Lutheran Retirement Home	Truman		MN0021652	115	623100
10041	Truman Farmers Elevator Co	Truman		MN0021652	80	493100
10042	Truman Public Schools	Truman		MN0021652	54	611100
10043	Taylor's Restaurant	Truman		MN0021652	20	722100
10044	Bosshart Co	Truman		MN0021652	15	327300
10045	Peoples St Bk of Truman	Truman		MN0021652	15	
	Tennyson Construction	Truman		MN0021652	15	
	7 Schwan's Sales	Truman	0.87	MN0021652	14	
	Mel Carlson Chevrolet	Truman	0.01	MN0021652	13	
	Truman Bus Service	Truman		MN0021652	12	
	Larry Baarts Trucking	Truman		MN0021652	10	
	Truman Food Ctr	Truman		MN0021652	10	
	2 Olson's Furniture	Truman		MN0021652	8	
	Prairieland Compost Facility	Truman		MN0021652	8	
	Truman Plumbing & Heating	Truman		MN0021652	8	
	Upton Ford	Truman		MN0021652	8	
	Melmar Fabrication	Truman	0.04	MN0021652	6	
	7 G&D Electric	Truman	0.04	MN0021652	5	
	Leimar Construction	Truman		MN0021652	5	
	Rode Mfg	Truman	0.03	MN0021652	5	
	Lake Superior School Dist.#381		0.03	MN0021052	375	
	First Plan	Two Harbors				
		Two Harbors Two Harbors	0.24	MN0022250	230	
	2 Community Health Ctr Inc 3 Lakeview Memorial Hospital			MN0022250	180	
		Two Harbors	0.10	MN0022250	152	
	Louisiana-Pacific Corp	Two Harbors		MN0022250	138	
	Stanley Works (La Bounty)	Two Harbors		MN0022250	100	
	Two Harbors Machine Shop	Two Harbors		MN0022250	100	
10067		Two Harbors		MN0022250	50	
	Northshore Manufacturing Inc	Two Harbors		MN0022250	30	
	Hahn Machinery Inc	Two Harbors		MN0022250	12	
10071	I-C System Inc	St. Paul		MN0029815	600	
	SEH Engineering	St. Paul		MN0029815	250	
	Imation	St. Paul		MN0029815	150	
	Medical Graphics Corp	St. Paul	0.12	MN0029815	150	
	RPM Mfg	St. Paul		MN0029815	135	
	Buerkle Buick Honda	St. Paul		MN0029815	130	
10079	Dynamic Air Inc	St. Paul		MN0029815	125	
	S&T Office Products Inc	St. Paul		MN0029815	125	
	Gephart Electric Co	St. Paul		MN0029815	110	
	Com-Tal Machine & Engineering	St. Paul		MN0029815	100	
	Keebler Co	St. Paul		MN0029815	100	
	1 Wal-Mart	St. Paul		MN0029815	100	
		O. D. I		MN0029815	85	
	White Bear Lincoln Mercury	St. Paul				
10085	White Bear Lincoln Mercury White Bear Dodge	St. Paul St. Paul		MN0029815	80	
10085 10087	,		0.06		80 70	
10085 10087 10088	White Bear Dodge	St. Paul	0.06	MN0029815		325200
10085 10087 10088 10089	White Bear Dodge RTI Plastics	St. Paul St. Paul	0.06	MN0029815 MN0029815	70	325200 722100
10085 10087 10088 10089 10090	White Bear Dodge RTI Plastics Ruberto's Restaurant & Banquet	St. Paul St. Paul St. Paul	0.06	MN0029815 MN0029815 MN0029815	70 70	325200 722100 524100
10085 10087 10088 10089 10090 10091	White Bear Dodge RTI Plastics Ruberto's Restaurant & Banquet State Farm Insurance	St. Paul St. Paul St. Paul		MN0029815 MN0029815 MN0029815 MN0029815	70 70 70	325200 722100 524100 611100
10085 10087 10088 10089 10090 10091	White Bear Dodge RTI Plastics Ruberto's Restaurant & Banquet State Farm Insurance Verndale Public School Dist #818	St. Paul St. Paul St. Paul		MN0029815 MN0029815 MN0029815 MN0029815 ISTS	70 70 70 70	325200 722100 524100 611100 236100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	
	United Southwest Bk	Vesta		MNG580043	6	
	HEI Inc	St. Paul		MN0029882	130	
	Community Living	St. Paul		MN0029882	100	
	Deer Run Golf Club	St. Paul		MN0029882	60	
	Victoria House	St. Paul		MN0029882	33	
	Carver Park Reserve	St. Paul		MN0029882	32	
	Victoria State Bank	St. Paul		MN0029882	19	
	Hartman Tree Farm	St. Paul		MN0029882	15	
	Minnesota Victoria Oil Co/Cenex	St. Paul		MN0029882	14	
	CH Carpenter Lumber Co	St. Paul		MN0029882	12	
	Timberwall Landscape Products	St. Paul		MN0029882	9	
	Hi-5 Liquors	St. Paul		MN0029882	7	
	Victoria, City of	St. Paul		MN0029882	7	
	Food N Fuel	St. Paul		MN0029882	6	
	Serv-A-Dock	St. Paul		MN0029882	6	
	Narkie Heating & Air Conditioning Inc	St. Paul		MN0029882	5	
	SIDCO 4x4	St. Paul		MN0029882	5	
	Main Street Hair Co & Tanning Salon	St. Paul		MN0029882	4	
	Leo's Bar	St. Paul		MN0029882	3	
10114		Virginia		MN0030163	1600	
	Virginia Regional Medical Center	Virginia		MN0030163	650	
	St Louis County	Virginia		MN0030163	486	
	Arrowhead Economic Opportunity Agency	Virginia		MN0030163	340	
	Virginia Public Schools	Virginia		MN0030163	320	
	Sykes Enterprises	Virginia		MN0030163	300	
	Duluth Clinic - Virginia	Virginia		MN0030163	240	
	Target	Virginia		MN0030163	150	
	Arrowhead Health Care Center - Virginia	Virginia		MN0030163	134	
	Virginia, City of Mesabi Range Community College - Virginia Campus	Virginia		MN0030163	109	
		Virginia		MN0030163 MN0030163	84	
	Mesabi Daily News	Virginia			70	
	Department of Public Utilities	Virginia		MN0030163	67	
	St Elizabeth Hospital	Wabasha		MN0025143	320	
	Uni Patch Inc	Wabasha		MN0025143	240	
	Wabasha, County of Wabasha-Kellogg Public Schools	Wabasha Wabasha		MN0025143 MN0025143	150 105	
	Thomas Industries	Wabasha		MN0025143	60	
	Great River Homes	Wabasha		MN0025143	58	
	Wabasha Clinic	Wabasha		MN0025143	55	
	Valley Publications	Wabasha		MN0025143	30	
	Wabasha Holding Company	Wabasha		MN0025143	23	
	Boelter Industries Inc	Wabasha		MN0025143	20	
	Wabasha Sand, Gravel and Ready Mix	Wabasha		MN0025143	13	
	Loon Lake Decoy	Wabasha		MN0025143	11	339900
	Medallion Kitchens	St. Paul		MN0029882	280	
	Good Samaritan Center	St. Paul		MN0029882	205	
	Fitness Master Inc	St. Paul		MN0029882	200	
	Milltronics	St. Paul		MN0029882	200	
	Waconia Public Schools	St. Paul		MN0029882	200	
	Lakeview Clinic Ltd	St. Paul		MN0029882	174	
	Waconia Farm & Home Supply	St. Paul		MN0029882	42	
	Twin City Mold Engineering	St. Paul		MN0029882	15	
	Auburn West	St. Paul		MN0029882	12	
	Northern Lights Casino	J i dui		MN0041157	350	
	Ah Gwah Ching Center			MN0041157	320	
	Cass, County of			MN0041157	232	
	Walker School District 119			MN0041157	212	
	Woodrest Healthcare Center			MN0041157	75	
	First National Bank of Walker			MN0041157	51	
	Cochran's Marine			MN0041157	32	
	Moondance Ranch			MN0041157	32	
	Bieloh's Family Foods			MN0041157	25	
	Orton Oil Company			MN0041157	25	
	East Otter Tail Telephone Co			MN0041157	20	
	Walnut Grove School	Walnut Grove		MN0021776	28	
	Wanamingo Schools-ISD #2172	Wanamingo		MN0022209	130	
10165						
	Ag Partners	Wanamingo		MN0022209	90	424900

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
	Riverview Manor	Wanamingo		MN0022209	45	623900
	Farmers Co-op Oil	Wanamingo		MN0022209	44	
10170	Security St Bk of Wanamingo	Wanamingo		MN0022209	15	
	Budget Mart Oil	Wanamingo		MN0022209	9	447100
10172	Haller Chevrolet	Wanamingo		MN0022209	9	441100
10173	Wanda Country Steak and Drink	Wanda		MN0020524	25	722100
10174	Wanda State Bank	Wanda		MN0020524	12	521100
10175	North Valley Health Ctr	Warren	0.08	MNG580073	57	621100
	Nordic Fiberglass Inc	Warren		MNG580073	35	444100
	PKM Electric Cooperative Assn	Warren		MNG580073	20	221100
	Strata Concrete	Warren		MNG580073	11	
	Northwest Regional Dev. Commission	Warren		MNG580073	8	
	Farm Credit Services	Warren		MNG580073	7	
	Harvest States Co-op	Warren		MNG580073	7	
	Warren Tire Service	Warren		MNG580073	7	
	Great Companions Ltd	Warren		MNG580073	6	
	Mischel Grain & Seed	Warren		MNG580073	6	
	Evergreen Implement	Warren		MNG580073	5	
	Independent School District #690	Warroad		MN0025194	250	
10188	Lake of the Woods Casino	Warroad		MN0025194	160	713200
10189	Warroad Care Center	Warroad		MN0025194	64	623100
10190	Doug's Supermarket	Warroad		MN0025194	57	445100
10191	City of Warroad	Warroad	0.05	MN0025194	39	921100
	Heatmor	Warroad		MN0025194	35	
	ALCO	Warroad		MN0025194	25	
	Holiday Station Store	Warroad		MN0025194	22	
	The Patch Restaurant	Warroad		MN0025194	22	
	Farmers Union Oil Co.	Warroad		MN0025194	21	
	Super America	Warroad		MN0025194	21	
	Security State Bank	Warroad		MN0025194	20	
	Altru Health Clinic	Warroad		MN0025194	17	
	Lake Country Chevrolet	Warroad		MN0025194	16	
	Time Out Pizza	Warroad		MN0025194	15	
10202	Brown Printing Co	Waseca		MN0020796	1300	
10203	Itron Inc	Waseca		MN0020796	360	334400
10204	Waseca Public Schools	Waseca		MN0020796	350	611100
10205	EF Johnson Co	Waseca		MN0020796	243	334200
10206	Johnson Components	Waseca		MN0020796	210	425100
10207	Federal Correctional Inst-Waseca	Waseca		MN0020796	180	922100
	Dean Foods/Bird's Eye Div.	Waseca		MN0020796	155	
	ELM Homes Inc	Waseca		MN0020796	130	
	Waseca, County of	Waseca		MN0020796	130	
	Waseca Area Medical Center	Waseca		MN0020796	125	
	Winegar Brothers Inc	Waseca		MN0020796	90	
	Corchran Inc	Waseca		MN0020796	85	
	DM&E Railroad	Waseca				
				MN0020796	80	
	Waseca Mutual Insurance Co	Waseca		MN0020796	60	
	Waseca, City of	Waseca		MN0020796	55	
	Watertown School District #111	Watertown		MN0020940	225	
	Elim Nursing Home	Watertown		MN0020940	85	
10219	Don's Food Pride	Watertown		MN0020940	50	445100
10220	D'Vinci's Restaurant	Watertown		MN0020940	32	722100
10221	Watertown, City of	Watertown	0.03	MN0020940	20	921100
	Subway	Watertown		MN0020940	14	722100
10223	CentraSota	Watertown		MN0020940	12	424900
	First American Bk Metro - Watertown	Watertown		MN0020940	11	
	Lakeview Clinic Ltd	Watertown		MN0020940	10	
	Derson Tank	Watertown		MN0020940	9	
	Carver County News	Watertown		MN0020940	4	
	NAPA - Watertown Parts Center	Watertown		MN0020940	4	
	Hooked on Classics	Watertown		MN0020940	3	
	Hun-Gree Bear Restaurant	Watertown		MN0020940	2	
	Hilltop Good Samaritan Ctr			ISTS	70	
	Mies Equipment Inc			ISTS	30	
	Terra International Inc			ISTS	25	
	Randy Kramer Excavating			ISTS	22	
				ISTS	12	441100
10235	Arnold Chevrolet			1313	12	441100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
10237	Barrier Technology		_ 5	ISTS	9	444100
	Mies Motors			ISTS	8	
	Stein's Thriftway Foods			ISTS	7	
	Faber Building & Supply Inc	0. 0. 1		ISTS	6	
	Wayzata Public Schools-ISD #284	St. Paul St. Paul		MN0029882	850	
	Wayzata Auto Center Burnet Realty Inc	St. Paul		MN0029882 MN0029882	165 110	
	Foursome Inc	St. Paul		MN0029882	100	
	Wayzata Country Club	St. Paul		MN0029882	90	
	Wayzata Country Club Wayzata, City of	St. Paul	0.11	MN0029882	77	921100
	Edina Realty Inc	St. Paul	0.11	MN0029882	70	
	Norwest Bank	St. Paul		MN0029882	63	
	BORN Information Svc	St. Paul		MN0029882	60	
	Sunsets on Wayzata Bay	St. Paul		MN0029882	55	
	Roger Fazendin Realtors	St. Paul		MN0029882	53	531200
10252	Copeland Buhl & Co	St. Paul		MN0029882	50	541200
10253	Montgomery Watson	St. Paul		MN0029882	50	541300
	Anchor Bk NA	St. Paul		MN0029882	46	522100
10255	Martin County West Schools-Dist #459	Welcome		MN0021296	82	
	Eagle Engineering & Mfg Inc	Welcome		MN0021296	78	
	Timothy's of Welcome	Welcome		MN0021296	11	445300
	Cenex	Welcome		MN0021296	10	
	Watonwan Farm Services	Welcome		MN0021296	8	
	Welcome Legion Club	Welcome		MN0021296	8	
	Welcome St Bk	Welcome		MN0021296	6	
	Crop Builders Inc	Welcome		MN0021296	5	
	Les Ringnell Insurance Gerhardt Corner Grocery	Welcome Welcome		MN0021296 MN0021296	5	
	Northern Natural Gas Co	Welcome		MN0021296	4	
	NuWay Cooperative	Welcome		MN0021296	4	
	Federated Rural Electric Assn	Welcome		MN0021296	3	
	Kramer Funeral Chapel	Welcome		MN0021296	3	
	Weiss Milling Inc	Welcome		MN0021296	3	
	Welcome Cafe	Welcome		MN0021296	3	
	US Post Office	Welcome		MN0021296	2	
	Welcome Hardware	Welcome		MN0021296	2	
10273	Welcome Oil Co	Welcome		MN0021296	2	454300
10274	Welcome TV Sales & Service Inc	Welcome		MN0021296	2	443100
	Wells Concrete Products, Inc.	Wells		MN0025224	250	238100
	ConAgra Foods	Wells	5.18	MN0025224	230	
	United South Central High School	Wells		MN0025224	175	
	Naeve Parkview Home	Wells		MN0025224	76	
	Wells Super Valu	Wells		MN0025224	40	
	Herman Manufacturing	Wells	0.00	MN0025224	35	
	Wells Federal Bank	Wells		MN0025224	34	
	South Central Veterinary Clinic A Home of Your Own	Wells Wells		MN0025224 MN0025224	31	
	Wells Truss Manufacturing	Wells		MN0025224	29	
	Wells, City of	Wells	0.04	MN0025224	25	
	Watonwan Farm Services	Wells	0.04	MN0025224	15	
	Wells Concrete Ready Mix	Wells		MN0025224	14	
	Paragon Bank	Wells		MN0025224	12	
	Peoples State Bank	Wells		MN0025224	9	
	S & H Deisel	Wells		MN0025224	9	
	Blue Earth Valley Telephone Co	Wells		MN0025224	6	
	Dakota Co	St. Paul		MN0029815	300	
10293	Southview Acres Health Care	St. Paul		MN0029815	300	623100
10294	Target	St. Paul		MN0029815	300	
10296	Cub Foods	St. Paul		MN0029815	200	
	Rainbow Foods	St. Paul		MN0029815	160	
	K Mart	St. Paul		MN0029815	150	
	City of West St. Paul	St. Paul	0.14	MN0029815	100	
	Langer Construction Co	St. Paul		MN0029815	100	
	Tru-Part Mfg Corp	St. Paul		MN0029815	95	
	Wheaton Community Hospital	Wheaton	0.06	MNG580044	85	
	Wheaton Public School Dist #803	Wheaton		MNG580044	78	
	Polytec	Wheaton	0.03	MNG580044	35	
10307	Larson Implement Inc	Wheaton		MNG580044	27	333200

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
	Wheaton Plastics	Wheaton	0.02	MNG580044	20	325200
10309	Gazette Publishing & Printing	Wheaton		MNG580044	18	
10310	Spectrum Aeromed	Wheaton	0.01	MNG580044	16	
10311	Lundquist Seed	Wheaton		MNG580044	15	424900
10312	Runestone Manufacturing	Wheaton		MNG580044	15	
10313	Wheaton Dumont Coop Elevator	Wheaton		MNG580044	15	424900
10314	EZ Loader Boat Trailers	Wheaton		MNG580044	5	453900
10315	White Bear Area Auto Dealers	St. Paul		MN0029815	1100	441100
	Taymark Corporation	St. Paul		MN0029815	290	454100
10317	White Bear Care Center	St. Paul		MN0029815	225	623900
10318	Trane Company	St. Paul		MN0029815	207	333400
10319	Sam's Club	St. Paul		MN0029815	160	452100
10321	Smarte Carte	St. Paul	0.00	MN0029815	125	
10322	K Mart	St. Paul		MN0029815	100	452100
10323	Renewal by ANDERSON	St. Paul		MN0029815	100	238100
10324	Kohler Mix Specialties	St. Paul		MN0029815	91	424400
10325	Marprint	St. Paul		MN0029815	80	323100
10326	Press Publications	St. Paul		MN0029815	75	511100
10328	Specialty Manufacturing	St. Paul	0.34	MN0029815	50	332900
10329	SpectraCom	St. Paul		MN0029815	33	333300
	Aspen Research Corporation	St. Paul	0.15	MN0029815	30	
	Magnepan, Inc.	St. Paul		MN0029815	30	443100
10332	Grubb Equipment Sales	St. Paul		MN0029815	29	335200
	Aquacide Company, Inc.	St. Paul	2.16	MN0029815	4	
	B & G Products Company	St. Paul		MN0029815	4	
	Das Designs	St. Paul		MN0029815	3	
	Jennie-O Turkey Store	Willmar	75.25	MN0025259	1328	
	Willmar Public Schools	Willmar		MN0025259	819	
	Rice Memorial Hospital	Willmar	0.44	MN0025259	684	
	Willmar Regional Treatment Ctr	Willmar		MN0025259	530	
	Affiliated Medical Ctr	Willmar	0.60	MN0025259	447	
	Kandiyohi, County of	Willmar	0.61	MN0025259	433	
	Bethesda Homes	Willmar		MN0025259	350	
	Ridgewater College - Willmar	Willmar		MN0025259	235	
	Minnesota Dept. of Transportation	Willmar		MN0025259	225	
	Willmar Poultry Co	Willmar		MN0025259	225	
	Burlington Northern Railroad	Willmar	0.10	MN0025259	215	
	Wal-Mart	Willmar		MN0025259	165	
	Molenaar Inc	Willmar	0.13	MN0025259	160	
	West Central Steel/Central MN Fabricating	Willmar		MN0025259	150	
	Infinia of Willmar	Willmar		MN0025259	110	
	Heartland Community Action Agency	Willmar		MN0025259	98	
	Mills Auto Center	Willmar		MN0025259	94	
	Holiday Inn & Willmar Conference Center	Willmar		MN0025259	90	
	Herberger's	Willmar		MN0025259	86	
	Woodland Centers	Willmar		MN0025259	86	
	Wilmont Farmers Elevator	Wilmont		MN0025852	12	
	United Prairie Bank	Wilmont		MN0025852	7	
	Loosbrock Construction	Wilmont		MN0025852	6	
	T & C Truking	Wilmont	0.00	MN0025852	6	
	B & L Construction	Wilmont		MN0025852	5	
	City Liquor Store	Wilmont		MN0025852	5	
	Wilmont Family Recreation Center	Wilmont		MN0025852	5	
	Jueneman OK Hardware	Wilmont		MN0025852	4	
	Larry's Body Shop	Wilmont		MN0025852	4	
	Tri City Gas Inc.	Wilmont		MN0025852	4	
	Balster construction	Wilmont		MN0025852	3	
	Frenchies Wild WEst	Wilmont		MN0025852	3	
	Lynch Digmann Funeral Home	Wilmont		MN0025852	3	
	PSI Cleaning & Assoc.	Wilmont		MN0025852	3	
	Al Plumbing & Heating	Wilmont		MN0025852	2	
	Toro Co	Windom		MN0023832	604	
	Windom Public Schools-ISD #177	Windom		MN0022217	200	
	Caldwell Packing Co	Windom	10.20	MN0022217	180	
	Sogge Memorial Good Samaritan	Windom	10.20	MN0022217	135	
	Windom Area Hospital	Windom	0.05	MN0022217	83	
	Fortune Transportation	Windom		MN0022217	70	
	Gordy's Foods	Windom	3.02	MN0022217	62	
10377	Ouray or ouro	VVIIIUUIII		IVIINUUZZZII	02	++5100

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
10378	MN Dept of Transportation	Windom		MN0022217	59	926100
	Mc Donalds	Windom		MN0022217	55	
	Pamida Discount Ctr	Windom		MN0022217	46	
	Hy-Vee Food Stores	Windom		MN0022217	42	
	Windom, City of	Windom	0.05	MN0022217	39	
	US Post Office	Windom		MN0022217	29	491100
	Cottonwood County DAC	Windom		MN0022217	28	624200
10385	Windom Coop Assn - Cenex	Windom		MN0022217	26	424900
10386	Cottonwood-Jackson Health Svc	Windom		MN0022217	25	923100
	Towler Town Motor Co	Windom		MN0022217	25	441100
10388	Citizen Publishing Co	Windom		MN0022217	21	511100
10389	Parker Oaks Nursing Home	Winnebago		MN0025267	110	623100
10390	JM Manufacturing	Winnebago	0.05	MN0025267	60	325200
	Loveall Construction Co	Winnebago		MN0025267	60	238100
10392	Corn Plus, Inc.	Winnebago	0.21	MN0025267	40	541700
10393	Crown Fixtures Inc	Winnebago		MN0025267	35	423700
10394	Minnesota Electric Technology	Winnebago		MN0025267	30	335300
10395	Windings Inc	Winnebago		MN0025267	30	335300
10396	Meter Man Inc	Winnebago		MN0025267	25	111900
10397	Weerts Companies	Winnebago	1.03	MN0025267	20	484100
	Winnebago School Dist #2148	Winnebago		MN0025267	20	
	TRW Automotive Electronics	Winona		MN0030147	980	
	Fastenal Co	Winona		MN0030147	900	
	Winona Health	Winona	0.53	MN0030147	820	622100
	Winona State University	Winona		MN0030147	750	
	Winona Public Schools-Dist #861	Winona		MN0030147	610	611100
	Watlow Controls	Winona	0.32	MN0030147	417	334500
	Watkins Inc	Winona	0.02	MN0030147	375	424900
	St. Mary's University	Winona		MN0030147	361	611300
	Wincraft	Winona		MN0030147	330	315900
	Winona County	Winona	0.41	MN0030147	289	921100
	Sprint	Winona	0.11	MN0030147	260	517100
	Winona Knitting Mills Inc	Winona		MN0030147	230	315100
	Hal Leonard Publishing	Winona		MN0030147	185	511100
	Fiberite Inc	Winona	0.14	MN0030147	175	
	Boelter Industries	Winona	0.11	MN0030147	125	322200
	Brock Candy Co.	Winona	0.04	MN0030147	121	311300
	Sterner Lighting Systems Inc	Winsted	0.01	MN0021571	250	
	Quast Transfer Inc	Winsted	0.00	MN0021571	185	
	Millerbernd Manufacturing Co	Winsted	0.00	MN0021571	160	
	Scherping Systems	Winsted		MN0021571	130	
	St Mary's Care Center	Winsted		MN0021571	120	
	Littfin Lumber Co	Winsted		MN0021571	100	
	Mid-America Dairymen Inc	Winsted	1.50	MN0021571	100	
	Waste Management	Winsted	1.50	MN0021571	90	
	SJF Enterprises	Winsted		MN0021571	80	
	Niro Sterner Inc	Winsted		MN0021571	65	237900
	EDCO of Winsted Products Inc	Winsted		MN0021571	60	
	Holy Trinity School	Winsted		MN0021571	60	
	Ram Builders Inc.	Winsted		MN0021571	39	
	Blue Note Bar & Ballroom	Winsted		MN0021571	20	722100
	Hands Inc	Winthrop		MN0051098	280	
	Winthrop Good Samaritan Ctr	Winthrop		MN0051098	67	623100
	Winthrop Public Schools-GFW	Winthrop		MN0051098	67	611100
	Dairy Farmers of America Inc	Winthrop	0.00	MN0051098	54	311500
	GuideCraft USA	Winthrop	0.36	MN0051098	52	
	JB Lures	Winthrop		MN0051098	25	339900
	Bartels Truck Line Inc	Winthrop		MN0051098	23	
	Lyle's Cafe	Winthrop		MN0051098	22	
	B&R Plumbing and Heating	Winthrop		MN0051098	15	
	Tim's Super Valu	Winthrop		MN0051098	15	
	Jolly Tundra	Winthrop		MN0051098	11	315200
	Jackson Electric	Winthrop		MN0051098	10	
	Winthrop St Bk	Winthrop		MN0051098	10	
	Winthrop Wood Products	Winthrop		MN0051098	9	
	Winthrop News	Winthrop		MN0051098	8	
	Z Trailer Sales	Winthrop		MN0051098	8	
10449	State Farm Insurance	St. Paul		MN0029815	1420	524210

Appendix B. Industrial Phosphorus Data Matched to MNPRO Database by NAICS

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
10450	South Washington County Schools	St. Paul		MN0029815	809	611110
10451	The Hartford	St. Paul		MN0029815	796	524210
10452	EFunds	St. Paul	0.07	MN0029815	400	518210
10454	Ecowater Systems	St. Paul	0.98	MN0029815	371	333319
10455	Fortis	St. Paul	0.06	MN0029815	361	518210
10456	target.direct	St. Paul		MN0029815	300	
	Home Depot	St. Paul		MN0029815	250	
	Woodbury Senior Living Campus	St. Paul		MN0029815	247	623311
	City of Woodbury	St. Paul		MN0029815	174	921140
	New Life Academy	St. Paul		MN0029815	120	
	Vogel Mfg Co	St. Paul		MN0029815	120	
	Medical Concepts Development	St. Paul	0.11	MN0029815	86	
	Heritage Exhibits	St. Paul		MN0029815	85	
	Swift & Co	Worthington		MN0031186	1500	
	Worthington Regional Hospital	Worthington	0.17	MN0031186	261	622100
10468	Highland Manufacturing	Worthington		MN0031186	170	
	Bedford Industries Inc	Worthington	0.26	MN0031186	153	
	Intervet, Inc.	Worthington		MN0031186	140	
	Worthington Specialty Clinics	Worthington	0.14	MN0031186	102	
	Daily Globe	Worthington		MN0031186	85	
	Fullerton Building Systems Inc	Worthington		MN0031186	40	
	New Vision Co-op	Worthington		MN0031186	38	
	Schaap Sanitation	Worthington		MN0031186	25	
	Worthington Tractor Parts	Worthington		MN0031186	25	
	Wrenshall Public Schools-ISD#100	Duluth		MN0049786	60	
	Northern Natural Gas Co	Duluth		MN0049786	25	
	Conoco Pipeline	Duluth		MN0049786	2	
	City of Zimmerman	Zimmerman		MN0042331	50	
	DaRan, INC.	Zimmerman	2.59	MN0042331	50	
	Fairview Clinic	Zimmerman		MN0042331	50	
	ISD #728	Zimmerman		MN0042331	50	
	Nelson Nursery	Zimmerman		MN0042331	50	
	Zumbrota Health Care	Zumbrota	0.11	MN0025330	175	
	Zumbrota-Mazeppa Public Schools	Zumbrota		MN0025330	160	
	Zumbrota Livestock Auction Mkt	Zumbrota		MN0025330	60	
	Custom Iron Inc	Zumbrota		MN0025330	49	
	Bank of Zumbrota	Zumbrota		MN0025330	43	
	Covered Bridge Restaurant & Lounge	Zumbrota		MN0025330	35	
	Hub Food Center	Zumbrota		MN0025330	35	
	Three River Action Inc	Zumbrota	0.01	MN0025330	34	
	Coolstor Warehouse Services	Zumbrota	0.01	MN0025330	30	
	Concast Inc	Zumbrota		MN0025330	25	
	Casey's General Store	Zumbrota		MN0025330	23	
	Best Way Products	Zumbrota		MN0025330	22	
	Goodhue County Coop Electric Assn	Zumbrota		MN0025330	21	221100
10499	Grimsrud Publishing	Zumbrota		MN0025330	18	511100

Appendix C MCES Industrial Users Database

Appendix C. MCES Industrial Users Database

ID	Facility Name	City	Average P (mg/L)	Average Flow (MG)	P_kgd	SIC_No	Permit_No	employee_count	NAICS Codo
	General Mills Inc (JFBTC)	St. Paul	9.36	48.73	4.73		MN0029815	1000	311211
	Burlington Northern Santa Fe Railway	St. Paul	45.90	11.56	5.50		MN0029815	300	482111
	Ecolab Inc	St. Paul	393.12	9.93	40.50		MN0030007	111	325611
	Electronic Industries Inc	St. Paul	3.63	1.64	0.06		MN0029815	28	334418
	Electro-Plating Eng Co	St. Paul	0.31	13.19	0.04	3471	MN0029815	50	332813
6	H D Hudson Mfg Co	St. Paul	15.83	2.25	0.37	3523	MN0029955	100	332323
7	M - Foods Dairy LLC	St. Paul	58.91	37.23	22.74	2024	MN0029815	120	311520
8	Upper River Services Inc	St. Paul	8.34	2.05	0.18	4789	MN0029815	36	488210
9	Packaging Corp of America	St. Paul	14.10	6.13	0.90	2653	MN0029815	102	322211
10	Lakeview Memorial Hospital	St. Paul	5.17	10.20	0.55	8062	MN0029998	400	622110
	AbelConn LLC	St. Paul	9.00	5.25	0.49		MN0029815	100	335931
	Tiro Industries LLC	St. Paul	2.61	20.56	0.56		MN0029815	527	325620
	Rexam Beverage Can	St. Paul	0.32	29.62	0.10		MN0029815	91	332431
	Caterpillar Paving Products Inc	St. Paul	220.51	2.43	5.56		MN0029815	492	333924
	Metal-Matic Inc	St. Paul	8.56	6.11	0.54		MN0029815	398	331210
	General Mills Inc - Purity Oats	St. Paul	5.14	1.44	0.08		MN0029815	27	311211
	Rahr Malting Co Supra Color Labs Inc	St. Paul St. Paul	196.44 2.47	98.03 1.72	199.72 0.04		MN0029882 MN0029815	68 45	311213 540000
	Weyerhaeuser Co	St. Paul	8.41	6.19	0.04		MN0029815	137	322211
	Hiawatha Metalcraft Inc (Plant #3)	St. Paul	0.23	36.79	0.09		MN0029815	19	332813
	Ameripride Services	St. Paul	2.43	60.18	1.52		MN0029815	270	812332
	Smyth Companies Inc	St. Paul	11.90	1.35	0.17		MN0029815	184	310000
	Honeywell Advanced Circuits Inc	St. Paul	1.08	26.56	0.30		MN0029815	50	334418
	States Electric Mfg Co	St. Paul	125.50	0.36	0.46		MN0029815	39	337215
	Twin City Hide Inc	St. Paul	132.82	11.09	15.27		MN0029815	76	444220
	Northwest Airlines Inc (OB)	St. Paul	16.00	17.63	2.92		MN0029815	3600	481000
	Lifetouch Inc (NSS Division)	St. Paul	9.75	4.84	0.49		MN0030007	413	541921
	AaCron Inc	St. Paul	4.05	53.35	2.24		MN0029815	50	332813
29	Hastings Coop Creamery	St. Paul	29.00	8.95	2.69	2026	MN0029955	37	311511
	Northern Star Co	St. Paul	156.13	146.52	237.24	2037	MN0029815	223	311411
31	Intermet Co	St. Paul	1.30	9.77	0.13	3361	MN0029815	285	332000
32	MacKay Envelope Co	St. Paul	12.54	0.97	0.13	2751	MN0029815	215	310000
33	Marigold Foods LLC	St. Paul	52.32	62.76	34.05	2023	MN0045845	118	311514
34	Honeywell Inc	St. Paul	3.05	29.14	0.92	3674	MN0029815	583	334413
	Stylmark	St. Paul	35.70	12.95	4.80	3429	MN0029815	150	332999
	Packaging Corp of America	St. Paul	5.28	2.49	0.14		MN0029815	76	322211
	E A Sween Co	St. Paul	20.50	5.22	1.11		MN0029882	237	311830
	H B Fuller Co	St. Paul	1.90	1.98	0.04		MN0029815	50	325520
	United Defense, L.P	St. Paul	12.06	28.73	3.59		MN0029815	1630	332995
	Etchit	St. Paul	1.08	0.62	0.01		MN0029815	8	332813
	Diamond Products Co	St. Paul	2.22	22.65	0.52		MN0029815	223	325620
	Hard Chrome Inc West Group	St. Paul St. Paul	7.64 5.48	20.39 14.96	1.61 0.85		MN0029815 MN0030007	1358	332813 516110
	Buckbee-Mears St Paul	St. Paul	5.18	35.49	1.91		MN0029815	56	332813
	Culligan Soft Water Service Co	St. Paul	2.90	16.35	0.49		MN0029813	85	333319
	Americraft Carton Inc	St. Paul	10.80	0.49	0.05		MN0029815	82	322000
	Rosemount Inc	St. Paul	2.65	20.27	0.56		MN0029882	500	334500
	Rosemount Aerospace Inc	St. Paul	2.50	1.54	0.04		MN0030007	256	332813
	Rosemount Aerospace Inc	St. Paul	87.55	6.47	5.87		MN0030007	855	332813
	Univar USA Inc	St. Paul	5.39	0.83	0.05		MN0029815	37	424000
	Pioneer Metal Finishing	St. Paul	8.60	93.43	8.33		MN0029815	135	332813
52	Menasha Corp	St. Paul	7.19	3.31	0.25	2653	MN0045845	179	322211
53	United Sugars Corp	St. Paul	14.28	1.97	0.29	2063	MN0029882	26	311313
	Old Dutch Foods Inc	St. Paul	28.68	34.66	10.31	2065	MN0029815	198	311000
	Joyner's Silver & Electroplating	St. Paul	0.50	4.34	0.02		MN0029815	101	332813
	iFlex Inc	St. Paul	0.98	49.96	0.51		MN0029882	60	334418
	Honeywell Advanced Circuits Inc	St. Paul	11.92	39.06	4.83		MN0029882	50	334418
	Honeywell Electronic Materials Inc	St. Paul	3.47	87.13	3.14		MN0029815	10	334418
	St Paul Electroplating Co Inc	St. Paul	0.08	0.22	0.00		MN0029815	4	332813
	Micro Parts Inc	St. Paul	2.96	1.43	0.04		MN0030007	20	336399
	Century Circuits & Electronics	St. Paul	6.09	6.88	0.43		MN0029815	70	334412
	Plating Inc	St. Paul	1.97	10.04	0.21		MN0029815	20	332813
	Micom Corp Honeywell Inc	St. Paul	0.83	31.48	0.27		MN0029815	50	334418
	Co-Operative Plating	St. Paul St. Paul	4.03 12.95	26.27 24.28	1.10 3.26		MN0029815 MN0029815	1362	332813 332813
	Superior Plating Inc	St. Paul	4.37	67.30	3.26		MN0029815	69 95	332813
	Circuit Science Inc	St. Paul	0.74	28.17	0.22		MN0029815	100	334418
	Wolkerstorfer Co Inc	St. Paul	3.92	10.92	0.22		MN0029815	35	332813
	Douglas Corp - Plating Div	St. Paul	10.14	24.35	2.56		MN0029815	96	332813
	Ford Motor Co	St. Paul	12.12	137.85	17.33		MN0029815	2156	336112
	Dugas Bowers Plating Co	St. Paul	0.50	9.66	0.05		MN0029815	45	332813
	The Bureau - Electronics Group	St. Paul	1.72	87.16	1.55		MN0029815	200	334412
	EDCO Products Inc	St. Paul	1.10	1.33	0.02		MN0029815	125	332322
	W E Mowrey Co	St. Paul	0.00	0.14	0.00		MN0029815	50	331314
75	Thermo King Corp	St. Paul	1.21	5.18	0.07		MN0030007	620	336391
76	Midwest Finishing Inc	St. Paul	400.28	3.53	14.64	3471	MN0029815	50	332813

Appendix C. MCES Industrial Users Database

ID	Facility Name	City	A. (2.22.22. D /22.27/L)	Average Flow (MC)	Diad	CIC No	Danneit Na	ampleuse seunt	NIVICC Cada
ID 77	Facility Name Minco Products Inc	St. Paul	27.31	Average Flow (MG) 5.95	P_kgd 1.68	SIC_No	Permit_No MN0029815	employee_count 454	334418
	Applied Coating Technology	St. Paul	54.16		2.39		MN0029815	50	339914
	Shaughnessy Plating Co	St. Paul	0.44		0.00		MN0029815	2	332813
	IMI Cornelius Inc	St. Paul	1.50	14.46	0.23		MN0029815	200	333311
81	Physical Electronics Inc	St. Paul	28.29	2.88	0.84	3823	MN0029882	120	334513
82	Avtec Finishing Systems	St. Paul	8.02	11.28	0.94	3471	MN0029815	90	332813
	Valmont/Applied Coating Technology	St. Paul	2.10	7.42	0.16	3471	MN0029882	44	332813
	Leaf Industries Inc	St. Paul	37.85		1.96		MN0029815	80	332813
	Lowell Inc	St. Paul	0.64		0.00		MN0029815	72	332721
	Bo-Decor Metal Finishing Inc	St. Paul	0.52		0.01		MN0030007	25	337215
	Honeywell Advanced Circuits Inc Gross-Given Mfg Co	St. Paul St. Paul	8.27 31.45	30.27 5.89	2.59 1.92		MN0029815 MN0029815	50 260	334418 333311
	Tennant Co	St. Paul	32.67	5.78	1.92		MN0029815	482	333311
	Bauer Welding & Metal Fabricators Inc	St. Paul	13.96		0.18		MN0029815	75	332996
	Quality Painting & Metal Finishing	St. Paul	12.29	0.47	0.06		MN0029815	12	339914
	Honeywell Inc	St. Paul	5.08	57.63	3.03		MN0029815	1800	334512
93	Twin City Plating Co	St. Paul	0.94	0.50	0.00	3471	MN0029815	15	332813
94	Valmont - Applied Coating Technology	St. Paul	16.60	8.38	1.44	3479	MN0029815	105	339914
	Rubber Industries Inc	St. Paul	76.00	0.74	0.58	3479	MN0029882	62	339914
	Northwest Airlines Inc (MB)	St. Paul	1.76		2.40		MN0029815	3000	481000
	Cinch New Hope	St. Paul	0.40	0.56	0.00		MN0029815	55	335931
	Seagate Technology LLC	St. Paul	0.25		0.15		MN0030007	2550	334418
	Nor-Ell Inc	St. Paul	10.63		1.32		MN0029815	40	484000
	Holaday Circuits Inc Federal Cartridge Co	St. Paul St. Paul	1.52 3.78		0.56 1.86		MN0029882 MN0029815	126 893	334418 332992
	NiCo Products Inc #3	St. Paul	0.82		0.21		MN0029815	84	332813
	World Aerospace Corp	St. Paul	5.57	2.49	0.14		MN0029815	47	332214
	Universal Plating Co Inc	St. Paul	1.11	9.99	0.12		MN0029815	20	332813
	Systems	St. Paul	5.58		0.10		MN0030007	215	333000
	Century Mfg Co	St. Paul	29.35		1.21	3623	MN0030007	50	334000
107	PolarFab LLC	St. Paul	26.10	63.56	17.21	3643	MN0030007	471	335931
108	Precision Plating Inc	St. Paul	0.71	1.32	0.01	3471	MN0029815	5	332813
	Davis-Frost Inc	St. Paul	0.39	9.23	0.04		MN0029815	10	325510
	Interplastic Corp	St. Paul	0.66		0.03		MN0029815	54	325211
	Hiawatha Metalcraft Inc (Plant #1)	St. Paul	0.29	15.16	0.05		MN0029815	31	339914
	Manildra Milling Corp	St. Paul	183.93		31.97 1.23		MN0029815	50	311211
	The Mengelkoch Co Printed Circuits Inc	St. Paul St. Paul	28.00 0.76		0.07		MN0029815	20 40	311711 334418
	Thomas Engineering Co	St. Paul	11.10	0.44	0.07		MN0030007 MN0029815	77	332214
	Minnesota Metal Finishing Inc	St. Paul	0.74	17.87	0.03		MN0029815	45	339914
	Leef Brothers Inc	St. Paul	25.33	25.99	6.83		MN0029815	150	812332
	Inland Paperboard & Packaging Inc	St. Paul	5.33		0.19		MN0029882	135	322211
	Marigold Foods Inc - Mpls Plant	St. Paul	30.92		11.52		MN0029815	145	311511
120	Fremont Industries Inc	St. Paul	147.45	1.57	2.39	2842	MN0029882	37	325612
121	International Paper Co	St. Paul	20.87	4.46	0.96	2651	MN0029815	116	322000
122	Midwest Coca Cola Bottling Inc	St. Paul	4.49	107.74	5.02	2086	MN0030007	600	312111
	Van Hoven Co Inc	St. Paul	60.51	57.58	36.13		MN0029815	54	311711
	Ecolab Inc	St. Paul	7.92		1.72		MN0029815	325	325611
	Gresen Hydraulics Div	St. Paul	17.20		0.42		MN0029815	235	333911
	Tennant Co Flame Metals Processing Corp	St. Paul St. Paul	0.07 19.63	0.65 4.21	0.00 0.86		MN0029815 MN0030007	129 50	333319 332811
	Certainteed Corp	St. Paul	5.65	78.87	4.62		MN0029882	75	324122
	Cardinal Insulated Glass	St. Paul	0.07	2.64	0.00		MN0029862	50	327215
	Beckman Coulter Inc	St. Paul	14.50		0.64		MN0029813	500	325412
	Dean Foods North Central Inc	St. Paul	36.73		9.73		MN0029815	220	311511
	Pearson Candy Co	St. Paul	10.05		0.77		MN0029815	171	311000
	Schroeder Milk Co Inc	St. Paul	40.94		10.34		MN0029815	205	311511
	Johnson Screens	St. Paul	1.24	12.74	0.16		MN0029815	230	332618
	Minnesota Rubber Co #1	St. Paul	5.20		0.24		MN0029815	50	315999
	Flint Ink Corp	St. Paul	4.47		0.02		MN0029815	50	325910
	Dakota Premium Foods LLC	St. Paul	23.32		23.73		MN0029815	250	311611
	Onan - Main Plant	St. Paul	20.40		5.10		MN0029815	1592	336399
	Onan - Technical Center	St. Paul	6.00		0.14		MN0029815	35	336399
	Ken's Metal Finishing Inc	St. Paul	0.74		0.00		MN0029815	3	332813
	Old Home Foods Inc Glenwood-Inglewood Co	St. Paul St. Paul	28.83 5.65		2.65 0.48		MN0029815 MN0029815	70	311511 312111
	Northland Aluminum Products Inc	St. Paul	14.90		0.40		MN0029815	245	325200
	St Paul Metalcraft Inc	St. Paul	2.55		0.03		MN0029815	154	331528
	Anchor Block Co	St. Paul	2.80		0.19		MN0029815	97	327331
	G & K Services	St. Paul	23.05		6.42		MN0029815	83	812332
147	Northwest Automatic Products	St. Paul	0.29		0.00		MN0029815	89	332721
	3M Co	St. Paul	6.82		19.82	3291	MN0029815	10926	332999
	3M Co	St. Paul	3.30		5.77		MN0029815	1200	332999
	3M Co	St. Paul	1.30		0.02		MN0029815	50	325200
	Minnesota Rubber Co #2	St. Paul	4.20		0.02		MN0029815	50	333220
152	Minntech Corp	St. Paul	2.23	23.75	0.55	2835	MN0029815	393	325412

Appendix C. MCES Industrial Users Database

15	F 35 M	0::	D (#)	A 51 (140)		010 N	5 % N	1	NIA100 0 1
ID 153	Facility Name	St. Paul		Average Flow (MG)	P_kgd 0.06	SIC_No	Permit_No MN0029815	employee_count	
	Minnesota Knitting Mills Graco Inc	St. Paul	1.18 116.82	4.55 5.57			MN0029815	234	
	Graco Inc	St. Paul	25.54	3.99			MN0029815	225	
	Graco Inc	St. Paul	0.34	2.07	0.01		MN0029815	160	
	General Mills Technology Center East	St. Paul	6.12		0.33		MN0029815	350	
158	Central Livestock Association	St. Paul	24.27	31.60	7.95	5154	MN0029815	40	425120
159	Hitchcock Industries Inc	St. Paul	3.56	9.17	0.34	3361	MN0030007	350	332000
	Pepsi Bottling Group LLC	St. Paul	10.79	25.84	2.89		MN0030007	176	
	Ziegler Inc	St. Paul	44.43	4.66			MN0030007	400	
	Hardcoat Inc	St. Paul	20.93	0.40	0.09		MN0029815	14	
	Release Coatings of Minneapolis Inc Schumacher Wholesale Meats Inc	St. Paul St. Paul	2.71 5.38	2.15 3.30			MN0030007 MN0029815	16	
	Hosokawa Bepex Corp	St. Paul	20.95	1.12			MN0029815	10	
	Cargill Research Center	St. Paul	12.35	3.78			MN0029813	97	540000
	ADM Milling Co	St. Paul	1.72	3.67	0.40		MN0029815	40	
	Flame Metals Processing Corp	St. Paul	12.97	1.20	0.16		MN0029815	40	
	Stone Container Corp	St. Paul	13.62	1.67	0.24		MN0029815	180	
	Community Hospital Linen	St. Paul	3.84	34.43	1.37	7211	MN0029815	180	812320
171	Greif Bros Corp	St. Paul	2.35	2.90	0.07	2643	MN0025488	200	322000
	DiaSorin Inc	St. Paul	14.15	2.69	0.39		MN0029998	130	
	Grist Mill Co	St. Paul	16.78	11.82	2.06		MN0045845	486	
	GE Osmonics Inc	St. Paul	5.31	20.12	1.11		MN0029882	536	
	Andersen Corp	St. Paul	9.74	37.08	3.74		MN0029998	4203	
	Birchwood Laboratories Inc Lake Air Metal Stampings LLC	St. Paul St. Paul	11.30 143.65	0.55 0.72	0.06 1.07		MN0029882 MN0029815	91 50	325412 336370
	Silgan Containers Corp	St. Paul	0.04	2.85	0.00		MN0029815	100	
	Smurfit-Stone Container Corp	St. Paul	14.56	1.43			MN0029815	162	
	Purina Mills Inc	St. Paul	29.84	0.27	0.08		MN0029815	36	
	Guidant	St. Paul	13.09	10.74	1.46		MN0029815	2497	334000
	Ry-Krisp Plant, Ralston Foods	St. Paul	13.70	0.52	0.07		MN0029815	19	
183	GAF Materials Corp	St. Paul	0.88	3.27	0.03		MN0029815	125	
184	Meyer Bros Dairy Inc	St. Paul	19.00	3.54	0.70	2026	MN0029882	45	311511
	Waterous Co	St. Paul	8.40	2.67	0.23	3561	MN0029815	375	
	Hospital Linen Services Inc	St. Paul	3.64	19.79	0.75		MN0029815	65	
	Dakota Growers Pasta Co - Minnesota Div	St. Paul	7.71	2.37	0.19		MN0029815	187	
	FilmTec Corp	St. Paul	11.63	44.90	5.42		MN0029815	398	
	Toro Co	St. Paul	75.92	1.69	1.33		MN0029882	250	
	Canadian Pacific Railway St Paul Brass & Aluminum Foundry	St. Paul St. Paul	87.17 1.45	6.48 1.06	5.86 0.02		MN0029815 MN0029815	400 50	
	Med Tek Inc	St. Paul	5.00	1.41	0.02		MN0029815	32	
	Dana Spicer Off Highway Products Div	St. Paul	21.27	1.64			MN0029815	50	
	G & K Services	St. Paul	13.52	46.94	6.58		MN0029815	120	
	Smead Mfg Co	St. Paul	13.69	3.18			MN0029955	818	
	Captain Ken's Foods Inc	St. Paul	21.50	2.19			MN0029815	29	311830
197	Hawkins Chemical Inc	St. Paul	249.81	4.72	12.22	5161	MN0029815	87	424000
198	Electric Machinery Co	St. Paul	0.25	4.25	0.01	3621	MN0029815	180	
	Timmerman Finishing	St. Paul	23.81	1.17	0.29		MN0029815	20	
	Crown Cork & Seal Co	St. Paul	0.19	9.17	0.02		MN0045845	3	
	Lau Industries Inc	St. Paul	336.50	1.24	4.31		MN0029815	128	
	District Energy St Paul Inc	St. Paul	2.81	17.01	0.50		MN0029815	42	
	Kodak Processing Labs		6.68	8.47	0.59		MN0029815	115	
	Professional Color Service Inc Herff Jones Inc	St. Paul	16.50 5.23	4.64 2.15	0.79 0.12		MN0029815 MN0030007	58 100	
	Land O'Lakes Inc	St. Paul	12.63	7.54	0.12		MN0029815	800	
	Qualex Inc	St. Paul	0.49	12.30			MN0030007	140	
	Despatch Industries Inc	St. Paul	182.50				MN0045845	62	
	Ecowater Corp	St. Paul	0.12				MN0029815	482	
	Banta Catalog Group	St. Paul	2.86				MN0029815	358	
	St Paul Pioneer Press Dispatch	St. Paul	7.60				MN0029815	348	
	Metal Treaters Inc	St. Paul	0.14	1.39			MN0029815	24	
	Abbott Northwestern Hospital	St. Paul	7.76				MN0029815	5000	
	Fairview University Medical Center	St. Paul	13.00				MN0029815	4800	
	Fairview Southdale Hospital	St. Paul	8.74				MN0029815	2200	
	Hennepin County Medical Center	St. Paul	7.24				MN0029815	4467	
	Mercy Hospital Methodist Hospital	St. Paul	5.66				MN0029815	1298 3000	
	Minneapolis	St. Paul	4.68 5.07				MN0029815 MN0029815	1650	
	North Memorial Health Care	St. Paul	6.87	42.21	3.01		MN0029815	3000	
	Regina Medical Center	St. Paul	8.12				MN0029955	590	
	St Joseph's Hospital	St. Paul	7.91	28.68			MN0029815	1500	
	Regions Hospital	St. Paul	5.03		2.29		MN0029815	3100	
	United Hospital	St. Paul	7.30				MN0029815	4725	622110
	Unity Hospital	St. Paul	7.23		2.08	8062	MN0029815	1688	
	V A Medical Center	St. Paul	8.88				MN0029815	2510	
	Ridgeview Medical Center	St. Paul	5.77				MN0029882	833	
228	Fairview University Medical Center	St. Paul	6.67	45.66	3.16	8062	MN0029815	3334	622110

Appendix C. MCES Industrial Users Database

15	5 W N	0:	I	A 51 (140)	D	010 N			1111000
ID	Facility Name	City		Average Flow (MG)	P_kgd	SIC_No	Permit_No	employee_count	
	Continental Machines	St. Paul	16.74		0.61		MN0030007	170	333512
	Acme Tag and Label Co GraF/X	St. Paul	10.50 7.10		0.01		MN0029815 MN0029815	14 50	322000
		St. Paul			0.03				323122
	Colorhouse/Mail-Well Detector Electronics Corp	St. Paul	10.83	1.27	0.14		MN0029815	50	540000
	·	St. Paul	4.95		0.04		MN0030007	230	334418
	Sierra Corp	St. Paul	0.88		0.01		MN0029882	31	325510
	Litho Technical Service	St. Paul	8.86	0.54	0.05		MN0030007	115	310000
	Mid-Continent Engineering	St. Paul	10.72		0.82		MN0029815	143	332322
	Pechiney Plastic Packaging Inc	St. Paul	0.49		0.15		MN0029815	144	310000
	Mixon Inc	St. Paul	0.35	0.66	0.00		MN0029815	33	335911
	Conklin Co	St. Paul	36.75		0.37		MN0029882	109	325510
	Nor-Ell Inc, Powder Coating Div	St. Paul	12.27	1.44	0.18		MN0029815	8	339914
	Deburring Inc	St. Paul	1.55	0.76	0.01		MN0029815	8	332214
242	Chaska Chemical Co Inc	St. Paul	140.00	0.31	0.45	2842	MN0030007	12	325612
243	NSP, dba Xcel Energy	St. Paul	0.33	27.45	0.09	4911	MN0029815	106	221113
244	Atlas Mfg Inc	St. Paul	36.34	0.85	0.32	3993	MN0029815	20	339950
245	Aztec Electronics Inc	St. Paul	3.07	1.61	0.05	3679	MN0029815	5	334418
246	GFI America Inc	St. Paul	15.72	12.35	2.01	5147	MN0029815	325	445210
247	Best Brands Inc	St. Paul	17.58	6.50	1.19	2041	MN0030007	240	311211
248	Waldorf Corp (A Rock-Tenn Co)	St. Paul	3.02	289.30	9.06	2631	MN0029815	669	322130
249	Minnesota Correctional Facility	St. Paul	9.75	116.16	7.48	9223	MN0029998	1800	922140
250	Medtronic Inc	St. Paul	7.40	11.76	0.90	3841	MN0029815	910	339111
	3M Stillwater	St. Paul	0.00	5.13	0.00		MN0029998	289	310000
	NRG Energy Center Minneapolis LLC	St. Paul	2.40	47.72	1.19		MN0029815	20	221330
	Computype Inc	St. Paul	2.80	2.19	0.06		MN0029815	126	523000
	Medtronic Inc	St. Paul	5.51	2.33	0.13		MN0029815	404	334000
	Medtronic Inc	St. Paul	15.67	5.69	0.13		MN0029815	90	334000
	Metro Transit	St. Paul	6.33	2.18	0.93		MN0029815	210	485000
	Metro Transit	St. Paul	11.85		0.13		MN0029815	55	485000
	Metro Transit								
		St. Paul	6.72	3.69	0.26		MN0029815	59	485000
	Metro Transit	St. Paul	2.99		0.05		MN0029815	60	485000
	Metro Transit	St. Paul	6.05		0.27		MN0029815	95	485000
	Earthgrains/Metz Baking Co	St. Paul	6.36	8.80	0.58		MN0029815	196	311812
	Gopher Resource Corp	St. Paul	0.47	31.34	0.15		MN0030007	173	331314
	Nordic Press Inc	St. Paul	7.75		0.07		MN0029815	100	323114
	Industrial Container Services - MN, LLC	St. Paul	34.34	1.44	0.51		MN0029815	10	423830
	Buhler Inc	St. Paul	40.93		0.32	3443	MN0029815	90	333415
	Novartis Nutrition Corp	St. Paul	6.67	136.25	9.43	2099	MN0029815	460	311830
267	Northern Package	St. Paul	70.67	2.15	1.57	2653	MN0030007	50	322211
268	Arden International Kitchens LLC	St. Paul	82.00	7.61	6.47	2038	MN0045845	120	311412
269	Professional Plating Inc	St. Paul	156.69	5.02	8.15	7399	MN0029815	17	540000
270	Metal-Tronics Inc	St. Paul	35.81	0.30	0.11	3479	MN0029815	35	339914
271	St Paul Pioneer Press Dispatch	St. Paul	16.55	1.59	0.27	2711	MN0029815	126	511110
272	Deluxe Corp	St. Paul	81.00	1.06	0.89	2782	MN0029815	50	323118
273	Tapemark Co	St. Paul	3.70	0.77	0.03	2751	MN0029815	100	310000
274	Cintas Corp	St. Paul	14.07	14.22	2.07	7218	MN0030007	110	812332
	Maguire & Strickland Refining Inc	St. Paul	0.10		0.00		MN0029815	5	512200
	Kangas Enameling Inc	St. Paul	93.79		0.09		MN0029815	6	332813
	E/M Corp	St. Paul	13.10	5.49	0.75		MN0029815	30	334418
	Precision Painting Inc	St. Paul	1.40	0.17	0.00		MN0029815	50	339914
	Excel Metal Finishing	St. Paul	3.69	0.59	0.00		MN0029815	15	332813
	Crib Diaper Service	St. Paul	8.00	1.77	0.02		MN0029815	50	812100
	Morrissey Inc	St. Paul	202.55	0.58	1.21		MN0030007	92	332214
	ELO Engineering			1.43			MN0029815	75	339914
		St. Paul	158.64 5.10		2.35 0.18		MN0029815	480	339914
	Douglas Corp	St. Paul							
	TRC Circuits Inc	St. Paul	0.78		0.04		MN0029815	12	334418
	Quality Metals Inc	St. Paul	136.23		4.16		MN0029815	65	332813
	Western Container Co	St. Paul	1.05		0.00		MN0029815	12	423830
	Richald Metal Finishing Inc	St. Paul	0.40		0.00		MN0029815	3	
	Markhurd Corp	St. Paul	9.20		0.01		MN0029815	50	540000
	Universal Circuits Inc	St. Paul	2.00		0.39		MN0029815	78	334418
	AAA Metal Finishing Inc (Plant 1)	St. Paul	288.00		5.72		MN0029815	31	332813
	U S Filter Recovery Services Inc	St. Paul	65.31	26.09	17.67		MN0029815	69	562920
292	Brechet & Richter Co	St. Paul	3.93	2.15	0.09	2033	MN0029815	44	311421
293	Grand Eagle Services	St. Paul	2.10	0.23	0.00	7694	MN0029815	50	335312
294	Delaria Transport Inc	St. Paul	3.21	0.83	0.03	7699	MN0029815	50	115210
295	Invest-Cast Inc	St. Paul	0.40		0.00	3324	MN0029815	63	331512
	Micro Finish Co	St. Paul	3.79		0.01		MN0029815	2	332813
	Forster Packing Co	St. Paul	6.87	0.67	0.05		MN0029815	50	311611
	Kwik-File Inc	St. Paul	10.12		0.21		MN0029815	67	337214
	Eaton MDH Inc, Eden Prairie Plant	St. Paul	19.23		1.76		MN0029882	315	333999
	Kurt Mfg Co	St. Paul	4.42		0.57		MN0029815	199	336399
	Consolidated Freightways	St. Paul	16.00		0.25		MN0029815	50	488490
	Arrow Cryogenics Inc	St. Paul	19.35		1.52		MN0029815	70	332813
	Versa Iron & Machine	St. Paul	0.85		0.01		MN0029815	75	331511
	James Page Brewing Co	St. Paul	306.00		1.13		MN0029815	8	
304	Januar I ago Dioming OU	Juli aul	300.00	0.30	1.13	2002	10023013	0	312120

Appendix C. MCES Industrial Users Database

ID.	F-206-M	0:4	A	A Fl (NAC)	Diland	OIO Na	Dameit Na		NAIOO O- I-
ID 305	Facility Name Certified Painting Inc	St. Paul	72.05	Average Flow (MG) 0.93	P_kgd 0.69	SIC_No	Permit_No MN0029815	employee_count 19	332813
	Northwest Swiss-Matic Inc	St. Paul	12.80	1.03	0.09		MN0029815	85	332721
	Shakopee Valley Printing	St. Paul	8.30	5.92	0.14		MN0029813	350	310000
	Northern Screw Machine Co	St. Paul	0.04	0.26	0.00		MN0029815	33	332721
		St. Paul	1.60	3.56	0.06		MN0029815	40	562920
	American Spirit Graphics	St. Paul	9.50	1.80	0.18		MN0029815	115	310000
	Cleanco Truck Wash	St. Paul	31.64	1.86	0.61		MN0029815	5	115210
	General Mills Inc - Bakeries & Foodservice	St. Paul	13.53	5.15	0.72	2051	MN0029882	400	311812
	Fischer's United Supply Inc	St. Paul	0.86	0.19	0.00		MN0029815	7	311421
314	Twin City Tanning Co	St. Paul	20.14	104.39	21.81	3111	MN0029815	73	316110
315	Modern Machine & Engineering	St. Paul	7.43	0.65	0.05	3471	MN0029815	40	332813
316	Linfor Inc	St. Paul	26.67	0.66	0.18	3471	MN0029815	44	332813
317	TCR Engineered Components LLC	St. Paul	6.49	2.30	0.15	3452	MN0029815	139	332722
318	Kurt Mfg Co	St. Paul	2.10	1.56	0.03	3599	MN0029815	62	336399
	McLaughlin Gormley King Co	St. Paul	0.24	0.56	0.00		MN0029882	22	325320
	General Mills Inc - Lloyd's Barbeque Co	St. Paul	149.78	14.57	22.63		MN0029815	250	311612
	GML Inc	St. Paul	11.83	1.70	0.21		MN0029815	210	325200
	Progress Casting Group	St. Paul	7.91	2.81	0.23		MN0029815	380	332000
	Brenntag Great Lakes LLC	St. Paul	11.87	0.30	0.04		MN0029815	49	540000
	Star Tribune	St. Paul	22.00	3.57	0.81		MN0029815	750	511110
	Added Value Technology	St. Paul	8.00	1.84	0.15		MN0030007	12	334418
	BOC Edwards	St. Paul	0.41	4.87	0.02		MN0029882	50	333220
	Determan Brownie Inc	St. Paul	4.28	1.59	0.07		MN0029815	90	238910
	Conagra Foods - Snack Food Group Cypress Semi-Conductor (MN) Inc	St. Paul St. Paul	11.25 85.64	9.23 47.29	1.08 42.00		MN0029815 MN0030007	175 581	311412 334413
	KIK Minnesota	St. Paul	0.04	0.98	0.00		MN0030007	20	334413
	Quali-Tech Inc	St. Paul	4.13	1.83	0.08		MN0030007	32	311611
	Schawk Minneapolis	St. Paul	29.74	1.07	0.00		MN0029802	130	323114
	LSG/Sky Chef	St. Paul	22.10	17.43	3.99		MN0029815	400	311412
	NSP, dba Xcel Energy	St. Paul	0.24	1.21	0.00		MN0029815	111	221113
	VICOM	St. Paul	7.30	5.27	0.40		MN0029882	129	311412
	St John's Hospital NE	St. Paul	7.49	16.19	1.26		MN0029815	1250	622110
	AKZO Nobel Inks Corp	St. Paul	10.85	0.79	0.09		MN0029815	47	325910
	Tiro Industries Inc	St. Paul	1.37	8.82	0.13		MN0029815	50	325620
339	Screen Printed Products	St. Paul	0.87	0.13	0.00	2751	MN0029815	2	310000
340	R & D Systems Inc	St. Paul	10.41	8.17	0.88	2831	MN0029815	495	325000
341	Precision Diversified Industries Inc LLC	St. Paul	0.62	7.44	0.05	3471	MN0029815	50	332813
342	Fairview Ridges Hospital	St. Paul	5.66	11.23	0.66	8062	MN0030007	860	622110
343	Boston Scientific - Scimed Inc	St. Paul	6.30	7.10	0.46	3841	MN0029815	499	339111
	SuperMom's LLC	St. Paul	7.07	5.68	0.42		MN0029815	305	311812
	General Mills Inc - Bakeries & Foodservice	St. Paul	26.21	23.58	6.41		MN0029882	834	311812
	Instant Web Inc	St. Paul	25.57	3.66	0.97		MN0029882	50	323114
	Smith Engineering Inc	St. Paul	2.65	3.52	0.10		MN0029882	18	333319
	Sexton Printing Inc	St. Paul	0.20	0.67	0.00		MN0029815	68	323116
	Container Graphics	St. Paul	99.80	0.48	0.50		MN0029815	70	310000
	MagStar Technologies Inc	St. Paul	0.08	0.30	0.00		MN0029815	65	325200
	Cargill Dow Polymers LLC	St. Paul	2.87	2.24	0.07		MN0029882	100	541940
	The Specialty Mfg Co	St. Paul	0.66	0.76	0.01		MN0029815	25 1149	332999
	Rosemount Inc Technical Plating Inc	St. Paul St. Paul	4.85 12.12	9.90 12.79	0.50 1.61		MN0029882 MN0029815	20	334500 332813
	Minneapolis Enameling Co	St. Paul	1310.03	0.20	2.78		MN0029815	20	339914
	Domino's National Commissary Corp	St. Paul	17.89	3.42	0.63		MN0030007	50	311822
	Weyerhaeuser Co	St. Paul	18.77	2.53	0.03		MN0030007	140	322211
	Wipaire Inc	St. Paul	157.17	0.12	0.20		MN0029815	11	541710
	Kurt Mfg Co	St. Paul	8.00		0.16		MN0029815	2	332999
	Custom Business Forms	St. Paul	1.65		0.01		MN0029815	74	323116
	Zuel Co Inc	St. Paul	0.26		0.00		MN0029815	10	327215
	NRG Energy Center Minneapolis LLC	St. Paul	1.77	4.86	0.09		MN0029815	2	221330
	Modernistic Inc	St. Paul	1.30		0.01		MN0029815	50	323114
364	Multi-Clean Inc	St. Paul	4.00	0.28	0.01	2842	MN0029815	25	325612
365	Kurt Die Cast Co	St. Paul	14.23	2.69	0.40	3599	MN0029815	131	336399
366	Bodycote Thermal Processing Co	St. Paul	4.86	1.28	0.06	3398	MN0029815	44	332811
	Banta Digital Group	St. Paul	9.00	1.43	0.13		MN0029882	50	813900
	Minnesota Brewing Co	St. Paul	6.08		9.03		MN0029815	50	312120
	Lifecore Biomedical	St. Paul	13.91	11.29	1.63		MN0029882	172	211112
	Stericycle Inc	St. Paul	5.89	5.23	0.32		MN0029815	33	562920
	Rayven Inc	St. Paul	0.07	0.66	0.00		MN0029815	46	326113
	Sifco Custom Machining Co	St. Paul	2.98	3.14	0.10		MN0029815	70	336399
	Burnsville Sales & Mfg	St. Paul	3.62		0.01		MN0030007	20	336330
	Lason Inc	St. Paul	1.00		0.00		MN0029815	50	512200
	Chef Solutions	St. Paul	8.90	7.03	0.65		MN0029882	181	311812
	Menasha Packaging Aveda Corp	St. Paul St. Paul	4.09 3.75	1.35 8.84	0.06		MN0029815	100	322211 325620
	Cortec Corp	St. Paul	37.00		0.34 0.19		MN0029815 MN0029815	583 64	325920
	Northstar Financial Forms	St. Paul	264.00		2.03		MN0029815	130	323998
	H B Fuller Co	St. Paul	0.94		0.03		MN0029815	45	325520
		J uul	0.04	2.01	0.00	2001		70	320020

Appendix C. MCES Industrial Users Database

ID	Facility Name	City	Average P (mg/L)	Average Flow (MG)	P_kgd	SIC_No	Permit_No	employee_count	NAICS Code
	Nilfisk - Advance Inc	St. Paul	116.69	5.62	6.80		MN0029815	481	
	McGlynn Bakeries	St. Paul	11.03	17.37	1.99		MN0029815	350	
	Banta Information Services Group Banta Catalog Group	St. Paul	19.00 7.45	2.34 9.28	0.46 0.72		MN0029815 MN0029815	202 397	
	Multi-Tech Systems	St. Paul	8.10	0.88			MN0029815	50	
	Engineered Finishing Corp	St. Paul	54.67	0.20	0.12		MN0029815	23	
	Nystrom Inc	St. Paul	7.85	0.58	0.05	2522	MN0029815	67	337214
	GreenMan Technologies of Minnesota Inc	St. Paul	1.50	2.02			MN0030007	45	
	Northwest Packaging Inc	St. Paul	1.58	0.33	0.01		MN0029815	58	
	Anotech Inc Pump & Meter Services Inc	St. Paul St. Paul	7.56 0.75	2.18 0.20			MN0029882 MN0029882	40	
	Impressions Inc	St. Paul	9.50	1.43			MN0029882	238	
	Bell Lumber & Pole Co	St. Paul	0.46	0.02			MN0029815	35	
	Anchor Glass Container Corp	St. Paul	0.77	7.76			MN0029882	271	
395	RMS Co	St. Paul	5.39	4.90	0.27		MN0029815	338	
	Chemrex Inc	St. Paul	10.08	0.91	0.10		MN0029882	200	
	Road Rescue	St. Paul	62.43	0.66			MN0029815	115	
	ITC Intercircuit Phoenix Packaging	St. Paul St. Paul	3.19 7.81	1.13 2.76			MN0045845 MN0029815	133	
	Hanson Finishing Co	St. Paul	0.56	0.98	0.22		MN0029815	50	
	St Jude Medical Inc	St. Paul	3.61	8.92	0.33		MN0029815	235	
402	Longview Fibre Co	St. Paul	5.37	7.71	0.43	2653	MN0029815	147	322211
	Aircraft Service International Inc	St. Paul	14.71	0.66	0.10		MN0029815	50	
	Upper River Services Inc	St. Paul	3.13	1.52			MN0029815	16	
	Life Fitness Consumer Div Bermo Inc	St. Paul	210.02 19.07	5.33 1.61	11.60 0.32		MN0029815 MN0029815	217	
	Meyers Printing Co	St. Paul	17.77	2.68			MN0029815	285	
	Alpha Ceramics Inc	St. Paul	0.00	8.79			MN0029815	34	
	APG Cash Drawer	St. Paul	5.34	0.82	0.05		MN0029815	94	
410	Modern Tool	St. Paul	180.35	1.37	2.57	3599	MN0029815	85	336399
	Waymouth Farms Inc	St. Paul	28.90	0.69	0.21		MN0029815	156	
	Metro Airports Commission	St. Paul	0.82	9.19	0.08		MN0029815	2	
	Hawkins Chemical Inc - Terminal I ADM Milling	St. Paul	60.80	1.49 0.85			MN0029815 MN0029815	14	
	Lake Engineering Inc	St. Paul	18.29	0.75	0.02		MN0029813	32	
	Mentor Corp, Minnesota	St. Paul	3.09	4.08			MN0029815	200	
	Brennen Medical Inc	St. Paul	13.20	0.51	0.07		MN0029815	50	334510
	Awardcraft Inc	St. Paul	15.86	0.82	0.14		MN0030007	120	
	U of M - Animal Waste	St. Paul	41.40	1.26			MN0029815	30	
	Oexning Silversmiths Co	St. Paul	0.88	0.10	0.00		MN0029815	50	
	Liberty Carton Co Smurfit-Stone Container Corp	St. Paul	2.50 5.27	8.64 1.42	0.22		MN0029815 MN0029815	100	
	Valmont/Lexington	St. Paul	140.40	0.58			MN0045845	165	
	Green Bay Packaging Inc - Twintown	St. Paul	11.30	1.81	0.21		MN0029815	120	
425	Web Label Ltd	St. Paul	15.65	0.22	0.04	2752	MN0029815	37	323114
	Cargill Dow Polymers LLC	St. Paul	1.30	6.50			MN0030007	8	
	Roc-Edge	St. Paul	19.00	0.05	0.01		MN0030007	50	
	Swanson Meat Co	St. Paul	24.70	0.74 0.44			MN0029815	130	
	Phillips & Temro Industries Inc ECO Finishing Inc	St. Paul St. Paul	29.00 21.63	12.93	0.13 2.90		MN0029882 MN0029815	50	
	Advance Corp	St. Paul	0.77	0.34			MN0029815	50	
	R B Painting & Metal Finishing Inc	St. Paul	7.40	0.08			MN0029815	50	
433	J & E Mfg	St. Paul	24.53	0.83	0.21		MN0045845	85	332214
	Electrochemicals Inc	St. Paul	13.17	1.16			MN0029882	42	
	UPI Mechanical Plating & Galvanizing	St. Paul	0.08	0.04			MN0029815	1	
	H B Fuller Co Westlund's Provisions Inc	St. Paul St. Paul	11.10 22.62	0.53 1.91			MN0029815 MN0029815	96	
	Flamingo Wire & Powder Coating Inc	St. Paul	47.00	0.11	0.45		MN0029815	50	
	APW Thermal Management	St. Paul	3.27	2.96			MN0029815	283	
	Diversified Mfg Corp	St. Paul	6.85	0.48			MN0029815	55	
	Foster Wheeler Twin Cities Inc	St. Paul	1.66	13.95		4961	MN0029815	14	
	Performance Industrial Coatings Inc	St. Paul	13.60	1.95			MN0045845	19	
	Boker's Inc	St. Paul	0.09	0.63			MN0029815	120	
	Penske Truck Leasing Co American Engraving Inc	St. Paul St. Paul	2.10 0.05	0.28 0.11	0.01		MN0029815 MN0029815	32	
	Danalco Inc	St. Paul	4.13	0.11			MN0029815	8	
	C & H Chemical Inc	St. Paul	323.00	0.27	0.89		MN0029815	20	
	Viking Drill & Tool Inc	St. Paul	7.15	1.22			MN0029815	190	333515
	Versa Die Cast Inc	St. Paul	13.30	0.60			MN0029815	70	
	Brady Worldwide Inc	St. Paul	14.30	0.52			MN0029815	228	
	Twin City Optical	St. Paul	1.69	1.15			MN0029815	135	
	PGI Companies Multek Inc - Roseville	St. Paul St. Paul	7.50 1.02	0.69 37.85			MN0029882 MN0029815	154 242	
	Ferrotech Plating Corp	St. Paul	0.13	0.02			MN0029815	50	
455	Alumiplate Inc	St. Paul	0.85	0.23			MN0029815	10	
	Bureau of Engraving - Printing Div	St. Paul	6.28	1.97			MN0029815	78	

Appendix C. MCES Industrial Users Database

ID	Facility Name	City	Average B (mg/L)	Average Flow (MG)	P_kgd	SIC_No	Permit_No	employee_count	NAICS Codo
	Cintas Corp Location #470	St. Paul	28.70	7.28	2.17		MN0029815	50	812332
	Happy's Potato Chip Co	St. Paul	16.43	17.21	2.93		MN0029815	41	311919
459	Fox Packaging Inc	St. Paul	19.00	0.53	0.10		MN0029815	80	325612
460	J I T Powder Coating	St. Paul	140.40	1.40	2.04	3479	MN0045845	54	339914
	NVE Corp	St. Paul	11.66	0.32	0.04		MN0029882	60	334413
	Huebsch Laundry Co	St. Paul	25.00	2.14	0.55		MN0030007	24	812332
	Twin Star Electronics Inc	St. Paul	0.70	0.70	0.01		MN0029815	5	334418
	ATMI Packaging Inc	St. Paul	0.15 0.24	5.33 1.10	0.01		MN0030007	132 72	326122 325620
	Greenway Research Lab North Star Finishing Inc	St. Paul St. Paul	3.50	2.90	0.00		MN0030007 MN0029815	50	332813
	Cross Technology Inc	St. Paul	9.00	0.28	0.03		MN0029815	50	334418
	Weather Rite Inc	St. Paul	114.58	1.04	1.24		MN0029815	65	333411
	ABW Plating Service Inc	St. Paul	699.00	0.63	4.54		MN0029815	6	332813
	Haagen-Dazs R & D	St. Paul	40.03	0.51	0.21	2024	MN0029815	13	311520
	Dayton Rogers Mfg Co	St. Paul	7.31	0.78	0.06	3469	MN0029815	125	332214
	North Star Steel Minnesota	St. Paul	0.36	20.64	0.08		MN0029815	420	331111
	FSI International Inc	St. Paul	0.32	14.63	0.05		MN0029882	240	333220
	LeJeune Bolt Co	St. Paul	0.00	0.24	0.00		MN0030007	12	339914
	Minco Products Inc Color Converting Industries	St. Paul St. Paul	0.11 0.97	7.64 0.24	0.01		MN0029815 MN0029815	227	334418 325910
	St Francis Regional Medical Center	St. Paul	12.90	4.47	0.60		MN0029813	700	622110
	Spec Plating Corp	St. Paul	41.90	9.54	4.14		MN0029815	58	332813
	Hutchinson Technology Inc	St. Paul	54.40	4.33	2.44		MN0029815	145	334613
	Shoreview Metalcraft Inc	St. Paul	170.00	0.40	0.70		MN0029815	6	332813
481	Interstate Detroit Diesel	St. Paul	10.86	0.55	0.06		MN0030007	125	488490
	Vision-Ease Lens Inc	St. Paul	2.29	14.49	0.34	3851	MN0029815	430	339115
	Intek Plastics Inc	St. Paul	0.55	2.29	0.01		MN0029955	155	326122
	Wrico Stamping Co of Mn	St. Paul	7.37	0.79	0.06		MN0029815	95	332214
	Inno-Flex Corp	St. Paul	3.30	1.27	0.04		MN0029815	50	334220
	Hard Anodize Inc Zomax Optical Media	St. Paul St. Paul	2.59 0.39	0.37 1.72	0.01		MN0029815 MN0029815	19 200	332813 334612
	J R Gold Plating Inc	St. Paul	0.39	0.01	0.00		MN0029815	50	332813
	Inthermo Inc	St. Paul	44.79	0.42	0.19		MN0045845	9	339914
	J R Williams Co Inc	St. Paul	11.49	0.08	0.01		MN0029815	23	339914
	Japs-Olson Co	St. Paul	9.90	3.35	0.34		MN0029815	545	323114
492	Harvest States Foods	St. Paul	19.55	10.86	2.20	2099	MN0029815	161	311830
	PUR Water Purification Products	St. Paul	14.76	2.23	0.34	3589	MN0029815	275	333319
	Aramark Uniform Svcs Inc	St. Paul	12.00	16.94	2.11		MN0029815	70	812332
	Upsher Smith Laboratories Inc	St. Paul	11.77	1.41	0.17		MN0029815	160	541940
	ADC Telecommunications Inc	St. Paul	10.03	25.68	2.67		MN0029882	658	334418
	FMS Corp American Medical Systems	St. Paul St. Paul	11.68 3.27	4.37 5.05	0.53 0.17		MN0030007 MN0029882	85 335	335110 334510
	Tempco Mfg Co Inc	St. Paul	4.65	1.77	0.09		MN0029815	176	332214
	Ad Graphics	St. Paul	8.10	0.67	0.06		MN0029815	248	323114
	Fuji Color Processing	St. Paul	3.64	3.80	0.14		MN0029815	120	540000
502	Alliant Techsystems Inc	St. Paul	0.86	2.10	0.02	3482	MN0029815	27	332992
	AKZO Nobel Inks Corp	St. Paul	1.76	0.28	0.01	2893	MN0029815	31	325910
	Seagate Technology LLC	St. Paul	0.35	6.38	0.02		MN0030007	50	333000
	Spruce Co	St. Paul	27.00	5.35	1.50		MN0030007	25	812332
	Walman Optical Co Huot Mfg Co	St. Paul St. Paul	12.00 20.47	1.77 0.36	0.22 0.08		MN0029815	50 46	339115 332999
	ADDCO Inc	St. Paul	370.53	0.34	1.31		MN0029815 MN0029815	95	334290
	Medtronic Perfusion Systems	St. Paul	2.33	7.22	0.17		MN0029815	358	339111
	RTC Inc	St. Paul	0.03	0.57	0.00		MN0029815	96	326122
	Summit Brewing Co	St. Paul	50.33		3.96		MN0029815	36	312120
	Imation Corp	St. Paul	6.88		0.59		MN0029815	800	541710
513	Brenntag Great Lakes LLC	St. Paul	3.56	0.42	0.02	5169	MN0029815	6	425120
	Metal Treaters Inc	St. Paul	0.56		0.02		MN0029815	25	332811
	Olsen Fish Co	St. Paul	73.00		0.75		MN0029815	14	311711
	Carter Day International Inc	St. Paul	28.20	0.56	0.16		MN0029815	45	332323
	Ryt-Way Industries Inc	St. Paul	14.96		0.22		MN0045845	387	512290
	Revest Midwest Industrial Container Services - MN LLC	St. Paul St. Paul	118.58 2.80	2.42 0.77	2.97 0.02		MN0029815 MN0029815	100 56	339914 115210
	Hoffman Enclosure (SCO)	St. Paul	351.01	2.99	10.88		MN0029815	210	335932
	Foster Wheeler Twin Cities Inc	St. Paul	0.26	30.15	0.08		MN0029815	20	611310
	Phillips & Temro Industries Inc	St. Paul	106.09	0.15	0.17		MN0029882	33	336399
523	Boomerang Laboratories Inc	St. Paul	0.60		0.03	2844	MN0029882	13	325620
	Skyline Exhibits	St. Paul	51.45	1.53	0.81		MN0030007	341	339950
	Buddy's Kitchen Inc	St. Paul	3.24		0.07		MN0030007	75	722211
	Great Lakes Engineering Inc	St. Paul	0.92		0.00		MN0029815	20	335129
	M & D Metal Finishing Inc	St. Paul	0.23	0.95	0.00		MN0029815	20	339914
	Cannon Equipment	St. Paul	31.14		0.07		MN0025488	122	333922
	Siyeza Inc Uponor Wirsbo	St. Paul St. Paul	13.50 0.10		1.03 0.00		MN0029815 MN0045845	98	311412 620000
	DIGIgraphics/Photos Inc	St. Paul	8.56		0.00		MN0029815	33	812922
	Dyneon LLC	St. Paul	9.67		0.20		MN0029815	95	210000
	-	-							

Appendix C. MCES Industrial Users Database

ID	Facility Name	City	Average P (mg/L)	Average Flow (MG)	P_kgd	SIC_No	Permit_No	employee_count	NAICS Code
	Metropolitan Linen Service	St. Paul	2.39	26.70	0.66		MN0029815	42	
	Waltek	St. Paul	0.29	0.18			MN0029815	50	
	Production Engineering Corp Gannett Offset - Minneapolis	St. Paul	2.39 10.09	0.66 2.35			MN0029815 MN0029815	230	
	Micro Control Co	St. Paul	0.68	0.08			MN0029815	230	
	Protein Design Labs Inc	St. Paul	220.60	1.74			MN0029815	100	
	Midwest Finishing Inc	St. Paul	53.11	3.22	1.77	3471	MN0029815	20	332813
	Water Gremlin Co	St. Paul	6.80	1.63			MN0029815	50	
	Alliance Steel Service Co	St. Paul	89.60	0.12			MN0029815	14	
	Cintas Corp B Electro Static Corp	St. Paul	27.98 57.85	11.22 0.59	3.25 0.35		MN0029815 MN0029815	138	
	Innovex Inc	St. Paul	1.34	15.97	0.33		MN0029813	180	
	Mid Minnesota Wire & Mfg Inc	St. Paul	285.00	0.50	1.47		MN0029815	53	
	Seagate Technology LLC	St. Paul	8.45	5.10			MN0029882	950	334112
	Remmele Engineering Inc	St. Paul	38.80	0.43			MN0029815	130	
	Gustafson Finishing Corp	St. Paul	812.00	0.12			MN0029815	4	
	G & K Services	St. Paul	117.00	4.96 1.80	6.02 0.24		MN0029815	100	
	Cargill Inc - Process Development Facility Power Coat	St. Paul	12.99 225.97	0.06			MN0030007 MN0029815	5	
	Hoffman Enclosures Inc	St. Paul	52.81	13.23			MN0029815	900	
	Aspen Equipment	St. Paul	82.35	0.74			MN0030007	30	
554	Creative Carton Corp	St. Paul	4.21	1.14	0.05	2653	MN0029815	150	322211
	Precise Products Corp	St. Paul	13.03	0.60	0.08		MN0029815	72	
	Biovest International Inc	St. Paul	6.84	0.86			MN0029815	45	
	Sterling Water Inc dba Culligan Maximum Graphics	St. Paul	0.29 7.06	2.52 1.84	0.01		MN0029998 MN0029882	95	
	C A Rose & Co LLC	St. Paul	7.00	2400.39			MN0030007	12	
	Wendell's	St. Paul	3.50	0.53			MN0029815	50	
	J & L Wire Cloth Co Inc	St. Paul	0.22	0.71	0.00		MN0029815	12	
	Pro-Tech Interconnect Solutions	St. Paul	0.45	7.02		3672	MN0029882	56	
563	Travel Tags	St. Paul	3.81	3.73		2752	MN0029815	379	323114
	Illbruck Inc	St. Paul	2.50	2.52			MN0029815	140	
	Central Container Corp	St. Paul	44.80	0.86			MN0029815	88	
	Springs Inc	St. Paul	74.07	0.53			MN0029815	43	
	Woodwinds Health Campus Bluesing Bulk Transport Inc	St. Paul	7.56 19.28	6.53 1.83			MN0029815 MN0029882	13	
	Rupp Industries	St. Paul	3.38	0.42			MN0029002	50	
	LECTEC Corp	St. Paul	0.63	0.97	0.01		MN0029882	54	
	Hennepin County Energy Center	St. Paul	1.00	20.48	0.21		MN0029815	9	221330
	Lason Inc	St. Paul	1.70	0.46			MN0029815	47	
	Zenith Products	St. Paul	0.00	0.15	0.00		MN0029815	13	
	LAI Midwest Inc	St. Paul	17.04	0.41	0.07		MN0029815	50	
	Eaglemaster Inc	St. Paul	1.60	0.74	0.01		MN0029815	19	
	S 3M Co - OH & ES Pilot Plant Benson Metals Inc	St. Paul	0.18 0.43	1.71 0.11	0.00		MN0029815 MN0029815	8	
	B Boos Dental Laboratory	St. Paul	4.90	0.94	0.05		MN0029815	55	
	AAA Metal Finishing Inc (Plant 2)	St. Paul	910.41	0.48			MN0029815	12	
580	B F Nelson Folding Cartons	St. Paul	2.94	1.68	0.05	2679	MN0030007	80	322299
	Mate Precision Tooling	St. Paul	7.62	1.73		3544	MN0029815	310	
	Hawkins Chemical Inc	St. Paul	17.65	1.14			MN0029815	26	
	A W Beadblasting Co	St. Paul	0.38	0.12			MN0029815	6	
	Powder Specialties	St. Paul	3.27 8.95	0.04 0.27	0.00		MN0029815	3 49	
	Specialty Automatics Mid-City Industrial Laundry	St. Paul	9.44	0.27			MN0029815 MN0029815	49	
	Micro-Matics LLC	St. Paul	8.05	0.25			MN0029815	25	
	Ron-Vik Inc	St. Paul	5.87	0.84			MN0029815	95	
	Advance Corp		0.09	0.42				60	
	Wanner Engineering	St. Paul	0.28	7.06			MN0029815	71	
	Cima Labs Inc	St. Paul	3.84	1.35			MN0029882	160	
	Better Parts Co	St. Paul	26.50	0.24			MN0030007	14	
	Liberty Carton Co Lettieri's Inc	St. Paul	0.61 26.62	0.77 2.41	0.00 0.67		MN0029815 MN0030007	98	
	MedSource Technologies	St. Paul	0.20	1.19			MN0029815	240	
	A&E Metal Finishing Inc	St. Paul	5.90	0.15			MN0029815	3	
	ViroGen Inc	St. Paul	19.30	0.02			MN0029815	3	
	Bell Mfg & Services Inc	St. Paul	293.32	0.19			MN0029815	13	
	Bell Mfg & Services Inc	St. Paul	111.36	0.32			MN0029815	32	
	Aggressive Industries Inc	St. Paul	201.77	1.42			MN0029815	20	
	Aljon Tool Inc 2 J L Industries	St. Paul	9.04 14.75	0.94 0.80			MN0029815 MN0030007	45	
	B Electro-Mechanical Industries Inc	St. Paul	36.74	3546.31	28.44		MN0030007	36	
	Nu Coat Inc	St. Paul	0.15	0.15			MN0029815	7	
	Process Displays Printing	St. Paul	7.51	1.94			MN0029815	120	
	QX Inc	St. Paul	2.71	0.74			MN0029815	84	
	Metal Strippers	St. Paul	1.53	0.00			MN0030007	1	
608	Midwest Powdercoating & Screen Printing	St. Paul	44.26	0.11	0.05	3476	MN0029815	22	310000

Appendix C. MCES Industrial Users Database

ID	Facility Name	City	Average P (mg/L)	Average Flow (MG)	P_kgd	SIC_No	Permit_No	employee_count	NAICS Code
609	ProtaTek International	St. Paul	13.24	0.16	0.02	2836	MN0029815	12	325414
610	Ritrama Inc	St. Paul	8.39	1.81	0.16	2672	MN0029815	115	322222
611	Quality Ingredients Corp	St. Paul	34.79	2.76	1.00	2023	MN0030007	37	311514
612	Conwed Plastics	St. Paul	0.09	1.02	0.00	3079	MN0029815	16	325200
613	Production Technology	St. Paul	0.34	0.10	0.00	0	MN0029815	18	921100
614	APA Optics Inc	St. Paul	3.77	0.42	0.02	3827	MN0029815	30	333314
615	Prime Plating Inc	St. Paul	0.35	0.42	0.00	3471	MN0029815	50	332813
616	The Carlson Print Group	St. Paul	7.64	0.38	0.03	2752	MN0030007	60	323114
617	Intercomp	St. Paul	0.37	2.00	0.01	3596	MN0029815	57	333997
618	Wigen Water Technologies	St. Paul	0.13	0.10	0.00	7389	MN0029882	16	512290

Appendix D

Communities Adding Phosphorus to Drinking Water Supply

Appendix D Communities Adding Phosphorus to Drinking Water Supply

Community Name	Population	County	Phosphorus [mg/L]	Flow [GPD]
Ah Gwah Ching Center	400	Cass		43,000
Baxter		Crow Wing	1.64	650,000
Bell Hill Recovery Center		Wadena	4.14	9,900
Biscay	124	McLeod		10,000
Boyd	210	Lac Qui Parle		27,000
Breitung	485	Saint Louis		130,000
Brookside Mobile Home Park		Ramsey		51,000
Buckman	217	Morrison	0.42	19,342
Carleton College	2,485	Rice		160,000
Cass Lake	860	Cass		100,000
Centennial Square Mobile Home Park		Anoka	1.17	150,000
Charley Lake Townhomes Association	40	Ramsey		12,205
Chester Heights	300	Olmsted		30,000
Claremont	620	Dodge	1.21	45,000
Clearwater	858	Wright		150,000
Cohasset Municipal Water System	755	Itasca		40,000
Crown College	520	Carver	1.12	38,000
Cuyuna	120	Crow Wing		9,000
Cyrus	303	Pope		23,000
Dayton	268	Hennepin		16,000
Eagle Bend		Todd	6.48	
Eagle Lake	1,787	Blue Earth	2.41	150,000
Elba	218	Winona		14,000
Empire Township	900	Dakota		80,000
Erskine	422	Polk		80,000
Federal Correctional Institution	900	Pine		250,000
Flamingo Terrace Mobile Home Park	600	Anoka		36,000
Forest Lake	7,270	Washington		850,000
Fridley Terrace Mobile Home Park		Anoka	0.94	62,000
Gary		Norman		18,000
Goodview		Winona		290,000
Granite Falls	3,070	Yellow Medicine		332,000
Hallmark Terrace Mobile Home Park		Olmsted		8,000
Hammond		Wabasha		40,000
Hillcrest Health Care Center	110	Blue Earth		21,500
Hoffman		Grant		100,000
Holloway		Swift	3.2	
lona		Murray		15,000
Joint Powers Board System		Wright	1.74	·
Kenyon		Goodhue		175,000
Kittson-Marshall Rural Water System		Marshall	1.53	50,000
Knollwood Parks LLC		Blue Earth		20,000
LaSalle		Watonwan		12,000
LeHillier Community Water Supply		Blue Earth		35,500
Liberty Court Mobile Home Park	ļ	Roseau		5,000

Community Name	Population	County		Flow [GI	PD]
			[mg/L]		
Lincoln-Pipestone Rural Water System	8,400	Lincoln	0.65	3,790,	,000

Community Name	Population	County	Phosphorus [mg/L]	Flow [GPD]
Long Lake	1,842	Hennepin		250,000
Lonsdale	1,493	Rice	1.76	160,000
Maple Hills Estates	410	Hennepin		30,000
Mapleview	253	Mower		20,000
Marshall-Polk Rural Water System	3,295	Marshall		250,000
MN Correctional Facility - Faribault	2,103	Rice	6.8	250,000
MN Correctional Facility - Moose Lake	975	Carlton	0.95	145,000
MN Correctional Facility - Red Wing	250	Goodhue	2.09	38,000
MN State Prison - Stillwater	1,900	Washington	1.96	300,000
Nerstrand	264	Rice		25,000
Nevis	364	Hubbard		45,000
New Auburn	488	Sibley		27,000
New Munich	354	Stearns		44,932
North Kittson Rural Water	3,300	Kittson	2.02	280,000
Odin	118	Watonwan		6,000
Olmsted County Waste/Energy	700	Olmsted	1.65	250,000
Ottertail Nursing Home	110	Otter Tail		10,000
Paul Revere Community	560	Anoka		56,000
Queen Anne Court	400	Dakota	1.94	C
Restwood Terrace	550	Anoka		40,000
Rock County Rural Water System	2,902	Rock	0.92	657,000
Rockville	749	Stearns		73,819
Saint Charles	2,250	Winona		450,000
Saint Hilaire	272	Pennington		25,000
School Sisters of Notre Dame	250	Blue Earth		27,350
Spring Grove	1,304	Houston		250,000
Sun Valley Mobile Home Park	150	Hennepin		C
Tintah	68	Traverse		10,000
Town's Edge Mobile Home Park	300	Stearns		23,000
Underwood	310	Otter Tail	0.89	29,000
Verndale	575	Wadena		38,000
Village Green North Mobile Home Park	355	Anoka		39,400
Walden Woods	60	Stearns	1.11	25,000
West Concord	836	Dodge		74,000
Windsor Hills First Addition	30	Olmsted		C
Wolverton		Wilkin		12,500
Wyoming	3,200	Chisago		262,000
Zumbro Ridge Estates	250	Olmsted		C
Lanesboro	788	Fillmore		130,000
Chisholm	4,960	Saint Louis		460,000
Montevideo	5,462	Chippewa		730,906
Luverne		Rock	1.73	
New Prague	· ·	LeSueur	1.93	
Detroit Lakes	·	Becker	1.32	
Hoyt Lakes	<u> </u>	Saint Louis		350,000
International Falls	<u> </u>	Koochiching	1.46	
Deer Creek		Otter Tail	5.34	
Canby		Yellow Medicine	1.37	

Community Name	Population	County	Phosphorus [mg/L]	Flow [GPD]
Redwood Falls	5,164	Redwood	2.41	,
Lakefield		Jackson	2.11	185,000
Blue Earth	3,621	Faribault		405,000
Monticello	7,868	Wright		1,408,178
Kerkhoven	759	Swift		93,100
Alden		Freeborn	1.53	50,000
LaCrescent	4,923	Houston		332,500
Babbitt	1,100	Saint Louis	0.95	340,000
Wadena	4,294	Wadena	1.05	640,000
Stewartville	5,611	Olmsted		410,000
Renville	1,323	Renville	1.43	279,000
Preston	1,426	Fillmore		210,000
Milan	329	Chippewa	3.83	33,425
Elk River	10,000	Sherburne		1,864,356
Wykoff	460	Fillmore		40,000
Olivia	2,570	Renville	1.45	361,000
Bowlus	276	Morrison		17,000
Geneva	449	Freeborn		70,000
Dodge Center	2,226	Dodge		170,000
Mantorville	737	Dodge		80,000
Mapleton	1,678	Blue Earth	1.07	130,000
Littlefork	680	Koochiching		63,000
Annandale		Wright		299,986
Glenville		Freeborn	1.84	95,000
Morris	5,062	Stevens	1.18	600,000
Rush City	2,100	Chisago		240,000
Saint Francis	2,998	Anoka		454,000
Starbuck	1,300	Pope		231,654
Thief River Falls	8,410	Pennington	1.85	1,000,000
Winsted		McLeod		160,000
Pequot Lakes	947	Crow Wing		115,000
Comfrey	367	Brown	1.49	30,000
Ada	1,657	Norman	2.72	170,000
Tracy	2,268			230,000
Walnut Grove	599	Redwood		50,000
Pine City	3,043	Pine		351,560
East Grand Forks	7,501	Polk		1,250,000
Waldorf	242	Waseca	1.7	
Appleton		Swift	1.96	
Lake Lillian	<u> </u>	Kandiyohi		34,795
Ogilvie		Kanabec		38,315
Lyle		Mower		50,000
Fosston	1,575		1	180,000
Watson		Chippewa	<u> </u>	30,000
Marshall	12,735		1.82	
Wanamingo		Goodhue	1.02	85,000
Windom	<u> </u>	Cottonwood	2.37	996,578
Pelican Rapids		Otter Tail	0.89	

Community Name	Population	County	Phosphorus [mg/L]	Flow [GPD]
Glencoe	,	McLeod	1.68	616,000
College of St. Benedict	1,600	Stearns		206,000
Bemidji	12,090	Beltrami		1,580,000
Barnesville	2,173		0.84	250,000
Atwater	1,079	Kandiyohi		132,900
Austin	23,314	Mower		2,700,000
Barrett	349	Grant		60,000
Belle Plaine	3,700	Scott		378,000
Big Falls	264	Koochiching		25,000
Bird Island	1,195	Renville	3.79	123,000
Braham	1,295	Isanti	5.72	83,600
Bricelyn	379	Faribault		40,000
Brownton	807	McLeod		55,000
Butterfield	565	Watonwan		45,000
Cannon Falls	3,700	Goodhue		605,000
Clements	192	Redwood		18,000
Clinton		Bigstone	1.28	
Cologne		Carver		75,000
Eveleth		Saint Louis	0.89	
Finlayson		Pine	5.87	22,220
Garfield		Douglas		23,288
Graceville		Bigstone	1.07	60,000
Grand Meadow		Mower		85,000
Hancock		Stevens	1.37	61,000
Hayfield		Dodge		121,000
Henderson		Sibley	5.92	87,000
Herman		Grant	1.11	65,000
Hill City		Aitkin		41,000
Hills (Consecutive of 1670007)	565	Rock	0.8	
Hinckley	4,000			338,098
Holdingford		Stearns		60,468
Houston		Houston	5.8	
Isanti	2,334			231,126
Isle		Mille Lacs	4.35	
Lafayette		Nicollet		57,300
Lamberton		Redwood	2.58	
Lester Prairie		McLeod		106,580
Lewiston		Winona		150,000
Litchfield	,	Meeker	1.43	
Lowry		Pope		24,232
Madelia		Watonwan	1.36	
Medford		Steele		71,000
Milaca		Mille Lacs	5.89	
Motley		Morrison	1.2	
Nielsville		Polk	1.2	10,000
North Branch		Chisago		421,128
Northfield	17,147		1	2,000,000
Orr		Saint Louis	3.21	

Community Name	Population	County	Phosphorus [mg/L]	Flow [GPD]
Ostrander	293	Fillmore		31,000
Pine Island	2,337	Goodhue		275,000
Plummer	270	Red Lake		25,000
Princeton	3,933	Mille Lacs		575,000
Randall	600	Morrison	2.47	47,515
Rochester	89,870	Olmsted	0.54	12,900,000
Rockford	3,340	Wright	7.52	393,479
Sanborn	428	Redwood		24,000
Sauk Centre	3,930	Stearns	1.03	514,668
Shelly	266	Norman		20,000
Silver Lake	800	McLeod		75,300
Stacy	1,278	Chisago		90,000
Staples	3,104	Todd		345,000
Twin Valley	861	Norman	1.72	90,000
Wabasso	700	Redwood	1.35	75,000
Warroad	1,722	Roseau		200,000
Easton	214	Faribault	2	23,400
Wells	2,433	Faribault		420,000
Winnebago	1,487	Faribault		170,000
Wood Lake	436	Yellow Medicine	4.7	46,000
Zumbrota	2,800	Goodhue		475,000
Hector	1,167	Renville	3.45	151,000
Rosemount	15,900	Dakota		1,500,000
Becker	3,200	Sherburne		488,208
Rushmore	376	Nobles	3.75	41,000
Morristown	810	Rice		80,000
Baudette	1,146	Woods		175,000
Rogers	4,333	Hennepin		868,493
Andover	16,587	Anoka		2,300,000
Blaine	44,000	Anoka		4,600,000
Brooklyn Center	29,172	Hennepin		3,500,000
Brooklyn Park	67,388	Hennepin		8,767,000
Centerville		Anoka		150,000
Champlin	22,500	Hennepin		1,800,000
Columbia Heights, consecutive of 1270024	18,520	Anoka	0.68	1,400,000
Coon Rapids	63,000	Anoka	1.97	8,400,000
Crystal (Consecutive of 1270024)	22,668	Hennepin	0.59	4,000,000
Fridley	29,000	Anoka		5,000,000
Golden Valley (Consecutive of 1270024)	20,281	Hennepin	0.62	
Hopkins	16,534	Hennepin	1.12	
Hugo		Washington		400,000
Lexington		Anoka		120,000
Lino Lakes		Anoka		1,023,000
Mahtomedi		Washington		652,000
Maple Grove		Hennepin		7,000,000
Medina		Hennepin		165,000
Minneapolis		Hennepin	0.59	
New Hope		Hennepin	0.63	

Community Name	Population	County	Phosphorus [mg/L]	Flow [GPD]
Oakdale	26,500	Washington		2,567,000
Osseo	2,434	Hennepin		250,000
Plymouth	66,675	Hennepin	1.23	8,571,000
Saint Anthony Village	8,012	Hennepin		975,636
Vadnais Heights	13,500	Ramsey		1,300,000
Eden Prairie	54,901	Hennepin		6,500,000
Excelsior	2,356	Hennepin	1.64	370,000
Maple Plain	2,080	Hennepin	0.48	260,860
Minnetonka	51,607	Hennepin	1.42	6,900,000
Minnetrista	1,470	Hennepin		154,000
Orono	2,300	Hennepin	2.19	230,000
Prior Lake	17,310	Scott		1,200,000
Saint Bonifacius	2,100	Hennepin		214,000
Tonka Bay		Hennepin		190,000
Victoria	2,743	Carver		400,000
Waconia	8,600	Carver	2.11	1,000,000
Wayzata	4,113	Hennepin	1.35	800,000
Bayport	1,700	Washington		300,000
Stillwater		Washington		1,960,000
Lakeville	40,000	Dakota		4,500,000
New Ulm	13,594	Brown	1.12	2,300,000
Fairmont	10,889	Martin	1.5	
Faribault	18,838	Rice		3,000,000
Virginia	11,495	Saint Louis		2,200,000
Mankato	32,062	Blue Earth		4,800,000
Shafer	390	Chisago		33,445
Worthington	11,285	Nobles	2.04	
Lucan	226	Redwood	4.71	21,000
Ghent	315	Lyon		27,000
Porter	208	Yellow Medicine		5,300
Buffalo	10,001	Wright	1.18	1,200,000
Alexandria	9,247	Douglas	1.13	
Madison Lake	837	Blue Earth		61,000
Saint Cloud		Stearns		7,023,616
Sartell	9,641	Stearns	2.25	1,444,323
Albert Lea	18,356	Freeborn	1.33	
Henning	719	Otter Tail		90,000
Ellendale	606	Steele		60,000
Greenbush	784	Roseau		85,000
Raymond	803	Kandiyohi	7.23	91,506
Farmington		Dakota		1,500,000
Mazeppa		Wabasha		65,000
Avon		Stearns		170,890
Taunton		Lyon		8,600
Clear Lake		Sherburne		32,000
Foreston		Mille Lacs		21,000
Hollandale		Freeborn		38,000
Dilworth	3,030		3.37	

Community Name	Population	County	Phosphorus [mg/L]	Flow [GPD]
Moorhead	34,500	Clay		4,100,000
Northome	230	Koochiching		29,000
Cokato	2,733	Wright		380,000
Byron	3,294	Olmsted		200,000
Badger	470	Roseau	2.55	35,000
Cloquet	11,201	Carlton		1,300,000
Wrenshall	308	Carlton		15,000
Buffalo Lake	773	Renville	3.58	76,000
Fergus Falls	13,470	Otter Tail		1,800,000
Marietta	174	Lac Qui Parle		14,000
Ortonville	2,766	Bigstone	2.77	390,000
Delano		Wright		354,000
Owatonna	22,434	Steele		4,300,000
Belgrade	750	Stearns	4.15	
Wendell	165	Grant	3.53	
Elbow Lake	1,275	Grant		130,000
Madison	1,758	Lac Qui Parle		298,000
Howard Lake		Wright	1.43	
Argyle		Marshall	2.18	, , , , , , , , , , , , , , , , , , ,
Hanska	443	Brown	1.04	
Glenwood		Pope		317,353
Green Lake Water District		Kandiyohi	3	
Murdock		Swift		42,000
Biwabik	1,428	Saint Louis		155,000
Steen (Consecutive of 1670007)		Rock	0.68	
Carver		Carver		100,000
Hackensack	285	Cass	1.8	
New York Mills	1,200	Otter Tail	2.04	115,000
Pipestone Water Utility	, , , , , , , , , , , , , , , , , , ,	Pipestone	2.32	541,000
Chisago City		Chisago		300,000
Hutchinson		McLeod	1.15	
Rice		Benton		71,000
Maynard		Chippewa		30,073
Sandstone	1,549		0.69	
Kettle River		Carlton	1	25,000
Crosby		Crow Wing	0.52	
Deerwood		Crow Wing		54,000
Ironton		Crow Wing	0.63	
Pease		Mille Lacs	0.00	15,000
Otsego		Wright		111,407
Frost		Faribault		23,650
Bejou		Mahnomen		7,000
Kilkenny		LeSueur		17,000
Adrian		Nobles	1.07	124,000
Belview		Redwood	1.07	40,000
Cottonwood		Lyon		93,000
Elizabeth		Otter Tail		20,000
Elkton		Mower	1	12,000

Community Name	Population	County	Phosphorus [mg/L]	Flow [GPD]
Freeborn	305	Freeborn	1.17	33,000
Freeport	566	Stearns	3.4	43,000
Goodridge	100	Pennington	5.21	13,000
Jesper (Consecutive of 1410007)	600	Pipestone	0.45	51,000
Lake Bronson (consecutive of 1350006)	363	Kittson	2.45	29,000
Menahga	1,220	Wadena	6.48	108,000
Minneota (Consecutive of 1410007)	1,417	Lyon	1.45	105,000
New Germany	347	Carver		39,000
Oklee	401	Red Lake		50,000
Roseau	2,756	Roseau		460,000
Royalton	816	Morrison		70,224
Sleepy Eye	3,730	Brown	1.99	388,000
Twin Lakes	210	Freeborn		22,000
Vesta	339	Redwood		24,000
Wheaton	1,619	Traverse	2.06	150,000
Winger	205	Polk		25,000
Onamia	850	Mille Lacs		77,200
Beaver Creek	250	Rock		18,000
Cosmos	590	Meeker	4.5	
Danube	553	Renville		35,000
Echo	299	Yellow Medicine		32,000
Fairfax	1,295	Renville	2.64	132,000
Clarks Grove	734	Freeborn		30,000
Kelliher	294	Beltrami		25,000
Rose Creek	371	Mower	7.99	45,000
Evansville		Douglas	2.97	68,000
Stewart	564	McLeod		50,000

Appendix E

Industrial Phosphorus Data Collected from Outstate POTWs

Appendix E. Industrial Phosphorus Data Collected from Outstate POTWs

ID	Facility Name	City	P_kgd	Permit_No	employee_count	NAICS Code
5527	AMPI	Glencoe		MN0022233	90	445200
5528	Kraft	New Ulm	10.81	MN0030066	800	311500
5529	3M	New Ulm	0.03	MN0030066	690	335900
5530	Schell	New Ulm	3.24	MN0030066	48	312100
5531	AMPI	New Ulm	3.94	MN0030066	200	311500
5532	Firmenich	New Ulm	21.53	MN0030066	53	325900
5533	Elgin Milk Serive	Plainview	1.47	MN0055361	19	484100
5534	PMP	Plainview	10.36	MN0055361	50	311511
5536	Honeymead	Mankato	17.86	MN0030171	50	311220
5537	AmeriPride	Mankato	1.43	MN0030171	50	333312
5538	ADM	Mankato	0.28	MN0030171	50	424510
	ADM Refinery	Mankato	1.86	MN0030171	50	
	Viessman Trucking	Mankato	1.30	MN0030171	50	484100
	Coloplast	Mankato		MN0030171	50	325600
	Jones Metal	Mankato		MN0030171	50	
	Year Round Cab	Mankato		MN0030171	50	331110
	Kato Engineering	Mankato		MN0030171	50	335312
	Dotson	Mankato		MN0030171	112	332900
	IMSJ Hospital	Mankato		MN0030171	1540	622100
	Mankato Clinic	Mankato		MN0030171	740	
	Associated Finishing	Mankato		MN0030171	50	332812
	Crown Cork & Seal	Owatonna		MN0051284	50	332431
	OTC Div SPx Corp.	Owatonna		MN0051284	800	335900
	Truth Hardware	Owatonna		MN0051284	901	333500
	Steel County	Owatonna		MN0051284	317	921100
	Dairy Farmers of America	Zumbrota		MN0025330	220	311500
	Agri-Energy	Luverne		MN0020141	50	221119
	Melrose Dairy Proteins	Melrose		MN0020290	143	
	Jennie-O Turkey Store	Melrose		MN0020290	795	311600
	Busch Agricultural Resources, Inc	Moorhead		MN0049069	50	424510
	Pactiv Corporation	Moorhead		MN0049069	50	326100 311300
	American Crystal Sugar Company Tech Services Cente	Moorhead		MN0049069	380	
	Burlington NorthernSante Fe Railway - Sugar Waste Electrolux Home Products	Moorhead St. Cloud		MN0049069 MN0040878	50 50	332322
	Northern Wire Products	St. Cloud		MN0040878	50	332618
	AmeriPride Linen & Apparel Services	St. Cloud		MN0040878	50	333312
	G&K Services	St. Cloud		MN0040878	50	333312
	Grede Foundaries Landfill	St. Cloud		MN0040878	325	332700
	International Paper Landfill	St. Cloud		MN0040878	50	
	Dezurik Landfill	St. Cloud		MN0040878	50	562200
	X-Cel Optical Company	St. Cloud		MN0040878	50	
	Rapid Plating	St. Cloud		MN0040878	50	332800
	DBL Labs	St. Cloud		MN0040878	50	339100
	Essilor Coating Center	St. Cloud		MN0040878	50	339100
	New Flyer	St. Cloud		MN0040878	467	332900
	Froedtert Malt	Winona		MN0030147	53	
	Winona County Landfill	Winona		MN0030147	50	
	AMPI	Rochester		MN0024619	50	311500
5580	PACE	Rochester	5.55	MN0024619	360	311500
5581	QUEST	Rochester	9.54	MN0024619	50	311940
5583	Crenlo	Rochester	51.00	MN0024619	674	336200
5584	Marshall Labs	Marshall	26.98	MN0022179	50	541700
5585	Viessman	Marshall	0.00	MN0022179	50	484100
5586	Schwan's Beverage Plant	Marshall	1.50	MN0022179	50	311900
	MCP	Marshall		MN0022179	50	311200
5588	Schwan's	Marshall		MN0022179	2500	311900
	Turkey Store	Faribault		MN0030121	400	311600
	Faribault Foods	Faribault		MN0030121	290	311400
5591	Land O Lakes	Faribault	0.84	MN0030121	50	311500

Estimating Phosphorus Losses from Agricultural Lands for MPCA's Detailed Assessment of Phosphorus Sources to Minnesota Watersheds

D. J. Mulla & P. H. Gowda, University of Minnesota and G. Wilson & H. Runke, Barr Engineering

Executive Summary

The objective of this study was to assess phosphorus loadings to Minnesota's ten major drainage basins from agricultural runoff and erosion, as well as to evaluate the uncertainty in these assessments. This study was achieved by using and extending a regional phosphorus index approach published by Birr and Mulla (2001). Phosphorus index values were estimated for Minnesota watersheds and agroecoregions based on phosphorus transport and source factors such as erosion during dry, average and wet years, streamflow during dry, average and wet years, contributing distance from surface waterbodies during dry, average and wet years, soil test phosphorus, and rate and method of land applied phosphorus from fertilizer and manure.

Phosphorus index values were compared with field data on phosphorus loss from four sites over five years to estimate phosphorus export conditions. Phosphorus export coefficients show considerable variation across major drainage basins and across climatic conditions (Table 3 and Fig. 26). Export coefficients (kg/ha) during average climatic conditions vary from 0.54 kg/ha for the Minnesota River basin, 0.4 kg/ha for the Red River basin, 0.39 kg/ha for the Upper Mississippi River basin, and 0.66 kg/ha for the Lower Mississippi River basin.

Phosphorus export coefficients were multiplied by the cropland contributing area within 100 m of surface water bodies to obtain phosphorus loadings from the edge of this contributing area. Phosphorus loads exported to surface waters from agricultural lands under average climatic conditions are greatest for the Minnesota River basin (517,862 kg/yr), followed by the Red River (384,695 kg/yr), the Upper Mississippi (359,681 kg/yr) and the Lower Mississippi (232,581 kg/yr) River basins. All of the other basins have phosphorus export loads that are considerably smaller than the loads exported in these four basins. With agroecoregion based export coefficients, the magnitudes of phosphorus loadings are about

7% smaller for these same basins in an average year than the magnitudes obtained using the watershed based analysis.

Several alternative agricultural management scenarios were investigated and compared to a baseline scenario involving an average climatic year and existing rates of adoption of conservation tillage and existing rates of phosphorus fertilizer applications. The first alternative management was a scenario in which moldboard plowing is used on all row cropland. This is a worst case scenario for erosion, and exemplifies phosphorus losses typical of an era that existed twenty or more years ago. This scenario allows us to evaluate the extent of progress in controlling phosphorus losses over the last twenty years due to improvements in tillage management. In the Minnesota River basin, compared to an era when moldboard plowing was widely practiced, current day phosphorus losses from agricultural cropland have been reduced by about 146,000 kg/yr (from about 664,000 to 518,000 kg/yr), for a 28% reduction. In the Upper Mississippi River basin, current phosphorus losses from agricultural land have been reduced by about 87,000 kg/yr, for a 24% reduction. Similar comparisons show a 7% reduction for the Red River basin.

The last scenario involves decreasing or increasing the area of cropland within 100 m of surface waterbodies. Decreases in area of cropland could correspond to land retirement programs such as those promoted in the Conservation Reserve and Conservation Reserve Enhancement Programs. Increases in cropland area would correspond to putting grass or forest riparian areas into production, alternatively this could be viewed as increasing the distance for cropland areas (now assumed to be 100 m) that contribute phosphorus to surface waters. The results from this scenario indicate that every one percent decrease in the area of cropland within 100 m of surface waters leads to a one percent decrease in phosphorus loadings. Alternatively, every one percent increase in the area of cropland near surface waters leads to a one percent increase in the phosphorus loadings.

There are many possible sources of uncertainty in the estimated phosphorus loadings. These can be divided into errors in input data, errors in converting phosphorus index values to phosphorus export coefficients, errors in estimating the proportion of cropland that contributes to phosphorus loadings, and errors due to a lack of consideration for impacts of

surface and subsurface drainage, wind erosion or snowmelt runoff on phosphorus loadings. This study provides a list of suggestions for further research to reduce these uncertainties.

Introduction

In 2003, the Minnesota State Legislature authorized the Minnesota Pollution Control Agency to contract for a comprehensive study to assess phosphorus loadings to Minnesota's ten major drainage basins from all major sources during low flow, average flow, and high flow conditions. These sources include point sources such as publicly owned wastewater treatment plants, privately owned wastewater treatment plants, and commercial or industrial wastewater treatment systems. Nonpoint sources addressed in the study included agricultural runoff and erosion, feedlot runoff, non-agricultural rural runoff, streambank erosion, urban runoff, individual sewage treatment systems, and atmospheric deposition. The subject of the study described below is limited simply to assessing the phosphorus loadings to Minnesota's ten major drainage basins from agricultural runoff and erosion, as well as evaluating the uncertainty in these assessments. This study was achieved by using and extending a regional phosphorus index approach published by Birr and Mulla (2001).

Methods

The following sections provide an overview of the modified phosphorus index, developed at the regional scale by Birr and Mulla (2001), and an approach for revising and utilizing the modified phosphorus index to estimate phosphorus loadings from agricultural sources to each of the ten major drainage basins in Minnesota during low, high and average flow conditions.

Overview of Modified Phosphorus Index at the Regional Scale

Birr and Mulla (2001) developed a modified version of the P Index, originally developed jointly by the USDA (ARS, CSREES, and NRCS), to prioritize phosphorus (P) loss vulnerability at the regional scale from 60 watersheds located within Minnesota. This modified (regional) version of the P Index uses readily available data associated with the transport and sources of P. Validation of the P Index rating was conducted using long-term water quality monitoring data consisting of total P concentrations collected from 37 watersheds and 1800 lakes within the study area.

A combination of transport and source factors directly influence P movement from agricultural systems to surface waters (Sharpley et al., 1993). The USDA developed a P Index that integrates both transport and source factors to identify areas vulnerable to P export (Lemunyon and Gilbert, 1993). Transport factors include the mechanisms by which P is delivered to surface waters, such as erosion and runoff. Source factors represent the amount of P available for transport, including soil test P and P applied (rate and method) in fertilizer and organic forms. Table 1 (taken from Birr and Mulla, 2001) summarizes the transport and source factors used to develop the regional P Index ratings, as well as the weighting factors for each loss class and transport or source factor. The following discussion describes how each of the transport and source factors were initially computed by Birr and Mulla (2001). The section after this discussion describes how the initial computations were modified and refined for the final analyis.

Birr and Mulla (2001) Regional Phosphorus Index Methods

• Soil erosion potential was calculated using the Universal Soil Loss Equation (USLE) as outlined by Wischmeier and Smith (1978). The Minnesota state soil geographic database (STATSGO) was used to supply many of the variables needed to calculate erosion potentials for each of the watersheds (USDA, 1991). Erosion potential was calculated for each soil type within a STATSGO map unit. Rainfall runoff factors (R) for each county were based on values provided by Wischmeier and Smith (1978). The STATSGO database provided a soil erodibility factor (K) for each soil type within a STATSGO map unit. The slope-steepness factor (S) represents an average of the high and low slope values given for each soil type within a STATSGO map unit. The slope-length factor (L) was assumed to be 46 m. A 1:250 000 scale landuse/landcover coverage developed by the USGS in the late 1970s and early 1980s was used to determine erosion potentials spatially coincident with cropland and pastureland (USEPA, 1994).

An erosion potential value for all cropland and pastureland within a watershed was determined using the percent of each STATSGO map unit covering a watershed. The landuse coverage did not differentiate spatially between cropland and pastureland; however, Census of Agriculture data indicate that pastureland represents about 11% of this classification category in Minnesota (National Agricultural Statistics Service, 1999). Differences in potential erosion for the two land uses were accounted for in the determination of the C factor based on the proportion of hay reported for a particular county. Cropping management factors (C) were adapted from values provided by the

USDA (1975) and Wischmeier and Smith (1978) for corn, wheat, soybean, hay, sugar beet, potato, oat, and barley. The C factors were calculated for each county based on the area of each harvested crop covering the county. Watershed values for the C factors were weighted based on the proportion of the watershed that was covered by the county. The C factor calculations include crop rotation effects but not the variation in tillage effects. There is no reliable method for estimating the variation in crop residue cover across the watersheds studied. The conservation practice factor (P) was assumed to be 1, because it could not be accurately quantified at the regional scale. The overall erosion potential value for each watershed represents the product of the area-weighted C factor and the variables R, K, and LS for each watershed (A = RKLSCP).

- Average annual runoff values for each watershed were derived from the average annual discharge monitored from 1951 to 1985 for 327 stations distributed throughout Minnesota (Lorenz et al., 1997). The average annual runoff value is calculated as the average annual discharge divided by the drainage basin area defined for the station.
- The area of cropland and pastureland within 91.4 m of drainage ditches and perennial streams (the primary contributing corridor) was determined using hydrography coverages developed by the Minnesota Department of Transportation (1999) and the USGS (1999). The USGS landuse/landcover coverage (USEPA, 1994) was used to determine the percentage of cropland and pastureland within the 91.4 m proximity to watercourses for each watershed.
- Mean soil test P levels for each county represented a 5-yr database consisting of 22,421 Bray-1 extractable P (Brown, 1998) samples analyzed by the University of Minnesota's soil testing laboratory. Soil test P levels for each watershed were based on the area of the watershed covered by each county.
- Data for P-fertilizer sales by county were obtained from the Minnesota Department of Agriculture (1997). Fertilizer P values for watersheds were based on a summation of area-weighted county-based values intersecting the watersheds. The total area of fertilized land within each watershed was determined using the same procedure based on reported county values (National Agricultural Statistics Service, 1999). The aggregated fertilizer P value was divided by the aggregated reported fertilized land for each watershed to determine fertilizer P application rates.
- The P content of livestock manure was calculated based on the total number of cattle, swine, broilers, and turkeys reported within each county (Midwest Planning Service, 1985; Schmitt, 1999; National Agricultural Statistics Service, 1999). The total amount of manure P was derived for each watershed based on the summation of areaweighted county values intersecting the watersheds. The reported total cropland area

was also determined using the same procedure (National Agricultural Statistics Service, 1999). The aggregated total P content of manure was normalized by the aggregated total cropland area for each watershed to determine organic P application rates. This approach underestimates the actual rates of land applied P from manure, but at the regional scale it accurately represents the mass of P from land applied manure

For the modified P Index (Table 1), each site characteristic is assigned a weighting factor based upon the premise that site characteristics have a varying impact on P loss to runoff. Each site characteristic has an associated P loss rating value (very low, low, medium, high, and very high) using a base of 2 to reflect the higher potential for P loss associated with higher rating values. The P Index rating is the summation of the product of the rating value and corresponding weighting value for each site characteristic. Because P application method could not be accurately depicted at the regional scale, the highest organic and fertilizer P application method rating values were used to represent a worst-case scenario. Categories corresponding to the rating values were derived by segregating the distribution of statewide values for each site characteristic into five classes using the quantile classification method available in ArcView software (ESRI, 2000).

P Index rating values resulting from the application of the modified P Index were validated using two different sets of data. The first set of data consists of a 27-yr record (1968-1994) of total P concentrations collected at the mouth and at interior points in 54 of the 60 watersheds in the study. P Index ratings were correlated with the percentage of samples in which total P concentrations exceeded 0.25 mg/L for 37 of the 60 watersheds in the study area. Seventeen of the 54 watersheds with monitoring data derived from main stems of the six major rivers were excluded from the statistical comparison to ensure that both cumulative (upstream effects from other major watersheds) and point source (urban) effects did not influence the total P observations. The second set of validation data consists of lake water quality parameters maintained by the United States Environmental Protection Agency's (USEPA) STORET national water quality database. P Index ratings were statistically compared with median total P concentration of lakes for 20 of the 60 watersheds having greater than 14 lakes assessed. A majority of the lakes (66%) were monitored during summer months (June-Sept.) between 1989 and 1998. The remaining data were collected between 1970 and 1988, including non-summer

samples (Heiskary and Wilson, 2000). The regional phosphorus index of Birr and Mulla (2001) showed an excellent statistical correlation with both water quality validation data sets, with coefficients of determination between 65 and 70%.

Refined and Updated Approach for Estimating Regional Phosphorus Index

This section provides an approach for revising and utilizing the modified (regional) phosphorus index (from Birr and Mulla, 2001) to estimate phosphorus loadings from agricultural sources to each of the ten major drainage basins (Fig. 1) in Minnesota during low, high and average flow conditions. In addition, this approach will attempt to evaluate the variability and uncertainty associated with estimating phosphorus loadings from the various types of farm systems using the modified phosphorus index.

Agroecoregions were developed by the University of Minnesota's Department of Soil, Water, and Climate on behalf of the Minnesota Department of Agriculture (Hatch et al., 2001). Thirty-nine agroecoregions were delineated in Minnesota using data related to soils, surficial geology, climatic patterns, topography, and land use (Fig. 2). Birr and Mulla (2002) found that the Minnesota agroecoregion framework was effective at characterizing regional lake water quality trends. The same transport and source factor (soil erosion, average runoff, percentage of cropland and pastureland within 300 feet of a watercourse, soil test P, fertilizer P and organic P application rates) inputs, used to determine the modified phosphorus index values for each of the 37 watersheds in Birr and Mulla (2001), have already been developed for each agroecoregion unit throughout Minnesota (Mulla, 2003).

The following adjustments to the modified phosphorus index computations and supplementary tasks will be used to improve and update the analysis of phosphorus loading:

• The MPCA has developed and updated a feedlot inventory and manure management database (with an associated GIS coverage), based on registered feedlot data obtained from each of the counties. The total amount of manure P was derived for each agroecoregion and watershed based on the summation of area-weighted township values intersecting the agroecoregions or watersheds. The aggregated total P content

of manure can then be normalized by the aggregated total cropland area for each agroecoregion or watershed to determine and revise the organic P application rates. Again, this underestimates the actual rates of land applied P from animal manure, but not the regional amounts applied, nor the regional patterns in amounts applied, which are critical for this analysis.

- Data for phosphorus fertilizer sales by county were obtained from the Minnesota Department of Agriculture (1997) and used in Birr and Mulla (2001) to estimate the modified phosphorus index values based on a summation of area-weighted county-based values intersecting the watersheds. Phosphorus fertilizer sales data by county for the most current crop year (2002) were obtained and used to update this part of the modified phosphorus index computations based on a summation of area-weighted county-based values intersecting the agroecoregions or watersheds.
- GIS coverages for runoff volumes in each agroecoregion or watershed under average, high and low flow conditions were developed to evaluate how phosphorus export from agricultural lands would be expected to change with varying climate conditions. Runoff volumes were estimated by Barr Engineering based on average annual discharge from long-term monitoring stations representative of the major watersheds of the state, consistent with Birr and Mulla (2001). Along with runoff volumes estimated by Barr Engineering for low, average and high flow condition s, we estimated rainfall runoff erosivity (R values) for the USLE for dry, average and wet years corresponding to the low, average and high flow conditions. These estimates were based on an algorithm developed for monthly precipitation data by Renard and Freimund (1994). The modified phosphorus index values and total phosphorus export were then computed for each of the agroecoregions or watersheds under high and low flow conditions, using the corresponding values for runoff volume and rainfall runoff erosivity.
- The highest rating for both P fertilizer and organic P application method was used by Birr and Mulla (2001). Application methods with less potential for P losses will lower

the estimated P Index values; however, the relative rankings of the P Index ratings across watersheds would only change if the practices varied significantly from one basin to the next. Based on farm survey data collected by the Minnesota Department of Agriculture, phosphorus application methods are generally much better than those assumed by Birr and Mulla (2001). A majority of farmers apply their phosphorus fertilizer with the planter or using incorporation before crop planting. In view of this, we have chosen to use a statewide medium loss potential for method of fertilizer P application method, corresponding to fertilizer applied before the crop and incorporated immediately.

An initial scenario involving a medium loss potential for the method of manure application was developed for the entire state. Subsequently, a second scenario was developed assuming variability in the loss potential associated with method of manure application. Manure P application methods vary primarily in response to the type of animal species. Manure from beef, dairy, and poultry is high in solids, while manure from hogs is high in liquid. Beef operations tend to be small in scope, have a tendency towards inadequate manure storage facilities, and manure from these operations tends to be hauled on a daily basis. Beef operations also tend to involve cattle wading in streams. Dairy operations tend to have adequate manure storage facilities, and manure is applied followed by a tillage operation to incorporate manure. Poultry operations tend to have adequate manure storage facilities, and the manure is incorporated using tillage following land application. Hog operations tend to have adequate storage facilities, and the manure is land applied using injection. In terms of the phosphorus index, this means that beef operations tend to have a very high phosphorus loss potential, dairy and poultry operations tend to have a medium loss potential, while hog operations tend to have a low loss potential. The geographic variability in phosphorus loss potential associated with these variations in method of manure application was evaluated using the number of animal units of different species from the MPCA feedlot inventory database. The effect of this variability and/or uncertainty in method of manure application was estimated using the modified phosphorus index.

• Birr and Mulla (2001) states that spatial trends in soil erosion potential observed throughout Minnesota are potentially influenced by both the underlying assumptions used in the methodology and the exclusion of factors that control soil erosion. A lack of detailed information pertaining to the spatial variation in C and P factors may have caused the spatial distribution of erosion potential values to vary more gradually across the region than is realistic. The spatial variation in the C factor of the USLE was estimated by accounting for the effects of crop rotations, the effects of conservation tillage on crop residue levels, and the effects of existing acreage of land in Conservation Reserve Program (CRP). Typically the C factor for land in CRP is 0.001 or so, while row cropland has a C factor varying from 0.05 to 0.4 depending on the rotation and the amount of crop residue present.

Three scenarios were evaluated to account for the influence of tillage methods on crop residue levels remaining after planting. These were a scenario involving conventional tillage with no residue left (worst C scenario), and a scenario involving conservation tillage leaving more than 50% of the soil covered by crop residue (best C scenario). This is not typical of existing crop rotations or tillage management systems in Minnesota, nor is it a goal of existing watershed restoration or conservation programs to achieve this high level of crop residue cover. Also estimated was a scenario for average crop residue cover (average C scenario) based on county tillage transect data for the percent of fields with conservation tillage (30%) residue cover). In the average C scenario, we developed a weighted C factor based on the relative area of cropland in conservation tillage versus moldboard plowing. Data for the C factors of various crop rotations with varying levels of crop residue were estimated using tables provided by the USDA-NRCS. Thus, using information on crop rotations, crop residue levels, and acreage of land in CRP, we developed scenarios for both soil erosion by water and the modified phosphorus index involving the C factor of the USLE.

Variability in the P factor of the USLE was estimated using the Local Government Annual Reporting System (LARS) database of conservation practices provided by the Board on Soil and Water Resources (BWSR). This database was edited to estimate the area of supporting conservation practices affecting the P factor implemented from 1997-present in Minnesota counties. These practices include terracing, contour strip cropping, filter strips, sediment basins, and restored wetlands. Each practice was assigned a typical P factor. Since supporting conservation practices have typically been implemented for the last 50 years, we assumed that the area where these practices were implemented was 10 times greater than the area determined using the LARS database. A county average P factor was then determined using the area weighted P factors for land with supporting practices and the land without supporting practices (P=1). The variability and/or uncertainty associated with conservation practices, such as conservation tillage, contour stripcropping, terracing, and other supporting practices was then estimated for agroecoregions and watersheds using the modified phosphorus index.

Regional Modified Phosphorus Index Results

Water Erosion Estimates for Agricultural Land

Average Rainfall Runoff Erosivity, Varying Cover Management Conditions

The first scenario for erosion involves using the worst possible values for the cover management factor (C) in the USLE, and keeping all other factors from the first scenario constant. This represents erosion rates that could be expected when moldboard plowing is used on cropland, thereby burying all crop residue. As shown in Fig. 3a, most of the watersheds in southern Minnesota have erosion rates greater than 21 Mg/ha/yr (11.2 Mg/ha corresponds to 1 ton/ac) due to poor crop residue cover. The maximum rate of erosion estimated was about 190 Mg/ha (about 17 ton/ac). Erosion rates typically decrease towards northern Minnesota. Similarly, erosion rates greater than 21 Mg/ha/yr occur in a large number of agroecoregions located in southern Minnesota (Fig. 3b).

The second scenario illustrates the erosion rates that correspond to average cover management conditions based on tillage transect surveys of the percent of cropland with 30% residue cover at planting. About one-third of all watersheds have erosion rates that exceed

21 Mg/ha/yr (Fig. 4a), these are located primarily in southern Minnesota. About one-fourth of all watersheds have erosion rates less than 5 Mg/ha/yr, these are located primarily in northern Minnesota. Agroecoregions with erosion rates greater than 21 Mg/ha/yr include the Blufflands, Rolling Moraine, Rochester Plateau, Steep Wetter Moraine, Coteau, Undulating Plains, Inner Coteau, Wetter Blue Earth Till, Level Plains, and Steep Dryer Moraine (Fig. 4b). These are located primarily in the Minnesota River basin and the Lower Mississippi River basin in southeastern Minnesota.

The third scenario involves using the best possible values for the cover management factor (C) in the USLE, representing erosion rates that could be expected when all cropland uses conservation tillage that leaves at least 50% of the soil surface covered with crop residue at planting (Fig. 5ab). As expected, rates of erosion are generally smaller in this scenario in comparison with the previous two scenarios. With widespread adoption of conservation tillage, watersheds in the northern half of Minnesota have erosion rates that are less than 5 Mg/ha/yr, and much of central, south central and southwestern Minnesota have erosion rates ranging between 6 and 14 Mg/ha/yr (Fig. 5a). The number of watersheds in southeastern Minnesota having erosion rates greater than 21 Mg/ha is relatively unchanged in comparison to the results from the first scenario which uses the lowest possible C factors based on moldboard plowing (Fig. 3a). This is because southeastern Minnesota has steep landscapes and heavy precipitation which are conducive to high rates of erosion.

Low and High Rainfall Runoff Erosivity, Best Cover Management Conditions

The next erosion scenarios involve using best cover management factor (C) values based on widespread adoption of conservation tillage, existing crop rotations and acreage of CRP, but with varying values of rainfall runoff erosivity (R). The first of these scenarios is with low rainfall runoff erosivity values that represent dry climatic conditions typical of low flow hydrologic conditions. As shown in Figs. 6a and 6b, erosion rates in this scenario are typically less than 5 Mg/ha/yr for watersheds and agroecoregions across the entire state. The second scenario is with high rainfall runoff erosivity values that represent wet climatic conditions typical of high flow hydrologic conditions. As shown in Figs. 7a and 7b, erosion rates with this scenario are typically greater than 21 Mg/ha/yr in most of central and southern

Minnesota. Only the northeastern portion of Minnesota has erosion rates smaller than 5 Mg/ha/yr in this scenario. Based on these model predictions, it is clear that erosion rates are much more sensitive to variations in climate than variations in tillage management.

Runoff Estimates for Hydrologic Flow

Runoff estimates for average, dry and wet flow regimes are shown in Figs. 8-10. Runoff under average conditions typically increases from west to east across the state (Fig. 8). The greatest runoff occurs in watersheds along Lake Superior in northeastern Minnesota (up to 15 cm), followed by watersheds in southeastern Minnesota (Fig. 8). The smallest runoff occurs in watersheds in northwestern and west central Minnesota (less than 4 cm). For dry years (Fig. 9), runoff increases from west to east, but the magnitudes of runoff are much smaller (maximum runoff of about 11 cm). For wet years the greatest runoff occurs in northeastern and southern Minnesota (Fig. 10), and the magnitude of runoff is considerably greater than for average years (up to about 21 cm).

Agricultural Land in Close Proximity to Rivers and Ditches

The transport of phosphorus to surface waters depends to a large extent on the percent of land in a watershed that is within 91.4 m (300 ft) of a waterway. As the proximity of agricultural land to a waterway increases, so too does the potential for transport of phosphorus to the waterway (Gburek et al., 2000, Soranno and Hubler, 1996). The latter two citations indicate that the risk for P transport is greatest for lands from 50 – 300 m from surface waterways. Gburek et al. (2000) studied agricultural phosphorus losses in a small watershed located in Pennsylvania. This watershed receives on average 1100 mm/yr of precipitation, has landscapes with slopes ranging from 1-19% in steepness, and is dominated by silt loam soils. Gburek et al. (2000) found that the distance of cropland contributing phosphorus loads to surface waters varied with the amount of rainfall, with contributing distances varying from 5 to 100 m in dry to wet years.

In most of Minnesota, we believe that the risks of phosphorus transport to surface waters are greatest in the contributing corridor within about 100 m from surface waterbodies. This is consistent with research results from across the country, and with recommendations of the

primary group of soil scientists conducting research on phosphorus transport to surface waters (the SERA-17 group). Due to topographic variations along surface waterbodies, in some areas phosphorus contributions from overland runoff and erosion may occur from as far away as several hundreds of meters. In contrast, where berms are present along waterbodies it may be unlikely for any surface runoff or erosion to enter surface water. Thus, the 100 m contributing corridor should be viewed as a regional average for contributions of P to surface waters from runoff and erosion on adjacent cropland.

In the Minnesota River basin, where significant acreage of cropland has surface tile intakes and subsurface drains, the transport of phosphorus to surface waters can arise from cropland much farther than 100 m from surface waterbodies. The critical contributing corridor in the case of surface tile intakes is the area of cropland immediately surrounding the surface tile intake that contributes surface runoff and erosion to the intake. The risks of phosphorus transport from surface tile intakes and subsurface drains have not been studied extensively, however, and so P losses from these sources will be addressed in the section at the end of this report dealing with uncertainties.

To estimate the losses of P from surface runoff and erosion, we used an approach that identifies the contributing corridor around surface waterbodies for dry, average and wet climatic conditions. Three methods were used to estimate the percent of land in close proximity to waterways for these conditions. The first method was based on hydrologic coverages for perennial streams and ditches (these reflect the potential for transport in average climatic years), the second was based on coverages for perennial streams and ditches plus intermittent streams. Intermittent streams flow primarily during wet years and are generally dry during dry years. The third method was based on hydrologic coverages for perennial streams only, this is based on the observation that ditches flow only sporadically during dry years.

Figs. 11ab show the percent of cropland and pastureland within 91.4 m of perennial streams and ditches for Minnesota watersheds and agroecoregions, normalized for watershed or agroecoregion area. Up to 12% of the cropland lies within 91 m of perennial streams and ditches. Watersheds with the highest percentage of cropland near streams and ditches

include the Lac Qui Parle, Grand Marais, South Fork of the Crow, Hawk Creek-Yellow Medicine, and Lower Minnesota watersheds (Fig. 11a). The corresponding agroecoregions include Swelling Clay Lake Sediments, Very Poorly Drained Lake Sediments, Dryer Clays and Silts, and Wetter Clays and Silts (Fig. 11b). Figs. 12ab show the percent of cropland and pastureland within 91.4 m of perennial streams and ditches and intermittent streams for watersheds and agroecoregions. When intermittent streams are included in the analysis, the percent of cropland within 91.4 m of waterways is greatly increased in comparison with the cropland near perennial streams and ditches. The percent of cropland within the 91 m of perennial and intermittent streams and ditches is as great as 50% when intermittent streams are included. Large increases in the percent of cropland in close proximity to surface waters occur in watersheds and agroecoregions of northwestern Minnesota, the Coteau of southwestern Minnesota, and southeastern Minnesota. Figs. 13ab show the percent of cropland and pastureland within 91.4 m of perennial streams only. The maximum percent of crop and pastureland within 91 m of perennial streams is about 5% for watersheds and about 12% for agroecoregions. In general, these percentages are much lower than the percentages for perennial streams and ditches as would be expected. The greatest concentration of cropland near perennial streams is in three areas, southeastern, southwestern, and central Minnesota (Fig. 13b).

Soil Test Phosphorus Levels on Agricultural Land

Soil test phosphorus (STP) is typically measured in Minnesota using the Bray or Olson extractants. For consistency, we show spatial patterns in Bray-P soil test levels. As Bray-P soil test levels increase, there can be an increase in the risk of phosphorus loss from agricultural land. Bray-P levels are affected by several factors, including natural sources of phosphorus in soil, as well as additions of phosphorus from fertilizer and manure.

Bray-P soil test levels are typically largest in watersheds or agroecoregions of central Minnesota (Figs. 14ab) due to naturally high soil P levels and applications of animal manure to cropland. As a general guideline, the University of Minnesota does not recommend application of phosphorus fertilizer for crop production if Bray-P soil test levels exceed 21 ppm. Only 21 out of 81 major watersheds in Minnesota have average Bray-P levels less than

21 ppm. Caution should be used in interpreting these data, because there can be considerable spatial variability in Bray-P levels within and across farms. Just because the average is above 21 ppm does not mean that no phosphorus fertilizer should be applied. As much as one-third of the area within a farm may have Bray-P levels less than 21 ppm, even if the average is above 21 ppm.

Fertilizer Phosphorus Application Rates for Agricultural Land

Addition of phosphorus fertilizer to cropland increases the risk of phosphorus transport to surface waters under certain conditions. Figs. 15ab show that rates of phosphorus fertilizer application vary considerably throughout Minnesota watersheds and agroecoregions. This is due to variations in crop rotation, variations in soil test phosphorus levels, and variations in the rates of manure application. Application rates are generally the highest in watersheds and agroecoregions of the Minnesota River Basin. Application rates are generally smallest in northeastern and north central Minnesota.

Manure Phosphorus Application Rates for Agricultural Land

Manure is applied to cropland as a by product of animal production practices. Manure is typically enriched in phosphorus relative to nitrogen. If applied at high rates using improper application methods, manure can increase the potential for losses of phosphorus to surface waters. Figs. 16ab show the variation in phosphorus application rates from animal manure across Minnesota watersheds. Application rates are greatest in central and southeastern Minnesota, where there are large concentrations of dairy and/or poultry operations. Watersheds with high rates of manure P application include the Sauk, Platte-Spunk, and North Fork of the Crow in central Minnesota, the La Crosse-Pine, Buffalo-Whitewater, Cannon, Zumbro, and Root watersheds in southeastern Minnesota, and the Blue Earth, Middle Minnesota, and Lower Minnesota watersheds in south central Minnesota (Fig. 16a). Application rates are lowest in the Red River of the North Basin and in northeastern Minnesota.

Phosphorus Risk Index Estimates for Agricultural Land

Average Hydrologic Runoff Volume, Average Rainfall Runoff Erosivity, Poor Crop Residue Cover Management Conditions

This scenario was based on long-term average stream flows, average rainfall erosivity, and no crop residue cover due to moldboard plow tillage methods. It is a worst case scenario for tillage methods, and is similar to the scenario developed in Birr and Mulla (2001), except that the effects of supporting conservation practices such as contour strip cropping, terracing, and filter strips are here considered. From a practical standpoint, most areas of Minnesota use tillage systems that leave more crop residue than assumed in this scenario, so the phosphorus risks are overestimated in this scenario. As a rough guideline to identify impaired surface waters, Birr and Mulla (2001) suggested that values of the phosphorus index should not exceed 32 in Minnesota watersheds, except in the Red River of the North Basin, where a critical level of 25 should not be exceeded. There are seventeen watersheds in south central Minnesota with a phosphorus index value greater than 32 (Fig. 17a), these include the Lower Minnesota, Winnebago, Upper Cedar, Hawk Creek-Yellow Medicine, Blue Earth, Lac Qui Parle, Cannon, Rush-Vermillion, Middle Minnesota, South Fork of the Crow, Cottonwood, and Watonwan watersheds. Note that watersheds in southeastern Minnesota that had a high rate of soil erosion (Zumbro and Root) have only intermediate values for the phosphorus index (27-30). This is because of other factors that are not conducive to high risk, such as a moderate density of cropland near waterways and moderate to low application rates of phosphorus fertilizer. Watersheds such as the Le Sueur, Redwood, Chippewa, Watonwan and South Fork of the Crow also have high phosphorus index scores (ranging from 30-31). It is well known that the Minnesota River basin generates the largest phosphorus losses of any major river basin in Minnesota. Thus, it is not surprising that nine of the twelve major watersheds in the Minnesota River basin have a phosphorus index value that exceeds 30. Watersheds in the northern half of Minnesota generally have phosphorus index values less than 21. Agroecoregions with phosphorus index values greater than 32 in this scenario are primarily located in the Minnesota River Basin, and include the Wetter Clays and Silts, Dryer Clays and Silts, Steeper Till, Wetter Blue Earth Till, and Dryer Blue Earth Till (Fig. 17b).

Average Hydrologic Runoff Volume, Average Rainfall Runoff Erosivity, Average Crop Residue Cover Management Conditions

This scenario is similar to the previous one, except that erosion and phosphorus index values are based on the average crop residue levels as reported in tillage transect surveys. Fig. 18a shows that thirteen watersheds have phosphorus index values that exceed 32, including the Lower Minnesota, Blue Earth, Shell-Rock, Cannon, Rush-Vermillion, Middle Minnesota, South Fork of the Crow, and Watonwan watersheds. These are primarily in the Minnesota River basin and Lower Mississippi River basin. Not as many watersheds have phosphorus index values exceeding 32 in this scenario as in the previous scenario, due to greater crop residue cover in this scenario. Agroecoregions with phosphorus index scores greater than 32 in this average crop residue scenario are located primarily in the Minnesota and portions of the Lower Mississippi River basins, including Steeper Till, Wetter Blue Earth Till, Wetter Clays and Silts, Dryer Clays and Silts, and the Steep Wetter Moraine (Fig. 18b).

Average Hydrologic Runoff Volume, Average Rainfall Runoff Erosivity, Best Crop Residue Cover Management Conditions

This scenario was the same as the previous scenario, except that we assumed that conservation tillage leaving 50% of the soil covered by crop residue was practiced on row cropland. From a practical standpoint, most areas of Minnesota use tillage systems that leave less crop residue than assumed in this scenario, so the phosphorus risks are underestimated in this scenario. In general, the increase in crop residue cover produces lower phosphorus index scores in this scenario in comparison with the previous scenario involving average residue cover. Phosphorus index values exceed a score of 32 with this scenario for the Lower Minnesota, Winnebago, Cannon, Rush-Vermillion, and La Crosse-Pine watersheds (Fig. 19a). Then next highest scores occur primarily in the Minnesota River basin and in southeastern Minnesota, including the Coon-Yellow, Buffalo-Whitewater, Shell-Rock, Root, Hawk Creek-Yellow Medicine, Zumbro, Blue Earth, and Lac Qui Parle watersheds. Most of the northern half of Minnesota shows low risks for phosphorus transport in this scenario. For agroecoregions (Fig. 19b), the phosphorus index scores exceed 32 primarily in the Steep Wetter Moraine agroecoregion. The Wetter Clays and Silts and Rolling Moraine

agroecoregions also have relatively high phosphorus index scores that are in the range of 30 and 31.

Dry Hydrologic Runoff Volume, Dry Rainfall Runoff Erosivity, Best Crop Residue Cover Management Conditions, Cropland Contributing Corridor Based on Perennial Streams and Ditches

In this scenario, the hydrologic runoff and rainfall runoff erosivity values were typical of dry years. Crop residue cover was based on widespread adoption of conservation tillage. One caveat is that the percent of cropland within 91.4 m of perennial streams and ditches may be unrealistic for this scenario. In dry years the cropland that contributes eroded sediment and runoff to surface waters may be considerably less in area than the cropland that contributes in average years. Thus, the phosphorus index values in this scenario may be overestimated. Phosphorus index values for this scenario are always smaller than those for the scenario based on an average climatic year. The maximum phosphorus index value for watersheds in the dry year scenario is about 29, whereas the maximum value for an average year is about 41. Figs. 20ab show the spatial patterns in phosphorus index values for Minnesota watersheds and agroecoregions. No watersheds exceed the critical phosphorus index value of 32 in this scenario, and none are in the next highest category ranging from 31 to 34 either. Only one watershed, the Lower Minnesota watershed has a phosphorus index score between 27 and 30. Only a handful of watersheds have phosphorus index scores ranging from 22-26, while a majority have scores below 21 (Fig. 20a). Agroecoregions with phosphorus index scores between 22 and 26 fall mainly in the Minnesota River Basin (Fig. 20b), but the vast majority of agroecoregions have scores less than 21.

Dry Hydrologic Runoff Volume, Dry Rainfall Runoff Erosivity, Best Crop Residue Cover Management Conditions, Cropland Contributing Corridor Based on Perennial Streams Only

This scenario is the same as the previous, except that the cropland contributing corridor is reduced in area by assuming that only croplands near perennial streams contribute to phosphorus losses in dry years. This is reasonable, since most ditches flow only sporadically during dry years. Figs. 21ab show the phosphorus index values for this scenario in Minnesota watersheds and agroecoregions. No watersheds or agroecoregions have phosphorus index values that exceed 25 or 27, respectively, in this scenario. Only two small

watersheds have phosphorus index scores greater than 21, the La Crosse-Pine and Rush-Vermillion watersheds of southeastern Minnesota. Only two small agroecoregions have phosphorus index scores greater than 21, the Steeper Stream Banks and Steeper Alluvium agroecoregions. This scenario is probably a more accurate representation of the risks of phosphorus transport to surface waters in dry years than the scenario that was based on a contributing corridor around both perennial streams and ditches.

Wet Hydrologic Runoff Volume, Wet Rainfall Runoff Erosivity, Best Crop Residue Cover Management Conditions, Cropland Contributing Corridor Based on Perennial Streams and Ditches

This scenario indicates the risk of phosphorus transport to surface waters from agricultural land during wet years. It is based on runoff volumes and rainfall runoff erosivity values for wet years, on widespread adoption of conservation tillage, and on a cropland contributing corridor 91.4 m wide around perennial streams and ditches. Comparing this scenario (Figs. 22ab) with that for an average climatic year (Figs. 19ab), it is evident that the risks of phosphorus loss have increased by a large amount (phosphorus index scores as high as 43) in a significant number of watersheds and agroecoregions. In the wet year scenario there are 24 watersheds with a phosphorus index score exceeding 32, whereas there were only 5 in the average year scenario. The watersheds exceeding the critical score in wet years are spread across south central and central Minnesota, as well as the Red River of the North basin (Fig. 22a). It is interesting to note that many of the watersheds in southeastern Minnesota are still below this critical threshold in wet years. This is primarily because of their relatively smaller percent area of cropland within 91.4 m of perennial streams and ditches. As will be shown in the next scenario, if the effects of intermittent streams are considered, the risk of phosphorus transport is considerably increased in southeastern Minnesota.

Wet Hydrologic Runoff Volume, Wet Rainfall Runoff Erosivity, Best Crop Residue Cover Management Conditions, Cropland Contributing Corridor Based on All Streams and Ditches

This scenario differs from the previous one in that the effects on phosphorus transport of cropland near intermittent streams, which flow during wet years, was considered. Figs. 23ab show that the risks of phosphorus transport to surface waters are considerably increased all across Minnesota in comparison to the scenario for wet years which does not consider

intermittent streams (Figs 22ab). Most of the southern two thirds of Minnesota watersheds and agroecoregions exceed the critical phosphorus index score of 32 in this scenario. Only the watersheds and agroecoregions in the far northeastern portion of Minnesota are relatively unaffected by including the effects of intermittent streams on phosphorus transport. This scenario is probably a more accurate representation of the risks of phosphorus transport to surface waters in wet years than the scenario based on a contributing corridor around only perennial streams and ditches.

Average Hydrologic Runoff Volume, Average Rainfall Runoff Erosivity, Average Crop Residue Cover Management Conditions, Reduced Phosphorus Fertilizer, Cropland Contributing Corridor Around Perennial Streams and Ditches

This scenario illustrates the reductions in risk of phosphorus transport to surface waters (based on a contributing corridor around perennial streams and ditches only) due to reductions in rate of application of phosphorus fertilizer. These reductions were only made in watersheds or agroecoregions that had both high soil test phosphorus levels and high rates of phosphorus fertilizer application. More specifically the reductions were made where STP was greater than 32 ppm and fertilizer P application rates exceeded 27 kg/ha or where STP was greater than 39 ppm regardless of fertilizer P application rates. In both these cases, the rate of phosphorus fertilizer application was reduced to 5 kg/ha. These reductions reduce the risk of phosphorus transport in about one third of watersheds and agroecoregions, namely those units where the soil is generally capable of supplying P for crop production with little or no phosphorus fertilizer application. The phosphorus index values for this scenario are shown in Figs. 24ab for Minnesota watersheds and agroecoregions. For watersheds (Fig. 24a), the phosphorus index values in the Middle Minnesota, Cottonwood, Lower Minnesota, Rush-Vermillion and Cannon watersheds are reduced significantly in this scenario in comparison to their phosphorus index values for the scenario shown in Fig. 18a (scores decrease from generally above 32 to generally below 27), thus bringing them below the critical threshold. Large reductions in phosphorus index values also occur in the Le Sueur watershed. Agroecoregions with a significant reduction in phosphorus index scores include the Anoka Sand Plains, Dryer Blue Earth Till, Rochester Plateau, and Wetter Blue Earth Till (Fig. 23b). A moderate reduction also occurred in the Undulating Plains agroecoregion.

Average Hydrologic Runoff Volume, Average Rainfall Runoff Erosivity, Average Crop Residue Cover Management Conditions, Variable Manure Application Method

This scenario involves consideration of the variations in manure application method arising from differences in animal species and manure storage facilities. The baseline scenario represented by Figs. 18ab assumes that manure is applied and incorporated immediately just before planting a crop. This is most likely an overly optimistic scenario for most manure applications in the state. More realistic are the phosphorus index values illustrated in Figs. 25ab for Minnesota watersheds and agroecoregions based on consideration of differences across regions in manure application methods. Phosphorus index scores increase in this scenario relative to the baseline scenario that assumes relatively good methods of manure application. The increases are particularly noteworthy in northern Minnesota, where beef cattle operations are relatively abundant relative to other types of animal production. Beef cattle operations tend to be small, and many lack adequate manure storage facilities. This results in frequent hauling and land application of manure, generally without incorporation, including application of manure during the winter to frozen or snow covered cropland. Agroecoregions where the risk of phosphorus loss to surface waters increases due to poor manure application methods include the Red Lake Loams, Forested Lake Sediments, Peatlands, Northern Till, and Northshore Moraine (Fig. 25b). Increases in phosphorus index values in these northern regions are still not large enough to produce scores that are greater than the criticial threshold of 32, in fact the scores are still far below the critical threshold value. Small increases in phosphorus index scores occur in the Blufflands and Rochester Plateau agroecoregions of southeastern Minnesota, where dairy operations predominate. These increases do bring the phosphorus risks close to the critical threshold value of 32. Small increases in phosphorus index scores also occur in portions of the Red River of the North basin, in areas with relatively abundant beef cattle. These small increases bring the phosphorus index scores close to the critical threshold value of 25 in that region. Phosphorus index scores are relatively unaffected in southern Minnesota in regions where hog production dominates, because hog producers tend to have adequate manure storage and inject their manure rather than spreading it on the soil surface where it is very susceptible to losses by erosion and runoff.

Estimating Phosphorus Losses from Edge of Cropped Fields to Surface Waters

Two different approaches were tested for converting phosphorus index values to edge of field phosphorus losses to surface waters. The first method attempted to estimate phosphorus losses from the edge of field based on monitoring data for phosphorus loads in 53 Minnesota streams and rivers. This method was unsuccessful, but is described below. The second method estimated phosphorus losses from the edge of cropland fields based on export coefficients which were derived from the phosphorus index values. This is the method used for final estimates of basin wide phosphorus loadings to surface waters from the edge of cropland fields. The detailed methodology is described below.

Unsuccessful Method for Estimating Phosphorus Losses Based on Monitoring Data

Barr Engineering summarized existing data for phosphorus loads measured by water quality monitoring in 53 ditches, streams and rivers throughout Minnesota. They separated the data according to flow conditions into phosphorus loads for dry, average and wet years. They also supplied estimates for phosphorus losses discharged to surface waters in the same watersheds from non-agricultural rural, streambank erosion, and point sources of phosphorus. No data were supplied for the phosphorus losses from individual septic treatment systems (ISTS), atmospheric deposition, or urban runoff in these watersheds.

The phosphorus loads supplied by Barr Engineering were adjusted by subtracting the losses from non-agricultural rural and point sources of phosphorus, and by subtracting half of the phosphorus losses from streambank erosion. Only half of the streambank erosion losses were subtracted because much of the sediment from streambank erosion is transported as bedload, which is not measured in most water quality monitoring studies. The remaining phosphorus loadings were then divided by the area of cropland within 91 m of streams and ditches to provide an estimate of the potential phosphorus losses from the edge of cropland fields.

The resulting adjusted phosphorus yields were not very consistent with expected results, and were not deemed meaningful. Many of the adjusted phosphorus yields were negative in dry years because the point source loadings were larger than the monitored phosphorus loadings in the watershed. This could be due to phosphorus uptake by algae or plants. In wet years the adjusted phosphorus yields exhibited a huge range, from nearly zero to several hundreds

of kg P/ha. This was most likely the result of several factors. The first factor is that the phosphorus monitoring load data were collected using a variety of methods, ranging from grab samples to automated water quality sampling. The second is that the monitored loads were collected over different lengths of time, ranging from a single season to multiple years. The third factor is that the adjusted phosphorus losses were not corrected to account for contributions of phosphorus from ISTS, atmospheric deposition, or urban runoff. This led to unrealistically high adjusted phosphorus loads during average and wet years. The fourth factor is that the phosphorus delivery ratio from each non-agricultural source should be varied by source and by flow regime when adjusting the monitored loads. For example, the delivery ratio for point sources would probably be a number between 0.8 and 1, but this would vary for dry and wet years. Similarly, the delivery ratio for streambank erosion (assumed to be 0.5) would vary with flow regime. One can conclude from this exercise that a considerable amount of additional research and monitoring effort is needed before this approach can provide accurate estimates of edge of cropland field phosphorus losses. As a result, this approach for estimating edge of field phosphorus losses from agricultural sources was abandoned.

Successful Method for Estimating Phosphorus Losses Based on Export Coefficient Approach

Birr et al. (2002) found that there is a strong linear correlation (r² =0.82) between a version of the modified phosphorus index values (from Birr and Mulla, 2001) and the pathway (or field scale) phosphorus index values. The modified phosphorus index values are typically thirteen times higher than the pathway phosphorus index values. Similarly, there is a strong linear correlation between the estimated pathway phosphorus index values and the observed phosphorus export (expressed in kg/ha/yr) at the field scale. The pathway phosphorus index values are typically five times higher than the total phosphorus export, at the field scale (Mulla, 2003). This suggests that we can estimate phosphorus losses from the edge of cropland fields by dividing the phosphorus index results by a factor of approximately 65. This gives an estimate of the losses of total phosphorus to surface waters from cropland and pastureland in units of kg/ha/yr, which represents the phosphorus export coefficient for agricultural land. Basin scale phosphorus losses from the edge of cropland fields to surface

waters can then be estimated by multiplying the phosphorus loss per ha (export coefficient) by the area of cropland within 91 m of surface water bodies for the entire basin.

Since the version of the modified phosphorus index used in this study is slightly different from the one used by Birr et al. (2002), we decided to develop a relationship between the phosphorus index and the phosphorus export coefficient using phosphorus loss data compiled from University of Minnesota research at four sites in or near Minnesota. The sites are located near Morris, Minnesota (Ginting et al., 1998), Lancaster, Wisconsin (Munyankusi, 1999), and two sites in Scott County, Minnesota (Hansen et al., 2001). These sites involved measurements of total phosphorus losses from the edge of agricultural fields (typically a corn and soybean rotation) ranging in area from 0.5 to 1.6 ha. Data from these sites were collected between 1996 and 2000. Two of these years experienced average climatic conditions, two were a little wetter than average, and one was a little drier than average. Fields were treated using a range of tillage and manure management methods. The tillage treatments included moldboard plowing, chisel plowing, ridge tillage, and no-tillage. Manure treatments included no manure, heavy rates of manure, and variations in timing of manure application. Total phosphorus losses from the fourteen individual treatments at these four sites ranged from 0.1 to 2.3 kg/ha/yr, with an average of 0.68 kg/ha/yr in total phosphorus loss from the edge of field.

The counties where these four research sites are located have a range of tillage practices, with the percent of farmland having at least 30% crop residue cover ranging from about 47% in Scott and Stevens counties to about 64% of cropland with at least 30% residue cover in Houston county, the nearest county in Minnesota to Lancaster, Wisconsin. The phosphorus index values for an average climatic year and the existing residue cover adoption rates indicated above are 24, 32, and 43 in the Chippewa, Root and Lower Minnesota watersheds, respectively. If we take the P Index values for each watershed and divide them by the average phosphorus losses for the study sites in that watershed, the resulting conversion factor (or divisor) is 78. If on the other hand, we take the average phosphorus index value for these three regions of 33 and divide this by the average phosphorus loss from the edge of field in these experiments at four sites (0.68 kg/ha), we obtain 48.5 as the conversion factor

between the phosphorus index and the phosphorus losses from the edge of field. This conversion factor is somewhat lower than both the conversion factor of 65 initially obtained using the relationship between the matrix and pathway versions of the phosphorus index, and the conversion factor of 78 obtained by averaging the divisors obtained for each watershed. A sensitivity analysis of the effects of varying the divisors (and hence the resulting export coefficients) on phosphorus loadings is included in the section of this report dealing with uncertainties.

Taking the divisor of 48.5 as the most realistic estimate for the conversion factor, and rounding this conversion factor up to 50 for significant digits, we then divided all the phosphorus index values for each watershed and agroecoregion in Minnesota by 50 to obtain phosphorus export coefficients. The resulting phosphorus export coefficients for an average year are 0.43 kg/ha/yr for major watersheds and 0.44 kg/ha/yr for agroecoregions. For wet years the export coefficients are 0.65 kg/ha/yr for watersheds and 0.68 kg/ha/yr for agroecoregions. For dry years the export coefficients are 0.21 kg/ha/yr for watersheds and 0.22 kg/ha/yr for agroecoregions. According to Heiskary and Wilson (1994), recommended phosphorus export coefficients for Minnesota agricultural lands are 0.2, 0.4, or 0.6 kg/ha/yr for low, mid, and high export risk conditions. Hence, our statewide average export coefficients for low, mid, and high export risk conditions (0.21, 0.43, and 0.65 kg/ha/yr) compare favorably with those recommended by Heiskary and Wilson (1994).

The procedure for estimating basin wide loads of phosphorus exported from the edge of agricultural fields is to multiply the export coefficients described above by the area of cropland within a distance of 100 m of surface water bodies (perennial and intermittent streams, ditches, wetlands, and lakes). On average, about 32% of all cropland lies within this distance of surface water bodies statewide, with a range of from 21 to 52% in major river basins (Table 2). This procedure accounts for the variability in risk of phosphorus loss from the edge of field due to climatic effects as well as the variability in soil, management and hydrologic factors. Variability in the phosphorus index values across the state are translated into variability in phosphorus losses from the edge of field using the export coefficient. On top of this, we added another 10% to the phosphorus loadings to account for contributions

from cropland farther than 100 m from surface waterbodies. This is consistent with results from research conducted by Sharpley et al. (1994), Daniel et al. (1994) and Gburek et al. (2000), who concluded (SERA-17, 2004) that only 10% of the phosphorus loadings to surface waters from overland transport on agricultural lands arise from outside the primary contributing corridor (100 m or farther from surface water bodies). This 10% does not include additional phosphorus contributions that arise from surface tile inlets or subsurface tile drains.

Phosphorus Loads to Minnesota Surface Waters from Agricultural Lands Major Watershed Based Analysis

Phosphorus export coefficients show considerable variation across major drainage basins and across climatic conditions (Table 3 and Fig. 26). Export coefficients (kg/ha) during average climatic conditions vary from 0.54 kg/ha for the Minnesota River basin, 0.4 kg/ha for the Red River basin, 0.39 kg/ha for the Upper Mississippi River basin, and 0.66 kg/ha for the Lower Mississippi River basin. During wet years, the export coefficients are increased to 0.81 kg/ha for the Minnesota River, to 0.54 kg/ha for the Red River, to 0.69 kg/ha for the Upper Mississippi River, and to 0.80 kg/ha for the Lower Mississippi River basin. The export coefficients decrease during dry years to 0.28, 0.13, 0.22, and 0.36 kg/ha for the Minnesota, Red, Upper Mississippi, and Lower Mississippi River basins, respectively.

Phosphorus export coefficients for river basins with relatively sparse agricultural cropland are smaller than the coefficients for river basins with intensive agricultural land use. For example, during average climatic years, the phosphorus export coefficients for the Lake Superior, Rainy, and St. Croix River basins are only 0.24, 0.23 and 0.38 kg/ha, respectively.

Phosphorus loads exported to surface waters from agricultural lands under dry, average and wet climatic conditions are shown in Table 4 and Fig. 27 (based on an analysis of phosphorus index values and export coefficients for major watersheds). Under average climatic conditions, the phosphorus loads exported to surface waters from the edge of agricultural fields are greatest for the Minnesota River basin (517,862 kg/yr), followed by the Red River (384,695 kg/yr), the Upper Mississippi (359,681 kg/yr) and the Lower Mississippi (232,581

kg/yr) River basins. All of the other basins have phosphorus export loads that are considerably smaller than the loads exported in these four basins.

As expected, phosphorus loads exported from agricultural lands to surface waters are considerably greater during wet years than average years. Under wet climatic conditions, the phosphorus loads exported in the Minnesota, Red, Upper Mississippi, and Lower Mississippi River basins are 759,749, 545,247, 652,266, and 282,780 kg/yr, respectively. In dry years the phosphorus loads exported are 262,851, 131,311, 200,865, and 116,810 kg/yr, respectively, for these same basins.

Phosphorus loads exported from agricultural lands are much smaller for the Rainy, Lake Superior and St. Croix River basins than the basins with larger proportions of agricultural cropland (the Minnesota, Red, Upper and Lower Mississippi River basins). For example, during years with average climatic conditions, phosphorus loads exported from agricultural land to surface waters are only 13,112, 20,713, 59,931 kg/yr for the Lake Superior, Rainy and St. Croix River basins, respectively. Similar comparisons can be made for wet and dry climatic years.

Agroecoregion Based Analysis

Phosphorus loads exported to surface waters from agricultural lands during dry, average and wet climatic conditions based on phosphorus index values and export coefficients calculated using agroecoregion boundaries are shown in Table 5 and Fig. 28. The relative rankings of major drainage basins are similar for the agroecoregion and watershed based analyses. With agroecoregion based export coefficients, the Minnesota River basin generates more phosphorus loadings to surface waters (516,768 kg/yr) than any other basin, a result that is consistent with the watershed based analysis. Significant phosphorus loadings for other basins include 361,759 kg/yr in the Red River basin, 332,313 kg/yr in the Upper Mississippi River basin, and 203,702 kg/yr in the Lower Mississippi River basin. In general, the magnitudes of phosphorus loadings are about 7% smaller for these basins in an average year than the magnitudes obtained using the watershed based analysis.

Four alternative agricultural management scenarios were investigated and compared to a baseline scenario involving an average climatic year and existing rates of adoption of conservation tillage and existing rates of phosphorus fertilizer applications. The first alternative management was a scenario in which moldboard plowing is used on all row cropland. This is a worst case scenario for erosion, and exemplifies phosphorus losses typical of an era that existed twenty or more years ago. This scenario allows us to evaluate the extent of progress in controlling phosphorus losses over the last twenty years due to improvements in tillage management. The second scenario involves reductions in the rate of phosphorus fertilizer applications in watersheds where soil test phosphorus levels are higher than 27 ppm. In this case, fertilizer P application rates were reduced on row cropland to reflect the fact that soil phosphorus levels are sufficient for crop production. The third scenario involves improvements in manure application methods. Manure application methods were improved in watersheds where manure is primarily applied to the soil surface without incorporation (weighting factor of 8 in P Index matrix). In these watersheds the method of manure application was improved so that manure was incorporated immediately after application (weighting factor of 2 in P Index matrix). The fourth scenario involves variation in the area of cropland within 91 m of surface waterbodies.

The results of the first three alternative scenarios are shown in Fig. 29. In the Minnesota River basin, compared to an era when moldboard plowing was widely practiced, current day phosphorus losses from agricultural cropland have been reduced by about 146,000 kg/yr (from about 664,000 to 518,000 kg/yr), for a 28% reduction. In the Upper Mississippi River basin, current phosphorus losses from agricultural land have been reduced by about 87,000 kg/yr, for a 24% reduction. Similar comparisons show a 7% reduction for the Red River basin. No significant reductions have occurred in the Lower Mississippi River basin.

The potential future impacts of improved phosphorus fertilizer management can be quite significant (Fig. 29). Reductions in phosphorus fertilizer usage could occur if University of Minnesota recommendations were followed more consistently. For instance, phosphorus fertilizer is spread on significant areas of land in the Minnesota River basin even if soil test

phosphorus levels exceed the threshold set by the University above which crops do not respond to additional fertilizer. This is because recommendations made by the fertilizer industry are often based on the concept of fertilizing at a rate equivalent to crop removal, if soil test phosphorus levels are above 21 ppm. In the Minnesota River basin, reductions in the rate of phosphorus fertilizer application could potentially reduce phosphorus losses to surface waters by about 81,000 kg/yr as compared to existing conditions, for a 16% reduction. Comparable levels of reduction could occur with improved phosphorus fertilizer management in the Red River, and the Upper and Lower Mississippi River basins.

The potential impact of improved manure application methods is illustrated in Fig. 29. In the Red River basin, phosphorus loads to surface waters could be reduced by about 75,000 kg/yr, for a 20% reduction. Reductions are much smaller in other basins with significant phosphorus loads from agricultural land. Improved manure application methods could potentially reduce phosphorus loads to surface waters by 12%, 7% and 7% in the Upper Mississippi, Lower Mississippi, and Minnesota River basins. In general, the effects on phosphorus loads of improvements in method of manure application are greatest for basins that have large numbers of beef cattle, and least for basins with large numbers of hogs.

The last scenario involves decreasing or increasing the area of cropland within 100 m of surface waterbodies. Decreases in area of cropland could correspond to land retirement programs such as those promoted in the Conservation Reserve and Conservation Reserve Enhancement Programs. Increases in cropland area would correspond to putting grass or forest riparian areas into production, alternatively this could be viewed as increasing the distance for cropland areas (now assumed to be 100 m) that contribute phosphorus to surface waters. The results from this scenario (Fig. 30) indicate that retiring land in close proximity to surface waters would decrease the phosphorus loadings as expected. Every one percent decrease in the area of cropland within 100 m of surface waters leads to a one percent decrease in phosphorus loadings. Alternatively, every one percent increase in the area of cropland near surface waters leads to a one percent increase in the phosphorus loadings.

There are many possible sources of uncertainty in the estimated phosphorus loadings. These can be divided into errors in input data, errors in converting phosphorus index values to phosphorus export coefficients, errors in estimating the proportion of cropland that contributes to phosphorus loadings, and errors due to a lack of consideration for impacts of surface and subsurface drainage, wind erosion or snowmelt runoff on phosphorus loadings. The primary sources of errors in input data include those due to spatial variations in farm management practices at scales smaller than watersheds or agroecoregions, errors in estimating slope length for erosion calculations, and errors due to out of date landuse information (all cropland estimates in the contributing corridor around surface water bodies are based on 1992 landuse data).

Errors in estimating phosphorus export coefficients also lead to uncertainties in phosphorus loadings. A sensitivity analysis was conducted to determine the impact of uncertainties in export coefficients on phosphorus loadings. We estimated phosphorus loadings under three scenarios for watershed based phosphorus index values, namely; phosphorus index divisor factors of 50 (recommended baseline value from this study), 70 and 30. For phosphorus index divisors greater than 50, the basin phosphorus loadings decreased on average by 1.4% for an increase of one in the divisor (e.g. a 1.4% decrease when the divisor is increased from 50 to 51). For phosphorus index divisors less than 50, the basin phosphorus loadings increased on average by 3.3% for an decrease of one in the divisor (e.g. a 3.3% increase when the divisor is decreased from 50 to 49).

Errors can arise from improperly estimating the area of cropland within 100 m of surface water bodies. This influence was described in the section above (Fig. 30). Also, we do not vary the area of cropland within 100 m of surface water bodies when computing basin scale phosphorus loadings for dry, average, and wet years. For each climatic scenario we are using the maximum possible area of cropland, thus overestimating the agricultural contributions during average and dry years. To illustrate the effects of this uncertainty, we estimated the percent of all cropland within 91 m of waterbodies for dry, average and wet years using different hydrologic coverages. For dry years, using hydrologic coverages for perennial

streams, there was only 1.14% of all cropland within 91 m of surface waters. Using perennial streams plus ditches in average years, 3.8% of all cropland was within 91 m of surface waters. In wet years, using perennial streams, ditches, and intermittent streams, 17.2% of all cropland was within 91 m of surface waters. These area percentages were used to account for the effects of climatic variability in estimating phosphorus index values. However, in calculating phosphorus loads from agricultural areas phosphorus export coefficients were multiplied by the area of cropland within 100 m of perennial streams, ditches, intermittent streams, lakes and wetlands (accounting on average for 32% of cropland area). In view of these results, phosphorus loadings from agricultural lands are overestimated for average and dry years.

Our method of estimation does not consider the influence that surface tile intakes farther than 100 m may have on phosphorus loadings. To include the effects of surface tile intakes we would need to know the number of tile intakes per unit area, the area of cropland contributing to tile intake flow, and the phosphorus export coefficients for surface tile intakes. These data are not available for Minnesota in enough detail to be confident about their representativeness. Since depressional areas around tile inlets generally trap 60-80% of the sediment and phosphorus flowing to the inlets, the phosphorus export coefficient for surface tile intakes is smaller than that for direct overland flow to surface waters (Ginting et al., 2000). Ginting et al. (2000) studied phosphorus loads carried by surface tile intakes in two small catchments located in the Watonwan watershed of the Minnesota River basin. They found that, over a three year period with slightly below precipitation amounts, phosphorus loads carried by surface tile intakes averaged 0.099 kg/ha annually, with measured concentrations of phosphorus in surface tile intakes as high as 4 mg/L. This loading (0.099 kg/ha) is significantly smaller than the amounts of phosphorus transported by surface runoff and erosion in the same region (0.68 kg/ha).

There were three surface tile intakes studied by Ginting et al. (2000), and the average phosphorus load transported by each tile intake annually was 2.82 kg/yr. Surveys of surface tile intake density in 32 small watersheds within the Minnesota River basin (MPCA, 1994) show that there is one surface tile intake for every 23 to 1210 acres in the watershed. The average is one surface tile intake for every 100 or so watershed acres (the acreage that

actually contributes to surface tile intake P loads is smaller than this, but few data exist to know what the contributing acreage actually is). If we assume that there is one surface tile intake for every 100 acres within the poorly drained soils of the Minnesota River basin, we estimate that there are roughly 33,333 surface tile intakes in the basin. At a phosphorus loading of 2.8 kg/yr for each tile intake, the total phosphorus loading from surface tile intakes to surface water bodies in the Minnesota River basin would be about 94,000 kg/yr. This is approximately 18% of the phosphorus loading from cropland within 91 m of surface waters in the Minnesota River basin during an average year (517,862 kg/yr).

Similarly, our method does not consider the influence of subsurface tile drainage on phosphorus export to surface waters. Randall et al. (2000) studied losses of phosphorus in subsurface drainage in a four year manure and fertilizer study on a Webster clay loam typical of the poorly drained soils in the Minnesota River basin. According to Randall et al. (2000), on average over half of the drainage flows carry non-detectable amounts of phosphorus. The remainder of drainage flows have a concentration of total phosphorus averaging about 0.03 mg/L (with maximum observed concentrations of about 0.12 mg/L), for an average annual loss of 0.027 kg P/ha. If this rate is applied to the area of cropland in the Minnesota River basin having tile drainage, it gives a phosphorus loading of about 30,000 kg/yr, which is quite small (6% of total) compared to the phosphorus loading from cropland within 91 m of surface waters during an average year (517,862 kg/yr). Subsurface drainage phosphorus loads from other basins would be much smaller, because tile drainage is of limited extent in basins other than the Minnesota River basin.

The phosphorus loadings from subsurface tile drains collected by Randall et al. (2000) are the only data published in peer reviewed journals from Minnesota studies. Other studies of phosphorus losses in Minnesota subsurface tile drainage include those conducted by Alexander and Magdalene (1998) from 1995 to 1997 at the Rollings East Tile (RET) site, and by the Minnesota Department of Agriculture from 1998 to 2001 at the Red Top farm, both of which are located in the Minnesota River basin. The study by Alexander and Magdalene (1998) does not estimate phosphorus loadings from subsurface tile drainage, instead, it reports only the concentrations of phosphorus measured. The concentrations of phosphorus measured in subsurface tile drainage by Alexander and Magdalene (1998) are very comparable in seven out

of ten storms they monitored to the concentrations measured by Randall et al. (2000) over a four year period. In two other storms monitored by Alexander and Magdalene (1998), the phosphorus concentrations ranged between 0.42 and 1.5 mg/L, much higher than those measured by Randall et al. (2000). At the Red Top farm study, based on 9 field years of water quality monitoring data for average climatic years, the annual average phosphorus loading from subsurface tile drains was 0.11 kg/ha. These larger field drainage systems were constructed of concrete tiles which differ from the smaller plot based plastic drain tiles studied by Randall et al. (2000). Based on this comparison, we conclude that more research is needed to accurately define the mean and range in phosphorus loading from subsurface drainage tiles in the Minnesota River basin.

Not enough research data are available to reliably estimate the phosphorus loadings from surface tile intakes or subsurface tile drains to surface waters in the Minnesota River basin during dry or wet climatic years. As a first approximation, we can scale the phosphorus loadings from tile drains so that they have the same relative ratio as the phosphorus index based loadings for the Minnesota River basin in dry, average and wet years (262,851; 517,862; and 759,749 kg/yr, respectively). This gives phosphorus loadings from subsurface tile drains of 15,227 kg/yr during dry years and 44,013 kg/yr during wet years. Using the same approach, phosphorus loadings from surface tile inlets during dry and wet years would be 47,711 and 137,906 kg/yr, respectively. As mentioned previously, this approach substantially overestimates the phosphorus loadings in dry years.

Finally, we do not explicitly account for the effects of wind erosion or snowmelt runoff on phosphorus loadings to surface waters. Wind erosion may be particularly important in the Red River basin. Snowmelt erosion is indirectly accounted for in the regional phosphorus index through the runoff factor, as well as in the method of manure application factor, so this error may not be large.

Recommendations

This study provides a broad overview of the impacts of agricultural lands on phosphorus loadings to surface waters. There are many detailed questions remaining that could be studied in further detail. Some of these are listed below:

- Comparison of watershed based phosphorus loadings with agroecoregion based phosphorus loadings at the scale of major watersheds
- Development of phosphorus delivery ratios for agricultural as well as non-agricultural sources of phosphorus as a function of area of contribution watershed, area of lake and wetland storage in the watershed, and landscape characteristics
- Investigation of the impacts that farm scale variability has on estimated phosphorus loadings within watersheds
- Further study of the distance from surface waters within which the majority of phosphorus losses from cropland to surface waters originate
- Further investigation of the variable source area concept as applied to phosphorus transport during dry, average and wet climatic years
- Further investigation of the contribution of surface tile intakes and subsurface drainage to phosphorus loads
- Study of the impact that wind erosion has on phosphorus loading to surface waters

Summary

The risk of phosphorus transport to surface waters depends on many factors. These include factors affecting soil erosion by water (conservation tillage, landscape steepness, climate), soil test phosphorus levels, rate of application of phosphorus from fertilizer or manure, and method of application of manure. Extensive databases for Minnesota watersheds and agroecoregions were developed to explore the variation in risks of phosphorus transport to surface waters in response to these factors. The results show that phosphorus losses are more sensitive to climatic variability than any other factor. The fraction of cropland near streams and ditches also has a large impact on phosphorus losses, during both wet and dry years.

Watersheds and agroecoregions in Minnesota exhibit a considerable amount of variation in the risks of phosphorus loss. In general, the watersheds and agroecoregions with the greatest potential for phosphorus loss are located in the Lower Mississippi and Minnesota River basins. This is because of a combination of high rates of erosion, high rates of phosphorus application from fertilizer or manure, and a high percentage of cropland near streams and ditches. From a basin wide perspective, however, the greatest phosphorus loads are exported from agricultural lands to surface waters in the Minnesota River basin, followed by the Red River, Upper Mississippi, and Lower Mississippi River basins. Basins with relatively small areas of agricultural land use, such as the Lake Superior, Rainy and St. Croix River basins have significantly smaller phosphorus loads exported from agricultural lands to surface waters than basins with significant amounts of agricultural land use.

Analysis shows that farmers have made considerable progress in controlling phosphorus losses from agricultural cropland over the last twenty years or more due to accelerated adoption of conservation tillage. Additional progress can be made through continued adoption of best management practices, including reductions in the amount of phosphorus fertilizer applied to cropland when soil phosphorus levels are sufficient for crop production. Improved methods of manure application are also important in northern drainage basins for reductions in phosphorus loads to surface waters. Land retirement programs can be effective at reducing phosphorus loads to surface waters if cropland near surface waters is targeted for retirement.

References

Alexander, E. C. and S. Magdalene. 1998. Final report on Minnesota River surface tile inlet research: Monitoring component. Dept. Geology and Geophysics, Univ. Minnesota. Minneapolis, MN.

Birr, A.S., and D.J. Mulla. 2001. Evaluation of the Phosphorus Index in Watersheds at the Regional Scale. J. of Environ. Qual. 30: 2018-2025.

Birr, A. S. and D. J. Mulla. 2002. Relationship between lake and ground water quality patterns and Minnesota agroecoregions. Hydrological Sci. Tech. 18(1-4):31-41.

Birr, A. S., P. Bierman, D. J. Mulla, N. C. Hansen, P. Bloom, and J. F. Moncrief. Comparison of matrix and pathway versions of the phosphorus site index. Annual Meeting Soil Science Society of America. Indianapolis, IN. Nov. 13, 2002.

Brown, J.R. 1998. Recommended Chemical Soil Test Procedures for the North Central Region. North Central Regional Research Publication No. 221 (Revised). Missouri Agric. Exp. Stn. SB 1001.

Daniel, T. C., A. N. Sharpley, D. R. Edwards, R. Wedepohl, and J. L. Lemunyon. 1994. Minimizing surface water eutrophication from agriculture by phosphorus management. J. Soil Water Conserv. Suppl. 49: 30-38.

Environmental Systems Research Institute, Inc (ESRI). 2000. ArcView Version 3.1. Redlands, CA.

Gburek, W. J., A. N. Sharpley, L. Heathwaite, and G. J. Fohan. 2000. Phosphorus management at the watershed scale: A modification of the phosphorus index. J. Environ. Qual. 29(1):130-144.

Ginting, D., J. F. Moncrief, S. C. Gupta, and S. D. Evans. 1998. Corn yield, runoff and sediment losses from manure and tillage systems. J. Environ. Qual. 27:1396-1402.

Ginting, D., J. F. Moncrief, and S. C. Gupta. 2000. Runoff, solids and contaminant losses into surface tile inlets draining lacustrine depressions. J. Environ. Qual. 29:551-560.

Hansen, N.C., A.Z.H. Ranaivoson, J.F. Moncrief, J.J. Xia, E. Dorsey, and S.C. Gupta. 2001. Acceleration of adoption of best management practices for reducing agricultural nonpoint source pollution using a paired watershed technique to support an educational effort. Metropolitan Council, Natural Resources Division, St. Paul, MN.

Hatch, L. K., A. P. Mallawatantri, D. Wheeler, A. Gleason, D. J. Mulla, J. A. Perry, K. W. Easter, P. Brezonik, R. Smith, and L. Gerlach. 2001. Land management at the major watershed - agroecoregion intersection. J. Soil Water Conservation 56:44-51.

Heiskary, S. A. and C. B. Wilson. 1994. Phosphorus export coefficients and the Reckhow-Simpson spreadsheet: Use and application in routine assessments of Minnesota Lakes. Minnesota Pollution Control Agency Nonpoint Source Section. St. Paul, MN

Heiskary, S.A., and C.B. Wilson. 2000. Minnesota Lake Water Quality Assessment Data: 2000 Minnesota Pollution Control Agency Environmental Outcomes Division Environmental Monitoring and Analysis Section. St. Paul, MN.

Lemunyon, J.L., and R.G. Gilbert. 1993. The concept and need for a phosphorus assessment tool. J. Prod. Agric. 6:483-486.

Lorenz, D.L., G.H. Carlson, and C.A. Sanocki. 1997. Techniques for estimating peak flow on small streams in Minnesota. Water-Resources Investigations Report 97-4249. USGS, Denver, CO.

Midwest Planning Service-Livestock Waste Subcommittee. 1985. Livestock waste facilities handbook. Midwest Planning Serv. Rep. MWPS-18. 2nd ed. Iowa State Univ., Ames.

Minnesota Department of Transportation. 1999. State of Minnesota base map. Office of Land Management Surveying and Mapping Section, St. Paul, MN.

Minnesota Department of Agriculture. 1997. Total fertilizer and nutrients by county. Agronomy and Plant Protection Division. St. Paul, MN.

Minnesota Pollution Control Agency. 1994. Minnesota River Assessment Project Report. Vol. IV. Land Use Assessment. MPCA, St. Paul, MN

Mulla, D.J. 2003. Unpublished.

Munyankusi, Emmanuel. 1999. Tillage and timing of manure application impacts on water quality in karst terrains. Thesis (Ph. D.)--University of Minnesota, St. Paul, MN.

National Agricultural Statistics Service. 1999. 1997 Census of Agriculture: Minnesota state and county data [Online]. Vol. 1, Geographic Area Series Part 23. Available at http://usda.mannlib.cornell.edureports/census/ac97amn.pdf (verified 16 May 2001).

Randall, G. W., T. K. Iragavarapu, and M. A. Schmitt. 2000. Nutrient losses in subsurface drainage water from dairy manure and urea applied for corn. J. Environ. Qual. 29: 1244-1252.

Renard, K. G. and J. R. Freimund. 1994. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 157(1-4): 287-306.

Schmitt, M.A. 1999. Manure management in Minnesota. Minn. Ext. Serv. FO-3553-C, Revised 1999. Univ. of Minn College of Agric., St. Paul.

SERA-17. 2004. Threshold Soil Phosphorus Levels: Important for Water Quality, Nutrient Management Planning, and Permitting. http://www.soil.ncsu.edu/sera17/issues.htm

Sharpley, A. N., S. C. Chapra, R. Wedepohl, J. T. Sims, T. C. Daniel, and K. R. Reddy. 1994. Managing agricultural phosphorus for protection of surface waters: Issues and options. J. Environ. Qual. 23: 437-451.

Soranno, P. A., S. L. Hubler, S. R. Carpenter and R. C. Lathrop. 1996. Phosphorus loads to surface waters: A simple model to account for spatial pattern of land use. Ecol. Appl. 6(3): 865-878.

Sharpley, A.N., T.C. Daniel, and D.R. Edwards. 1993. Phosphorus movement in the landscape. J. Prod. Agric. 6:492-500.

U.S. Department of Agriculture (USDA). 1975. Minnesota Field Office Technical Guide. Section III. Natural Resources Conserv. Serv., St. Paul, MN.

- U.S. Department of Agriculture (USDA). 1991. State soil geographic data base (STATSGO): Data users guide. Natural Resources Conserv. Serv. Miscellaneous Publication No. 1492, Natural Resources Conserv. Serv., Fort Worth, TX.
- U.S. Environmental Protection Agency (USEPA). 1994. 1:250,000 Scale quadrangles of landuse/landcover GIRAS spatial data in the conterminous United States [Online]. Available at http://www.epa.gov/ngispgm3/nsdi/projects/giras.htm (verified 16 May 2001).
- U.S. Geological Survey (USGS). 1999. National atlas of the United States: Streams and waterbodies [Online]. Available at http://www-atlas.usgs.gov/hydrom.html (verified 16 May 2001).

Wischmeier, W.H., and D.D. Smith. 1978. Predicting rainfall erosion losses. USDA-Sci and Educ. Admin. Agric. Handbook No. 537, Washington, DC.

Table 1 (from Birr and Mulla, 2001)

The modified version of the P Index representing conditions controlling P movement in Minnesota (adapted from Lemunyon and Gilbert, 1993)

	Phosphorus loss potential (value)					
Site characteristic (weight)	Very low (0)	Low (1)	Medium (2)	High (4)	Very high (8)	
Transport factors						
Soil erosion (1.5)†	0	1-5	6-14	15-21	> 21	
Runoff (0.5)‡	0-8	9-13	14-16	17-21	> 21	
Percentage of cropland and pastureland within 91.4 m of a watercourse (1.5)	0-1.2	1.3-3	3.1-4.2	4.3-6.2	> 6.2	
Source factors						
Soil test P (0.75)§	0-19	20-26	27-31	32-39	> 39	
Fertilizer P application rate (1.0) ¶	0-7	8-13	14-19	20-24	> 24	
Fertilizer P application method (0.5)	None applied	Placed with planter deeper than 5 cm	Incorporated immediately before crop	Incorporated >3 mo before crop or surface applied <3 mo before crop	Surface applied >3 mo before crop	
Organic P source application rate (0.5)¶	0-2	3-6	7-8	9-11	> 11	
Organic P source application method (1.0)	None applied	Placed with planter deeper than 5 cm	Incorporated immediately before crop	Incorporated >3 mo before crop or surface applied <3 mo before crop	Surface applied >3 mo before crop	

[†] Units for soil erosion are Mg/ha.

[‡] Units for runoff are cm.

[§] Soil test P is Bray-1 extractable P and units are mg P/kg.

[¶] Units for P application are kg P/ha

Table 2: Percent of Cropland Area in River Basins in the Primary Contributing Corridor for Phosphorus Loading to Surface Waters.

Basin	Cropland Area in the Primary Contributing Corridor* (%)
St. Croix River	42.8
Upper Mississippi	36.9
Lower Mississippi	23.9
Red River	29.5
Rainy River	40.8
Lake Superior	52.2
Minnesota River	23.5
Missouri River	25.9
Cedar River	20.9
Des Moines River	20.7

^{*}The primary contributing corridor includes cropland within 100 m of surface water bodies. Significant phosphorus loadings to surface waters can arise from surface tile inlets and subsurface tile drainage that are outside the primary contributing corridor.

Table 3: Phosphorus Export Coefficients (kg/ha) from Agricultural Cropland by Major Drainage Basin Based on a Watershed Analysis of Phosphorus Index Values.

Phosphorus Export Coefficients* from Agricultural Land (kg/ha) Basin Dry Year Average Year Wet Year St. Croix River 0.18 0.38 0.69 Upper Mississippi 0.22 0.39 0.70 Lower Mississippi 0.36 0.66 0.80 Red River 0.36 0.66 0.54 0.09 0.23 0.41 Rainy River Lake Superior 0.15 0.24 0.43 Minnesota River 0.28 0.54 0.81

0.25

0.26

0.27

0.44

0.63

0.44

0.79

0.79

0.78

Missouri River

Des Moines River

Cedar River

^{*}These export coefficients are an average of the export coefficients for each of the major watersheds within each river basin. These do not include contributions from surface tile inlets or subsurface tile drains.

Table 4: Phosphorus Loadings (kg/yr) to Minnesota Surface Waters from Agricultural Cropland by Major Drainage Basin Based on an Analysis of Phosphorus Index Values in Major Watersheds.

	Phosphorus Loads* E	Phosphorus Loads* Exported from Agricultural Land (kg/yr)			
Basin	Dry Year	Average Year	Wet Year		
St. Croix River	27857	59931	110046		
Upper Mississippi	200865	359681	652266		
Lower Mississippi	116810	232581	282780		
Red River	131311	384695	545247		
Rainy River	8988	20713	36072		
Lake Superior	7617	13112	22528		
Minnesota River	262851	517862	759749		
Missouri River	36055	58758	109222		
Cedar River	13722	33270	42444		
Des Moines River	24670	37743	73149		

^{*}These loads are computed by multiplying the phosphorus export coefficients for each major watershed by the area of cropland within the contributing corridor for the same major watershed, and then summing over all major watersheds with the river basin. An additional 11.1% load is then added to account for phosphorus contributions by overland flow from outside the contributing corridor, excluding the contributions from surface tile inlets and subsurface tile drains.

Table 5: Phosphorus Loadings (kg/yr) to Minnesota Surface Waters from Agricultural Cropland by Major Drainage Basin Based on an Analysis of Phosphorus Index Values in Agroecoregions.

	Phosphorus Loads* Exported from Agricultural Land (kg/yr)			
Basin	Dry Year	Average Year	Wet Year	
St. Croix River	49193	84486	148546	
Upper Mississippi	183184	332313	595252	
Lower Mississippi	98474	203702	270490	
Red River	130163	361759	561684	
Rainy River	16524	30050	56620	
Lake Superior	14145	24416	45569	
Minnesota River	259198	516768	750293	
Missouri River	30110	52024	102969	
Cedar River	14138	31890	45137	
Des Moines River	26575	51182	80991	

^{*}These loads are computed by multiplying the phosphorus export coefficients for each agroecoregion by the area of cropland within the contributing corridor for the same agroecoregion, and then summing over all agroecoregions with the river basin. An additional 11.1% load is then added to account for phosphorus contributions by overland flow from outside the contributing corridor, excluding the contributions from surface tile inlets and subsurface tile drains.

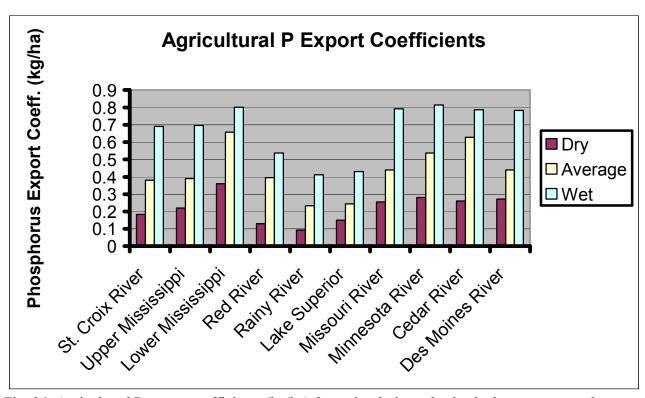


Fig. 26: Agricultural P export coefficients (kg/ha) for major drainage basins in dry, average, and wet climatic years. Export coefficients are derived from major watershed based phosphorus index values. These do not include contributions from surface tile inlets or subsurface tile drains.

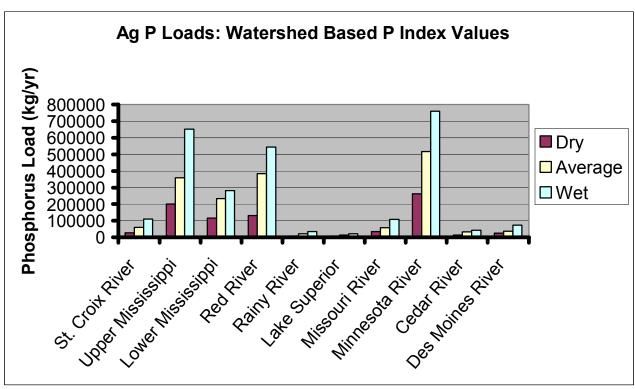


Figure 27: Agricultural phosphorus loads (kg/yr) exported to surface waters in major drainage basins of Minnesota under dry, average and wet climatic conditions. These results are based on phosphorus export coefficients derived from major watershed based phosphorus index values. These do not include contributions from surface tile inlets or subsurface tile drains.

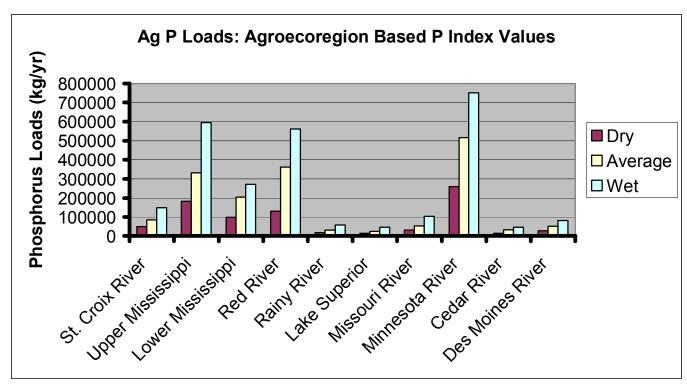


Figure 28 Agricultural phosphorus loads (kg/yr) exported to surface waters in major drainage basins of Minnesota under dry, average and wet climatic conditions. These results are based on phosphorus export coefficients derived from agroecoregion based phosphorus index values. These do not include contributions from surface tile inlets or subsurface tile drains.

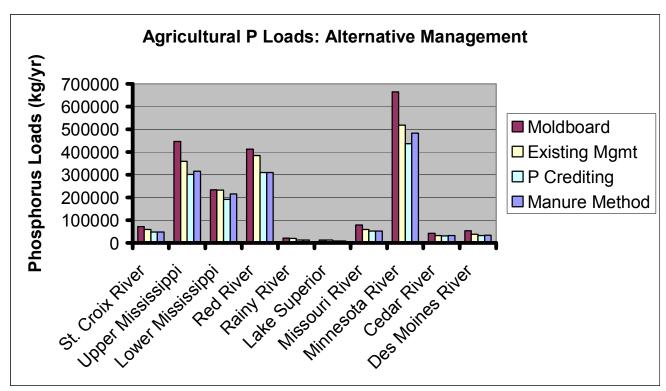


Figure 29: Agricultural phosphorus loads (kg/yr) exported to surface waters in major drainage basins of Minnesota under average climatic conditions for a worst case scenario involving moldboard plowing on all row cropland, a scenario involving improved phosphorus fertilizer management, a scenario for improved methods of manure application, and a baseline scenario for existing rates of phosphorus fertilizer and existing rates of adoption of conservation tillage. These results are based on phosphorus export coefficients derived from major watershed based phosphorus index values. These do not include contributions from surface tile inlets or subsurface tile drains.

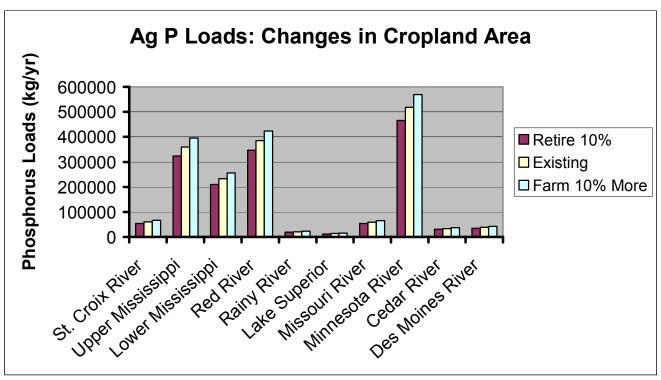


Figure 30: Agricultural phosphorus loads (kg/yr) exported to surface waters in major drainage basins of Minnesota under average climatic conditions for a scenario involving retirement of 10% of the row cropland within 100 m of waterbodies, a scenario involving a 10% increase in the area of row cropland within 100 m of waterbodies, and a baseline scenario for the area of cropland within 100 m of waterbodies under existing conditions. These results are based on phosphorus export coefficients derived from major watershed based phosphorus index values. These do not include contributions from surface tile inlets or subsurface tile drains.

List of Figures

- Fig. 1: Major river basins and 8-digit Hydrologic Unit Codes for watersheds in Minnesota.
- Fig. 2: Agroecoregions of Minnesota.
- Fig. 3: Water erosion estimates based on average rainfall runoff erosivity and no crop residue cover at planting for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 4: Water erosion estimates based on average rainfall runoff erosivity and average crop residue cover at planting for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 5: Water erosion estimates based on average rainfall runoff erosivity and 50% crop residue cover at planting for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 6: Water erosion estimates based on low rainfall runoff erosivity and 50% crop residue cover at planting for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 7: Water erosion estimates based on high rainfall runoff erosivity and 50% crop residue cover at planting for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 8: Streamflow runoff yield estimates based on historical average hydrologic runoff volume for watersheds of Minnesota.
- Fig. 9: Streamflow runoff yield estimates based on historical low hydrologic runoff volume for watersheds of Minnesota.
- Fig. 10: Streamflow runoff yield estimates based on historical high hydrologic runoff volume for watersheds of Minnesota.
- Fig. 11: Percent of crop and pasture land within 300 ft of perennial streams and ditches for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 12: Percent of crop and pasture land within 300 ft of ditches, perennial and intermittent streams for a) watersheds and b) agroecoregions of Minnesota.

- Fig. 13: Percent of crop and pasture land within 300 ft of perennial streams for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 14: Average soil test phosphorus levels from the Bray-P extractant for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 15: Average rates of fertilizer phosphorus application to fertilized crop land for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 16: Average rates of manure phosphorus application to cropland for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 17: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft contributing corridor around perennial streams and ditches, and poor crop residue cover management conditions for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 18: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft contributing corridor around perennial streams and ditches, and average crop residue cover management conditions for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 19: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft contributing corridor around perennial streams and ditches, and best crop residue cover management conditions for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 20: Phosphorus index values based on low hydrologic runoff volume, low rainfall runoff erosivity, a 300 ft contributing corridor around perennial streams and ditches, and best crop residue cover management conditions for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 21: Phosphorus index values based on low hydrologic runoff volume, low rainfall runoff erosivity, a 300 ft contributing corridor around perennial streams, and best crop residue cover management conditions for a) watersheds and b) agroecoregions of Minnesota.

- Fig. 22: Phosphorus index values based on high hydrologic runoff volume, high rainfall runoff erosivity, a 300 ft contributing corridor around perennial streams and ditches, and best crop residue cover management conditions for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 23: Phosphorus index values based on high hydrologic runoff volume, high rainfall runoff erosivity, a 300 ft contributing corridor around all perennial and intermittent streams and ditches, and best crop residue cover management conditions for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 24: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft contributing corridor around perennial streams and ditches, average crop residue cover management conditions, and reduced rates of fertilizer phosphorus applications for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 25: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft contributing corridor around perennial streams and ditches, average crop residue cover management conditions, and variable methods of manure phosphorus applications for a) watersheds and b) agroecoregions of Minnesota.
- Fig. 26: Agricultural P export coefficients (kg/ha) for major drainage basins in dry, average, and wet climatic years. Export coefficients are derived from major watershed based phosphorus index values. These do not include contributions from surface tile inlets or subsurface tile drains.
- Figure 27: Agricultural phosphorus loads (kg/yr) exported to surface waters in major drainage basins of Minnesota under dry, average and wet climatic conditions. These results are based on phosphorus export coefficients derived from major watershed based phosphorus index values. These do not include contributions from surface tile inlets or subsurface tile drains.
- Figure 28 Agricultural phosphorus loads (kg/yr) exported to surface waters in major drainage basins of Minnesota under dry, average and wet climatic conditions. These results are based on phosphorus export coefficients derived from agroecoregion based phosphorus index values. These do not include contributions from surface tile inlets or subsurface tile drains.

Figure 29: Agricultural phosphorus loads (kg/yr) exported to surface waters in major drainage basins of Minnesota under average climatic conditions for a worst case scenario involving moldboard plowing on all row cropland, a scenario involving improved phosphorus fertilizer management, a scenario for improved methods of manure application, and a baseline scenario for existing rates of phosphorus fertilizer and existing rates of adoption of conservation tillage. These results are based on phosphorus export coefficients derived from major watershed based phosphorus index values. These do not include contributions from surface tile inlets or subsurface tile drains.

Figure 30: Agricultural phosphorus loads (kg/yr) exported to surface waters in major drainage basins of Minnesota under average climatic conditions for a scenario involving retirement of 10% of the row cropland within 100 m of waterbodies, a scenario involving a 10% increase in the area of row cropland within 100 m of waterbodies, and a baseline scenario for the area of cropland within 100 m of waterbodies under existing conditions. These results are based on phosphorus export coefficients derived from major watershed based phosphorus index values. These do not include contributions from surface tile inlets or subsurface tile drains.

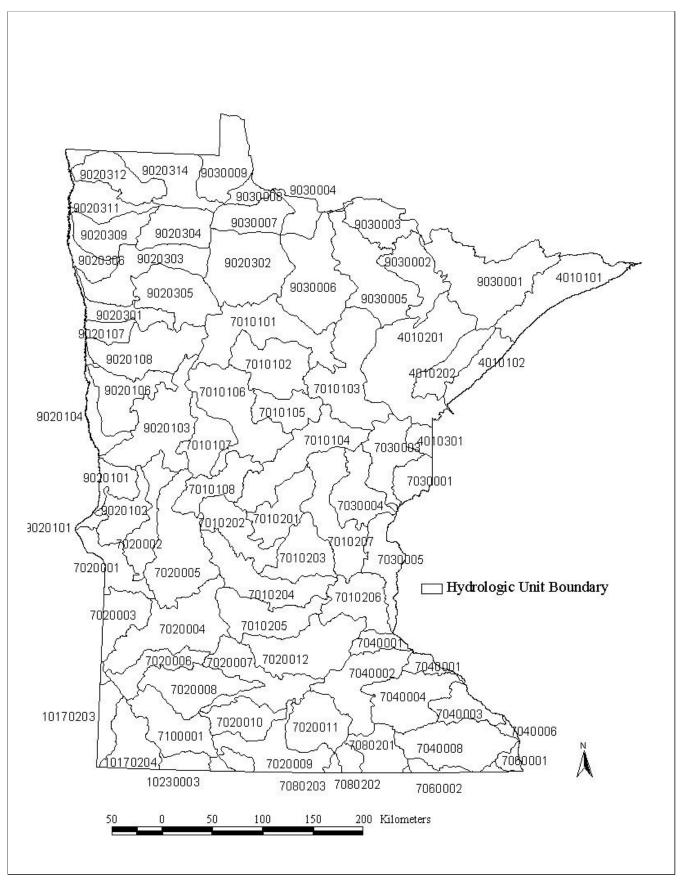


Fig. 1: Major river basins and 8-digit Hydrologic Unit Codes for watersheds in Minnesota.

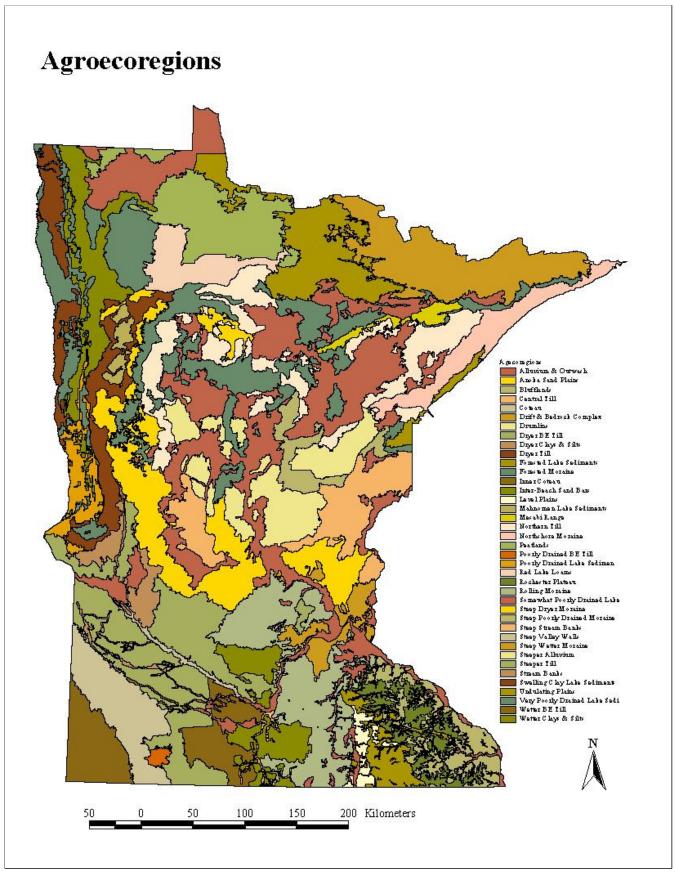


Fig. 2: Agroecoregions of Minnesota.

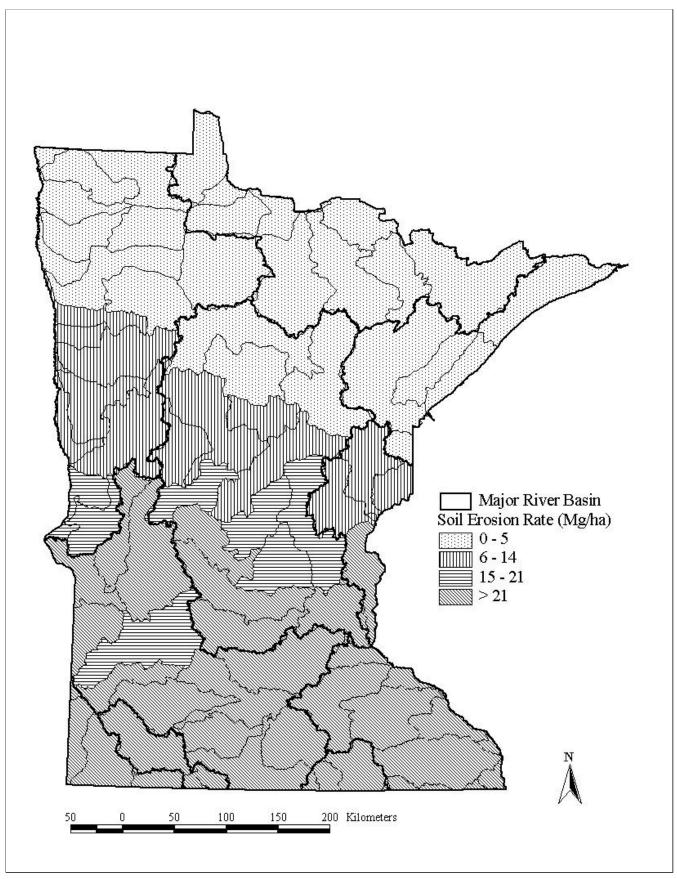


Fig. 3a: Water erosion estimates based on average rainfall runoff erosivity and no crop residue cover at planting for watersheds of Minnesota.

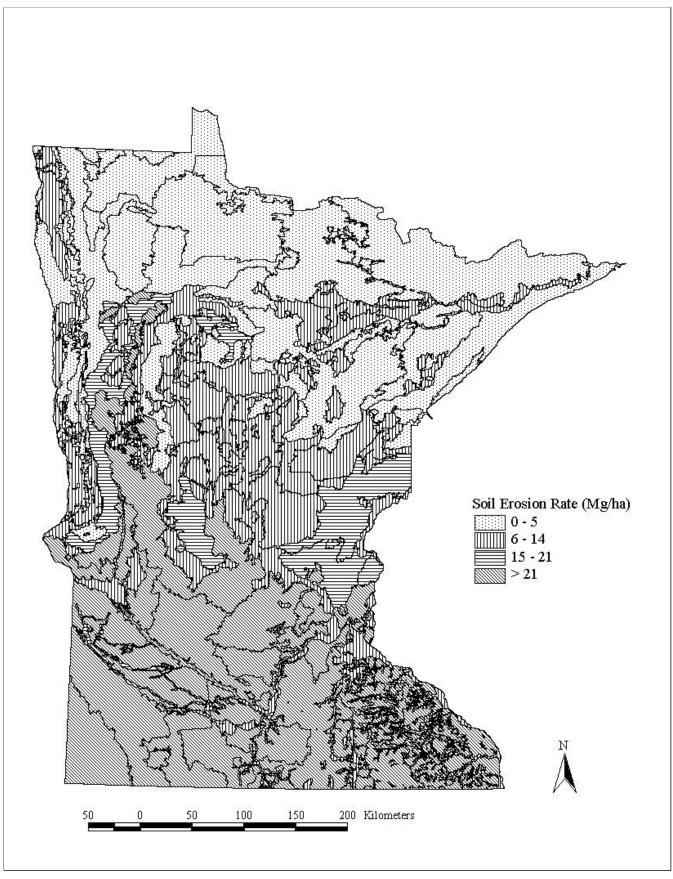


Fig. 3b: Water erosion estimates based on average rainfall runoff erosivity and no crop residue cover at planting for agroecoregions of Minnesota.

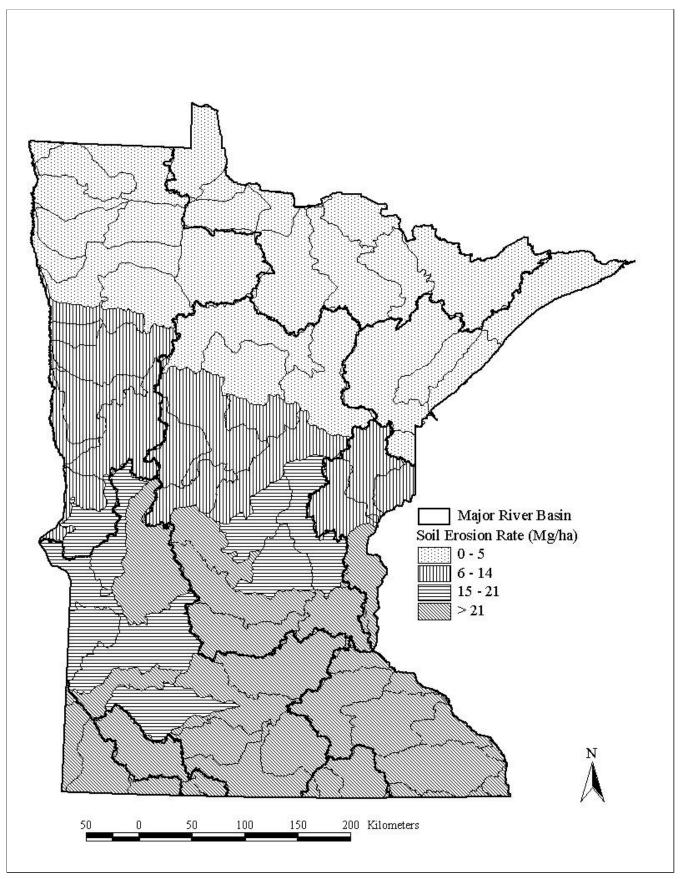


Fig. 4a: Water erosion estimates based on average rainfall runoff erosivity and average crop residue cover at planting for watersheds of Minnesota.

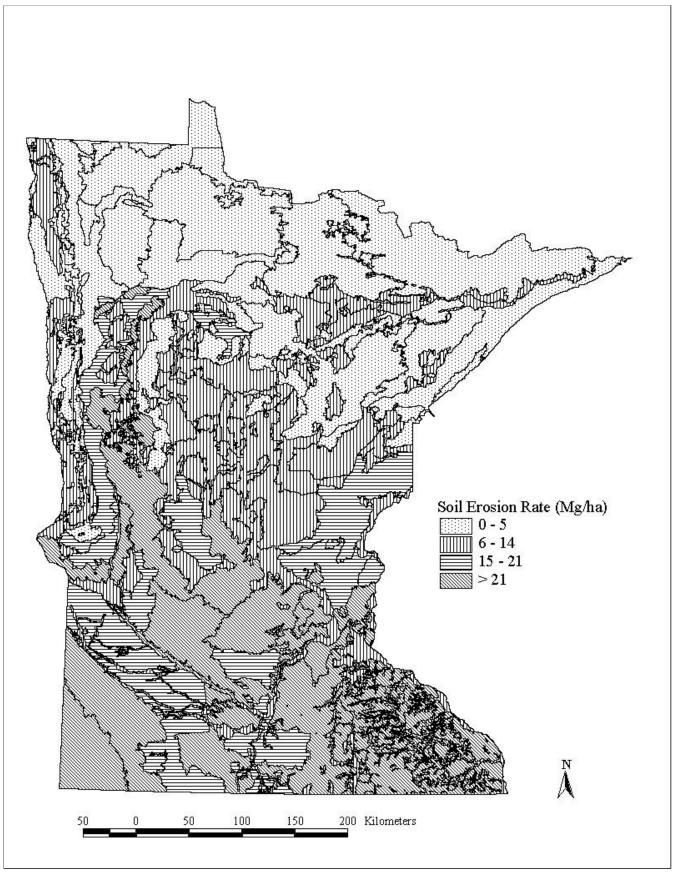


Fig. 4b: Water erosion estimates based on average rainfall runoff erosivity and average crop residue cover at planting for agroecoregions of Minnesota.

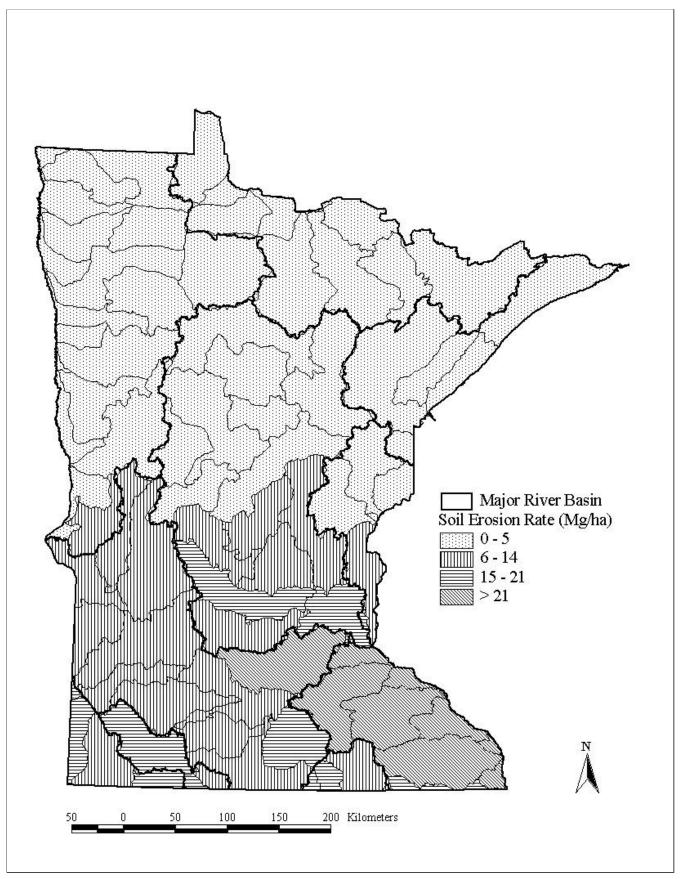


Fig. 5a: Water erosion estimates based on average rainfall runoff erosivity and 50% crop residue cover at planting for watersheds of Minnesota.

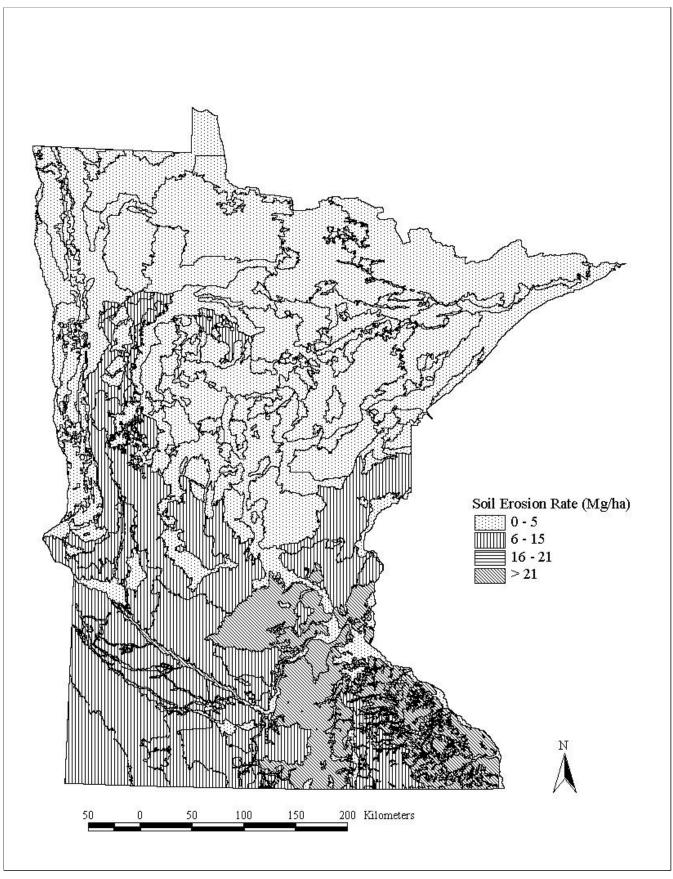


Fig. 5b: Water erosion estimates based on average rainfall runoff erosivity and 50% crop residue cover at planting for agroecoregions of Minnesota.

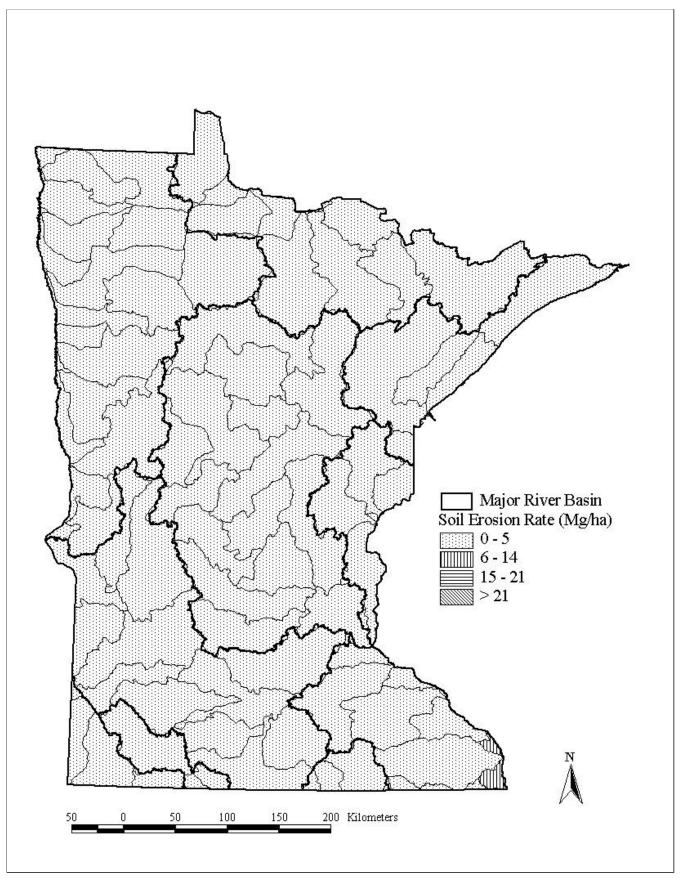


Fig. 6a: Water erosion estimates based on low rainfall runoff erosivity and 50% crop residue cover at planting for watersheds of Minnesota.

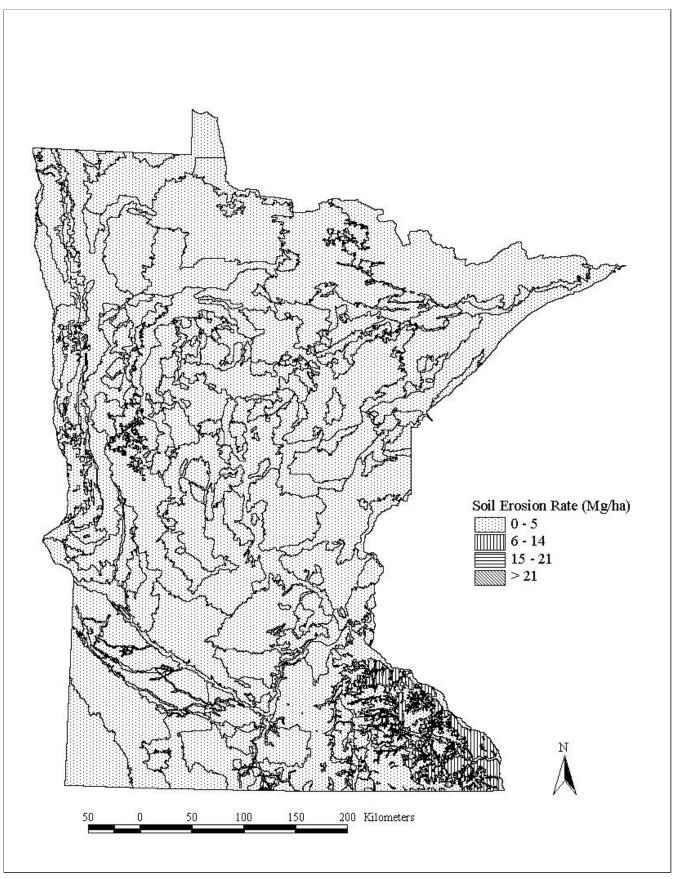


Fig. 6b: Water erosion estimates based on low rainfall runoff erosivity and 50% crop residue cover at planting for agroecoregions of Minnesota.

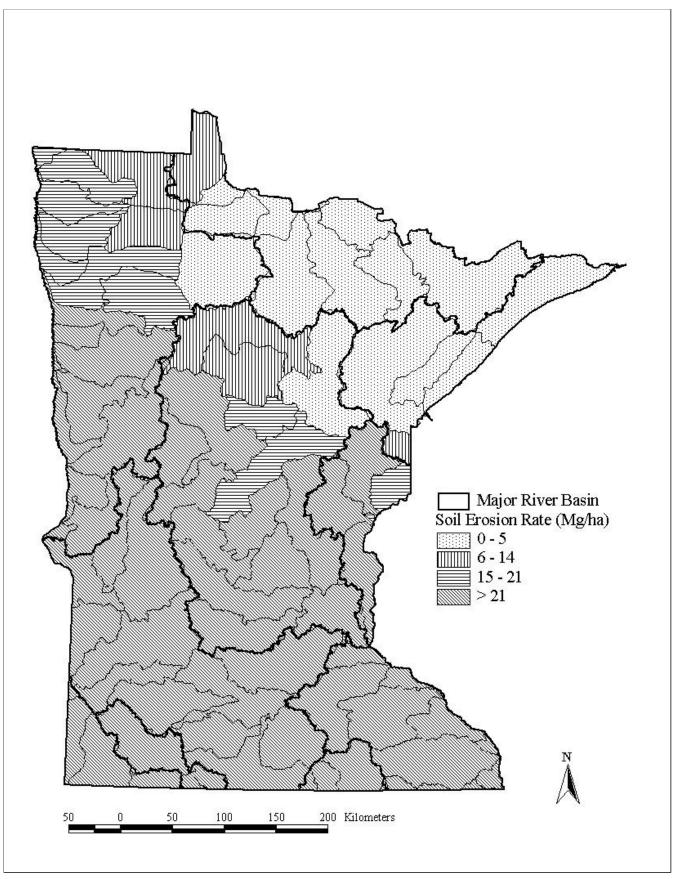


Fig. 7a: Water erosion estimates based on high rainfall runoff erosivity and 50% crop residue cover at planting for watersheds of Minnesota.

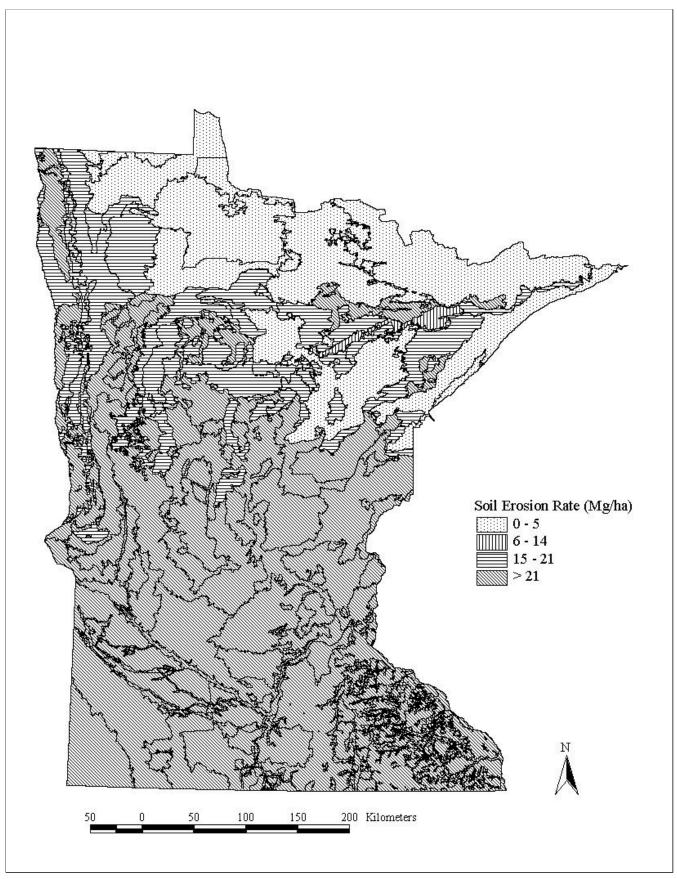


Fig. 7b: Water erosion estimates based on high rainfall runoff erosivity and 50% crop residue cover at planting for agroecoregions of Minnesota.

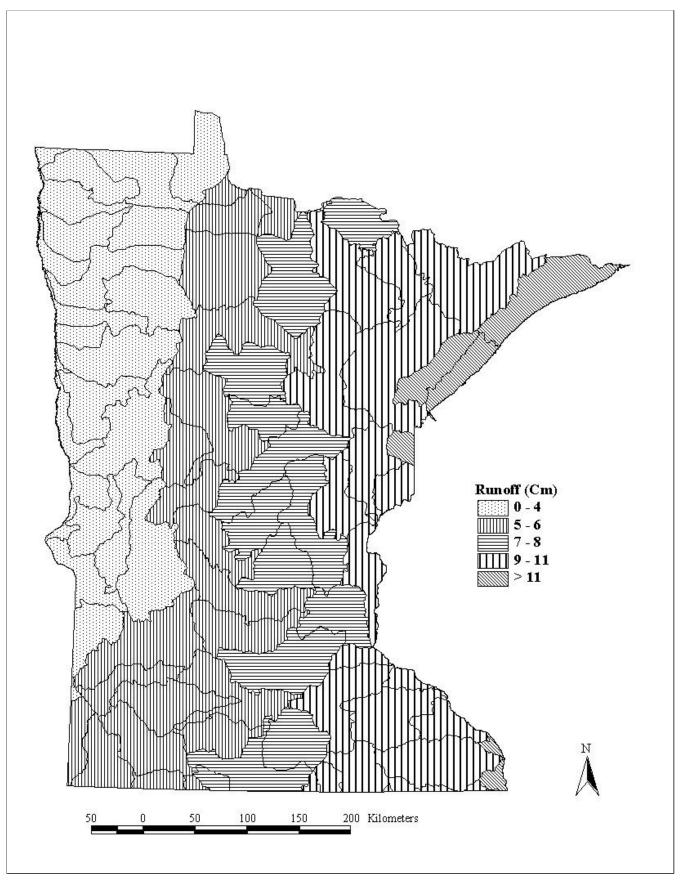


Fig. 8: Streamflow runoff yield estimates based on historical average hydrologic runoff volume for watersheds of Minnesota.

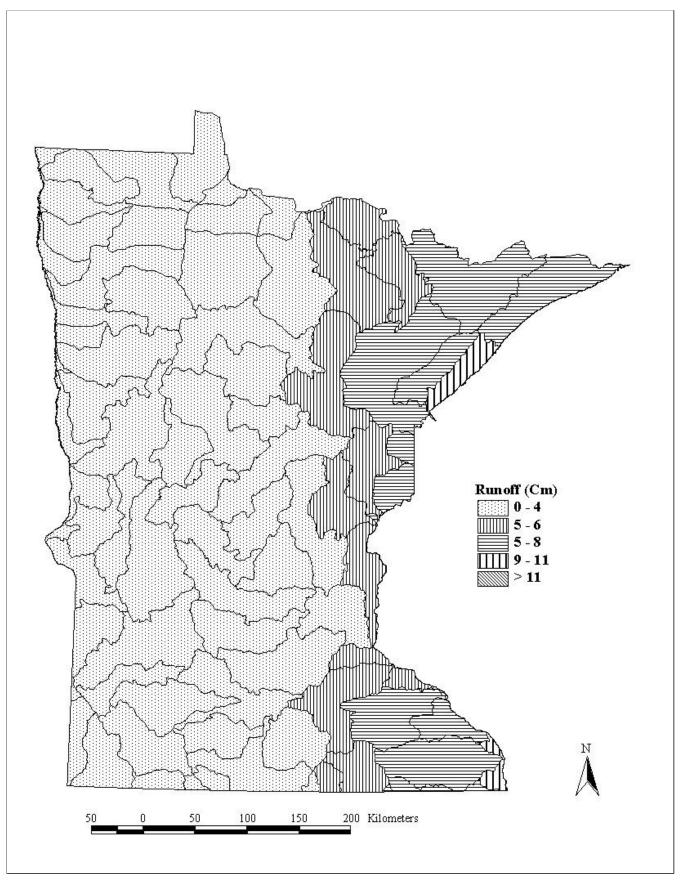


Fig. 9: Streamflow runoff yield estimates based on historical low hydrologic runoff volume for watersheds of Minnesota.

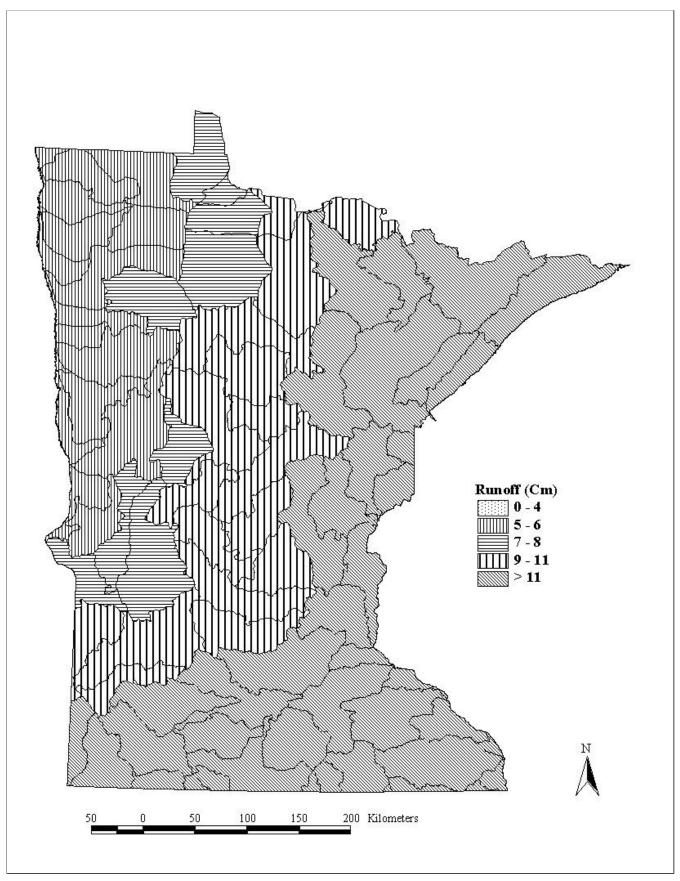


Fig. 10: Streamflow runoff yield estimates based on historical high hydrologic runoff volume for watersheds of Minnesota.

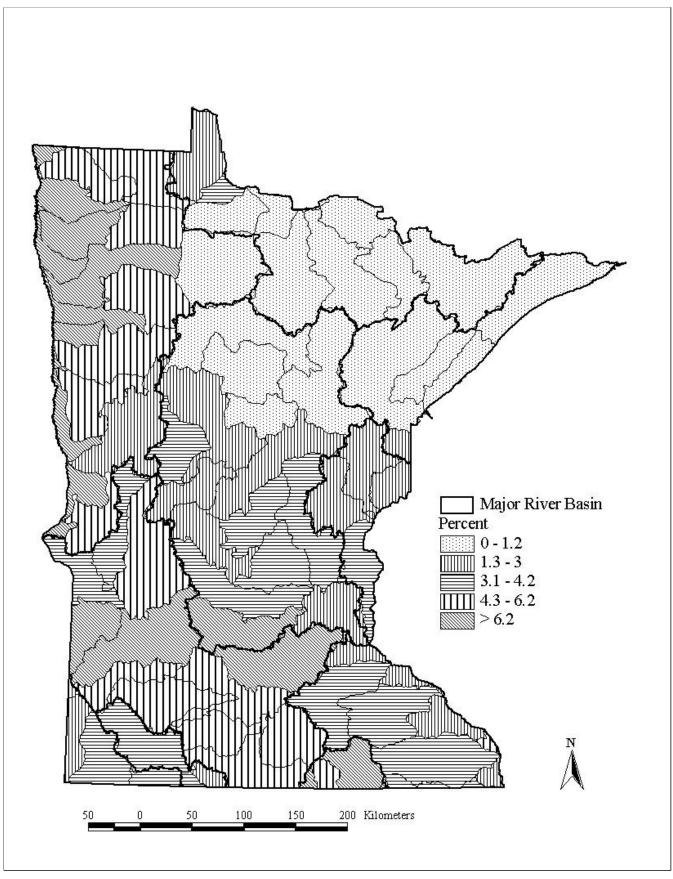


Fig. 11a: Percent of crop and pasture land within 300 ft of perennial streams and ditches for watersheds of Minnesota.

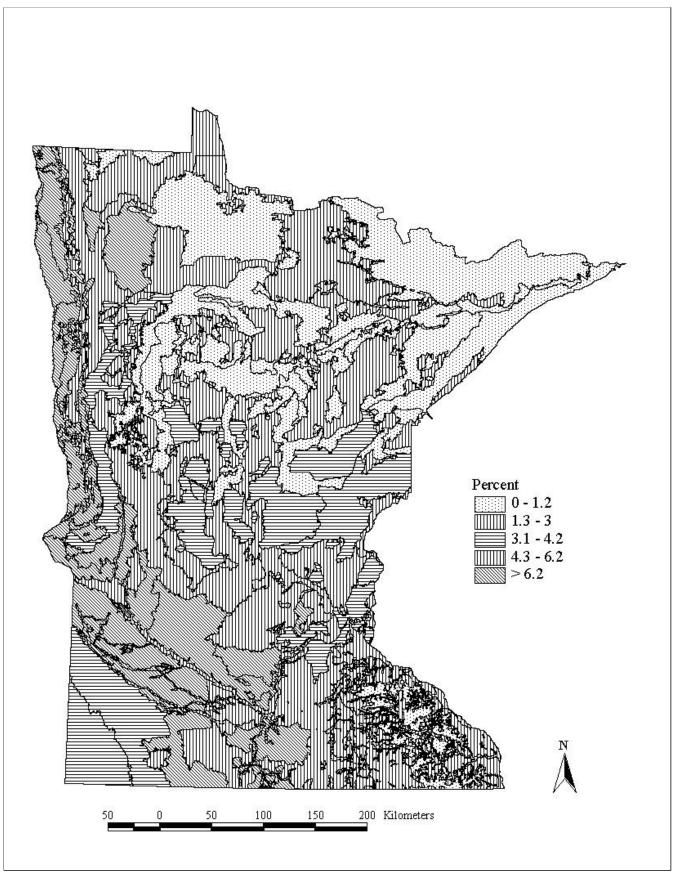


Fig. 11b: Percent of crop and pasture land within 300 ft of perennial streams and ditches for agroecoregions of Minnesota.

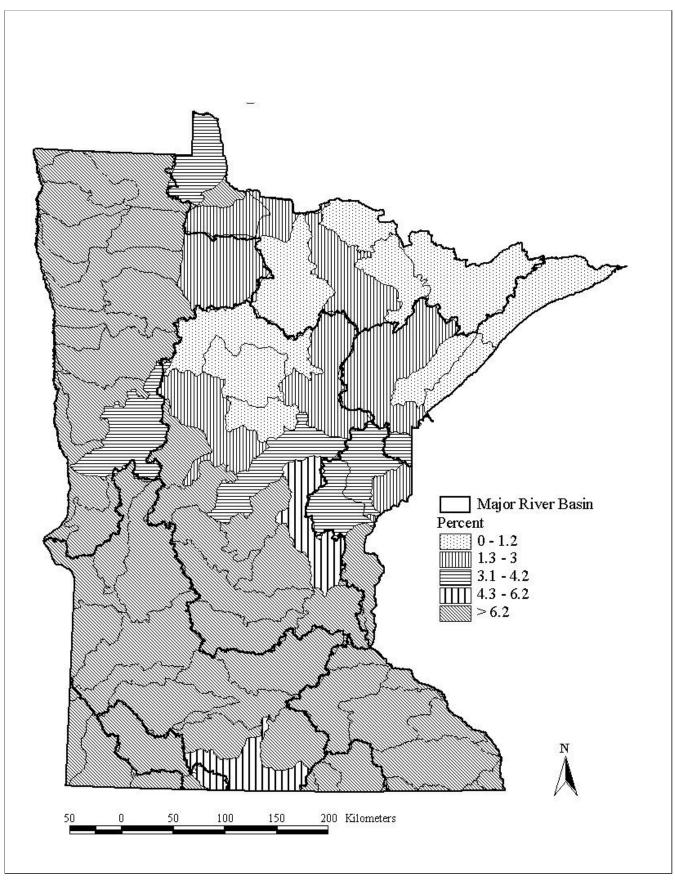


Fig. 12a: Percent of crop and pasture land within 300 ft of ditches, perennial and intermittent streams for watersheds of Minnesota.

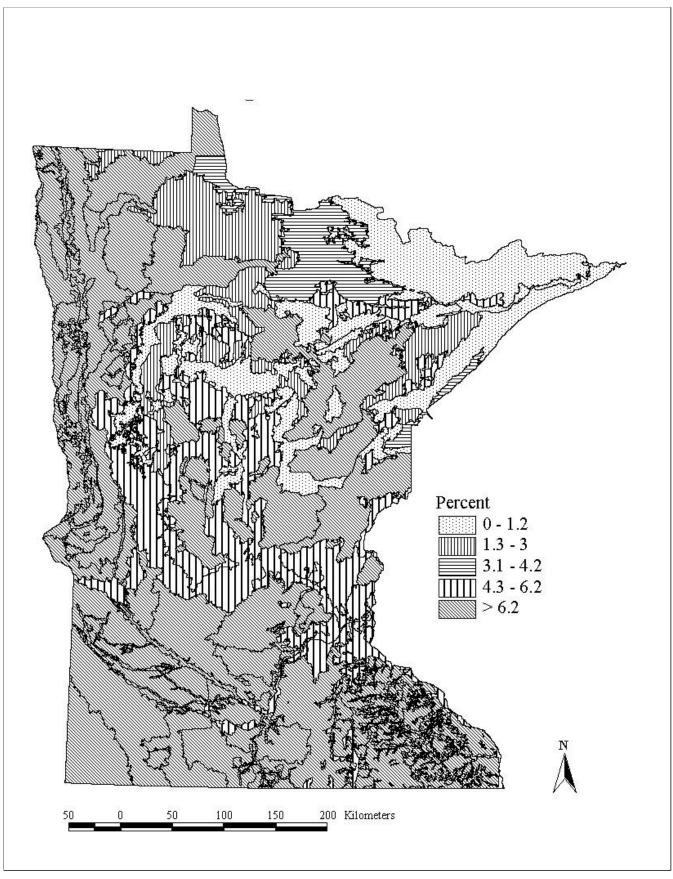


Fig. 12b: Percent of crop and pasture land within 300 ft of ditches, perennial and intermittent streams for agroecoregions of Minnesota.

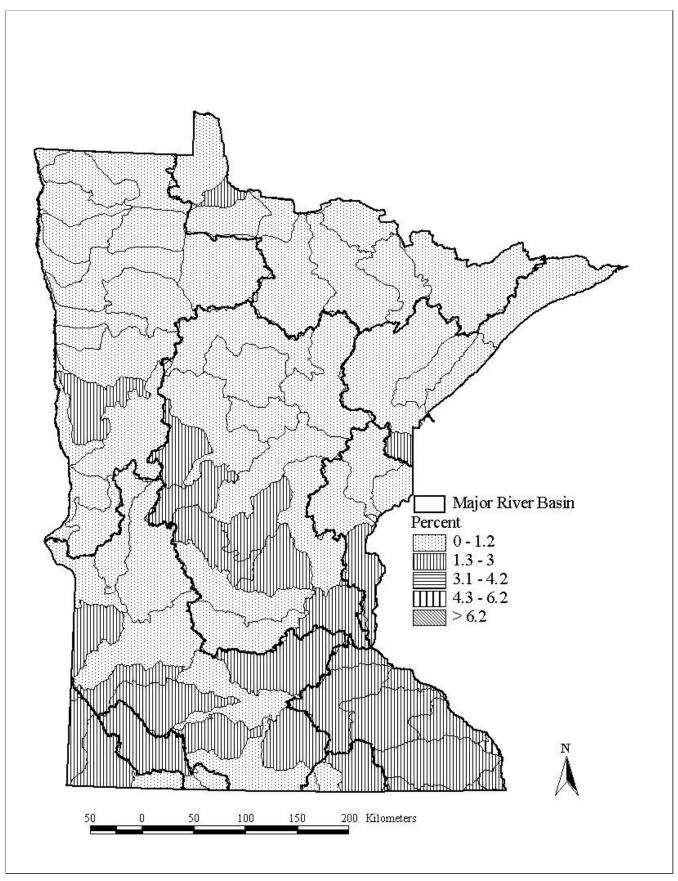


Fig. 13a: Percent of crop and pasture land within 300 ft of perennial streams for watersheds of Minnesota.

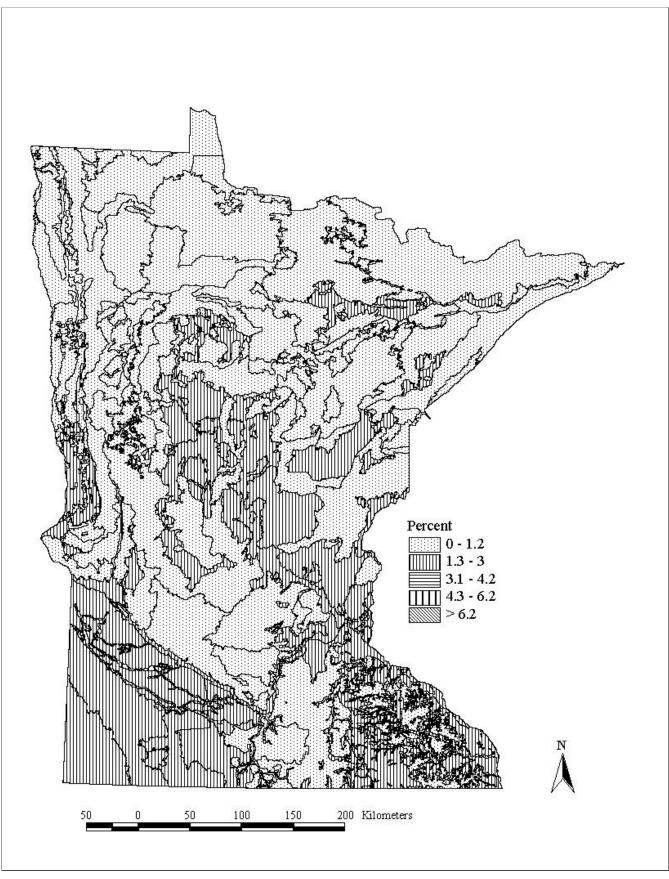


Fig. 13b: Percent of crop and pasture land within 300 ft of perennial streams for agroecoregions of Minnesota.

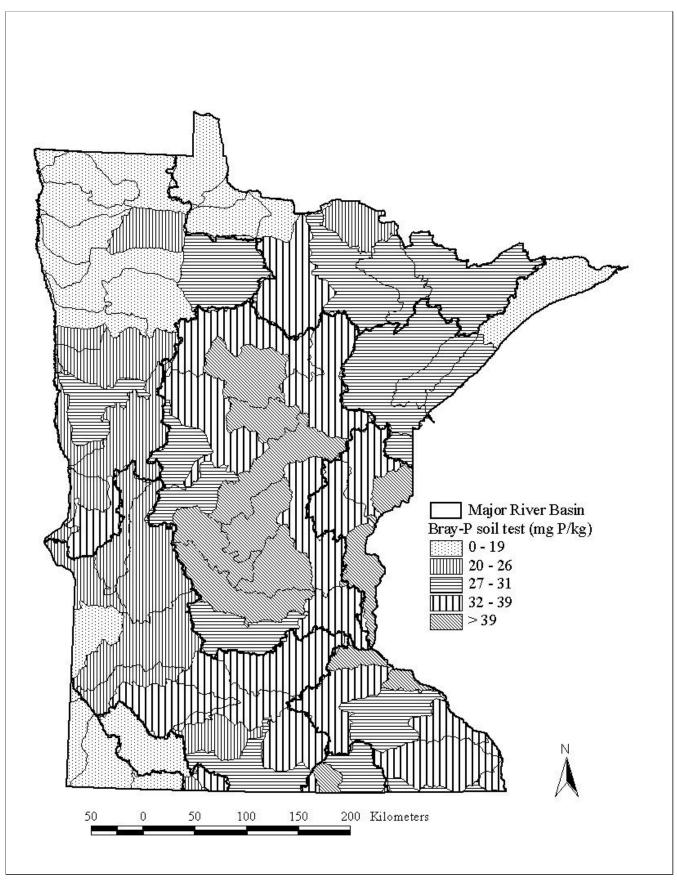


Fig. 14a: Average soil test phosphorus levels from the Bray-P extractant for watersheds of Minnesota.

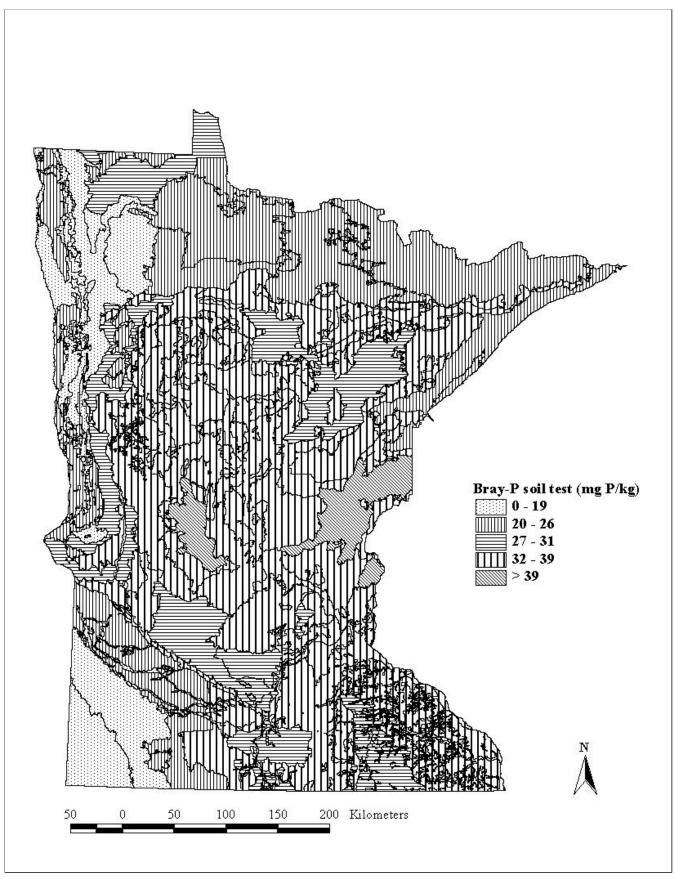


Fig. 14b: Average soil test phosphorus levels from the Bray-P extractant for agroecoregions of Minnesota.

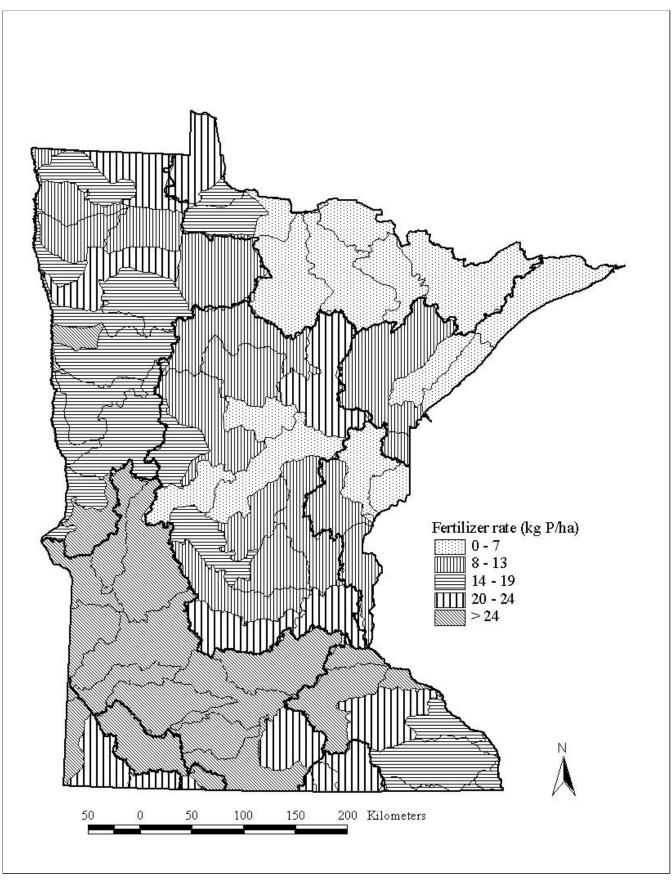


Fig. 15a: Average rates of fertilizer phosphorus application to fertilized crop land for watersheds of Minnesota.

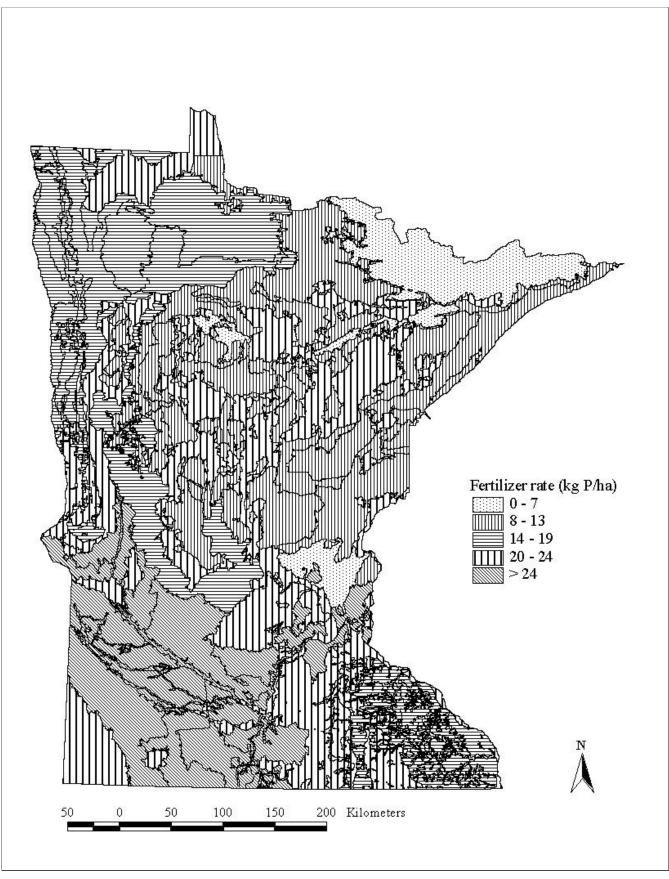


Fig. 15b: Average rates of fertilizer phosphorus application to fertilized crop land for agroecoregions of Minnesota.

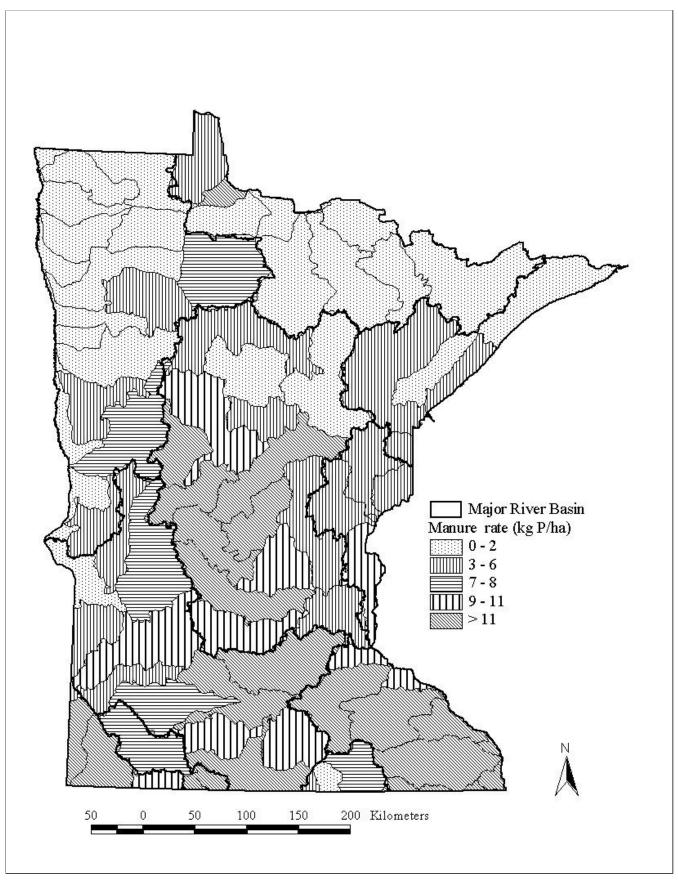


Fig. 16a: Average rates of manure phosphorus application to cropland for watersheds of Minnesota.

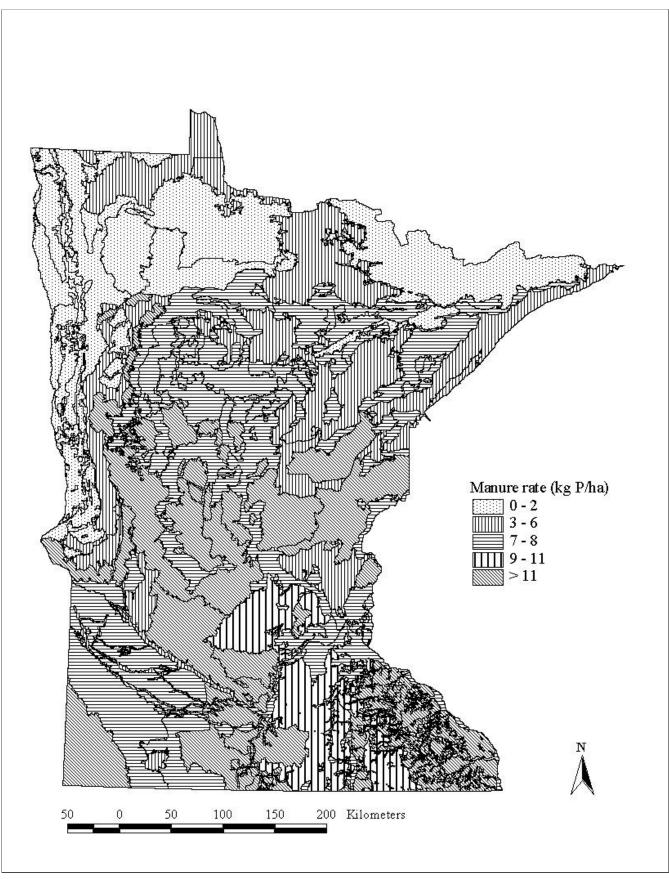


Fig. 16b: Average rates of manure phosphorus application to cropland for agroecoregions of Minnesota.

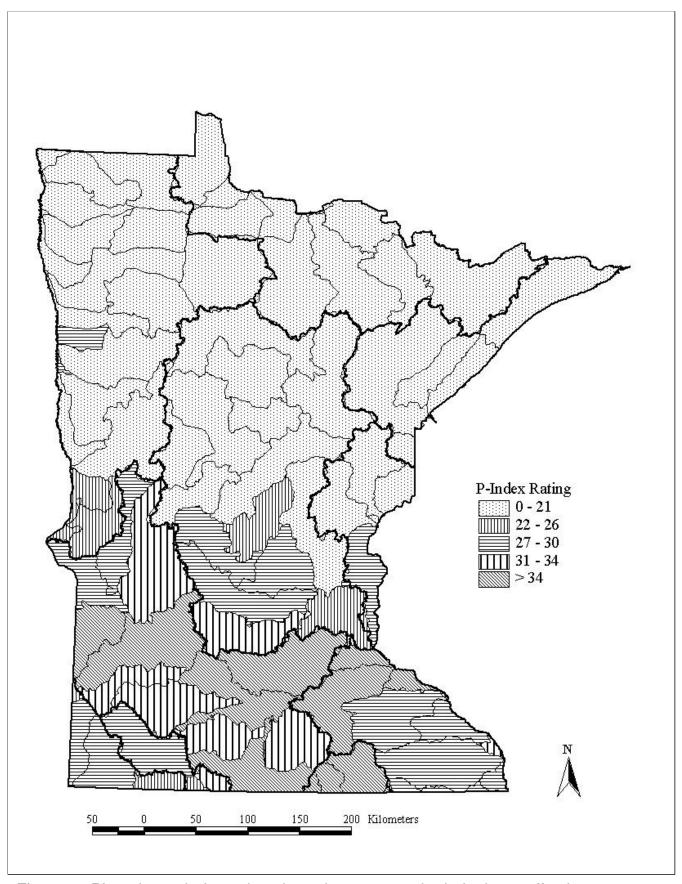


Fig. 17a: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and poor crop residue cover management conditions for watersheds of Minnesota.

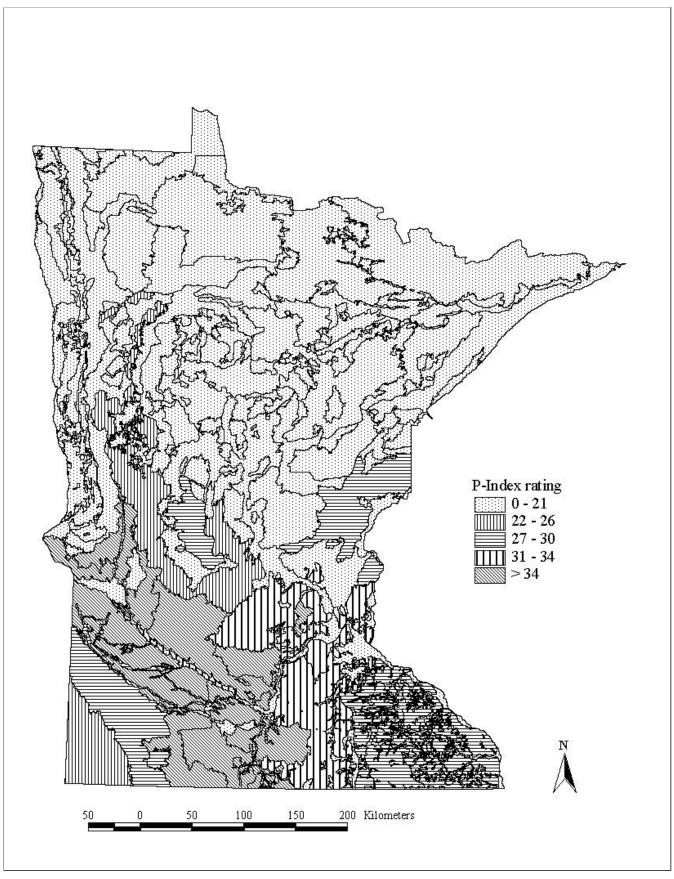


Fig. 17b: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and poor crop residue cover management conditions for agroecoregions of Minnesota.

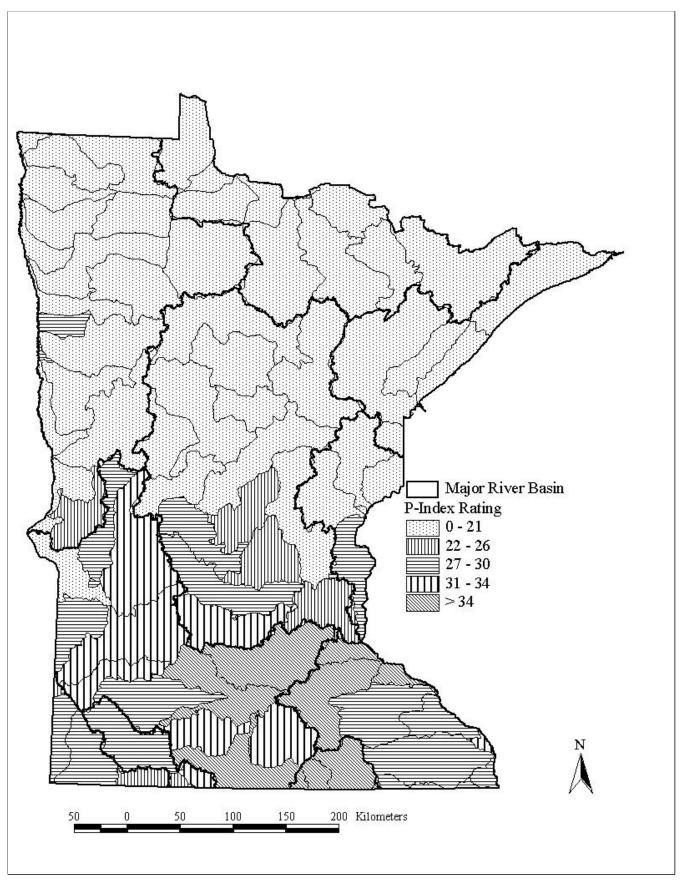


Fig. 18a: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and average crop residue cover management conditions for watersheds of Minnesota.

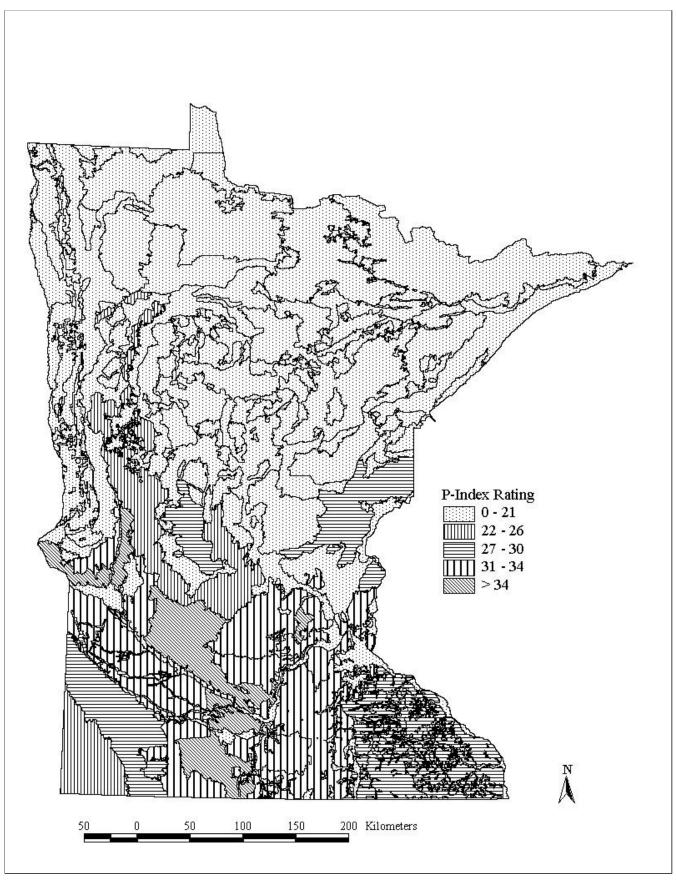


Fig. 18b: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and average crop residue cover management conditions for agroecoregions of Minnesota.

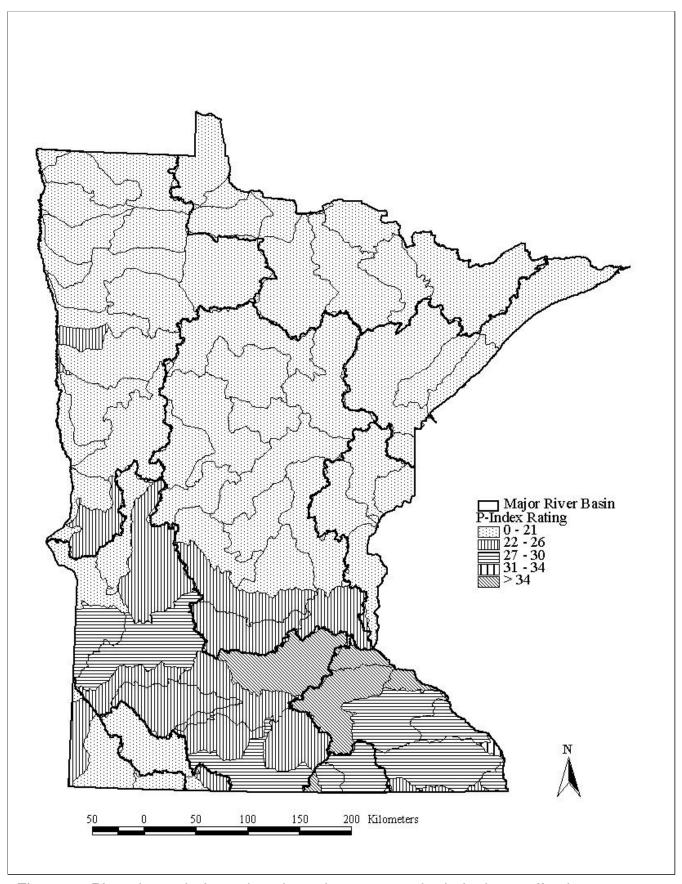


Fig. 19a: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and best crop residue cover management conditions for watersheds of Minnesota.

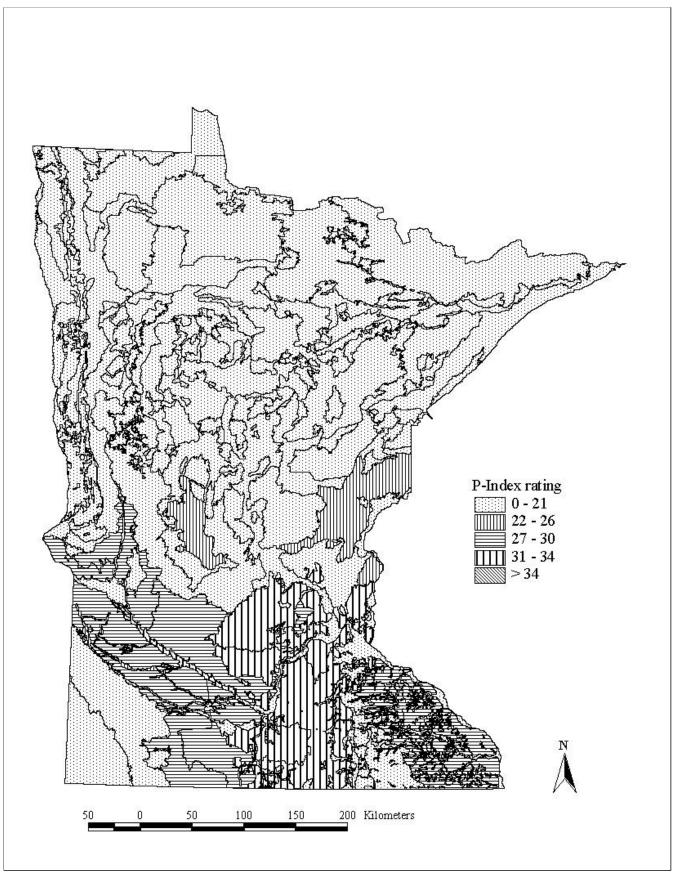


Fig. 19b: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and best crop residue cover management conditions for agroecoregions of Minnesota.

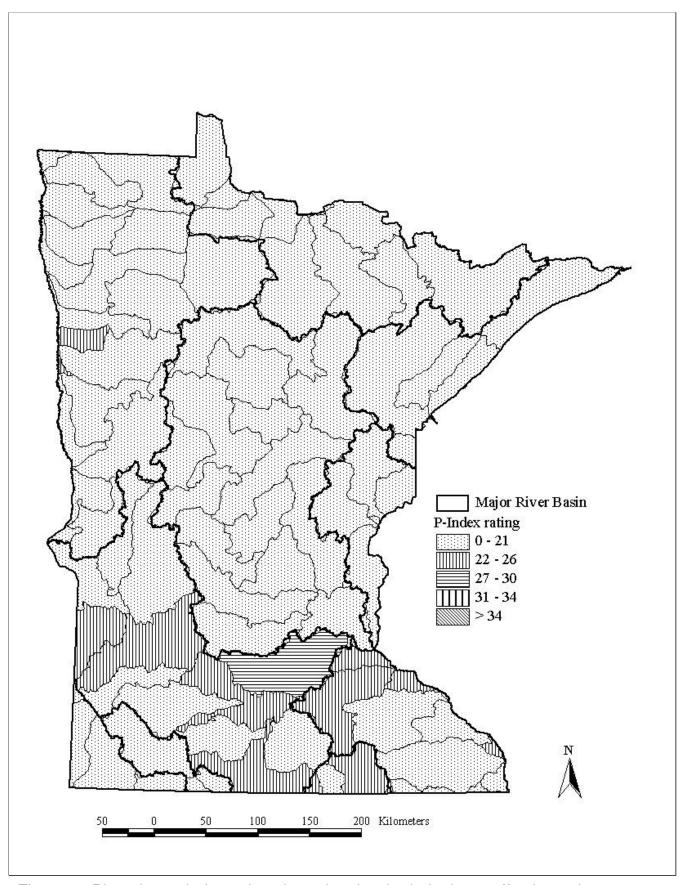


Fig. 20a: Phosphorus index values based on low hydrologic runoff volume, low rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and best crop residue cover management conditions for watersheds of Minnesota.

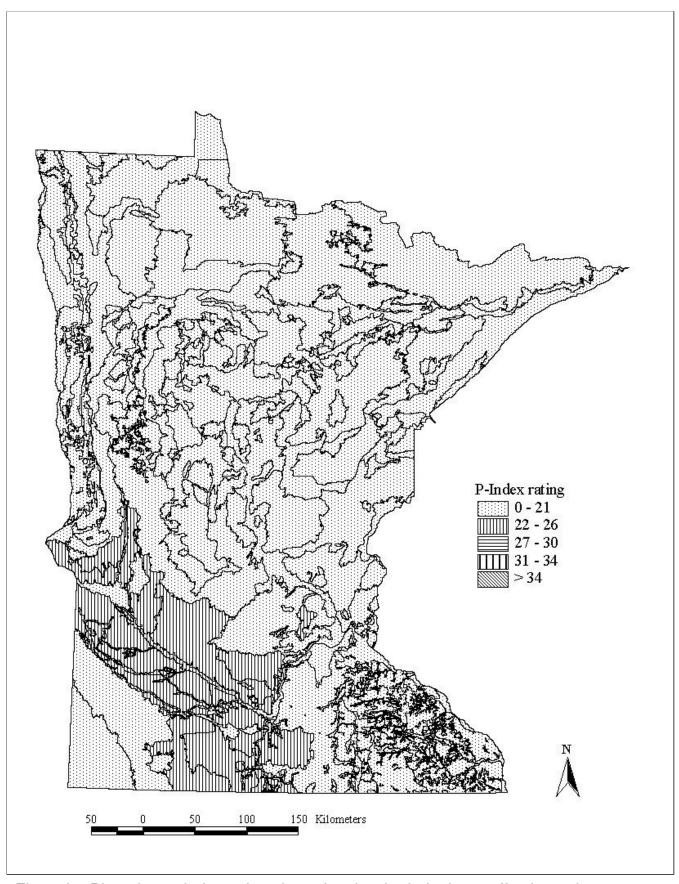


Fig. 20b: Phosphorus index values based on low hydrologic runoff volume, low rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and best crop residue cover management conditions for agroecoregions of Minnesota.

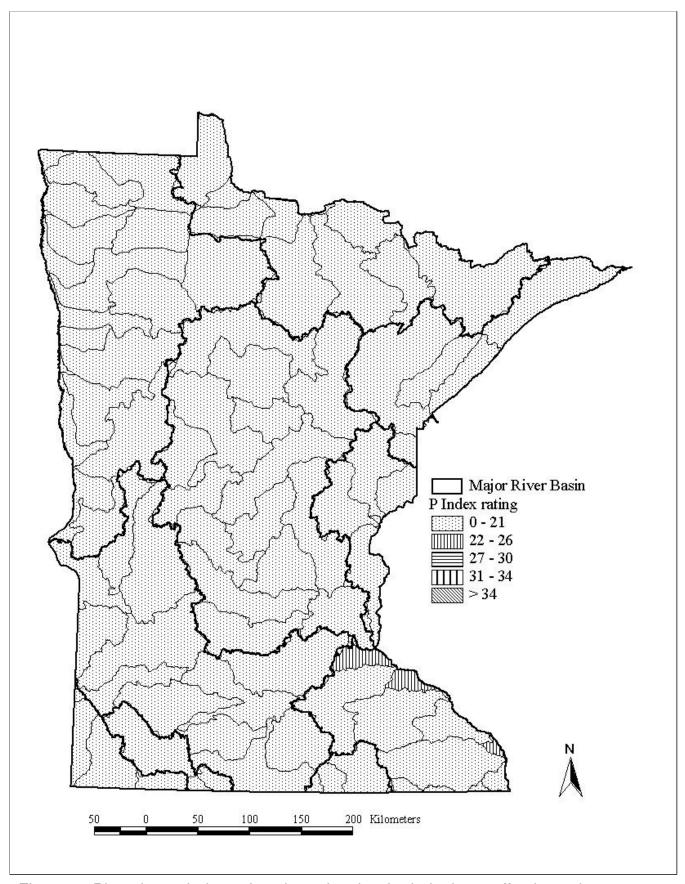


Fig. 21a: Phosphorus index values based on low hydrologic runoff volume, low rainfall runoff erosivity, a 300 ft buffer around perennial streams, and best crop residue cover management conditions for watersheds of Minnesota.

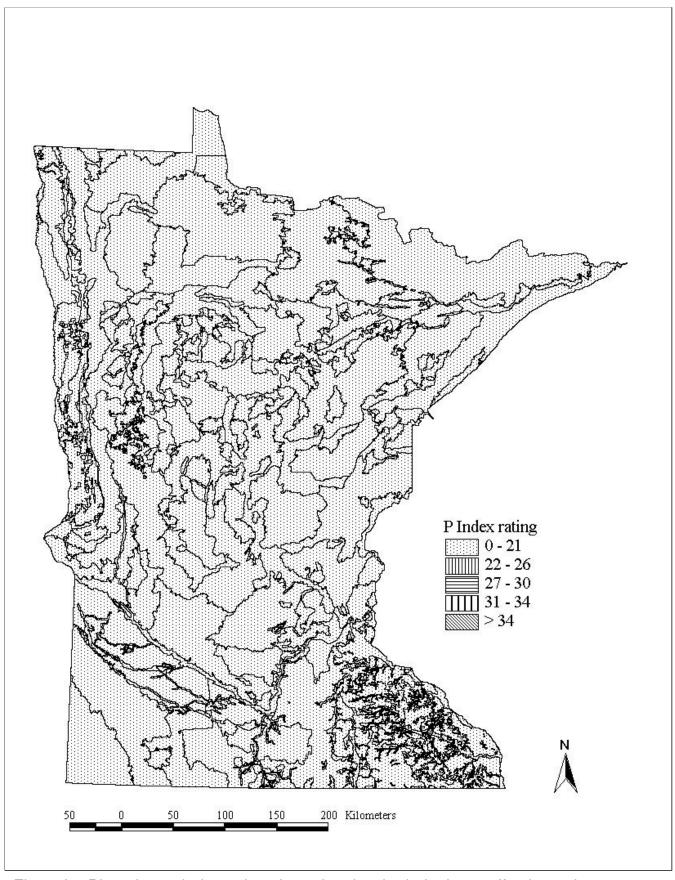


Fig. 21b: Phosphorus index values based on low hydrologic runoff volume, low rainfall runoff erosivity, a 300 ft buffer around perennial streams, and best crop residue cover management conditions for agroecoregions of Minnesota.

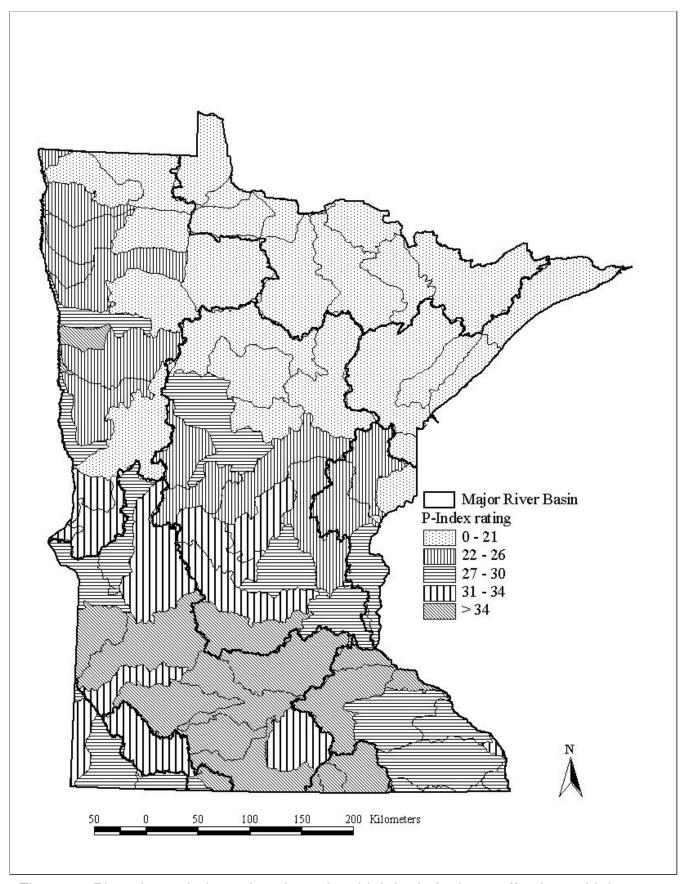


Fig. 22a: Phosphorus index values based on high hydrologic runoff volume, high rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and best crop residue cover management conditions for watersheds of Minnesota.

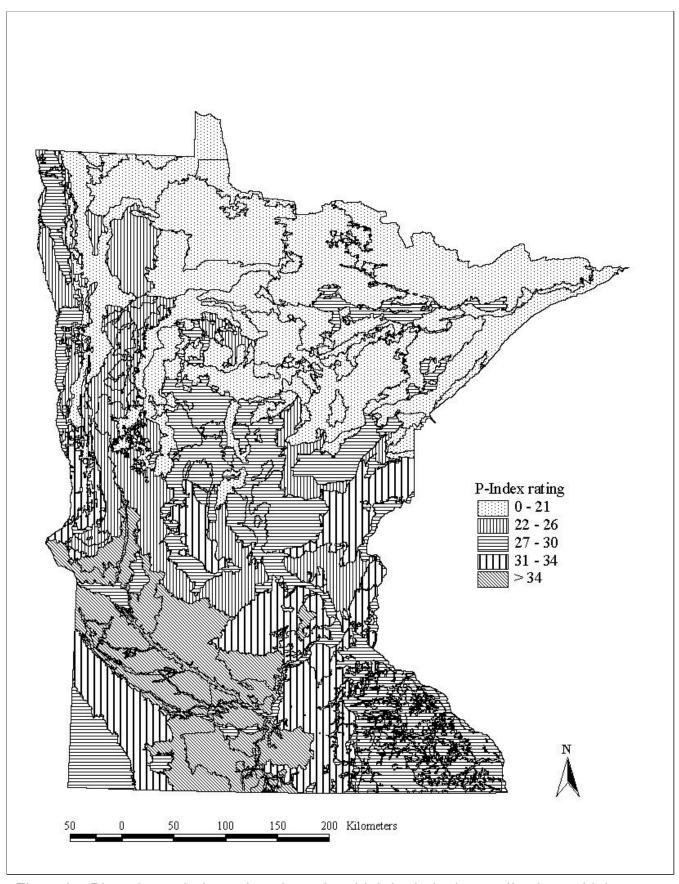


Fig. 22b: Phosphorus index values based on high hydrologic runoff volume, high rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and best crop residue cover management conditions for agroecoregions of Minnesota.

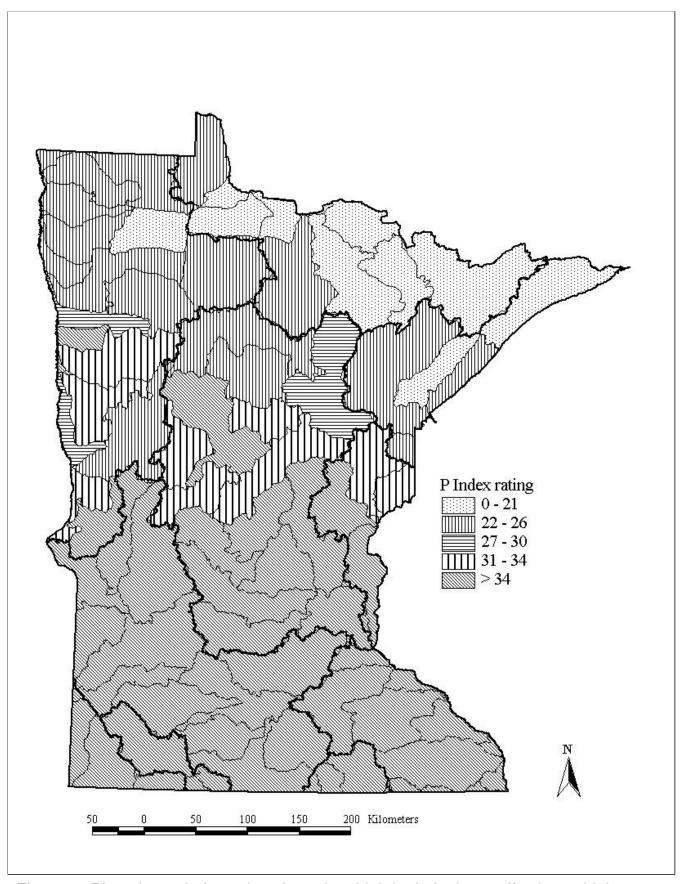


Fig. 23a: Phosphorus index values based on high hydrologic runoff volume, high rainfall runoff erosivity, a 300 ft buffer around all perennial and intermittent streams and ditches, and best crop residue cover management conditions for watersheds of Minnesota.

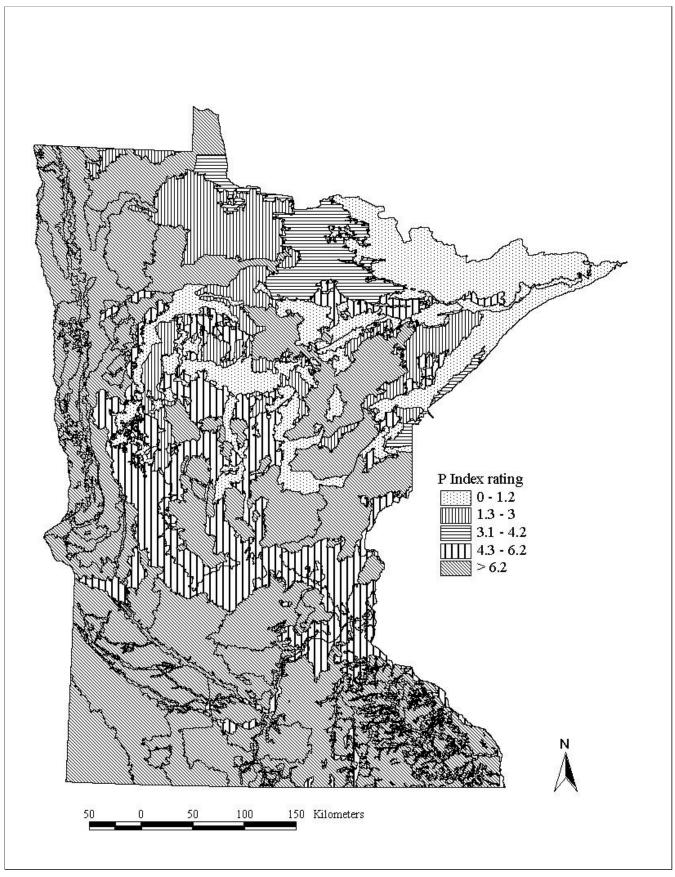


Fig. 23b: Phosphorus index values based on high hydrologic runoff volume, high rainfall runoff erosivity, a 300 ft buffer around all perennial and intermittent streams and ditches, and best crop residue cover management conditions for agroecoregions of Minnesota.

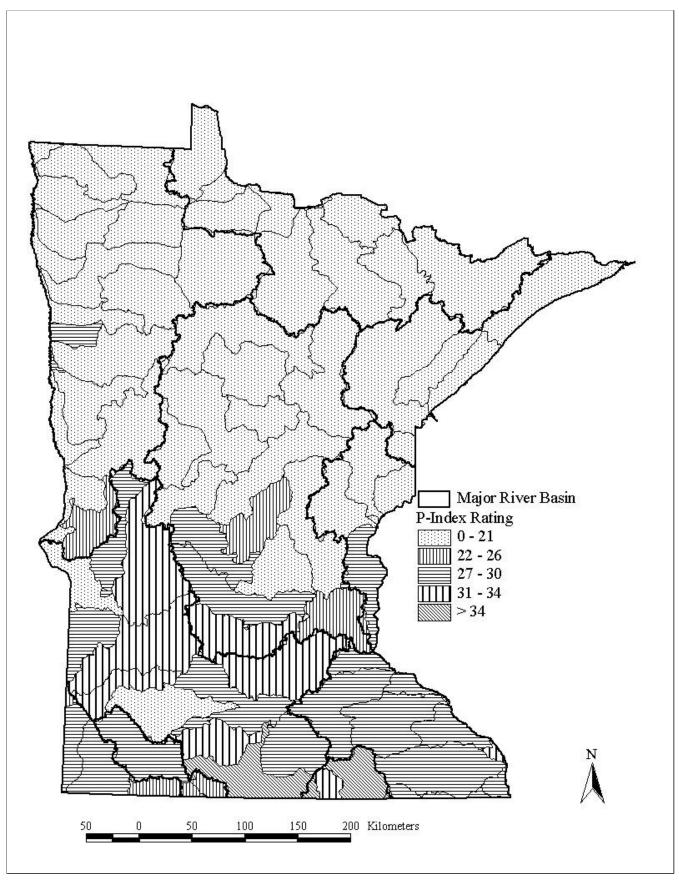


Fig. 24a: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, average crop residue cover management conditions, and reduced rates of fertilizer phosphorus applications for watersheds of Minnesota.

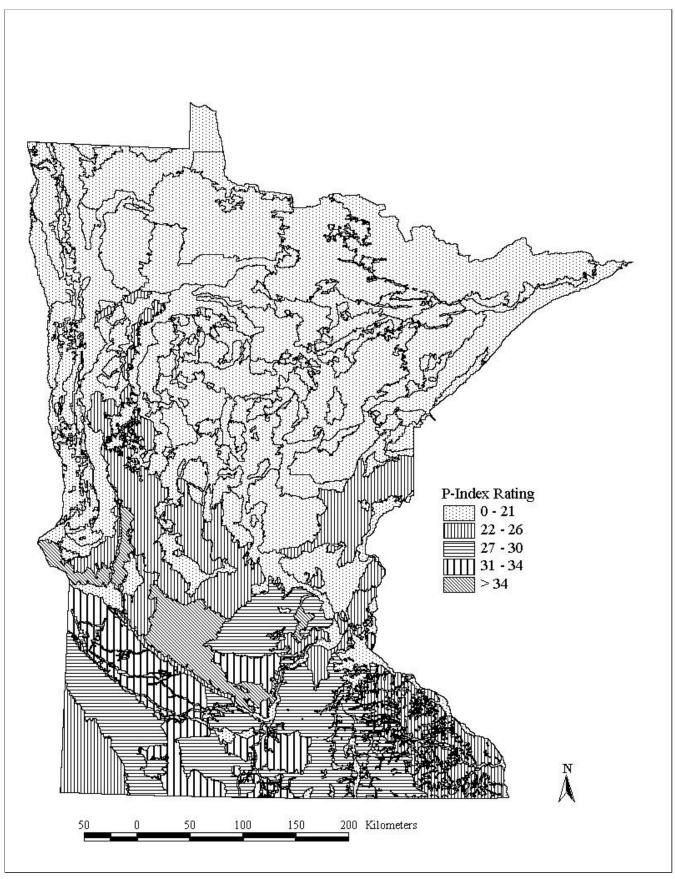


Fig. 24b: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, average crop residue cover management conditions, and reduced rates of fertilizer phosphorus applications for agroecoregions of Minnesota.

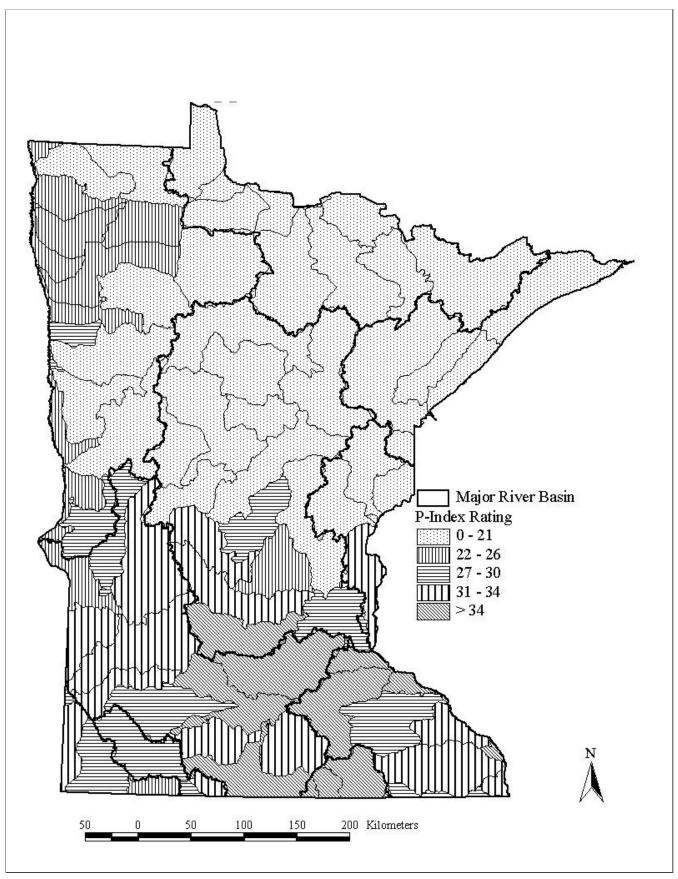


Fig. 25a: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, average crop residue cover management conditions, and variable methods of manure phosphorus applications for watersheds of Minnesota.

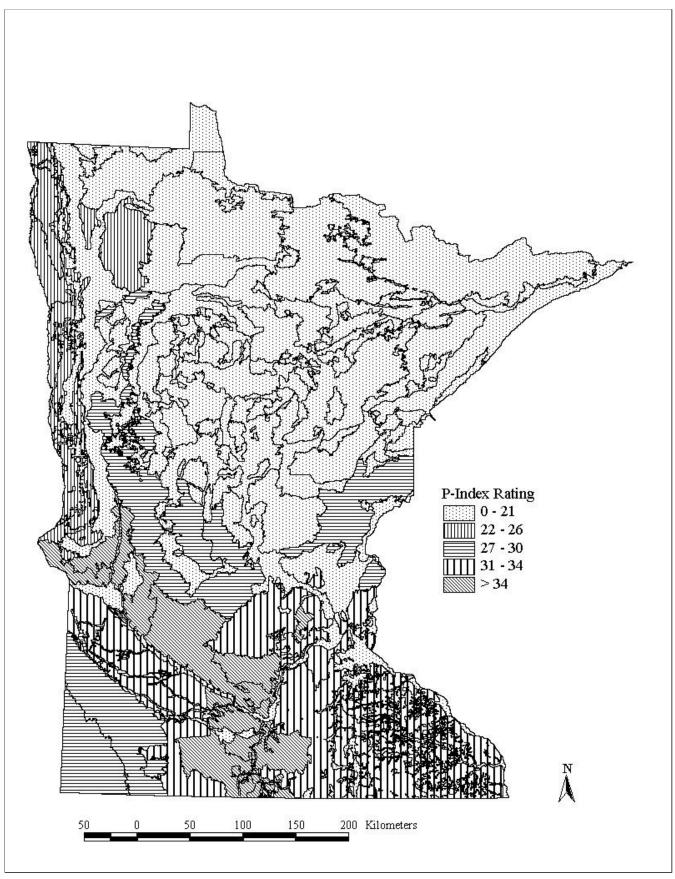


Fig. 25b: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, average crop residue cover management conditions, and variable methods of manure phosphorus applications for agroecoregions of Minnesota.

Technical Memorandum

To: Marvin Hora, Minnesota Pollution Control Agency

Doug Hall, Minnesota Pollution Control Agency

Mark Tomasek, Minnesota Pollution Control Agency

From: Greg Wilson and Dave Wall

Subject: Final—Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—

Feedlot Runoff

Date: December 31, 2003 **Project:** 23/62-853 AGRI 008

c: Henry Runke

Overview and Introduction to Feedlot Runoff as a Source of Phosphorus

The primary way that feedlots contribute phosphorus to surface waters, apart from land application of manure, is through open lot runoff during precipitation and snowmelt events. Livestock manure accumulates on outdoor feedlots and is susceptible to runoff before being scraped from the feedlot and applied to cropland. Even after scraping for stockpiling or land application, a thin coating of manure remains on the feedlot surface and a fraction of this manure will wash off during precipitation or snowmelt events.

Overall, a small fraction of the total manure phosphorus generated at feedlots enters waters during precipitation and snowmelt events. Many feedlots do not have an open lot because they keep animals inside the barn most or all of the time, especially poultry, swine and large dairy facilities. Many of those with outdoor open lots collect runoff in impoundments or treat the runoff as it passes through downslope vegetation. Yet many feedlots still maintain open lot runoff that is out of compliance with state feedlot rules, and runoff from these feedlots contributes some phosphorus to waters. Under MN Rules 7020 control of runoff from these feedlots is phased in through October, 2010.

From: Greg Wilson and Dave Wall

Subject: Final—Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Feedlot Runoff

Date: December 31, 2003

Page: 2

Results of Literature Search and Review of Available Monitoring Data

Typical amounts of phosphorus generated by livestock are described in Midwest Plan Service (2000). The daily P2O5 phosphorus generated per animal is reported as: Beef cattle 0.21 lbs.; Dairy cows 0.42 lbs.; and Swine 0.05 lbs. Most of this manure phosphorus (P) generated will be applied to cropland. However, a fraction of the manure P can be lost in feedlot runoff during precipitation or snowmelt events. Manure nutrients and organic matter (oxygen demand) is often retained in vegetation that is downslope of the feedlot. However, runoff from many feedlots enters flow channels (waterways, road ditches, drainage ditches, intermittent streams or streams) before sufficient phosphorus retention by vegetation can occur. In order to be compliant with MPCA rules, Chs. 7020 and 7050, monthly average discharges must be less than 25 mg/l biochemical oxygen demand (BOD) and less than 1 mg/l phosphorus if discharging into or affecting a lake or reservoir. Feedlots that meet the 25 mg/l BOD standard have phosphorus concentrations that are typically slightly greater than cropland runoff.

Based on a survey of county Soil and Water Conservation District Offices and Environmental offices, the Minnesota Department of Agriculture (MDA) estimates that roughly 34 percent of feedlots need upgrades to meet state regulations (MDA, 2003). In the same report, MDA estimates that approximately four out of every five (79%) of the feedlots needing upgrades need open lot upgrades and the other 21% have other problems not associated with open lot runoff (e.g. unlined manure storage structures). Most feedlots with open lot runoff are from smaller beef, dairy and swine feedlots, with much fewer instances of non-compliance observed for moderate and large sized feedlots (Mulla et al., 2001).

Phosphorus runoff loading from open lot feedlots can be estimated with a feedlot evaluation model developed in Minnesota (Young et al., 1982). The model (FLEval) has been used for many years in Minnesota to evaluate compliance with Minnesota Feedlot runoff rules and to estimate reduced oxygen demand and phosphorus loadings resulting from feedlot improvements. The model was developed to estimate pollutant loadings at the feedlot edge and to account for any contaminant retention/treatment that occurs in downslope vegetation and cropland. The model was developed to predict loading from individual storm events. However, the Board of Water and Soil Resources developed an equation to estimate annual loadings and annual runoff.

From: Greg Wilson and Dave Wall

Subject: Final—Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Feedlot Runoff

Date: December 31, 2003

Page: 3

Watershed Basin Characteristics

Runoff characteristics of each major watershed basin in the state were developed to simplify and provide a surrogate of the annual amount of phosphorus that leaves the feedlots in that basin due to surface runoff. For example, wet condition runoff is 15.6 inches per year in the Lower Mississippi Basin and 6.1 inches per year in the Red River Basin (see the Basin Hydrology Technical Memorandum). Computer modeling using the Feedlot Evaluation model (FLEval) estimated that 2 percent of the annual phosphorus generated at non-compliant feedlots leaves the feedlot edge in runoff in the Lower Mississippi River Basin during wet years (assuming 15.6 inches of annual runoff at feedlots); whereas only 0.8 percent of the phosphorus leaves the feedlot edge in the Red River Basin (assuming 6.1 inches of annual runoff at feedlots). The annual runoff model inputs for low, average and high flow years were consistent with the runoff amounts used for assessing other phosphorus sources in this project (based on the Basin Hydrology Technical Memorandum).

Approach and Methodology for Phosphorus Loading Computations

Described below is a summary of the steps taken to develop estimates of P loading to waters from open lot runoff:

- Step 1. Determine the number of beef, dairy and swine animal units found at all feedlots with open lots (excluding feedlots with 1000 or more animal units).
- Step 2. Multiply the results in step 1 by the annual manure P generated by each type of livestock. This provides P generated by livestock in all open lots.
- Step 3. Multiply the results in step 2 by the estimated percentage of open lot feedlots that contribute phosphorus during certain storm events. This provides P generated by livestock at feedlots that contribute P to waters.
- Step 4. Multiply the results in step 3 by the typical fraction of P that is lost to surface waters during low, average and high flow years. This provides the estimated P loading to surface waters from open lots.

The spreadsheet used to make the calculations for the 4 steps is shown in Table 1. Each of the four steps is described further in the following pages.

From: Greg Wilson and Dave Wall

Subject: Draft—Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Feedlot Runoff

Date: December 31, 2003

Page: 4

Table 1
Estimated Annual Phosphorus Loadings for Outdoor Open Lot Feedlot Runoff to Surface Vaters

Major Basin		P Produced per Animal Unit	Open Lot Animal Units	Manure P Produced from All Open Lots	Assumed Open Lots Contributing P to Waters	Manure P Produced from P Contributing Feedlots	Fraction of P Generated Entering Surface Waters from Non-Compliant Lots by Flow Condition (from FLEVAL)			Estimated TP from Feedlot Runoff by Flow Condition		
	100000000000000000000000000000000000000	lbs/yr	AU	lbs	fraction	lbs P/yr	fraction	fraction	fraction	kg P/yr	kg P/yr	kg P/yr
7,000	CONTRACTOR OF THE PARTY OF THE	vi viene		V) JAG-190000		0.000000000	Low	Average	High	Low	Average	High
Cedar	Beef	33.5	6,809	228,102	0.35	79,836	0.0036	0.0062	0.0112	130	225	406
	Dairy	47.8	2,529	120,886	0.35	42,310	0.0033	0.0057	0.0102	63	109	196
	Hogs	26.6	9,759	259,589	0.35	90,856	0.0033	0.0057	0.0102	136	235	420
	-00/m00	15/38/5	0000000		190,000	800000000	5/80/50/042	2850380	Basin Total	330	569	1,022
Des Moines	Beef	33.5	48,639	1,629,407	0.35	570,292	0.0009	0.0036	0.0085	233	931	2,199
	Dairy	47.8	3,945	188,571	0.35	66,000	0.0008	0.0033	0.0077	24	99	231
9	Hogs	26.6	48,122	1,280,045	0.35	448,016	0.0008	0.0033	0.0077	163	671	1,565
									Basin Total	419	1,701	3.994
Lake Superior	Beef	33.5	3,074	102,979	0.35	36,043	0.005	0.008	0.0107	82	131	175
	Dairy	47.8	3,203	153,103	0.35	53,586	0.0045	0.0073	0.0097	109	177	236
9	Hogs	26.6	92	2,447	0.35	857	0.0045	0.0073	0.0097	2	3	4
1	135/953	30335	100000		44.400	1	52000000	500000	Basin Total	193	311	414
Lower	Beef	33.5	238,216	7,980,236	0.35	2,793,083	0.0045	0.0065	0,0099	5,701	8,235	12,543
30003	Dairy	47.8	200,040	9,561,912	0.35	3,346,669	0.0041	0.0059	0.009	6,224	8,956	13,662
9	Hogs	26.6	79,301	2,109,407	0.35	738,292	0.0041	0.0059	0.009	1,373	1,976	3,014
									Basin Total	13,298	19,167	29,219
Minnesota	Beef	33.5	358,579	12,012,397	0.35	4,204,339	0.0012	0.0036	0.0071	2,288	6,865	13,540
11	Dairy	47.8	158,480	7,575,344	0.35	2,651,370	0.0011	0.0033	0.0064	1,323	3,363	7,697
1	Hogs	26.6	271,561	7,223,523	0.35	2,528,233	0.0011	0.0033	0.0064	1,261	3,784	7,339
8	135453	3333	25.05,000		40.00		250,000	S18500.00	Basin Total	4.873	14,619	28,576
Missouri	Beef	33.5	132,679	4,444,747	0.35	1,555,661	0.0006	0.0033	0.008	423	2,329	5,645
0.0000000000000000000000000000000000000	Daire	47.8	27,219	1,301,068	0.35	455,374	0.0005	0.003	0.0072	103	620	1,487
9	Hogs	26.6	81,589	2,170,267	0.35	759,594	0.0005	0.003	0.0072	172	1,034	2,481
									Basin Total	699	3,982	9,613
Rainu	Beef	33.5	8,993	301,266	0.35	105,443	0.003	0.005	0.0075	143	239	359
	Dairy	47.8	1,668	79,730	0.35	27,906	0.0027	0.0045	0.0068	34	57	86
1	Hogs	26.6	116	3,086	0.35	1,080	0.0027	0.0045	0.0068	1	2	3
	135453	303334	55,000		44.000	150000	5000,000	5200000	Basin Total	179	298	448
Red	Beef	33.5	142,375	4,769,563	0.35	1,669,347	0.0006	0.0022	0.0039	454	1,666	2,953
,,,,,	Dairy	47.8	54,886	2,623,551	0.35	918,243	0.0005	0.002	0.0036	208	833	1,433
	Hogs	26.6	9,740	259,084	0.35	90,679	0.0005	0.002	0.0036	21	82	148
							0.000		Basin Total	683	2,581	4,601
St. Croix	Beef	33.5	28,985	970,998	0.35	339,849	0.0036	0.0062	0.0031	555	356	1,403
St. Of Olix	Dairy	47.8	36,362	1,738,104	0.35	608,336	0.0033	0.0056	0.0082	911	1,545	2,263
1	Hogs	26.6	1,744	46,390	0.35	16,237	0.0033	0.0056	0.0082	24	41	60
1		2332	53503	50.55	43.30		(36,600.0)	3230.77.0	Basin Total	1,490	2,542	3,726
Upper	Beef	33.5	256,585	8,595,598	0.35	3,008,459	0.0023	0.0044	0.0066	3,139	6,004	3,006
1070000	Dairy	47.8	391,607	18,718,815	0.35	6,551,585	0.0023	0.0044	0.006	6,241	11,887	17,830
	Hogs	26.6	53,454	1,421,876	0.35		0.0021	0.004	0.006	474	903	1,354
		20.0	20,434	1,421,010		40,,001	0.0021	0.004	Basin Total	9.853	18,794	28,191
		9		<i>**</i>								
								St	atewide Total	32,017	64,564	109,804

From: Greg Wilson and Dave Wall

Subject: Draft—Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Feedlot Runoff

Date: December 31, 2003

Page: 5

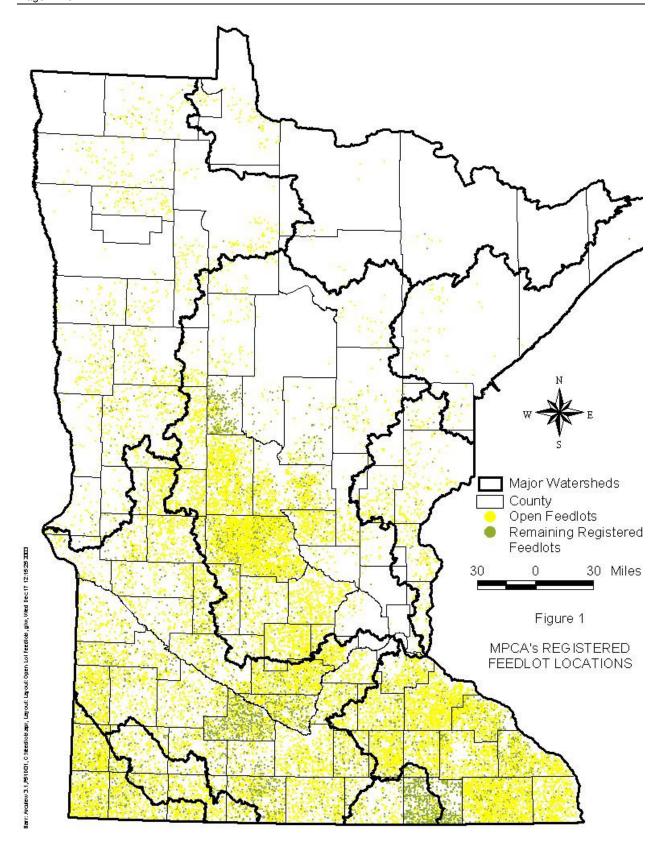
Step 1. Beef, Dairy and Swine animal units at open lot feedlots

MPCA's registered feedlot database was used to determine which feedlots had open lots. Of the 29,122 feedlots in this data base 14,367 feedlots indicated that they had an open lot and 3,181 indicated no open lot. Another 11,574 feedlots had a question mark under the open lot heading (or flag). The following five combinations of answers in the data base were considered to be feedlots likely to have an open lot.

- 1. Open Lot flag = Y and <1000 A.U.s
- 2. Open Lot flag = ? and Confinement Building flag = N and Total A.U.s < 300
- 3. Open Lot flag = ? and Confinement Building flag = Y and Manure Storage flag = N and Total A.U.s < 300
- 4. Open Lot flag = ? and Confinement Building flag = ? and Total A.U.s < 300
- 5. Open Lot flag = ? and Manure Storage flag = ? and Total A.U.s < 300

All feedlots with more than 1000 animal units were excluded, since discharge to waters is not allowed at these feedlots and they are routinely inspected to ensure compliance with the no discharge standard.

Based on the combinations outlined above, a total of 22,387 feedlots were assumed to have open lots. The distribution of these open lots, along with the remaining feedlot locations from the MPCA's registered feedlot database, is shown in Figure 1. The beef, dairy and swine animal units from these feedlots were tallied to determine the livestock animal units found at feedlots with open lots. This was determined separately for each basin.


Step 2: Manure P generated by livestock

Phosphorus generated for each animal unit of dairy, beef and swine was determined based on information from Midwest Plan Service (2000). By taking the daily P2O5 generation described in that publication, and converting to annual P generated per animal unit (au), the following estimates of annual P generation were developed: Beef cattle 33.5 lbs/au; Dairy cows 47.8 lbs/au; and Swine 26.6 lbs/au. Multiplying these numbers by the number of animal units in each basin provided the annual total P produced by livestock at open lot feedlots in each basin.

To: Marvin Hora, Doug Hall and Mark Tomasek, Minnesota Pollution Control Agency
From: Greg Wilson and Dave Wall
Subject: Final—Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Feedlot Runoff

Date: December 31, 2003

Page: 6

From: Greg Wilson and Dave Wall

Subject: Final—Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Feedlot Runoff

Date: December 31, 2003

Page: 7

Step 3. Percentage of feedlots contributing P in runoff

We assumed that feedlots that are in compliance with Minnesota rules have negligible P runoff. Based on rough MDA estimates (MDA, 2003), we assumed that 27 percent of all feedlots contribute P to surface waters due to open lot runoff. Twenty-seven percent of all 29,122 registered feedlots is 7863 feedlots needing open lot runoff control improvements. With an estimated 22,387 feedlots with open lots in the data base used for this study, the percent of open lots contributing P in runoff is 35 percent (7863/22,387). While this fraction is expected to vary significantly across the state (see discussion of uncertainties and variability), a more detailed geographic-based analysis was not feasible at this time with the readily available information. Therefore, we assumed that 35 percent of open lot feedlots contributed P to surface waters in each of the basins. This fraction is expected to decrease significantly by October 2010, the deadline set in Minn. Rules ch. 7020 for those feedlots in open lot agreements.

We assumed that each animal unit in feedlots with open lot P runoff contributes to open lot runoff in the modeling exercise.

Step 4. Fraction of manure that reaches surface waters

The fraction of manure that reaches surface waters was calculated by dividing expected phosphorus runoff to waters by the total amount of manure that was generated at the feedlots with open lot P runoff.

We used the FLEval model to determine the amount of manure that is expected to leave the feedlot and enter waters at non-compliant feedlots. The following assumptions were made in the FLEval modeling exercise: animal stocking density of 200 square feet per animal; all of the soil in the lot had at least some manure covering the ground; no upslope runoff waters washed through the lot; and downslope vegetation reduced the phosphorus loads found at the feedlot edge by half (typical for less than 50 feet of grassed buffer). With these assumptions, the amount of P expected to reach the discharge point (channelized flow) during wet years ranged from 0.39 to 1.12 percent of the total manure P generated at the feedlots (varying by basin). During dry years the P loading at the discharge point was 0.1 to 0.5 percent across the different basins. While the total amount of P loading increased with increasing animal numbers in the feedlot, the fraction of P lost to the discharge point was independent of animal numbers. The other 99+

From: Greg Wilson and Dave Wall

Subject: Final—Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Feedlot Runoff

Date: December 31, 2003

Page: 8

percent of manure P that does not runoff is applied to cropland, with a small amount remaining in the feedlot soils or picked up by wind.

Results of Phosphorus Loading Computations and Assessments

Table 1 presents the results of the phosphorus loading computations for runoff from noncompliant open feedlots during low, average and high flow conditions within each of the major basins of the state. The results show that the Lower Mississippi River produces the most phosphorus in feedlot runoff, with similar loadings estimated for the Upper Mississippi and Minnesota River basins. These three basins account for 88, 81, and 78 percent of the total statewide phosphorus loadings from feedlot runoff under low, average and high flow conditions, respectively. On a statewide basis, the total phosphorus loading during an average year is twice as high as the loading during a low flow year, while the high flow loading estimate is approximately 1.7 times higher than the estimate for average flow conditions. Table 1 shows that dairy in the Upper Mississippi River produces the largest amount of manure phosphorus generated from all open lots, followed by beef in the Minnesota River basin.

Due to uncertainties, variability and unaccounted sources described below, the feedlot runoff loading results could be significantly higher or lower in some basins than the results show.

Phosphorus Loading Variability and Uncertainty

Not all potential avenues of phosphorus transport to waters from feedlots were included in this analysis. This analysis did not include runoff from:

- Manure application sites (i.e. from spreading onto cropland) and pastures. This is handled in the report under the category agricultural field runoff;
- Silage leachate runoff, which has high concentrations of phosphorus, but relatively low volumes that add significantly to basin-wide phosphorus budgets;
- Milkhouse wastewater discharges;
- Open lots that are not included in the MPCA feedlots data base, including those feedlots that have not yet registered or those feedlots that are too small to require registration (i.e. under

From: Greg Wilson and Dave Wall

Subject: Final—Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Feedlot Runoff

Date: December 31, 2003

Page: 9

50 animal units outside of shoreland). This would include many small farms with horses and livestock.

- Feedlots that do not have open lots; incidental runoff from total confinement operations is considered negligible.
- Poultry facilities and field stockpiles associated with poultry operations. Most poultry are
 raised in total confinement, and the relatively small amount raised outside or from stockpiles
 was considered negligible for basin-wide analysis.
- Runoff from pasturing animals, including animals with direct access to surface waters.

Several areas of uncertainty and variability exist in the analysis.

Uncertainties about animal units at open lots - The data base used to obtain the information is incomplete. While 29,122 feedlots exist in the data base, incomplete information is available from several counties, and also many smaller feedlots were not required to register. It is possible that the actual number of all feedlots could be several thousand more than indicated in the data base. Additionally, information about the presence of open lots at 11,574 was not available. Information about confinement buildings, manure storage and feedlot size were used to roughly determine which of those were likely to have open lots. Since the missing feedlots are mostly small lots, the added phosphorus loading would not be expected to be more than 25% greater than our current estimates.

Uncertainties about manure P generation – The amount of phosphorus generated by each animal type was provided from average values based on research in the Midwest. The actual P generated is increasingly being reduced through dietary measures. However, this source of variability and uncertainty is considered to be relatively minor.

Uncertainties about the fraction of feedlots that contribute P to surface waters – The percent of open lot feedlots that contribute P to waters varies from basin to basin within the state. Areas with steeper slopes and a more pronounced drainage system will have a higher percentage of open lots with runoff problems. Unpublished county-specific information used to develop the statewide average (MDA, 2003), indicates that the percentage of open lots that may contribute runoff P to surface waters in the Lower Mississippi basin could be much greater than the statewide average, whereas, in the Missouri and Des Moines river basins the fraction of feedlots with open lot runoff problems may be less than half of the statewide average. This variability was not accounted for in

From: Greg Wilson and Dave Wall

Subject: Final—Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Feedlot Runoff

Date: December 31, 2003

Page: 10

the analysis. The 35 percent of open lots contributing runoff P that was used for all basins in this study is likely to be too low for basins like the Lower Mississippi and too high for other basins. However, due to a lack of basin-specific information, we decided to use the 35 percent figure statewide.

It is likely that some phosphorus is delivered to waters from feedlots that are in compliance with state feedlots rules. No feedlot runoff was accounted from feedlots that were considered to be in compliance with state feedlot rules.

We assumed that all of the animals in feedlots with open lots contribute manure to the open lot. This is not valid at all feedlots, since some of the animals where open lots are found are in total confinement 100 percent of the time. For example, a feedlot may have 100 animal units that use an open lot and may have another 100 animal units kept in total confinement. We did not have information that would allow us to differentiate which animals used the open lot and which were kept in total confinement.

Uncertainties about phosphorus delivery – The FLEval model used to estimate the fraction of phosphorus delivery to waters is currently being upgraded by the University of Minnesota to improve estimates of annual phosphorus loading. We do not know if these upgrades will increase or decrease annual P loading estimates. Several assumptions were made for the FLEval modeling exercise that affected the estimated loading. The P loading results could be either half as much or twice as much as the study results, depending on modeling assumptions about the feedlot size (square feet per animal unit), the effect of downslope vegetation and cropland, and other model inputs.

Another uncertainty is the effect that holding animals in the barns or pastures will have on reducing the fraction of P delivery to waters. Where animals are held in barns or pasture for a long enough time during the day so that less than 100 percent feedlot of the feedlot area has manure on the surface, then the phosphorus loadings would be reduced. In the model we assumed that each animal unit contributed to 200 square feet of feedlot surface that was covered 100 percent manure. Both of these assumptions are variable and affect the modeling results, causing an overestimate of P loading for this part of the loading calculation.

From: Greg Wilson and Dave Wall

Subject: Final—Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Feedlot Runoff

Date: December 31, 2003

Page: 11

Net effect of the uncertainties

If we look at the primary uncertainties in this exercise we see that some are expected to result in overestimates of phosphorus loading from feedlots and others contributed to underestimates of phosphorus loadings from feedlots. Included below is a summary of these uncertainties:

- 1. Incomplete feedlot data base, resulting in underestimates by roughly 10 to 25 percent;
- 2. Not including milkhouse wastewater, silage leachate and spills, resulting in underestimates of P loading by roughly 5 to 20 percent;
- 3. Not including P from feedlots in compliance with feedlot runoff regulations, resulting in underestimates of roughly 1 to 10 percent;
- 4. Uncertainties in percent of open lots that contribute P to surface waters, potentially resulting in the Lower Mississippi basin underestimates by as much as 100 percent and overestimates in the Missouri, Des Moines basins by roughly 100 percent, with other basins being closer to statewide averages.
- 5. Uncertainties about FLEval modeling of annual loading, with unknown effects; and
- 6. Uncertainties about how much time the livestock at feedlots with open lots spent in the barn or on pasture, resulting in overestimates of roughly 10 to 30 percent.

Recommendations for Future Refinements

Future refinements can be made when the MPCA data base is improved to more clearly indicate whether an open lot exists at each feedlot and when better basin-specific information can be provided about how many feedlots are out of compliance with state feedlot runoff rules and regulations. Additionally, the results can be refined after the FLEval model upgrades are completed by the University of Minnesota and when better information is available about average downslope buffer conditions at non-compliant feedlots. Also, future analyses should incorporate estimates of how livestock time in barns or pastures may reduce the overall fraction of manure P that is delivered to waters.

From: Greg Wilson and Dave Wall

Subject: Final—Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Feedlot Runoff

Date: December 31, 2003

Page: 12

Literature Cited

Midwest Plan Service. 2000. Manure Characteristics. MWPS-18 Section 1. Iowa State University. 23 pp.

Minnesota Department of Agriculture. 2003. Feedlot financial needs assessment report for 2004. Minnesota Dept. of Agriculture, St. Paul, MN. Draft December 17, 2003.

Mulla, D.J., A.S. Birr, G. Randall, J. Moncrief, M. Schmitt, A. Sekely, and E. Kerre. 2001.
 Technical Work Paper – Impacts of Animal Agriculture on Water Quality. University of Minnesota Dept. of Soil, Water and Climate. Prepared for the Environmental Quality Board and the Citizen Advisory Committee for the Generic Environmental Impact Statement on Animal Agriculture. 171 pp.

Young, Robert A., Michael A. Otterby, and Amos Roos. 1982. An Evaluation System to Rate Feedlot Pollution Potential. Agricultural Research Service ARM-NC-17. 78 pp.

Technical Memorandum

To: Marvin Hora, Minnesota Pollution Control Agency

Doug Hall, Minnesota Pollution Control Agency

Mark Tomasek, Minnesota Pollution Control Agency

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric

Deposition

Date: November 25, 2003

Project: 23/62-853 ATMO 010

c: Greg Wilson

Henry Runke

The purpose of this memorandum is to provide a discussion about Atmospheric Deposition as a source of phosphorus to Minnesota watersheds. This discussion is based on a review of the available literature, consideration of monitoring data and other available support data, and the results of phosphorus loading computations done for each of Minnesota's ten major watershed basins as part of this study. This memorandum is intended to:

- Provide an overview and introduction to this source of phosphorus
- Describe the results of the literature search and review of available monitoring data
- Discuss the characteristics of each watershed basin as it pertains to this source of phosphorus
- Describe the methodology used to complete the phosphorus loading computations and assessments for this study
- Discuss the results of the phosphorus loading computations and assessments
- Discuss the uncertainty of the phosphorus loading computations and assessment
- Provide recommendations for future refinements to phosphorus loading estimates and methods for reducing error terms
- Provide recommendations for lowering phosphorus export from this source

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 2

Overview and Introduction to Atmospheric Source(s) of Phosphorus

The importance of nutrient contributions to Minnesota's ecosystems have been recognized for some time (Verry and Timmons, 1977; Axler et al., 1994). Phosphorus in the atmosphere can be derived from a number of sources, including natural sources such as pollen, soil (from wind erosion) and forest fires, as well as anthropogenic sources such as fertilizer application and oil and coal combustion. Agricultural activities (pre-planting field preparations, harvesting) can increase the amount of soil-derived phosphorus in the atmosphere. Phosphorus can also be released into the atmosphere in vapor form from various materials (sewage sludge, landfills) by microbial reduction processes (Brunner and Bachofen, 2000).

The atmosphere contributes phosphorus and phosphorus-containing material to terrestrial and aquatic ecosystems by wet (precipitation in various forms such as rain, sleet or snow) and dry (very small particles) deposition. Previous work by Pratt et al. (1996) indicates that dry deposition of particles is important to Minnesota ecosystems. Federal agencies have also recognized the importance of dry deposition to ecosystem health (NOAA-ARL, 2003). Subsequently, considerable effort has gone into deriving estimates of dry deposited phosphorus for this project.

Results of Literature Search and Review of Available Monitoring Data

A. Literature Review

Some previous estimates of phosphorus deposition for Minnesota and Wisconsin are provided in Table 1 below, ranging from a low of 0.05 kilograms per hectare per year (kg ha⁻¹ yr⁻¹) in northern Wisconsin (Rose, 1993; Robertson, 1996) to 0.48 kg ha⁻¹ yr⁻¹ for north central Minnesota (Verry and Timmons, 1977).

A cursory check on the availability of phosphorus deposition information and data was made for other states. Information on phosphorus Total Maximum Daily Load (TMDL) was reviewed for Lake Champlain (Vermont Agency of Natural Resources and New York State Department of Environmental Conservation, 2002) and for four watersheds in Kansas (Mau and Christensen, 2001). Deposition data for Florida were also reviewed (Dixon et al., 1998). However, due to these states being distant from Minnesota, it was uncertain as to the applicability of the data to Minnesota's

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 3

watersheds. Therefore, for the purpose of estimating phosphorus deposition to Minnesota river basins and watersheds within basins, data from other states was not considered applicable.

Table 1. Estimates of phosphorus deposition in Minnesota and Wisconsin.

Deposition Estimate	Description	Reference		
(kg ha ⁻¹ yr ⁻¹)				
0.48	Annual precipitation input of total	Verry and Timmons, 1977		
	phosphorus for a precipitation year	(Table 5)		
	representative of the western Great Lakes			
	region (data collected in north central			
	Minnesota).			
0.15	Estimated total atmospheric phosphorus	Wilson, 2003		
	in the northern Minnesota; input data for			
	the Minnesota Pollution Control Agency's			
	(MPCA) watershed modeling.			
0.3 - 0.4	Estimated total atmospheric phosphorus	Wilson, 2003		
	in the southern and western part of			
	Minnesota; input data for the MPCA's			
	watershed modeling.			
0.05	Total atmospheric phosphorus deposition	Rose, 1993 (northwest WI)		
	in northern Wisconsin's forest region.	Robertson, 1996 (northeast WI)		
0.05	Precipitation total phosphorus loading to	Miller et al., 2000		
	Lake Michigan.			
0.2	Estimated total atmospheric phosphorus	Robertson, 1996		
	deposition in southeast Wisconsin's			
	agricultural areas.			

Specific estimates of dry deposited phosphorus in Minnesota were not found in the literature review.

The literature review indicates that limited data are available from Minnesota sources to estimate phosphorus deposition to the state's river basins. The previous best source of information for precipitation input (wet deposition) of phosphorus to Minnesota watersheds is Verry and Timmons (1977). As noted above, no data on dry deposition of phosphorus in Minnesota was identified.

The MPCA's goal for this project is to provide an updated estimate of wet phosphorus deposition using more recent data and an initial estimate of dry deposited phosphorus for surface waters and wetland areas in Minnesota. The following section discusses the data considered to be the best available at this time for providing estimates of atmospheric phosphorus inputs to Minnesota's river basins and watersheds.

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 4

B. Available Data

The specific data used to provide an updated estimate of wet phosphorus deposition and an initial estimate of dry phosphorus deposition for Minnesota's major river basins are described below.

MPCA:

- 1. Nutrient (including phosphorus) and metal concentrations in precipitation from a special study conducted from August 1999 to September 2001 at four monitoring sites in Minnesota
- 2. PM10 air concentrations determined from particulate filters and elemental speciation of the PM10 mass by X-ray Fluorescence (XRF) analysis for the 30 sites included in the Statewide Air Toxics Monitoring Study (1996-2001).

National Atmospheric Deposition Program (NADP):

- 1. Annual volume weighted calcium concentrations in precipitation for the period of record from NADP sites located in, and adjacent to, Minnesota (Table 2).
- Monthly volume weighted calcium concentrations for four sites (Fernberg, Marcell, Camp Ripley, Lamberton) for use in establishing the relationship between phosphorus and calcium in precipitation for NADP sites.

Table 2. Annual volume-weighted calcium data obtained from National Atmospheric Deposition Program (NADP) sites for Minnesota's phosphorus assessment project.

Iowa	Michigan	Minnesota	North Dakota	Wisconsin
Big Springs Fish Hatchery	Isle Royale Nat. Pk.	Camp Ripley	Icelandic St. Pk	Lac Courte Oreilles Res.
		Cedar Creek		Spooner
		Fond du Lac Res.		Wildcat Mountain St. Pk.
		Fernberg (Ely)		
		Grindstone Lake		
		Hovland		
		Lamberton		
		Marcell Exp. Forest		
		Wolf Ridge (Finland)		
		Voyageurs Nat. Park		

Additional details on the MPCA and NADP datasets are described in more detail in the next subsection.

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 5

Minnesota Department of Natural Resources, State Climatology Office. Annual normal precipitation amount for each river basin basis was obtained from the State Climatology Office. The State Climatology Office provides a full QA/QC program for precipitation data; therefore no additional QA/QC was conducted on the precipitation data for the atmospheric component of this project. The derivation of the annual normal precipitation amount for each basin, and the dataset used by the State Climatology Office, is discussed in the Basin Hydrology Technical Memorandum for this project.

C. Additional Discussion of the MPCA and NADP Data

Nutrient and metal concentrations in precipitation

1. Phosphorus in Precipitation Study.

A special two-year study (August 1999 – September 2001) was conducted by the St. Croix Watershed Research Station of the Science Museum of Minnesota to determine nutrient and metal concentrations in precipitation in Minnesota. Precipitation sampling equipment was collocated at four National Atmospheric Deposition Program (NADP) monitoring sites in Minnesota: Fernberg Road (Ely), Marcell, Camp Ripley, and Lamberton (Engstrom et al., 2003). Samples were collected on a 4-week basis, acidified with a small amount of acid, and analyzed for various chemical components, including total calcium and total phosphorus. Appendix A provides additional details regarding sample collection, sample analysis, and quality assurance/quality control (QA/QC) for the phosphorus in precipitation project. The St. Croix Watershed Research Station provided a full QA/QC program for sample collection and sample analysis and data reporting, therefore no additional QA/QC was conducted on the data.

It is noted here that a limited amount of editing occurred in the special phosphorus in precipitation study dataset to remove specific samples from the statistical analysis because the precipitation volume for that sampling event did not match with the precipitation volume collected at the collocated NADP sampler or NADP rain gauge. Following this data editing, the phosphorus concentrations from the special study, along with NADP calcium data, were used to derive the relationship between phosphorus and calcium in precipitation for the four NADP monitoring sites. The relationship between phosphorus and calcium in precipitation at these four NADP sites was then applied to the entire state. Additional details on deriving the

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 6

relationship between phosphorus and calcium in precipitation and applying this relationship to the entire state are discussed in a later section of this technical memorandum.

2. NADP calcium concentrations in precipitation.

- a. Annual volume-weighted calcium concentrations were downloaded electronically from the NADP website for the monitoring locations listed in Table 2. A separate data file was downloaded for each monitoring site. These data files were then merged together for ease of data manipulation and calculations. The NADP provides a full QA/QC program for sample collection and sample analysis and data reporting. No additional QA/QC on the NADP data was conducted for this project.
- b. Monthly volume-weighted calcium concentrations from four sites (Fernberg, Marcell, Camp Ripley, Lamberton) were downloaded electronically from the NADP website for the 1999 2001 time period. The four NADP monitoring sites correspond to the same sites where the special phosphorus in precipitation study was conducted by the St. Croix Watershed Research Station. Separate data files were downloaded for each monitoring site, then merged with the data from the special phosphors in precipitation study. The NADP provides a full QA/QC program for sample collection, sample analysis and data reporting; therefore no additional QA/QC on the NADP data was conducted for this project.

Particulate (PM10) and elemental concentrations

Data files for PM10 air concentrations and elemental speciation of the PM10 mass by XRF analysis were obtained from the MPCA for the 30 sites included in the Statewide Air Toxics Monitoring Study (1996-2001) (Table 3). In any one year of the study, six sites were in operation. A specific site was in operation for only one year. For each site in operation during a given year, particulate filter samples were collected for a 24-hour period every sixth day and submitted to the MPCA's Air Quality Laboratory for analysis by XRF. The MPCA staff provided QA/QC for sample collection, sample analysis and data reporting. No additional QA/QC on the MPCA's PM10 filter data was conducted for this project.

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Atmospheric Deposition

Date: November 25, 2003

Page: 7

A data file was received for each monitoring site. The 30 data files were then merged into a master data file containing all sites for ease of manipulation and calculations.

Table 3. List of randomly selected Minor Civil Divisions to be sampled in the Minnesota Pollution Control Agency's Statewide Air Toxics Monitoring Study

	SAMPLE YEAR						
MPCA REGION	1. 1996-1997	2. 1997-1998	3. 1998-1999	4. 1999-2000	5. 2000-2001		
REGION 1 DULUTH	Wagner Township; Aitkin County Tier 5	Hibbing; St. Louis County Tier 3	Duluth; St. Louis County Tier 1	Virginia; St. Louis County Tier 4	Duluth; St. Louis County Tier 1		
REGION 2 BRAINERD	Little Falls; Morrison County Tier 3	Elk River; Sherburne County Tier 2	St. Cloud; Stearns County Tier 1	St. Michael; Wright County Tier 4	Fort Ripley; Crow Wing County Tier 5		
REGION 3 DETROIT LAKES	Alexandria; Douglas County Tier 3	Fergus Falls; Otter Tail County Tier 2	Brandon Township; Douglas County Tier 5	Perham; Otter Tail County Tier 4	Moorhead; Clay County Tier 1		
REGION 4 MARSHALL	Pipestone; Pipestone County	Granite Falls; Yellow Medicine County Tier 4	Holloway; Swift County	Hutchinson; McLeod County Tier 2	Willmar; Kandiyohi County Tier 1		
REGION 5 ROCHESTER	Leon Township; Goodhue County Tier 5	Rochester; Olmsted County Tier 1	Winona; Winona County Tier 2	Albert Lea; Freeborn County Tier 3	North Mankato; Nicollet County Tier 4		
REGION 6 TWIN CITIES	Plymouth; Hennepin County	Minneapolis; Hennepin County	West Lakeland Township; Washington County Tier 5	St. Paul; Ramsey County	Apple Valley; Dakota County Tier 4		
ADDITIONAL SITES	International Falls; Koochiching County	Warroad; Roseau County	Bemidji; Beltrami County	Silver Bay; Lake County	Grand Rapids; Itasca County		

Note: Minor Civil Divisions within a region were segregated into 5 tiers based on population densities. Sites were then selected randomly from within a tier.

The two key parameters to be obtained from the particulate filters were calcium and phosphorus concentrations. Calcium concentrations were typically available for each sampling period. However, upon review of the individual site data files, phosphorus concentrations were not available. Prior to this data review it was assumed phosphorus concentrations would be available from the

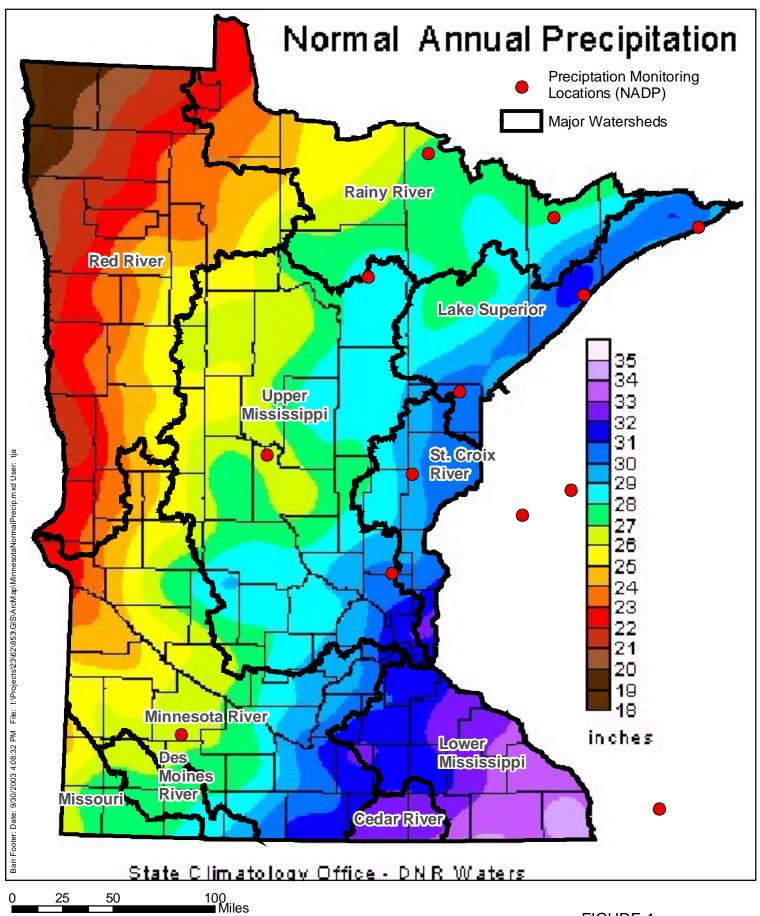
From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 8

particulate filters. Phosphorus concentration data is normally obtained from XRF analysis of particulate filters (Brook et al., 1997). Some of the particulate filters are being re-analyzed by MPCA using a different method that may provide phosphorus concentration data from the particle filters. Data from the re-analysis of the filters should be available in 2004. In the meantime, an alternative method for deriving phosphorus concentrations for the particle filters was employed for this project. This alternative method assumes that the relationship between phosphorus and calcium in precipitation is transferable to the particulate filter data (i.e., the same material being washed out in the precipitation is the same material being dry deposited and collected on the particulate filters). The critical assumptions and the details of calculating phosphorus air concentrations from the particulate filter data is described later in this memorandum.


Watershed Basin Characteristics

Atmospheric inputs of nutrients to watersheds is highly dependent upon precipitation amounts. Typically for sulfur and nitrogen, precipitation accounts for a majority (50-80%) of total inputs, while dry deposition typically accounts for the balance of total inputs (Pratt et al., 1996). It is currently assumed that precipitation inputs of phosphorus are important, but the limited data for phosphorus does not yet provide a clear picture of the relationship between precipitation inputs versus dry deposition inputs.

Figure 1 provides a precipitation map of Minnesota, with normal annual precipitation isopleths overlain on the river basins and with NADP monitoring sites identified. In general, the eastern one quarter of the state receives 30+ inches of precipitation while the western half of the state receives less than 25 inches of precipitation. The most dramatic change in precipitation is from southeast to northwest, where precipitation amount can range from 33 to 34 inches in the southeast corner to less than 20 inches in the northwest corner of the state, respectively. Given the assumption that precipitation is the predominant source of atmospheric phosphorus for a river basin or specific watershed, the difference in precipitation amount can have a significant effect on phosphorus wet deposition estimates.

Figure 1 shows that significant gradients in precipitation amount exist for the following basins:

- Minnesota River: precipitation amount ranges from ~ 21 inches in the western tip (Big Stone County) to ~ 31 in the southeast part of the basin (Faribault and Waseca Counties).

Annual Precipitation Average 1971 - 2000

Data sources include National Weather Service, DNR Forestry, Soil and Water Conservation Districts, and others 300 to 1400 precipitation observers gathered data over 30 year period (seasonally varying) 10 KM grids of monthly precipitation totals created for month-year using "Surfer" State Climatology Office, DNR-Waters

FIGURE 1 Normal Annual Precipitation Amounts for Minnesota

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 10

 Mississippi River – upper: precipitation amount ranges from ~ 25 inches in the northwest portion (Hubbard-Wadena-Cass Counties) to ~ 33 inches in the southeast corner in the Twin Cities metropolitan area.

- Red River: precipitation amount ranges from ~ 18 inches in the northwest corner of the basin (Kittson County) to ~ 25 inches in the eastern protrusion in Koochiching and Beltrami Counties.
- Rainy River: precipitation amount ranges from ~ 22 inches in the northwest corner (Lake of the Woods County) to ~ 30 inches in the eastern edge along the Lake Superior Highlands (Lake County).

The other river basins do not exhibit the notable difference in precipitation amount that is exhibited by the basins listed above.

Due to the notable difference in precipitation amount in the basins listed above, estimates of wet phosphorus deposition can be significantly different depending upon the precipitation data used for the estimate. For precipitation monitoring, an individual monitoring site can provide representative data for the surrounding region if the site is adequately selected (NOAA-ARL, 2003). However, precipitation amount within a basin, as well as from year-to-year, will influence the estimate of wet phosphorus deposition. This project uses an annual average precipitation amount for a basin. Given the gradient in precipitation amount across the state (Figure 1), a different estimate of wet phosphorus deposition can be obtained for various part of a basin that will be different from the deposition estimate using this annual average precipitation for the basin. It is expected that the use of a dry year (90th percentile) and a wet year (10th percentile) in estimating wet deposition will encompass the range of potential deposition amounts and address the within basin and site-to-site variability that is known to exist.

Dry deposition is more dependent upon local site conditions; therefore, an individual monitoring site may not be representative of the surrounding region because the controlling factors for dry deposition are typically surface driven and may not be regionally representative (NOAA-ARL, 2003). For total nitrogen, Pratt et al. (1996) estimated dry deposition to range from 9-17% of total N deposition, depending upon location in the state and sampling year. Other researchers (Likens et al., 1990; Lindberg et al., 1986) have identified dry deposition of nitrogen to account for as much as 40-60% of total deposition. In addition, Lindberg et al. (1986) identified coarse particles contributing 83 times

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 11

more nitrogen than fine particles on an absolute basis. This earlier data on the importance of coarse particles for dry deposition of nutrients is confirmed by Meyers (2003) based on work in Florida where large particles greater than 10 microns in size accounted for only 15% of the particle mass but a more significant amount of the phosphorus deposition. Based on the above discussion, it could reasonably be expected that river basins dominated by agriculture will have more phosphorus being dry deposited (e.g., Red River, Cedar River, Minnesota River) while those river basins with little agriculture would be expected to have less phosphorus being dry deposited (e.g., Rainy River, Lake Superior). However, as noted by Verry and Timmons (1977), river basins with little agriculture may still receive a notable input of particulate phosphorus due to large regional precipitation or dust storm events. Therefore, it may be possible that regional events may limit the importance of local site influence for dry deposition inputs for a river basin.

Approach and Methodology for Phosphorus Loading Computations

The MPCA's intent for this project is to provide an updated estimate of phosphorus deposition for each river basin using the best available information from Minnesota.

A. Critical assumptions

Prior to initiating deposition calculations, a number of assumptions were agreed upon to assist in developing the approach and methodology for wet and dry phosphorus deposition calculations. These critical assumptions are listed below.

- 1. Deposition estimates are for surface waters only. Deposition estimates to terrestrial areas are not needed since the phosphorus loading will already be accounted for in the landform and soils (runoff) estimates.
- 2. Deposition estimates are to be provided for three moisture regimes: low precipitation year, average precipitation year, high precipitation year.
- 3. Calcium (Ca) is a marker for soil contributions. All of the Ca found in precipitation or on the PM10 filters is due to soil.
- 4. Phosphorus (P) is to be normalized to Ca; the P:Ca ratio found in precipitation is the same ratio for particles; since all of the Ca is assumed to be due to soil, all of the P is due to soil.

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 12

5. Particles washed out in precipitation are the same size and type of particles being dry deposited.

- 6. PM10 monitoring at a site was conducted for one year, therefore the average annual concentration of Ca and P are to be used; therefore, seasonality in dry deposition is addressed through the use of annual average concentrations.
- 7. Data from a monitoring site (precipitation or particulate) is representative of other areas within a river basin.
- 8. Precipitation and PM10 filter samples were collected under "normal or typical" conditions with regard to meteorology (average or typical year with regard to precipitation, no frequent large or severe storm events, etc.).

B. Wet Deposition

- 1. Establishing the relationship between phosphorus and calcium in precipitation.
 - a. NADP routinely analyzes rain samples for pH, alkalinity, major cations (including calcium and potassium) and major anions (including sulfate, nitrate). Since calcium concentrations are available for all samples that were analyzed, and calcium is a signature for soil contributions, the relationship between phosphorus and calcium would need to be established. The use of NADP data also provides some consistency in the data used for estimating wet phosphorus deposition.
 - b. The best source of phosphorus in precipitation data is the special study conducted by the St. Croix Watershed Research Station. The total phosphorus concentrations (hereafter denoted as total [P]) in precipitation data) determined from August 1991 September 2001 at 4 sites: Fernberg (Ely), Marcell, Camp Ripley, Lamberton; referred to as "reference sites". The special study also provided measurements on total [Ca] in precipitation.
 - c. An initial analysis identified that the total [Ca] from the special study was approximately two times greater than the [Ca] reported by NADP for the same time period. The NADP does not acidify samples; therefore the NADP reports dissolved [Ca]. To compensate for NADP reporting dissolved [Ca], and to provide the best estimate of [P] in precipitation from the auxiliary (NADP) sites, it was determined that the relationship between [P] and [Ca] in precipitation should be determined by using the total [P] concentrations from the

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 13

special study conducted by the St. Croix Watershed Research Station and the dissolved [Ca] reported by NADP for these same "reference" sites.

d. The volume-weighted relationship on a sample-by-sample basis between total [P] in precipitation and dissolved [Ca] in precipitation from NADP at these same reference sites (collocated sampling occurred) was established by MPCA staff (Dr. Ed Swain, 2003) through regression analysis:

$$y = 0.0671x - 0.4586 (R^2 = 0.47)$$

Where: y = Total phosphorus in micrograms per liter (µg/L)

x = NADP calcium (dissolved) in $\mu g/L$.

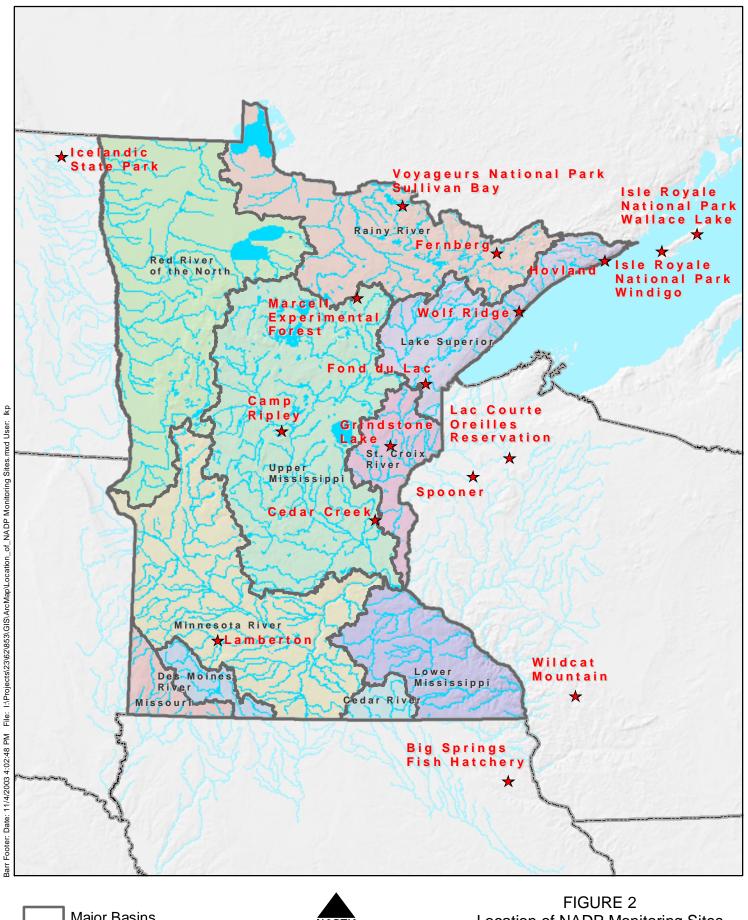
- 2. Extrapolating the relationship of [P] and [Ca] in precipitation to other locations.
 - a. The regression analysis based on total [P] and dissolved [Ca] concentrations for the reference sites was then used to estimate [P] in precipitation at other NADP monitoring sites (referred to as "auxiliary sites"). Annual volume-weighted [Ca] in precipitation data (annual volume weighted average) were obtained for the auxiliary sites from NADP and the regression equation from above was then used to estimate total [P] in precipitation for each auxiliary site.
 - b. The auxiliary monitoring sites will supplement the information from the reference sites in calculating wet phosphorus deposition to specific basins.

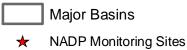
3. Calculating wet phosphorus deposition

a. Monitoring sites locations were mapped with respect to basin boundaries and assignments to watershed made based on site locations (spatial distribution of sites provided in Figure 2):

Cedar River: Lamberton

Des Moines River: Lamberton


Lake Superior: Hovland, Wolf Ridge, Fond du Lac


Minnesota River: Lamberton

Mississippi (Upper): Marcell, Camp Ripley, Cedar Creek

Mississippi (Lower): Wildcat Mountain

Missouri River: Lamberton

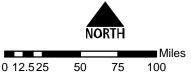


FIGURE 2
Location of NADP Monitoring Sites
Used to Estimate Wet Phosphorus
Deposition

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 15

Rainy River: Voyageurs Nat. Park, Marcell, Fernberg

Red River: Icelandic State Park

St. Croix River: Grindstone Lake, Cedar Creek

b. Calculation components for phosphorus deposition in a basin:

o Annual average precipitation for the basin (obtained from State Climatology Office)

- [P] in precipitation (annual, volume weighted average; measured at one of the reference sites or estimated for one of the auxiliary sites; if more than one site assigned to a basin then the average [P] in precipitation used in the deposition calculation)
- Area estimate (hectares or acres) of open surface water (surface water + wetland as designated in GIS) in a basin.

C. Dry Deposition

- 1. Establishing the relationship between phosphorus and calcium on particle filters.
 - a. The relationship of phosphorus and calcium on the particle filters is assumed to be the same as the relationship of phosphorus and calcium in precipitation; the soil dust being washed out in precipitation is the same dust being dry deposited and collected on the PM10 filters.
 - b. The best source of phosphorus and calcium in precipitation data is the special study conducted by the St. Croix Watershed Research Station. The total phosphorus and calcium concentrations (hereafter denoted as total [P]) and total [Ca] in precipitation data) determined from August 1991 September 2001 at 4 sites: Fernberg (Ely), Marcell, Camp Ripley, Lamberton; referred to as "reference sites".
 - c. The relationship on a sample-by-sample basis (milligrams per square meter; mg/m²) between total [P] and total [Ca] in precipitation at the 4 reference sites was established through regression analysis:

$$y = 0.0289x$$
 (through zero) ($R^2 = 0.42$)

Where: y = Total phosphorus in micrograms per square meter $(\mu g/m^2)$ x = Total calcium in $\mu g/m^2$.

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 16

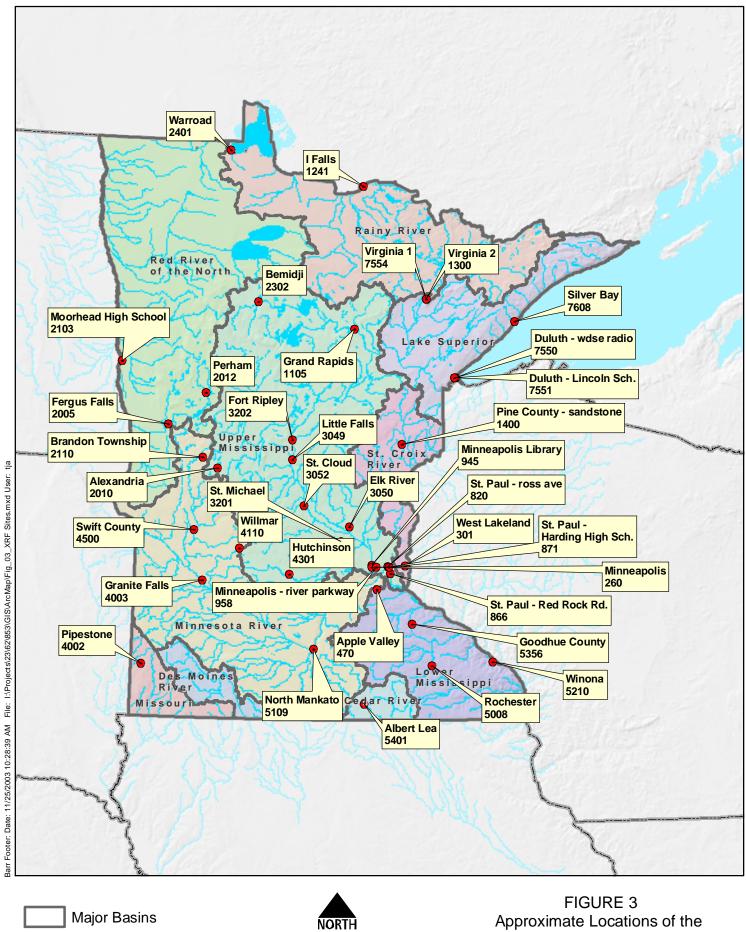
2. Extrapolating the relationship of [P] and [Ca] from precipitation to the particulate filters.

- a. Since the regression equation for [P] and [Ca] in precipitation goes through zero, this regression equation can be applied to data from other media under the assumption that the ratio is the same (i.e., particulate filter data) without having to convert units. Essentially forcing the regression equation through zero creates a ratio of [P] to [Ca] that can be applied to other data.
- b. In this regard, the regression equation from above can be modified as follows for application to the particle filter data:

$$y = 0.0289x$$
 (through zero) ($R^2 = 0.42$)

Where: y = Total phosphorus in micrograms per square meter cubic meter ($\mu g/m^3$) x = Total calcium in $\mu g/m^3$.

- 3. Estimating [P] in air at the MPCA's air monitoring locations.
 - a. The regression equation from 2.b. was then used to estimate [P] in ambient air at the MPCA air monitoring sites. Annual [Ca] concentrations in micrograms per cubic meter were calculated for each monitoring site (Table 3) based on the individual sample [Ca] concentrations. The annual average [Ca] in air is then used in the regression equation to derive an estimate of annual average [P] in air.
- 4. Calculating dry phosphorus deposition
 - a. Monitoring sites locations were mapped with respect to basin boundaries (spatial distribution of sites provided in Figure 3):


Cedar River: Albert Lea

Des Moines River: Pipestone

Lake Superior: Virginia (2 sites), Duluth (2), Silver Bay, Hibbing

Minnesota River: North Mankato, Brandon Township, Granite Falls, Willmar, Swift County

Mississippi (Upper): St. Paul (3), Minneapolis (3), Bemidji, Elk River, Fort Ripley, Alexandria, Hutchinson, St. Cloud, St. Michael, Grand Rapids, Little Falls

Major Basins

NORTH

Approximate Locations of the MPCA's Statewide Air Toxics

Monitoring Sites

12.525 50 75 100

Monitoring Sites Used to Estimate Dry Phosphorus Deposition

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 18

Mississippi (Lower): Rochester, Goodhue County, Apple Valley, Winona

Missouri River: Pipestone

Rainy River: Warroad, International Falls

Red River: Fergus Falls, Moorhead, Perham

St. Croix River: West Lakeland, Pine County (Sandstone)

- b. Calculation components for phosphorus deposition in a basin:
 - Estimated phosphorus air concentration; if more than one site assigned to a basin then the average phosphorus in air concentration used in the deposition calculation.
 - The estimated phosphorus air concentration (or the average phosphorus air concentration if more than one site is in a basin) is to be split into two size fractions based on MPCA collocated PM10 and PM2.5 samplers (average from 5 sites):

42% fine fraction (< 2.5 microns)

58% coarse fraction

[Note: The fine:coarse ratios found in the MPCA PM10/PM2.5 data are similar to those found by Brook et al. (1997) across all Canadian sites, rural and urban. A critical assumption for this data is that the PM2.5/PM10 ratios for urban sites is the same as for rural sites.]

 A deposition velocity for each particle size fraction was estimated based on the information from Meyers (2003):

Fine fraction deposition velocity = 0.5 centimeters per second (cm/s); Coarse fraction deposition velocity = 3 cm/s.

- The coarse and fine particle deposition is summed together to provide a "total" particle deposition estimate.
- Conversion factors: convert seconds to years, cm to meters, and μg/m³ to kg/ha.

The reader should note that for the dry deposition estimate, 1) no adjustments were made in the estimation of dry deposition in a dry or a wet year; data are not available at this time to derive estimates of dry deposition during different precipitation regimes. 2) Seasonality is incorporated into the deposition estimates

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 19

through the use of approximately one year of data from each monitoring site; however, seasonal deposition is not specifically calculated for this project due to the emphasis on providing annual average deposition values for each river basin.

Results of Phosphorus Loading Computations and Assessments

Wet Deposition

Estimates of average wet phosphorus deposition (average precipitation) range from $\sim 0.069 \text{ kg ha}^{-1} \text{ yr}^{-1}$ in the Red River basin to $0.212 \text{ kg ha}^{-1} \text{ yr}^{-1}$ in the Cedar River basin (Table 4). When factoring in dry/wet years, the range in potential wet phosphorus deposition is from approximately $0.059 \text{ kg ha}^{-1} \text{ yr}^{-1}$ in the Red River basin (dry year) to $0.273 \text{ kg ha}^{-1} \text{ yr}^{-1}$ in the Cedar River basin (wet year) (Table 4).

Table 4 also provides estimates of average phosphorus deposition (average precipitation) for the respective basins, which ranges from $\sim 2,100$ kg/yr for the Cedar River to $\sim 155,850$ kg/yr for the Upper Mississippi.

As identified in Table 4, the estimate of phosphorus deposition for each basin is based on the area identified as "water" or "wetland" in the GIS database.

Dry Deposition

Estimates of average dry phosphorus deposition (assuming average precipitation year) range from \sim 0.028 kg ha⁻¹ yr⁻¹ in the St. Croix River basin to \sim 0.241 kg ha⁻¹ yr⁻¹ in the Cedar River basin (Table 5).

The reader should note that no adjustments were made in the estimation of dry deposition in a dry or a wet year. Data are not available at this time to derive estimates of dry deposition during different precipitation regimes.

Table 4 Estimated Wet Phosphorus Deposition to Minnesota Basins

													Average	Average
				Low	Average	High		Basin Waters				High Precipitation	Phosphorus	Phosphorus
	NADP	Total	Total		Precipitation	Precipitation		and Wetland		Phosphorus	Phosphorus	Phosphorus	Deposition to	Deposition to
Basin	Station [1]	Ca conc. [2]		Volume [4]	Volume [4]	Volume [4]	Area [5a]	Area [5b]	Area	Deposition [6]	Deposition [6]	Deposition [6]	Waters and Wetlands	
		(ug/L)	(ug/L)	(inches/yr)	(inches/yr)	(inches/yr)	(acres)	(hectares)		(kg ha ⁻¹ yr ⁻¹)	(kg ha ⁻¹ yr ⁻¹)	(kg ha ⁻¹ yr ⁻¹)	(kg/yr)	(lb/yr)
Cedar River	Lamberton (MN)	348.75	25.98	27.50	32.10	41.30	24,523	9,924	3.7	0.181	0.212	0.273	2,102	4,635
Des Moines River	Lamberton (MN)	348.75	25.98	22.00	28.00	36.80	53,771	21,761	5.5	0.145	0.185	0.243	4,020	8,865
Lake Superior	Hovland (MN)	200.00	12.95											
Lake Superior	Wolf Ridge (MN)	183.33	11.83											
	Fond du Lac (MN)	165.71	10.65											
	Average		11.81	25.50	29.10	35.10	1,312,101	531.000	33.3	0.077	0.087	0.105	46.364	102,233
	Average	100.02	11.01			00.10	1,012,101	001,000	00.0	0.077	0.001	0.100	40,004	102,200
Minnesota River	Lamberton (MN)	348.75	25.98	22.10	28.10	34.80	742,441	300,462	7.8	0.146	0.185	0.230	55,709	122,838
Mississippi, Lower [7]] Wildcat Mountain (WI)	279.29	18.27	27.00	33.30	39.80	204,450	82,740	5.1	0.125	0.155	0.185	12,785	28,190
Mississippi, Upper [8]	Marcell (MN)	199.20	11.34											
	Camp Ripley (MN)	212.00	11.07											
	Cedar Creek (MN)	303.33	19.88											
	Average	238.18	14.10	22.60	28.10	34.30	3,826,925	1,548,735	29.7	0.081	0.101	0.123	155,847	343,642
Missouri River	Lamberton (MN)	348.75	25.98	21.10	27.20	35.60	29,691	12,016	2.6	0.139	0.179	0.235	2,156	4,755
Rainy River	Voyageurs National Park (MN)	163.33	10.49											
	Fernberg (MN)	182.17	9.28											
	Marcell (MN)	199.20	11.34											
	Average	181.57	10.37	22.40	26.20	32.10	3,770,048	1,525,718	52.4	0.059	0.069	0.085	105,303	232,194
Red River	Icelandic State Park (ND)	252.50	16.47	18.60	23.30	28.90	2,698,658	1,092,132	23.8	0.078	0.097	0.121	106,467	234,760
St. Croix River	Fond du Lac (MN)	165.71	10.65											
	Grindstone Lake (MN)	248.33	16.19											
	Cedar Creek (MN)	303.33	19.88											
	Average	239.13	15.58	23.70	30.60	37.60	680,145	275,251	30.1	0.094	0.121	0.149	33,322	73,474
TOTAL							13.342.753	5.399.738		1.125	1.391	1.747	524.075	1.155.586
101712	All Sites Average	276.87	19.05				10,012,700	0,000,100		11.120	1.001		021,010	1,100,000
Note:														
	eric Deposition Program (NADP) n	nonitorina site	s that were us	sed to derive estimate	s of phosphorus	deposition for the	ne basin.							
	veighted calcium concentration for													
	s (special study conducted at the F							n the special stud	dy.					
	the phosphorus concentration in						nce sites: y = 0.00	371x - 0.4586 (y	is Total Phosph	norus in ug/L and x is NA	DP calcium in ug/L)			
	monitoring site is applied to a basin													
	wet year precipitation volume data									/ value,				
	50th percentile and the wet is the						ot. of Natural Reso	urces-Waters (20	003).					
	t part of the basin within the state's / 2.471 [1 ha = 2.471 acres]	s porders desi	gnated as "W	ater or "wetland" in t	ile GIS database	đ.								
[6] Deposition calcula	ation													
	[P] in rainfall x rainfall amount x				n (kg/yr) over b	asin								
	[P] deposition (kg/yr) over basin	x (1/basin are	ea) = P depos	sition kg/ha/yr										
	is that part of the Mississippi dowr													
[8] Upper Mississippi	is that part of the Mississippi upstr	ream of where	tne St.Croix	River merges with the	Mississippi.									

Table 5 Estimated Dry Phosphorus Deposition to Minnesota Basins

	T.	1	1			ı	T	T	T-1-1	I Barda Water I	D ' W-4	0/ - (T - 1 - 1	Discourie and	Discoult come
	XRF	Total	Total		Course Denosition	Fine Denosition	Course Deposition	Fine Denosition	Total Phosphorus	Basin Waters and Wetland			Phosphorus Deposition to	Phosphorus Deposition to
Basin	Station [1]	Ca conc. [2]			Velocity [4]	Velocity [4]	Rate [5]	Rate [5]	Deposition [6]	Area [7a]	Area [7b]	Area	Waters and Wetlands	Waters and Wetlands
		(ug/m3)	(ug/m3)		(cm/sec)	(cm/sec)	(kg ha ⁻¹ yr ⁻¹)	(kg ha ⁻¹ yr ⁻¹)	(kg ha ⁻¹ yr ⁻¹)	(acres)	(hectares)		(kg/yr)	(lb/yr)
O de Bire							2015		0.014	0.1.500				
Cedar River	Albert Lea	1.355	0.039		3.0	0.5	0.215	0.026	0.241	24,523	9,924	3.7	2,390	5,270
Des Moines River	Pipestone	0.386	0.011		3.0	0.5	0.061	0.007	0.069	53,771	21,761	5.5	1,493	3,293
									7,77	33,111			.,,	5,-53
Lake Superior	Virginia (Site 7554)	0.603	0.017		3.0	0.5	0.096	0.012						
	Duluth - Lincoln Sch.	0.249	0.007		3.0	0.5	0.040	0.005						
	Silver Bay Virginia (Site 1300)	0.241 0.216	0.007 0.006		3.0 3.0	0.5 0.5	0.038 0.034	0.005 0.004						
	Duluth - wdse radio	0.115	0.003		3.0	0.5	0.034	0.002						
	Hibbing	0.086	0.002		3.0	0.5	0.014	0.002						
	Average	0.252	0.007				0.040	0.005	0.045	1,312,101	531,000	33.3	23,753	52,376
Minnesote Birms	North Mandata	0.740	0.004		3.0	0.5	0.447	0.044						
Minnesota River	North Mankato Brandon Township	0.740 0.430	0.021 0.012		3.0	0.5 0.5	0.117 0.068	0.014 0.008						
	Granite Falls	0.430	0.012		3.0	0.5	0.063	0.008						
	Willmar	0.291	0.008		3.0	0.5	0.046	0.006						
	Swift County	0.284	0.008		3.0	0.5	0.045	0.005						
	Average	0.428	0.012				0.068	0.008	0.076	742,441	300,462	7.8	22,858	50,402
Missississi I suuss (0)	1 Deahastas	0.050	0.010		2.0	0.5	0.405	0.042						
Mississippi, Lower [8]	Rochester Goodhue County	0.659 0.633	0.019 0.018		3.0 3.0	0.5 0.5	0.105 0.100	0.013 0.012						
	Apple Valley	0.445	0.013		3.0	0.5	0.071	0.009						
	Winona	0.344	0.010		3.0	0.5	0.055	0.007						
	Average	0.520	0.015				0.083	0.010	0.092	204,450	82,740	29.7	7,650	16,868
Missississi Usass (O)	1 Ct David Bad David Dd	1.324	0.038		3.0	0.5	0.210	0.025						
iviississippi, Upper [9]	St. Paul - Red Rock Rd. Minneapolis Library	0.729	0.036		3.0	0.5	0.210	0.025						
	St. Paul - ross ave	0.577	0.021		3.0	0.5	0.092	0.011						
	Bemidji	0.394	0.011		3.0	0.5	0.062	0.008						
	Minneapolis - river parkway	0.350	0.010		3.0	0.5	0.056	0.007						
	St. Paul - Harding High Sch.	0.346	0.010		3.0	0.5	0.055	0.007						
	Minneapolis Elk River	0.308 0.298	0.009		3.0 3.0	0.5 0.5	0.049 0.047	0.006 0.006						
	Fort Ripley	0.298	0.009		3.0	0.5	0.047	0.005						
	Alexandria	0.254	0.007		3.0	0.5	0.043	0.005						
	Hutchinson	0.243	0.007		3.0	0.5	0.039	0.005						
	St. Cloud	0.239	0.007		3.0	0.5	0.038	0.005						
	St. Michael	0.236	0.007		3.0	0.5	0.037	0.005						
	Grand Rapids	0.201	0.006		3.0	0.5	0.032	0.004						
	Little Falls Average	0.160 0.395	0.005 0.011		3.0	0.5	0.025 0.063	0.003	0.070	3.826.925	1.548.735	5.1	108.811	239.928
										5,525,525	.,,		, .	
Missouri	Pipestone	0.386	0.011		3.0	0.5	0.061	0.007	0.069	29,691	12,016	2.6	825	1,818
Data Diana	Wassand	0.000	0.011		2.0	0.5	0.004	0.007						
Rainy River	Warroad I Falls	0.382 0.103	0.011		3.0 3.0	0.5 0.5	0.061 0.016	0.007 0.002						
	Average		0.007		0.0	0.0	0.038	0.005	0.043	3,770,048	1,525,718	52.4	65,761	145,003
Red River	Fergus Falls	0.683	0.020		3.0	0.5	0.108	0.013						
	Moorhead High School	0.678	0.020		3.0	0.5	0.107	0.013						
	Perham Average	0.499 0.620	0.014 0.018		3.0	0.5	0.079 0.098	0.010 0.012	0.110	2.698.658	1.092.132	23.8	120.376	265.430
	Average	0.020	0.010				0.000	0.012	0.110	2,000,000	1,002,102	20.0	120,010	200,400
St. Croix River	West Lakeland	0.204	0.006		3.0	0.5	0.032	0.004						
	Pine County - sandstone	0.111	0.003		3.0	0.5	0.018	0.002						
TOTAL	Average	0.158	0.005				0.025	0.003	0.028 0.843	680,145 13,342,753	275,251 5,399,738	30.1	7,711 361,629	17,002 797,391
Note:									0.843	13,342,753	5,399,738		361,629	797,391
	e Air Toxics Monitoring Study (XRF) me	onitorina sites	that were us	sed to	derive estimates of ph	nsphorus depositio	n for the basin							
	concentration for the monitoring station					Dispriorus acpositio	IT for the basin.							
	entrations were calculated using the ca					the special study of	onducted at the Fernb	erg, Marcell, Camp	Ripley, and Lambe	erton sites.				
Dry deposition was	s assumed to contain the same chemic	cal composition	on as wet dep	oositio	 The phosphorus co 	ncentrations were	calculated per the folio	wing regression eq	uation y = (0.0289x	:)				
	monitoring site is applied to a basin, the								III ah aaataa					
[4] The deposition vel[5] Course deposition	locities are based on recent estimates	ioi pnosphor	us deposition	ın Flo	niua and personal com	munications with I	iluen Meyers, NOAA,	Oak Ridge Nationa	Laboratory.					
lol comae nehosilion	[P] concentration x PM10 course siz	e fraction in r	ercent x cou	rse de	position velocity x unit	conversion factors	= Course P deposition	n (kg/ha/yr) over ha	sin.	+				
	The PM10 course size fraction (>2.5									o-located PM2.5 and	PM10 monitors			
[5] Fine deposition ca	alculation													
	[P] concentration x PM10 fine size fr	action in perd	ent x fine de	positio	on velocity x unit conve	rsion factors = Fine	P deposition (kg ha	1 yr-1) over basin.						
TOT T	The PM10 fine size fraction (<2.5) w			f the t	otal PM10. PM10 size	fraction was calcul	ated from the five mor	nitoring site in Mine	sota that have co-lo	cated PM2.5 and PM	M10 monitors.		-	
	sum of course deposition rate and fine			r" c - "	Wotland" in the CIC :	tahasa								
	t part of the basin within the state's box s / 2.471 [1 ha = 2.471 acres]	uers designa	ileu as "Wate	ı or"	vvedano in the GIS da	lauase.								
	is that part of the Mississippi downstre	am of where	the St.Croix	River	merges with the Missis	sippi.								
	is that part of the Mississippi upstream													

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 22

TOTAL P Deposition

Estimates of average "total" (wet + dry) phosphorus deposition range from $\sim 0.102~{\rm kg~ha^{-1}~yr^{-1}}$ in the Rainy River basin (dry year) to 0.513 kg ha⁻¹ yr⁻¹ in the Cedar River basin (wet year) (Table 6). The largest phosphorus loading of $\sim 299,044~{\rm kg/yr}$ is found in the Upper Mississippi basin.

As noted in Table 6, dry deposition could only be estimated for an "average" year due to the lack of available data for estimating deposition during a wet or dry year. Therefore, total (wet + dry) estimates for the dry, average, and wet years for each basin in Table 6 use the same dry deposition value, which adds uncertainty to the deposition estimates and therefore the results from Table 6 should be used cautiously.

Table 6
Estimated Total Phosphorus Deposition to Minnesota Basins

Name					timatoa	. Otal i	Toophore	Dopot			.u Du		Waters or	nd Watland	Pacin Loadi	na Estimata	
Low Average High Deprecipitation Precipitation Pre						Dry Voor	Average Veer	Wat Voor			0/ of	Des					Voor
Procipitation Procipitatio		Low	Avorago	High													
Propertion Proceptorus P					Dry				Baein Watere	Racin Watere							
Basin Deposition Depositi																	
Content Cont	Rasin																
Ceglar River	Dasiii				•												
Codar River 0.1815 0.2118 0.2725 0.2408 0.4223 0.4528 0.5133 24.523 9.924 3.7 4.191 9.241 4.492 9.905 5.065 11.233 Des Moines River 0.1452 0.1848 0.2428 0.0686 0.2138 0.2534 0.3114 53.771 21.761 5.5 4.852 10.256 5.514 12.156 6.777 14.944 Lake Superior 0.0765 0.0873 0.1053 0.0447 0.1212 0.1320 0.1501 1.312.101 531.000 33.3 64.382 141.962 70.18 154.610 79.677 175.688 Minnesola River 0.1458 0.1554 0.2256 0.0761 0.2219 0.2615 0.3057 742.441 300.462 7.8 66,672 147.011 76.667 173.240 91.850 202.529 Mississippl, Lower [8] 0.1253 0.15445 0.1847 0.0925 0.2177 0.2470 0.2771 20.4450 82.740 5.1 18.016 39.725 20.435 45.068 22.930 50.561 Mississippl, Lower [8] 0.1253 0.15445 0.1847 0.0925 0.2177 0.2470 0.2771 20.4450 82.740 5.1 18.016 39.725 20.435 45.068 22.930 50.561 Mississippl, Lower [8] 0.1253 0.15445 0.1847 0.0925 0.2177 0.2470 0.2771 20.4450 82.740 5.1 18.016 39.725 20.435 45.068 22.930 50.561 Mississippl, Lower [8] 0.1253 0.15445 0.1847 0.0925 0.2177 0.2470 0.2771 20.4450 82.740 5.1 18.016 39.725 20.435 45.068 22.930 50.561 Mississippl, Lower [8] 0.1253 0.15445 0.1847 0.0925 0.2177 0.2470 0.2771 20.4450 82.740 5.1 18.016 39.725 20.435 45.068 22.930 50.561 Mississippl, Lower [8] 0.1052 0.1755 0.2340 0.0686 0.2079 0.2481 0.3035 26.091 1.2016 2.6 2.497 5.507 2.981 6.673 3.367 29.904 669.381 Mississippl, Lower [8] 0.1052 0.1755 0.2240 0.0686 0.2079 0.2481 0.1021 0.1121 0.1277 3.770.048 1.525.716 52.4 155.792 343.520 171.055 377.197 194.776 429.485 Mississippl Lower [8] 0.1052 0.0690 0.069											[2]						
Des Moines River 0.1452 0.1848 0.2428 0.0686 0.2138 0.2534 0.3114 53,771 2.1,761 5.5 4.852 10.258 5.514 12.159 6.777 14.944 Lake Superior 0.0765 0.0873 0.1063 0.0447 0.1212 0.1320 0.1501 1,312,101 531,000 33.3 64.382 141,962 70,118 154,610 79,677 175,689 Minnesota River 0.1458 0.1854 0.2296 0.0761 0.2219 0.2615 0.3057 742,441 300,462 7.8 66,672 147,011 78,567 173,240 91,850 202,529 Mississippl, Lower (8) 0.1253 0.1545 0.1647 0.0925 0.2177 0.2470 0.2771 204,450 62,740 5.1 18,016 33,725 20,435 45,058 22,930 50,561 Mississippl, Upper (9) 0.0899 0.1066 0.1228 0.0703 0.1512 0.1709 0.1931 3.826,925 1,548,735 2.97 234,154 516,309 264,688 583,570 299,044 656,331 Mississippl, Upper (9) 0.0890 0.0960 0.0466 0.0431 0.1021 0.1121 0.1277 3,770,048 1,525,718 52.4 155,792 343,520 171,005 377,197 194,778 429,485 Red River 0.0978 0.0575 0.1209 0.1102 0.1880 0.2077 0.2311 2.088,656 1.002,132 2.38 205,367 452,835 226,843 500,190 225,432 566,813 St. Croix River 0.0938 0.1211 0.1488 0.0260 0.1218 0.1491 0.1788 680,145 275,251 30,1 33,518 73,908 41,032 90,476 48,655 107,224 State Wilde Totals		(kg na yr)	(kg na yr)	(kg na yr)	(kg na yr)	(kg na yr)	(kg na yr)	(kg na yr)	(acres)	(nectares)		(kg/yr)	(ID/yr)	(kg/yr)	(ID/yr)	(kg/yr)	(ID/yr)
Des Moines River 0.1452 0.1848 0.2428 0.0686 0.2138 0.2534 0.3114 53,771 2.1,761 5.5 4.852 10.258 5.514 12.159 6.777 14.944 Lake Superior 0.0765 0.0873 0.1063 0.0447 0.1212 0.1320 0.1501 1,312,101 531,000 33.3 64.382 141,962 70,118 154,610 79,677 175,689 Minnesota River 0.1458 0.1854 0.2296 0.0761 0.2219 0.2615 0.3057 742,441 300,462 7.8 66,672 147,011 78,567 173,240 91,850 202,529 Mississippl, Lower (8) 0.1253 0.1545 0.1647 0.0925 0.2177 0.2470 0.2771 204,450 62,740 5.1 18,016 33,725 20,435 45,058 22,930 50,561 Mississippl, Upper (9) 0.0899 0.1066 0.1228 0.0703 0.1512 0.1709 0.1931 3.826,925 1,548,735 2.97 234,154 516,309 264,688 583,570 299,044 656,331 Mississippl, Upper (9) 0.0890 0.0960 0.0466 0.0431 0.1021 0.1121 0.1277 3,770,048 1,525,718 52.4 155,792 343,520 171,005 377,197 194,778 429,485 Red River 0.0978 0.0575 0.1209 0.1102 0.1880 0.2077 0.2311 2.088,656 1.002,132 2.38 205,367 452,835 226,843 500,190 225,432 566,813 St. Croix River 0.0938 0.1211 0.1488 0.0260 0.1218 0.1491 0.1788 680,145 275,251 30,1 33,518 73,908 41,032 90,476 48,655 107,224 State Wilde Totals	Carlan Diver	0.4045	0.0440	0.0705	0.0400	0.4000	0.4500	0.5400	04 500	0.004	2.7	4.404	0.044	4 400	0.005	5.005	44.000
Lake Superior 0.0765 0.0873 0.1053 0.0447 0.1212 0.1320 0.1501 1.312,101 531,000 33.3 64.382 141,962 70.118 154,610 79,677 175,689 Minnesota River 0.1458 0.1854 0.2296 0.0761 0.2219 0.2615 0.3057 742,441 300,462 7.8 66,672 147,011 78,567 173,240 91,850 202,529 Mississippi, Lower [8] 0.1253 0.1545 0.1647 0.0925 0.2177 0.2470 0.2771 20,4450 82,740 5.1 18,016 39,725 20,435 45,098 22,930 50,561 Mississippi, Lower [8] 0.0809 0.1006 0.1228 0.0703 0.1512 0.1709 0.1931 3.826,925 1.548,735 29.7 234,154 516,309 264,656 853,570 299,044 659,391 Mission River 0.1392 0.1795 0.2349 0.0686 0.2079 0.2481 0.3035 29,961 12,016 2.6 2,497 5.507 2.981 6.573 3.647 8.042 8.04	Cedar River	0.1815	0.2118	0.2725	0.2408	0.4223	0.4526	0.5133	24,523	9,924	3.7	4,191	9,241	4,492	9,905	5,095	11,233
Lake Superior 0.0765 0.0873 0.1053 0.0447 0.1212 0.1320 0.1501 1.312,101 531,000 33.3 64.382 141,962 70.118 154,610 79,677 175,689 Minnesota River 0.1458 0.1854 0.2296 0.0761 0.2219 0.2615 0.3057 742,441 300,462 7.8 66,672 147,011 78,567 173,240 91,850 202,529 Mississippi, Lower [8] 0.1253 0.1545 0.1647 0.0925 0.2177 0.2470 0.2771 20,4450 82,740 5.1 18,016 39,725 20,435 45,098 22,930 50,561 Mississippi, Lower [8] 0.0809 0.1006 0.1228 0.0703 0.1512 0.1709 0.1931 3.826,925 1.548,735 29.7 234,154 516,309 264,656 853,570 299,044 659,391 Mission River 0.1392 0.1795 0.2349 0.0686 0.2079 0.2481 0.3035 29,961 12,016 2.6 2,497 5.507 2.981 6.573 3.647 8.042 8.04	Dan Maines Bires	0.4450	0.4040	0.0400	0.0000	0.0400	0.0504	0.2444	F0 774	04.704		4.050	40.050	E E44	40.450	0.777	11.011
Minesota River 0.1458 0.1854 0.2286 0.0761 0.2219 0.2615 0.3057 742,441 300,462 7.8 66.672 147,011 78.567 173,240 91,850 202,529 Mississippl, Lower [8] 0.1253 0.1545 0.1847 0.0925 0.2177 0.2470 0.2771 204,450 82,740 5.1 18,016 39,725 20,435 45,058 22,930 50,561 Mississippl, Upper [9] 0.0809 0.1006 0.1228 0.0703 0.1512 0.1709 0.1931 3.826,925 1,548,735 29.7 234,154 516,309 264,658 583,570 299,044 669,391 Missouri River 0.1392 0.1795 0.2349 0.0686 0.2079 0.2481 0.3035 29,691 12,016 2.6 2,497 5,507 2,981 6,573 3,647 8,042 Rainy River 0.0590 0.0890 0.0846 0.0431 0.1021 0.1121 0.1277 3,770,048 1,525,718 52.4 155,792 343,320 171,085 377,197 194,778 429,485 864 River 0.0778 0.0975 0.1209 0.1102 0.1880 0.2077 0.2311 2,698,658 1,092,132 23,8 205,367 452,835 226,843 500,190 252,432 556,613 S1 Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680,145 275,261 30,1 33,518 73,908 41,032 90,476 48,655 107,284 S1 450 450 450 450 450 450 450 450 450 450	Des Moines River	0.1452	0.1040	0.2420	0.0000	0.2130	0.2554	0.3114	55,771	21,701	5.5	4,052	10,256	5,514	12,130	0,777	14,944
Minesota River 0.1458 0.1854 0.2286 0.0761 0.2219 0.2615 0.3057 742,441 300,462 7.8 66.672 147,011 78.567 173,240 91,850 202,529 Mississippl, Lower [8] 0.1253 0.1545 0.1847 0.0925 0.2177 0.2470 0.2771 204,450 82,740 5.1 18,016 39,725 20,435 45,058 22,930 50,561 Mississippl, Upper [9] 0.0809 0.1006 0.1228 0.0703 0.1512 0.1709 0.1931 3.826,925 1,548,735 29.7 234,154 516,309 264,658 583,570 299,044 669,391 Missouri River 0.1392 0.1795 0.2349 0.0686 0.2079 0.2481 0.3035 29,691 12,016 2.6 2,497 5,507 2,981 6,573 3,647 8,042 Rainy River 0.0590 0.0890 0.0846 0.0431 0.1021 0.1121 0.1277 3,770,048 1,525,718 52.4 155,792 343,320 171,085 377,197 194,778 429,485 864 River 0.0778 0.0975 0.1209 0.1102 0.1880 0.2077 0.2311 2,698,658 1,092,132 23,8 205,367 452,835 226,843 500,190 252,432 556,613 S1 Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680,145 275,261 30,1 33,518 73,908 41,032 90,476 48,655 107,284 S1 450 450 450 450 450 450 450 450 450 450	Latra Comanian	0.0705	0.0070	0.4050	0.0447	0.4040	0.4000	0.4504	4 242 404	E24 000	22.2	04.000	444.000	70 440	454.040	70.077	475.000
Mississippl, Lower [8] 0.1253 0.1545 0.1847 0.0925 0.2177 0.2470 0.2771 204,450 82,740 5.1 18,016 39,725 20,435 45,056 22,930 50,561 Mississippl, Upper [9] 0.0809 0.1006 0.1228 0.0703 0.1512 0.1709 0.1931 3.826,925 1,548,735 29,7 234,154 516,309 284,658 583,570 299,044 659,391 Mission River 0.1392 0.1795 0.2349 0.0666 0.2079 0.2481 0.3035 29,691 12,016 2.6 2,497 5,507 2,961 6,573 3,647 8,042 Rainy River 0.0590 0.0690 0.0846 0.0431 0.1021 0.1121 0.1277 3,770,048 1,525,718 52.4 155,792 343,520 171,065 377,197 194,778 429,485 Red River 0.0778 0.0975 0.1209 0.1102 0.1880 0.2077 0.2311 2,688,658 1.092,132 23.8 205,367 452,835 226,843 500,190 252,432 556,613 S1. Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680,145 275,251 30,1 33,518 73,908 41,032 90,476 48,655 107,284 S148 Wide Totals 13,342,753 5,399,738 789,241 1,740,277 885,704 1,952,977 1,004,885 2,215,770 Note: 1) The phosphorus deposition rates from dry, average and well precipitation volume. Dry, average and well year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile requency value, the average is the observable of the calculation methods. Scale Table 4 for calculation methods. Scale Table 4 for calculation methods. Scale Table 4 for calculation phosphorus deposition rate for dry, average and well precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile requency value, the average is the dry of the percentile of the percentile requency value deposition of the value of the percentile of the perce	Lake Superior	0.0765	0.0873	0.1053	0.0447	0.1212	0.1320	0.1501	1,312,101	531,000	33.3	64,382	141,962	70,118	154,610	79,677	175,689
Mississippl, Lower [8] 0.1253 0.1545 0.1847 0.0925 0.2177 0.2470 0.2771 204,450 82,740 5.1 18,016 39,725 20,435 45,056 22,930 50,561 Mississippl, Upper [9] 0.0809 0.1006 0.1228 0.0703 0.1512 0.1709 0.1931 3.826,925 1,548,735 29,7 234,154 516,309 284,658 583,570 299,044 659,391 Mission River 0.1392 0.1795 0.2349 0.0666 0.2079 0.2481 0.3035 29,691 12,016 2.6 2,497 5,507 2,961 6,573 3,647 8,042 Rainy River 0.0590 0.0690 0.0846 0.0431 0.1021 0.1121 0.1277 3,770,048 1,525,718 52.4 155,792 343,520 171,065 377,197 194,778 429,485 Red River 0.0778 0.0975 0.1209 0.1102 0.1880 0.2077 0.2311 2,688,658 1.092,132 23.8 205,367 452,835 226,843 500,190 252,432 556,613 S1. Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680,145 275,251 30,1 33,518 73,908 41,032 90,476 48,655 107,284 S148 Wide Totals 13,342,753 5,399,738 789,241 1,740,277 885,704 1,952,977 1,004,885 2,215,770 Note: 1) The phosphorus deposition rates from dry, average and well precipitation volume. Dry, average and well year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile requency value, the average is the observable of the calculation methods. Scale Table 4 for calculation methods. Scale Table 4 for calculation methods. Scale Table 4 for calculation phosphorus deposition rate for dry, average and well precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile requency value, the average is the dry of the percentile of the percentile requency value deposition of the value of the percentile of the perce	Minnocoto Divor	0.1450	0.1054	0.2206	0.0761	0.2210	0.2615	0.2057	740 444	200.462	7.0	66 670	147.011	70 567	172 240	01.050	202 520
Missssppi. Upper [9] 0.0809 0.1006 0.1228 0.0703 0.1512 0.1709 0.1931 3.826.925 1.548,735 29.7 234,154 516,309 264.685 583,570 299.044 659,391 Misssour River 0.1392 0.1795 0.2349 0.0866 0.2079 0.2481 0.3035 29.691 12,016 2.6 2.497 5.507 2.981 6.573 3.647 8.042 Rainy River 0.0590 0.0690 0.0846 0.0431 0.1021 0.1121 0.1277 3.770,048 1.525,718 52.4 155,792 343,520 171,065 377,197 194,778 429,485 Red River 0.0778 0.0975 0.1209 0.1102 0.1880 0.2077 0.2311 2.698,658 1.092,132 23.8 205,367 452,835 226,843 500,190 252,432 556,613 St. Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680,145 275,251 30.1 33,518 73,908 41,032 90,476 48,655 107,284 State Wide Totals 1.000	Willinesola River	0.1436	0.1004	0.2290	0.0761	0.2219	0.2015	0.3057	742,441	300,462	1.0	00,072	147,011	10,301	173,240	91,050	202,529
Missssppi. Upper [9] 0.0809 0.1006 0.1228 0.0703 0.1512 0.1709 0.1931 3.826.925 1.548,735 29.7 234,154 516,309 264.685 583,570 299.044 659,391 Misssour River 0.1392 0.1795 0.2349 0.0866 0.2079 0.2481 0.3035 29.691 12,016 2.6 2.497 5.507 2.981 6.573 3.647 8.042 Rainy River 0.0590 0.0690 0.0846 0.0431 0.1021 0.1121 0.1277 3.770,048 1.525,718 52.4 155,792 343,520 171,065 377,197 194,778 429,485 Red River 0.0778 0.0975 0.1209 0.1102 0.1880 0.2077 0.2311 2.698,658 1.092,132 23.8 205,367 452,835 226,843 500,190 252,432 556,613 St. Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680,145 275,251 30.1 33,518 73,908 41,032 90,476 48,655 107,284 State Wide Totals 1.000	Mississippi Louer [0]	0.1052	0.1545	0.1047	0.0005	0.0477	0.2470	0.0771	204.450	92.740	E 1	10.016	20.725	20.425	4E 0E0	22.020	E0 E61
Missour River 0.1392 0.1795 0.2349 0.0686 0.2079 0.2481 0.3035 29.691 12.016 2.6 2.497 5.507 2.981 6.573 3.647 8.042 Rainy River 0.0590 0.0690 0.0846 0.0431 0.1021 0.1121 0.1277 3.770.048 1.525.718 52.4 155.792 343.520 171.065 377.197 194.778 429.485 Red River 0.0778 0.0975 0.1209 0.1102 0.1880 0.2077 0.2311 2.698.658 1.092.132 23.8 205.367 452.835 226.843 500.190 2.52.432 556.613 St. Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680.145 275.251 30.1 33,518 73.908 41,032 90.476 48.655 107.284 State Wide Totals 11.1 0.1488 0.0280 0.1218 0.1491 0.1768 13.342.753 5.399.738 789.241 1.740.277 885,704 1.952.977 1.004.885 2.215.770 Note: 11.1 The phosphorus deposition rates from dry, average and wet precipitation volumes. Dry, average and wet year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the State of Minnesota, State Climatology Office, Dept. of Natural Resources-Waters (2003). There is insufficient Information to estimate deposition + dry deposition	iviississippi, Lower [o]	0.1255	0.1343	0.1047	0.0925	0.2177	0.2470	0.2771	204,450	02,740	5.1	10,010	39,725	20,435	45,056	22,930	50,561
Missour River 0.1392 0.1795 0.2349 0.0686 0.2079 0.2481 0.3035 29.691 12.016 2.6 2.497 5.507 2.981 6.573 3.647 8.042 Rainy River 0.0590 0.0690 0.0846 0.0431 0.1021 0.1121 0.1277 3.770.048 1.525.718 52.4 155.792 343.520 171.065 377.197 194.778 429.485 Red River 0.0778 0.0975 0.1209 0.1102 0.1880 0.2077 0.2311 2.698.658 1.092.132 23.8 205.367 452.835 226.843 500.190 2.52.432 556.613 St. Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680.145 275.251 30.1 33,518 73.908 41,032 90.476 48.655 107.284 State Wide Totals 11.1 0.1488 0.0280 0.1218 0.1491 0.1768 13.342.753 5.399.738 789.241 1.740.277 885,704 1.952.977 1.004.885 2.215.770 Note: 11.1 The phosphorus deposition rates from dry, average and wet precipitation volumes. Dry, average and wet year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the State of Minnesota, State Climatology Office, Dept. of Natural Resources-Waters (2003). There is insufficient Information to estimate deposition + dry deposition	Mississippi Hanar [0]	0.0000	0.1006	0.1000	0.0702	0.1510	0.1700	0.1021	2 026 025	1 540 725	20.7	224 154	E16 200	264 659	E02 E70	200.044	650 201
Red River 0.0590 0.0690 0.0846 0.0431 0.1021 0.1121 0.1277 3,770,048 1.525,718 52.4 155,792 343,520 171,065 377,197 194,778 429,485 Red River 0.0978 0.0975 0.1209 0.1102 0.1880 0.2077 0.2311 2.698,658 1.092,132 23.8 205,367 452,835 226,843 500,190 252,432 556,613 St. Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680,145 275,251 30.1 33,518 73,908 41,032 90,476 48,655 107,284 State Wide Totals 13,342,753 5,399,738 789,241 1,740,277 885,704 1,952,977 1.004,885 2,215,770 Note: (1) The phosphorus deposition rates from dry, average and wet precipitation volumes. Dry, average and wet year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the State of Minnesota, State Climatology Office, Dept. of Natural Resources-Waters (2003). See Table 4 for calculation methods. 21 Includes course and fine of ye deposition is sentinate deposition of a dry or wet year; therefore, dry deposition percentile information to estimate deposition for a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year. [32] Total deposition = low percipitation deposition = werrage precipitation phosphorus deposition = high precipitation phosphorus deposition in dry deposition [32] Total deposition = light percipitation phosphorus deposition = werrage in the state is borders designated as water or wetland surface waters. The low precipitation deposition rate + dry deposition rate was used to calculate this total. [33] How Provided the de	iviississippi, oppei [9]	0.0009	0.1006	0.1220	0.0703	0.1512	0.1709	0.1931	3,020,923	1,540,735	29.7	234,134	516,309	204,000	503,570	299,044	059,591
Red River 0.0590 0.0690 0.0846 0.0431 0.1021 0.1121 0.1277 3,770,048 1.525,718 52.4 155,792 343,520 171,065 377,197 194,778 429,485 Red River 0.0978 0.0975 0.1209 0.1102 0.1880 0.2077 0.2311 2.698,658 1.092,132 23.8 205,367 452,835 226,843 500,190 252,432 556,613 St. Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680,145 275,251 30.1 33,518 73,908 41,032 90,476 48,655 107,284 State Wide Totals 13,342,753 5,399,738 789,241 1,740,277 885,704 1,952,977 1.004,885 2,215,770 Note: (1) The phosphorus deposition rates from dry, average and wet precipitation volumes. Dry, average and wet year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the State of Minnesota, State Climatology Office, Dept. of Natural Resources-Waters (2003). See Table 4 for calculation methods. 21 Includes course and fine of ye deposition is sentinate deposition of a dry or wet year; therefore, dry deposition percentile information to estimate deposition for a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year. [32] Total deposition = low percipitation deposition = werrage precipitation phosphorus deposition = high precipitation phosphorus deposition in dry deposition [32] Total deposition = light percipitation phosphorus deposition = werrage in the state is borders designated as water or wetland surface waters. The low precipitation deposition rate + dry deposition rate was used to calculate this total. [33] How Provided the de	Miccouri Divor	0.1202	0.1705	0.2240	0.0696	0.2070	0.2404	0.2025	20.604	12.016	2.6	2.407	E E07	2.001	6 572	2 6 4 7	0.042
Red River 0.0778 0.0975 0.1209 0.1102 0.1880 0.2077 0.2311 2.698,658 1.092,132 23.8 205,367 452,835 226,843 500,190 252,432 556,613 St. Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680,145 275,251 30.1 33,518 73,908 41,032 90,476 48,655 107,284 1.000 1.0	IVIISSOUTI RIVEI	0.1392	0.1795	0.2349	0.0000	0.2079	0.2401	0.3035	29,091	12,010	2.0	2,497	5,507	2,901	0,573	3,047	0,042
Red River 0.0778 0.0975 0.1209 0.1102 0.1880 0.2077 0.2311 2.698,658 1.092,132 23.8 205,367 452,835 226,843 500,190 252,432 556,613 St. Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680,145 275,251 30.1 33,518 73,908 41,032 90,476 48,655 107,284 1.000 1.0	Dainy Divor	0.0500	0.0600	0.0046	0.0424	0.1001	0.1121	0.1077	2 770 040	1 505 710	E2 4	1EE 700	242 520	171 OGE	277 107	104 779	420.495
St. Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680,145 275,251 30.1 33,518 73,908 41,032 90,476 48,655 107,284 State Wide Totals 13,342,753 5,399,738 789,241 1,740,277 885,704 1,952,977 1,004,885 2,215,770 Note: [1] The phosphorus deposition rates from dry, average and wet precipitation volumes. Dry, average and wet year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the State of Minnesota, State Climatology Office, Dept. of Natural Resources-Waters (2003). [2] Includes course and fine dry deposition, See Table 5 for calculation methods. Calculations assumed to be for an "average" precipitation phosphorus deposition of a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year. [3a] Total deposition = low precipitation phosphorus deposition + dry deposition [3b] Total deposition = average precipitation deposition had deposition in the state's borders designated as "Water" or "Wetland" in the GIS database. Surface water included open water, woody wetlands and emergent herbaceous wetlands as defined by the USGS with a minimum mapping unit of 30 meters. [4b] Hectares = acres / 2.471 [1 ha = 2.471 acres] [5] The precipitation are to the basin water or wetland surface water. [6a] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry deposition rate was used to calculate this total. [6b] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry deposition rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry deposition rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg =	Rainy River	0.0590	0.0690	0.0040	0.0431	0.1021	0.1121	0.1277	3,770,046	1,525,716	52.4	155,792	343,520	171,005	3//,19/	194,776	429,400
St. Croix River 0.0938 0.1211 0.1488 0.0280 0.1218 0.1491 0.1768 680,145 275,251 30.1 33,518 73,908 41,032 90,476 48,655 107,284 State Wide Totals 13,342,753 5,399,738 789,241 1,740,277 885,704 1,952,977 1,004,885 2,215,770 Note: [1] The phosphorus deposition rates from dry, average and wet precipitation volumes. Dry, average and wet year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the State of Minnesota, State Climatology Office, Dept. of Natural Resources-Waters (2003). [2] Includes course and fine dry deposition, See Table 5 for calculation methods. Calculations assumed to be for an "average" precipitation phosphorus deposition of a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year. [3a] Total deposition = low precipitation phosphorus deposition + dry deposition [3b] Total deposition = average precipitation deposition had deposition in the state's borders designated as "Water" or "Wetland" in the GIS database. Surface water included open water, woody wetlands and emergent herbaceous wetlands as defined by the USGS with a minimum mapping unit of 30 meters. [4b] Hectares = acres / 2.471 [1 ha = 2.471 acres] [5] The precipitation are to the basin water or wetland surface water. [6a] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry deposition rate was used to calculate this total. [6b] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry deposition rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry deposition rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg =	Ded Diver	0.0770	0.0075	0.4000	0.4400	0.4000	0.0077	0.0044	0.000.050	4 000 400	22.0	205 267	450.005	220 042	500 400	050.400	FFC C40
State Wide Totals 13,342,753 5,399,738 789,241 1,740,277 885,704 1,952,977 1,004,885 2,215,770	Red River	0.0776	0.0975	0.1209	0.1102	0.1000	0.2077	0.2311	2,090,000	1,092,132	23.0	205,367	452,635	220,043	500, 190	252,432	550,013
State Wide Totals 13,342,753 5,399,738 789,241 1,740,277 885,704 1,952,977 1,004,885 2,215,770	St. Craix Divor	0.0030	0.1011	0.1400	0.0200	0.1010	0.1401	0.1760	600 145	275 254	20.1	22 510	72 000	41.022	00.476	40 GEE	107 204
Note: [1] The phosphorus deposition rates from dry, average and wet precipitation volumes. Dry, average and wet year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the State of Minnesota, State Climatology Office, Dept. of Natural Resources-Waters (2003). [2] Includes course and fine dry deposition, See Table 5 for calculation methods. Calculations assumed to be for an "average" precipitation year. There is insufficient information to estimate deposition for a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year. [3a] Total deposition = low precipitation phosphorus deposition + dry deposition [3b] Total deposition = average precipitation deposition + dry deposition [3d] Total deposition = average precipitation hyposphorus deposition had yet deposition [3d] Total deposition = average precipitation phosphorus deposition had yet deposition [3d] Total deposition = average precipitation phosphorus deposition had yet deposition [3d] Total deposition = average precipitation phosphorus deposition had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation deposition = average [3d] [3d] Total deposition = average [3d] [3d] Total deposition = average [3d] [3d] Total deposition = average [3d] [3d] [3d] [3d] [3d] [3d] [3d] [3d]	St. Cloix Rivel	0.0936	0.1211	0.1400	0.0260	0.1210	0.1491	0.1700	000,143	275,251	30.1	33,316	73,906	41,032	90,476	40,000	107,204
Note: [1] The phosphorus deposition rates from dry, average and wet precipitation volumes. Dry, average and wet year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the State of Minnesota, State Climatology Office, Dept. of Natural Resources-Waters (2003). [2] Includes course and fine dry deposition, See Table 5 for calculation methods. Calculations assumed to be for an "average" precipitation year. There is insufficient information to estimate deposition for a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year. [3a] Total deposition = low precipitation phosphorus deposition + dry deposition [3b] Total deposition = average precipitation deposition + dry deposition [3d] Total deposition = average precipitation hyposphorus deposition had yet deposition [3d] Total deposition = average precipitation phosphorus deposition had yet deposition [3d] Total deposition = average precipitation phosphorus deposition had yet deposition [3d] Total deposition = average precipitation phosphorus deposition had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation had yet deposition [3d] Total deposition = average precipitation deposition = average [3d] [3d] Total deposition = average [3d] [3d] Total deposition = average [3d] [3d] Total deposition = average [3d] [3d] [3d] [3d] [3d] [3d] [3d] [3d]	Ctata Wida Tatala								12 242 752	E 200 720		700 244	1 740 277	005 704	1 052 077	1 004 995	2 245 770
[1] The phosphorus deposition rates from dry, average and wet precipitation volumes. Dry, average and wet year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the State of Minnesota, State Climatology Office, Dept. of Natural Resources-Waters (2003). See Table 4 for calculation methods. 2 Includes course and fine dry deposition, See Table 5 for calculation methods. Calculations assumed to be for an "average" precipitation year. There is insufficient information to estimate deposition for a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year. [3a] Total deposition = low precipitation phosphorus deposition + dry deposition 3c] Total deposition = high precipitation phosphorus deposition + dry deposition 3d] Basin area is that part of the basin within the state's borders designated as "Water" or "Wetland" in the GIS database. Surface water included open water, woody wetlands and emergent herbaceous wetlands as defined by the USGS National Landcover database (~1992). This is a landsat based raster data set developed by the USGS with a minimum mapping unit of 30 meters. [4b] Hectares = acres / 2.471 [1 ha = 2.471 acres] 5] The percentage of the total land area within a river basin that is designated as water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg = 2.205 ib)	State Wide Totals	1							13,342,733	5,599,756		709,241	1,740,277	000,704	1,932,977	1,004,665	2,215,770
[1] The phosphorus deposition rates from dry, average and wet precipitation volumes. Dry, average and wet year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the State of Minnesota, State Climatology Office, Dept. of Natural Resources-Waters (2003). See Table 4 for calculation methods. 2 Includes course and fine dry deposition, See Table 5 for calculation methods. Calculations assumed to be for an "average" precipitation year. There is insufficient information to estimate deposition for a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year. [3a] Total deposition = low precipitation phosphorus deposition + dry deposition 3c] Total deposition = high precipitation phosphorus deposition + dry deposition 3d] Basin area is that part of the basin within the state's borders designated as "Water" or "Wetland" in the GIS database. Surface water included open water, woody wetlands and emergent herbaceous wetlands as defined by the USGS National Landcover database (~1992). This is a landsat based raster data set developed by the USGS with a minimum mapping unit of 30 meters. [4b] Hectares = acres / 2.471 [1 ha = 2.471 acres] 5] The percentage of the total land area within a river basin that is designated as water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg = 2.205 ib)																	
[1] The phosphorus deposition rates from dry, average and wet precipitation volumes. Dry, average and wet year precipitation volume data based on the 1979-2002 period (using water years october-september). The dry period is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the State of Minnesota, State Climatology Office, Dept. of Natural Resources-Waters (2003). See Table 4 for calculation methods. 2 Includes course and fine dry deposition, See Table 5 for calculation methods. Calculations assumed to be for an "average" precipitation year. There is insufficient information to estimate deposition for a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year. [3a] Total deposition = low precipitation phosphorus deposition + dry deposition 3c] Total deposition = high precipitation phosphorus deposition + dry deposition 3d] Basin area is that part of the basin within the state's borders designated as "Water" or "Wetland" in the GIS database. Surface water included open water, woody wetlands and emergent herbaceous wetlands as defined by the USGS National Landcover database (~1992). This is a landsat based raster data set developed by the USGS with a minimum mapping unit of 30 meters. [4b] Hectares = acres / 2.471 [1 ha = 2.471 acres] 5] The percentage of the total land area within a river basin that is designated as water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg = 2.205 ib)	Note:																
is defined as the 10th percentile frequency value, the average is the 50th percentile and the wet is the 90th percentile. Derived by the State of Minnesota, State Climatology Office, Dept. of Natural Resources-Waters (2003). See Table 4 for calculation methods. See Table 5 for calculation methods. Calculations assumed to be for an "average" precipitation experience of the percentile of		neition rates from	n dry average ar	d wet precipitat	ion volumes - F)rv. averane and	l wet vear precip	itation volume d	ata hased on the	1979-2002 perio	d (usina	water vear	s october-sei	ntember) T	he dry neriod		
See Table 4 for calculation methods. [2] Includes course and fine dry deposition, See Table 5 for calculation methods. Calculations assumed to be for an "average" precipitation year. There is insufficient information to estimate deposition for a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year. [3a] Total deposition = low precipitation phosphorus deposition + dry deposition [3b] Total deposition = average precipitation deposition + dry deposition [3c] Total deposition = high precipitation phosphorus deposition + dry deposition [4a] Basin area is that part of the basin within the state's borders designated as "Water" or "Wetland" in the GIS database. Surface water included open water, woody wetlands and emergent herbaceous wetlands as defined by the USGS National Landcover database (~1992). This is a landsat based raster data set developed by the USGS with a minimum mapping unit of 30 meters. [4b] Hectares = acres / 2.471																	
[2] Includes course and fine dry deposition, See Table 5 for calculation methods. Calculations assumed to be for an "average" precipitation year. There is insufficient information to estimate deposition for a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year. [3a] Total deposition = low precipitation phosphorus deposition + dry deposition [3b] Total deposition = average precipitation deposition + dry deposition [3c] Total deposition = high precipitation phosphorus deposition + dry deposition [4a] Basin area is that part of the basin within the state's borders designated as "Water" or "Wetland" in the GIS database. Surface water included open water, woody wetlands and emergent herbaceous wetlands as defined by the USGS National Landcover database (~1992). This is a landsat based raster data set developed by the USGS with a minimum mapping unit of 30 meters. [4b] Hectares = acres / 2.471 [1 ha = 2.471 acres] [5] The percentage of the total land area within a river basin that is designated as water or wetland surface water. [6a] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The high precipitation deposition rate + dry depositon rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg = 2.205 lb] [8] Lower Mississippi is that part of the Mississippi downstream of where the St.Croix River merges with the Mississippi.			ichey value, the	average is the s	our percentile e	ind the wet is th	c John percentile	. Derived by the	Otate of Willings	ota, otate omnati	ology Oil	icc, Dept. c	i Natural ICC	3001003-440	itci3 (2000).		
There is insufficient information to estimate deposition for a dry or wet year; therefore, dry deposition is only estimated for what is assumed to be an "average" year. [3a] Total deposition = low precipitation phosphorus deposition + dry deposition [3b] Total deposition = high precipitation phosphorus deposition + dry deposition [4a] Basin area is that part of the basin within the state's borders designated as "Water" or "Wetland" in the GIS database. Surface water included open water, woody wetlands and emergent herbaceous wetlands as defined by the USGS National Landcover database (~1992). This is a landsat based raster data set developed by the USGS with a minimum mapping unit of 30 meters. [4b] Hectares = acres / 2.471 [1 ha = 2.471 acres] [5] The percentage of the total land area within a river basin that is designated as water or wetland surface water. [6a] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The high precipitation deposition rate + dry depositon rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg = 2.205 lb] [8] Lower Mississippi is that part of the Mississippi downstream of where the St.Croix River merges with the Mississippi.			on See Table 5 t	or calculation m	ethods Calcul	ations assumed	to be for an "ave	l erane" nrecinitat	ion vear								
[3a] Total deposition = low precipitation phosphorus deposition + dry deposition [3b] Total deposition = average precipitation deposition + dry deposition [3c] Total deposition = high precipitation phosphorus deposition + dry deposition [4a] Basin area is that part of the basin within the state's borders designated as "Water" or "Wetland" in the GIS database. Surface water included open water, woody wetlands and emergent herbaceous wetlands as defined by the USGS National Landcover database (~1992). This is a landsat based raster data set developed by the USGS with a minimum mapping unit of 30 meters. [4b] Hectares = acres / 2.471										verage" vear							
3b] Total deposition = average precipitation deposition + dry deposition						, ary aspesition	lo omy ocumator			rolugo you							
[3c] Total deposition = high precipitation phosphorus deposition + dry deposition [4a] Basin area is that part of the basin within the state's borders designated as "Water" or "Wetland" in the GIS database. Surface water included open water, woody wetlands and emergent herbaceous wetlands as defined by the USGS National Landcover database (~1992). This is a landsat based raster data set developed by the USGS with a minimum mapping unit of 30 meters. [4b] Hectares = acres / 2.471					00.1.011												
[4a] Basin area is that part of the basin within the state's borders designated as "Water" or "Wetland" in the GIS database. Surface water included open water, woody wetlands and emergent herbaceous wetlands as defined by the USGS National Landcover database (~1992). This is a landsat based raster data set developed by the USGS with a minimum mapping unit of 30 meters. [4b] Hectares = acres / 2.471 [1 ha = 2.471 acres] [5] The percentage of the total land area within a river basin that is designated as water or wetland surface water. [6a] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The high precipitation deposition rate + dry depositon rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg = 2.205 lb] [8] Lower Mississippi is that part of the Mississippi downstream of where the St.Croix River merges with the Mississippi.					osition												
by the USGS National Landcover database (~1992). This is a landsat based raster data set developed by the USGS with a minimum mapping unit of 30 meters. [4b] Hectares = acres / 2.471 [1 ha = 2.471 acres] [5] The percentage of the total land area within a river basin that is designated as water or wetland surface water. [6a] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The average precipitation deposition rate + dry depositon rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg = 2.205 lb] [8] Lower Mississippi is that part of the Mississippi downstream of where the St.Croix River merges with the Mississippi.						or "Wetland" in	the GIS database	e. Surface wate	r included open v	vater, woody wet	lands an	d emergent	t herbaceous	wetlands a	s defined		
[4b] Hectares = acres / 2.471 [1 ha = 2.471 acres] [5] The percentage of the total land area within a river basin that is designated as water or wetland surface water. [6a] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [6b] The total phosphorus deposition rate to the basin water or wetland surface waters. The average precipitation deposition rate + dry depositon rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The high precipitation deposition rate + dry depositon rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg = 2.205 lb] [8] Lower Mississippi is that part of the Mississippi downstream of where the St.Croix River merges with the Mississippi.																	
[5] The percentage of the total land area within a river basin that is designated as water or wetland surface water. [6a] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [6b] The total phosphorus deposition rate to the basin water or wetland surface waters. The average precipitation deposition rate + dry depositon rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The high precipitation deposition rate + dry depositon rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg = 2.205 lb] [8] Lower Mississippi is that part of the Mississippi downstream of where the St.Croix River merges with the Mississippi.									J								
[6a] The total phosphorus deposition rate to the basin water or wetland surface waters. The low precipitation deposition rate + dry depositon rate was used to calculate this total. [6b] The total phosphorus deposition rate to the basin water or wetland surface waters. The average precipitation deposition rate + dry depositon rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The high precipitation deposition rate + dry depositon rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg = 2.205 lb] [8] Lower Mississippi is that part of the Mississippi downstream of where the St.Croix River merges with the Mississippi.										i							
[6b] The total phosphorus deposition rate to the basin water or wetland surface waters. The average precipitation deposition rate + dry deposition rate was used to calculate this total. [6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The high precipitation deposition rate + dry deposition rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg = 2.205 lb] [8] Lower Mississippi is that part of the Mississippi downstream of where the St.Croix River merges with the Mississippi.																	
[6c] The total phosphorus deposition rate to the basin water or wetland surface waters. The high precipitation deposition rate + dry deposition rate was used to calculate this total. [7] Pounds = kilograms x 2.205 [1 kg = 2.205 lb] [8] Lower Mississippi is that part of the Mississippi downstream of where the St.Croix River merges with the Mississippi.																	
[7] Pounds = kilograms x 2.205 [1 kg = 2.205 lb] [8] Lower Mississippi is that part of the Mississippi downstream of where the St.Croix River merges with the Mississippi.																	
[8] Lower Mississippi is that part of the Mississippi downstream of where the St.Croix River merges with the Mississippi.								1.5 2.7 3000									
199 Upper Mississippi is that part of the Mississippi upstream of where the St.Croix River merces with the Mississippi.				tream of where	the St.Croix Riv	ver merges with	the Mississippi.									i	
	[9] Upper Mississippi is	that part of the M	lississippi upstre	am of where the	St.Croix River	merges with the	e Mississippi										

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 24

Phosphorus Loading Variability and Uncertainty

Variability in the Data

Wet Deposition

- Annual average precipitation was used to estimate wet phosphorus deposition. Precipitation can vary significantly from year to year. The estimate of phosphorus deposition in any given year could be significantly different from the annual average wet phosphorus deposition calculated in this project for each river basin. Therefore, the results of this project should be used cautiously in other applications.

Dry Deposition

- No adjustments were made in the estimation of dry deposition in a dry or a wet year. Data are not available at this time to derive estimates of dry deposition during different precipitation regimes. Variability in the amount of dry deposited phosphorus due to different moisture regimes was assumed to remain constant for this project.

Uncertainty in the Data

Wet Deposition

- Establishing the relationship of [P] and [Ca] in precipitation from a limited number of sites (4 reference sites) for a limited time period (2 years) introduces some uncertainty into the wet deposition calculations. It is assumed the two years during which the data were collected are representative precipitation years and were not unduly influenced by unique large storm events. The inclusion of more monitoring sites, for a longer period of time, would likely improve the data to provide a better relationship of [P] and [Ca] in precipitation.
- An individual monitoring site can provide representative data for the surrounding region if the site is adequately selected (NOAA-ARL, 2003). The four "reference" NADP sites used for the phosphorus-in-precipitation study, and the auxiliary NADP sites, are assumed to be representative for the various basins where they have been assigned. However, there is some uncertainty as to the representativeness of some monitoring sites to specific basins. For example, the Lamberton monitoring site is assumed to be representative for all of southwest Minnesota, including the Minnesota River basin which encompasses a large area from the

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 25

western border to where it joins the Mississippi River near the Twin Cities. We believe the application of the Lamberton monitoring site data to most of southwestern Minnesota is appropriate, but it does introduce some uncertainty into the calculations due to the large area of the state that is represented by this one monitoring site.

- Wet phosphorus deposition may be underestimated for the Red River basin due to the use of [Ca] in precipitation data from Icelandic State Park, North Dakota, which is on the west side of the Red River Valley. A station on the east side of the Red River Valley may have higher [Ca] in precipitation concentrations than Icelandic State Park due to prevailing winds carrying more dust from the valley to a monitoring site on the east side of the valley. We are not sure this is the case, but the location of Icelandic State Park on the west edge of the Red River valley introduces some uncertainty into the estimate for this basin.

Dry Deposition

- An individual monitoring site is not considered to be necessarily representative of the surrounding region because the controlling factors for dry deposition are surface driven and are not regionally representative (NOAA-ARL, 2003). However, in this application, it was assumed that the MPCA's air toxics monitoring sites were representative of large areas (i.e., the basins in which they were located or to where they were assigned) because they provide an estimate of ambient air PM10 concentrations as opposed to actually measuring dry deposition. There is some uncertainty associated with this assumption because it is possible that the PM10 and Ca concentrations measured on the filters are due to unique local factors that may not occur on a wide scale or in other parts of a river basin. In this case dry deposition could be under-or-overestimated for a specific river basin. The estimates of dry phosphorus deposition may also be under-or-overestimated by applying data collected from population centers to rural areas. The working assumption is that the factors resulting in PM10 and Ca concentrations at the monitoring sites occur on a wide scale or in other parts of the river basin. Again, there is uncertainty in this assumption.
- The relationship of [P] and [Ca] found in precipitation was assumed to be applicable to the particle (PM10) data and the [P] and [Ca] on the filters would be in a similar ratio as found in the precipitation. Currently there are no data supporting this assumption and therefore this assumption adds to the uncertainty in the estimate of dry deposited phosphorus.

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 26

Recommendations for Future Refinements

The following recommendations are made to improve the estimates of atmospheric (wet and dry) phosphorus deposition:

- 1. Additional one to two years of monitoring for [P] and [Ca] in precipitation to improve the ability to extrapolate the findings from the research sites to other locations in the state.
- 2. Additional sites should be included in the wet deposition monitoring network, particularly in southwest and western Minnesota, to identify significant differences in the [P] and [Ca] relationship due to regional differences, and further improve the ability to extrapolate the findings to other locations in the state.
- 3. Assess the variability in annual dry deposition in relation to changes in annual precipitation to determine the significance of this project assuming dry deposition is constant for low, average, and high precipitation years.
- 4. Analysis of the collected PM10 filters using an appropriate analytical method to determine phosphorus concentrations and use this data to determine if the [P] and [Ca] relationship on the filters is similar to, or different from, the [P] and [Ca] relationship in precipitation.
- 5. Additional particulate monitoring (TSP, PM10) in other areas of the state should be conducted, with a particular emphasis on rural areas and determine whether extrapolation of the particulate filter data to larger regions or river basins is appropriate.
- 6. A source apportionment study, using chemical mass balance or similar approach, for phosphorus should be conducted to determine if sources other than soil are significant, or could be significant, for phosphorus deposition.

Recommendations for Lowering Phosphorus Export

Soil dust is assumed to be the largest source of atmospheric phosphorus. Therefore, reducing soil dust, particularly from agricultural fields, through the application of best management practices (shelterbelts, no till planting, use of cover crops, etc.) would seem to be a high priority. Another potential activity on a much smaller and local scale to reduce soil dust might include the periodic wetting of exposed soil at large construction sites during dry periods to minimize soil dust being entrained into the air due to wind erosion.

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 27

Literature Cited

Axler, R.P., Rose, C. and C.A. Tikkanen. 1994. *Phytoplankton nutrient deficiency as related to atmospheric nitrogen deposition in northern Minnesota acid-sensitive lakes*. Canadian Journal of Fisheries and Aquatic Science: 51:1281-1296.

- Brook, J.R., Dann, T.F. and R.T. Burnett. 1997. *The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations.* Journal of the Air & Waste Management Association: 47:2-19.
- Brunner, U. and R. Bachofen. 2000. *Phosphorus cycle: Significance of atmospheric inputs*. Scope Newsletter, N°37-06/2000. 2p.
- Dixon, L.K., Heyl, M.G. and S.Murray. 1998. *Interpretation of bulk atmospheric deposition and stormwater quality data in the Tampa Bay region*. Tampa Bay Regional Planning Council, St. Petersburg, Fl 33702. Tampa Bay Estuary Program Report No. 04-98. Mote Marine Laboratory Technical Report No. 602. 70 p. + appendices.
- Engstrom, D.R. 2003. *Phosphorus in precipitation study, 1999 2001. Unpublished data.* St. Croix Watershed Research Station, Science Museum of Minnesota.
- Likens, G.E., Bormann, F.H., Hedin, L.O., Driscoll, C.T. and J.S. Eaton. 1990. *Dry deposition of sulfur: a 23-yr record for the Hubbard Brook Forest Ecosystem*. Tellus. 42B: 319-329.
- Lindbergh, S.E., Lovett, G.M., Richter, D.D. and D.W. Johnson. 1986. *Atmospheric deposition and canopy interaction of major ions in a forest*. Science 231:141-145
- Mau, D.P. and V.G. Christensen. 2001. Reservoir sedimentation studies to determine variability of phosphorus deposition in selected Kansas watersheds. U.S. Geological Survey, Water Resources Investigations Report. 9 p.
- Meyers, T.P. 2003. Personal communication regarding particle size fractions and associated deposition velocities, based on a recent study in Florida. September 15, 2003.
- Miller, S.M., Sweet, C.W., DePinto, J.V. and K.C. Hornbuckle. 2000. *Atrazine and nutrients in precipitation: Results from the Lake Michigan Mass Balance Study*. Environmental Science and Technology: 34:55-61.
- NOAA-ARL (National Oceanic and Atmospheric Administration, Air Resources Laboratory). 2003. *The atmospheric integrated monitoring network (AIRMon)*. Fact Sheet. 4 p.
- Pratt, G.C., Orr, E.J., Bock, D.C., Strassman, R.L., Fundine, D.W., Twaroski, C.J., Thornton, J.D. and T.P. Meyers. 1996. *Estimation of dry deposition of inorganics using filter pack data and inferred deposition velocity*. Environmental Science and Technology: 30:2168-2177.

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 28

- Robertson, D.M. 1996. Sources and transport of phosphorus in the western Lake Michigan drainages. U.S. Geological Survey, Fact Sheet FS-208-96. 4 p.
- Rose, W.J. 1993. Water and phosphorus budgets and trophic state, Balsam Lake, northwestern Wisconsin. U.S. Geological Survey Water-Resources Investigations Report 91-4125. 28 p.
- Swain, E. 2003. Personal communication regarding sample-by-sample regression using total phosphorus from the special phosphorus in precipitation study and NADP calcium.
- Vermont Agency of Natural Resources and New York State Department of Environmental Conservation. 2002. *Lake Champlain phosphorus TMDL*. Vermont Agency of Natural Resources, Dept. of Environmental Conservation, Waterbury VT. September 2002.
- Verry, E.S. and D.R. Timmons. 1977. *Precipitation nutrients in the open and under two forests in Minnesota*. Canadian Journal of Forest Research: 7:112-119.
- Wilson, B. 2003. Personal communication on atmospheric deposition estimates used by the Minnesota Pollution Control Agency in previous watershed modeling. Sept. 4, 2003.

Northern one-half to one-third of MN: 15 kg/km²·yr⁻¹ Central: 30+ kg/km²·yr⁻¹ Southern part of MN with wind erosion: 30 – 40 kg/km²·yr⁻¹

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 29

Appendix A

Phosphorus in Precipitation Study

(Conducted by the St. Croix Watershed Research Station) (Write-ups as received from the MPCA, September 2003)

INTRODUCTION

Four sites included4 sites (sample times, every 4 weeks), data logger to record precipitation data. MDN website. MDN program

SAMPLE HANDLING

One-liter Teflon sample bottle weights were etched onto bottle. Frontier Geosciences Inc. (Seattle, WA) were responsible for all acid washing of the Teflon sample bottles and sample trains (including inserts) using a perchloric-nitric acid cleaning procedure (claiming proprietary information on procedure). Sample bottles and trains were bagged and shipped by Frontier to each of the four sites. The 1-liter Teflon sample bottles were precharged with 20 ± 0.1 mL 10% v/v HCl preservative (final concentration of preservative = 1.13 N HCl) by Frontier Geosciences (high purity HCl was purchased from Seastar Chemicals cat. # BA-04-0500-certificate of analysis attached).

Sample operators at each of the four sites were responsible for changing the sample bottles at four-week intervals during the two-year study. However, at times, sample bottles were changed sooner due to sample overflow. Also, at times, sample bottles were changed later due to inclement weather, or replacement sample bottles were not available. In some instances, sample bottles were removed and a new sample bottle was not replaced until a later time resulting in missed precipitation collection. At each change out or sampling period, the site operator filled out a data sheet indicating start and stop times of each sample and any other notes that were appropriate.

When changed by the site operators, the one-liter Teflon sample bottles were shipped from each of the four sites to the St. Croix Watershed Research Station (SCWRS) via FedEx (next day). Upon

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 30

arrival at SCWRS, data sheets were verified and filed, while samples were weighed and recorded. Sample bottle weights (etched into each bottle) were noted and used to calculate the normality of each sample (sample weight including preservative minus sample bottle weight). Samples were refrigerated at 4°C until analyzed. Usually received sample bottles were held until a batch of 40 samples could be run for nutrients and/or trace metals.

LABORATORY ANALYSIS

Samples received at the St. Croix Watershed Research Station were digested and analyzed for Total Phosphorus and Total Nitrogen (TP/TN). Samples were also digested for trace metals and sent to the University of Minnesota Geochemistry Lab (Department of Geology and Geophysics) for trace metal analysis.

Nutrient Dual Digestion

A sample dual digestion (modified from Ameel et. al. and Jones, ND Dept. of Health. unpublished) for both total phosphorus and total nitrogen (TP/TN, unfiltered) was performed in 60-mL high density polyethylene (HDPE) acid washed bottles. 20 g (± 0.5 g) were weighed into a preweighed HDPE digestion bottle on an analytical balance; weights were recorded. Five mL of digestion solution (sodium hydroxide and potassium persulfate) was added. Bottles were loosely capped and autoclaved at 121 °C and 16 psi for 15 min. Samples were removed from the autoclave and cooled in a freezer for 20-30 minutes. When cooled, 0.5 mL of 11 N H2SO4 was added to each bottle. Bottles were again placed back into the autoclave for an additional 30 minutes at 121 °C and 16 psi. Samples were again cooled in a freezer and weighed back. Dilutions were calculated based on sample weight, reagent added, and weight loss during digestion.

Phosphorus calibration standards were diluted from a 250 μg P/L working stock standard. The working stock standard was diluted from a 25 mg P/L stock standard made by dissolving 0.1099 g primary standard grade anhydrous potassium phosphate monobasic (KH₂PO₄) that has been dried for one hour at 105 °C in 1000 mL DIW. Nitrate calibration standards were diluted from a 200.0 mg N/L stock standard made by dissolving 1.444 g potassium nitrate (KNO₂) in 1000 mL DIW.

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 31

Mixed quality control check standards (QCSPEX-Nut, SPEX CertiPrep, Inc., Metuchen, NJ) were purchased for both total phosphorus and total nitrogen and diluted to manufacture's specifications. A midrange and low check standard for total nitrogen was diluted to 10.0 and 0.30 mg N/L. Separate dilutions were made for total phosphorus check standards at 100, 25, and 5.0 µg P/L . Allowable recoveries for check standards were +/- 10% with some exceptions of the low TP check standard of 5.0 µg P/L. Since the detection limit of the Total Phosphorus method is close to 5.0 µg P/L, percent relative difference of this low check standard was allowed to be above 10 percent. Instrument blanks as well as procedural blanks were included during analysis and were required to be below 5.0 µg P/L. Over ten percent of the samples were run in duplicate (a duplicate sample is one which has a separate digestion from the original), and aside from a couple of samples, had a percent relative difference less than 10 (some duplicates were less than 5.0 µg P/L). Digestion efficiency standards for both nitrogen (glutamic acid, 1.00 and 8.00 mg N/L) and phosphorus (adenosine 5"-triphosphate disodium salt hydrate, 25 and 100 µg P/L) were included to verify complete conversion of organic species during digestion. Typically the Total Nitrogen efficiency standards were 20-30 percent more than expected (indicating a greater amount of conversion) and Total Phosphorus efficiency standards were usually at least 95% complete. Laboratory fortified samples and spikes were also included to verify no matrix interference and typically had a percent relative difference from the expected value of less than 10. All calibration and check standards as well as blanks, samples, and duplicates were digested in the same manner before analysis.

Total nitrogen analyses were determined on a QuickChem 8000 dual-channel nutrient autoanlayzer (Lachat Instruments, Milwaukee, WI). During the digestion, Organic-N and Ammonium-N are converted to nitrate+nitrite-N. This reduced nitrate plus the original nitrate+nitrite was determined using the cadmium reduction method (Lachat Instruments method 10-107-04-1-A). Nitrate is quantitatively reduced to nitrite by passage of the sample through a copperized cadmium column. The nitrite (reduced nitrate plus original nitrite) forms a magenta color which is read at 520 nm. Seven nitrate calibration standards (0.0, 0.20, 0.40, 1.00, 4.0, 8.0, 20.0 mg N/L) were used to generate a first-order polynomial which uses linear regression to calculate a best fit straight line for all the calibration points. The resulting first-order polynomial is then used for calculating concentration:

Concentration =
$$C(1) Y + C(0)$$
 (5)

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 32

Where:

C(1) = calibration curve first-order coefficient (slope),

C(0) = calibration curve constant term (concentration axis intercept), and

Y = analyte response (peak area)

Direct chemistry was applied to all peaks formed from this method. Direct chemistry calculates only peaks that go positive from the baseline (peak area > 0). Peak base width and threshold values are assumed and then calculated to activate this chemistry. Calibration failure criteria were set for each calibration curve generated. The minimum correlation coefficient allowed (r value) was 0.9900, however, an r value of 1.0000 was usually observed. The detection limit for this method is 0.2 - 20.0 mg N/L as NO3- or NO2-.

Total Phosphorus

Total phosphorus was determined using a QuickChem 8000 dual-channel nutrient autoanalyzer (Lachat Instruments, Milwaukee WI). During the digestion, Organic-P is converted to orthophosphate. The orthophosphate ion (PO₄³⁻) reacts to form a complex, which absorbs light at 880 nm. The absorbance is proportional to the concentration of orthophosphate in the sample. A modified Lachat manifold for orthophosphate (based on EPA method 365.1) was used to measure total phosphorus simultaneously with total nitrogen. The calibration range used for total phosphorus was 200, 100, 50, 25, 10, 5, 0 µg P/L. A second-order polynomial produced a more suitable calibration fit for the total phosphorus calibration curve. The resulting equation for a second-order polynomial is as follows:

Concentration =
$$C(2) Y2 + C(1) Y + C(0)$$
 (6)

where:

C(2) = calibration curve second-order coefficient,

C(1) = calibration curve first-order coefficient,

C(0) = calibration curve constant term (concentration axis intercept), and

Y = analyte response (peak area)

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 33

A 0.231 N H₂SO₄ carrier was used on the phosphorus manifold to avoid sample/carrier mismatch.. A Bipolar chemistry was used when integrating the peaks. An r-value of 0.9900 was the minimum correlation coefficient, but typically r-values generated around 0.9995 or higher.

Trace Metals

A trace metal extraction was performed at the St. Croix Watershed Research Station on the received samples. Over ten percent of the samples were run in duplicate. Procedural blanks were included with each batch extracted. Twenty-five ml of sample were poured into a 60-mL Teflon bottle, sample weight was recorded. Depending on the normality of the sample (determined by sample weight and 20 ml preservative), either 2.5 N high purity HCl (Seastar, Baseline) or Type 1 reagent grade DI water was added to adjust each sample to 0.5 N. Samples were loosely capped and digested in an oven at 85oC for 30 min. When samples had cooled, weights were recorded and dilutions calculated. The digested samples were then sent to the University of Minnesota Geochemistry Lab (Department of Geology and Geophysics) to be analyzed on a Perkin Elmer Sciex Elan 5000 inductively coupled plasma mass spectrometer (ICP-MS) for Ni, Cu, Cd, Pb(206, 207, 208), Zn, Cr, Co, Se, Fe, Mn, Ca (and Ba in year 1).

Nickel, Chromium, Cobalt, Selenium, and to some extent Copper and Cadmium showed sample matrix interferences on the ICP-MS. Copper and Cadmium values are reported but should be viewed with caution. Nickel, Chromium, Cobalt, and Selenium values were not used. Barium was analyzed during the first year of the study, but was not analyzed during the second year. Lead isotopes were analyzed and a 206/207 ratio is reported for each year. See QA/QC output.

DATA REDUCTION/CALCULATION

Precipitation data was collected using a rain gauge at each of the four sites and recorded using a datalogger. This information was downloaded from the MDN website. Funnel cross sectional area was also determined and precipitation was calculated using this along with sample weight. This was then compared with the rain gauge data. It appears that the funnel area/sample weight calculation method seemed to underestimate the amount of precipitation that fell when compared to the rain gauge data. This may most likely be due to the inefficiency of the sample collectors (especially in

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 34

winter when snow can blown in or out of the funnels). Because of this, the precipitation data used is from the rain gauges and is also the data reported on the web site. At certain sites during certain times throughout this two-year study, the data loggers would malfunction and not collect data during precipitation events. In these cases, the MDN web site precipitation manager was contacted and his estimates were given for this missing data (viewed as grayed area in spreadsheet).

During year one of the study, there were two samples that were analyzed for total nitrogen but not total phosphorus. A regression using total nitrogen as an indicator of total phosphorus was generated (Y = 84.5 + 16.2 * X, R2 = .56) and total phosphorus was predicted (highlighted in blue on the spreadsheet). This regression only used samples from year one of the study.

During sample intervals where no sample exists or where an analysis was not measured and a regression could not be used or where results seemed suspect, the averaged results of adjacent sample time periods (during that year or during the other year of the study) were used and then multiplied by the *actual* precipitation that fell during the interval in question. See Table 1 for samples that had averaged values reported and why (also see spread sheet for samples intervals used to average missing sample periods). Because sample intervals many times contained varying amount of days, an attempt was made to use intervals with close to the same number of days (i.e. this is why some missing sample intervals used a different amount of intervals for an average). Results highlighted in green on the spreadsheet are averages from other intervals (and can be found on bottom of spreadsheet). The averaged mass results were used and then back-calculated to determine (ug/L, mg/L, ng/g).

To: Marvin Hora, Doug Hall and Mark Tomasek, Minnesota Pollution Control Agency
From: Cliff Twaroski and Ron Reding
Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Atmospheric Deposition
Date: November 25, 2003

Date: Page:

35

Sample Collection	Reason Original Sample	Averaged Sample Time Periods
Time Period	Was Not Used	Used To Calculate Result
Lamberton		
4	TP result suspect	Regression of TN samples from Year 1 of
		study
6	Too little sample for analysis	5, 7, 18, 19, 20
	of nutrients and trace metals	
16	Original Cu result suspect	15, 17, 2, 3, 4 23, 25, 10, 11, 12
24	Too little sample for analysis	23, 25, 10, 11, 12
	of nutrients	
26	Original nutrient results	25, 14, 12, 13, 1
	suspect	
Camp Ripley		
5	TP result suspect	Regression of TN samples from Year 1 of
		study
18	Too little sample for analysis	17, 19, 4, 5, 6
	of nutrients and trace metals	
20	Too little sample for analysis	19, 21, 6, 7, 8
	of nutrients and trace metals	
28	Original nutrient results	13, 12, 1, 14, 25, 26, 27
	suspect	
Marcell		
4	Original Cu result suspect	3, 2, 16, 17, 18, 19, 20, 6
5	Original Cu result suspect	19, 20, 6, 18, 17
14	No sample received	27, 13, 26, 1, 15
Fernberg		
2	No sample received	1, 17, 3, 18
4	No sample received	3, 18, 1, 17, 5, 6, 19
8	Original nutrient results	21, 7, 20, 22,
	suspect, Original Cu result	
	suspect	
9	Original Cu result suspect	22, 21, 10, 11, 23, 24
16	No sample received	15, 28, 1, 17
29	No sample received	28, 15, 17, 1

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 36

Phosphorus in Precipitation Study

SOP #1

Total P and Total N (TPTN) and/or Dissolved P and Dissolved N (DPDN) Digestion (6/13/00 Kelly Thommes)

DIGESTION:

- 1. Samples will be analyzed on the Lachat autoanalyzer for both Total Phosphorus and Total Nitrogen (TPTN, unfiltered) and/or Dissolved Phosphorus and Dissolved Nitrogen (DPDN, filtered through a $0.45~\mu m$ filter). Forty-eight samples can be processed per batch (this includes QA/QC samples).
- 2. Print out sample names using the plastic labels and place on acid-washed 60-mL HDPE bottles. Include project initials, site #, type of water sample (SW or GW), TPTN or DPDN, site name, date, and time. Include calibration standards, check standards, blanks, digestion efficiency standards, duplicates, spikes, lab-fortified blanks, and samples. Ten percent blanks and duplicates should be included. If enough sample exists, use the same sample for the duplicate as for the spiked sample. Include one spiked-sample and one lab-fortified blank for phosphorus and one spiked-sample and one lab-fortified blank for nitrogen. Use Deionized (DI) water for the zero calibration standards, blanks, and lab-fortified blanks.
- 3. Using the spreadsheet generated for labels, record the weight of the labeled bottles (with cap) using the analytical balance connected to the laptop computer.
- 4. Remove cap, and tare the 60-mL HDPE bottle on the balance. Pour 20 g (+/- 0.5 g) calibration standard, check standard, efficiency standard, duplicate, blank, or sample into the 60-mL HDPE bottle. Remove the bottle and replace cap. Tare the balance and record weight of the bottle+sample with cap.
- 5. When pouring out the spiked-sample or lab-fortified blank, record the sample weight (20 g +/- 0.5 g). Using a calibrated auto pipette, add 3 mL of the 100 μg P/L calibration standard for the phosphorus spiked-sample and phosphorus lab-fortified blank. Add 3 mL of the 8.00

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 37

mg N/L calibration standard for the nitrogen spiked-sample and nitrogen lab-fortified blank. Record weights of spike added.

- 6. Using the calibrated 5-mL auto pipette, add 5 mL of digestion solution (made from the ND-SOP) to each bottle. Cap tightly and shake to mix. Place loosely capped sample bottles in autoclave and digest for 15 min at 121 °C and 16 psi. Remove samples from autoclave and cool in freezer for 20-30 min (keep caps loosened). When cool enough to handle, add 0.5 mL of 11 N H₂SO₄ to each bottle, cap tightly, and shake to mix. Place loosely capped bottles back into autoclave for an additional 30 min at 121 °C and 16 psi. Again, cool samples in freezer. When cool enough to handle, tightly cap and shake bottles. Dry bottles if wet and record bottle+sample weight.
- 7. Samples can now be run using the Lachat autoanalyzer. Samples should be run preferably the same day or no more than a couple of days after the digestion.

DIGESTION REAGENTS AND STANDARDS:

Digestion Solution

To a 1-L volumetric, dissolve 10.48 g of granular sodium hydroxide (NaOH) and 42 g of potassium persulfate (K₂S₂O₈) in approximately 900 mL of DI reagent grade water. When dissolved, bring to volume

11 N Sulfuric Acid (H₂SO₄)

To a 1-L volumetric and in a fumehood, add 305 mL of concentrated sulfuric acid to about 600 mL of DI reagent grade water. The volumetric should be surrounded by an ice bath while at the same time swirled to reduce the heat. When cool, bring to volume.

Phosphorus Stock Standard 25 mg P/L

To a 1-L volumetric, dissolve 0.1099 g primary standard grade anhydrous potassium phosphate monobasic (KH₂PO₄) that has been dried for one hour or overnight at 105 °C in about 800 mL DI reagent grade water. Bring to volume and invert to mix.

Phosphorus Working Stock Standard 250 µg P/L

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 38

To a 1-L volumetric, dilute 10 mL Phosphorus Stock Standard to the mark with DI reagent grade water. Invert to mix.

Nitrogen Stock Standard 200.0 mg N/L as NO₃

To a 1-L volumetric, dissolve 1.444 g potassium nitrate (KNO₃) in about 600 mL DI reagent grade water. Dilute to mark and invert to mix.

Phosphorus Working Standards 0, 5, 10, 25, 50, 100, 200 μg P/L

$5 \mu g P/L$	5 mL of P Working Stock Standard (250 µg P/L) in a 250-mL volumetric
$10~\mu g~P/L$	$10\ mL$ of P Working Stock Standard (250 $\mu g\ P/L)$ in a 250-mL volumetric
$25~\mu g~P/L$	0.25 mL of P Stock Standard (25 mg P/L) in a 250-mL volumetric
$50~\mu g~P/L$	0.50 mL of P Stock Standard (25 mg P/L) in a 250-mL volumetric
$100~\mu g~P/L$	1.00 mL of P Stock Standard (25 mg P/L) in a 250-mL volumetric
$200~\mu g~P/L$	2.00 mL of P Stock Standard (25 mg P/L) in a 250-mL volumetric

Nitrogen Working Standards 0.00, 0.20, 0.40, 1.00, 4.0, 8.0, 20.0 mg N/L

0.20 mg N/L	0.25 mL of N Stock Standard (200.0 mg N/L) in a 250-mL volumetric
0.40 mg N/L	0.50 mL of N Stock Standard (200.0 mg N/L) in a 250-mL volumetric
1.00 mg N/L	1.25 mL of N Stock Standard (200.0 mg N/L) in a 250-mL volumetric
4.0 mg N/L	5.00 mL of N Stock Standard (200.0 mg N/L) in a 250-mL volumetric
8.0 mg N/L	10.0 mL of N Stock Standard (200.0 mg N/L) in a 250-mL volumetric
20.0 mg N/L	25.0 mL of N Stock Standard (200.0 mg N/L) in a 250-mL volumetric

Check Standards Amp 2 for TN and TP (Record Lot # on volumetric and bench sheet) 5 µg P/L, 25 µg P/L, 100 µg P/L with 0.30 mg N/L, 10 mg N/L

Stock Adenosine 5'-triphosphate disodium salt hydrate (Aldrich A26209) 99% pure, 50 mg P/L

To a 1-L volumetric, dissolve 0.2996 g Adenosine 5'-triphosphate disodium salt hydrate that has been dried for one hour or overnight at 105 °C in about 800 mL DI reagent grade water. Bring to volume and invert to mix.

Phosphorus Efficiency Standard 100 µg P/L

To a 250-mL volumetric, add 0.50 mL Stock Adenosine (50 mg P/L) and bring to volume.

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Atmospheric Deposition

Date: November 25, 2003

Page: 39

Phosphorus Efficiency Standard 25 µg P/L

To a 250-mL volumetric, add 0.125 mL Stock Adenosine (50 mg P/L) and bring to volume.

Stock Glutamic Acid 100 mg N/L

To a 1-L volumetric, dissolve 1.3366 g glutamic acid that has been dried for one hour or overnight at 105 °C in about 800 mL DI reagent grade water. Bring to volume and invert to mix.

Nitrogen Efficiency Standard 8.00 mg N/L

To a 250-mL volumetric, add 20.0 mL Stock Glutamic Acid (100 mg N/L) and bring to volume.

Nitrogen Efficiency Standard 1.00 mg N/L

To a 250-mL volumetric, add 2.50 mL Stock Glutamic Acid (100 mg N/L) and bring to volume.

AUTOMATED COLORIMETRIC PROCEDURE ON THE LACHAT QUICHEM 8000 AUTOANALYZER

Phosphorus Nitrogen

Direct

Method SCWRS Method 10-107-04-1-A

Sample Loop 133 cm Microloop Interference Filter 880 nm 520 nm

Bipolar

Inject to Peak Start

Peak Base Width

% Width Tolerance

Threshold

Chemistry

Method Cycle Period

Probe in Sample

Sample reaches 1st Valve

Load Period

LACHAT REAGENTS

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 40

PHOSPHORUS MANIFOLD

Stock Ammonium Molybdate Solution

To a 1-L volumetric, dissolve 40.0 g ammonium molybdate tetrahydrate [(NH₄)₆Mo₇O₂₄•4H₂O) in approximately 800 mL of DI reagent grade water. Dilute to mark and mix with a magnetic stirrer for at least four hours. Store in plastic and refrigerate.

Stock Antimony Potassium Tartrate Solution

To a 1-L volumetric, dissolve 3.0 g antimony potassium tartrate (potassium antimony tartrate hemihydrate $K(SbO)C_4H_4O_6 \cdot 1/2H_2O$) in approximately 800 mL of DI reagent grade water. Dilute to mark and mix with a magnetic stirrer until dissolved. Store in a dark bottle and refrigerate.

Working Molybdate Color Reagent

To a 1-L volumetric, add approximately 500 mL DI reagent grade water and 20 mL concentrated H₂SO₄. Swirl until cool and add 213 mL of Stock Ammonium Molybdate Solution, then add 72 mL of Stock Antimony Potassium Tartrate Solution. Dilute to mark and invert to mix. Degas with helium.

Working Ascorbic Acid

To a 1-L volumetric, dissolve 60.0 g ascorbic acid in approximately 900 mL of DI reagent grade water. When dissolved, dilute to mark. Degas with helium. Add 1.0 g sodium dodecyl sulfate (CH₃(CH₂)₁₁OSO₃Na). Invert to mix. Prepare fresh weekly.

Phosphate Carrier 0.231 N H₂SO₄

Dilute 21 mL of 11 N Sulfuric Acid to 1-L volumetric with DI reagent grade water. Degas with helium.

Sodium Hydroxide-EDTA Rinse

To a 500-mL volumetric, dissolve 32.5 g sodium hydroxide (NaOH) and 3 g tetrasodium ethylenediamine tetraacetic acid (Na₄EDTA). Dilute to mark and invert to mix. Store at room temperature. Use this to clean phosphorus manifold lines. Pump reagent through for about five minutes followed by DI water for five minutes.

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 41

NITROGEN MANIFOLD

15 N Sodium Hydroxide (NaOH)

To a 500-mL volumetric, add 75 g NaOH very slowly to approximately 250 mL of DI reagent grade water. Caution: the solution will get very hot. Swirl until dissolved. Cool and store in a plastic bottle at room temperature.

Ammonium Chloride Buffer, pH 8.5

To a 1-L volumetric, dissolve 85.0 g ammonium chloride (NH₄Cl) and 1.0 g disodium ethylenediamine tetraacetic acid dihydrate (Na₂EDTA•2H₂O) in approximately 800 mL DI reagent grade water. Dilute to mark and invert to mix. Adjust pH to 8.5 with 15 N sodium hydroxide.

Sulfanilimide Color Reagent

To a 1-L volumetric, add approximately 800 mL DI reagent grade water. Add 100 mL 85% phosphoric acid (H₃PO₄), 40.0 g sulfanilimide, and 1.0 g N-(1-naphthyl)ethylenediamine dihydrochloride (NED). Shake until wetted and stir to dissolve for 30 min. Dilute to mark and invert to mix. Store in a dark bottle. This solution is stable for one month.

REFERENCES

Standard Operating Procedure For the Analysis of Total Phosphorus and Total Nitrogen in Water From an Alkaline Persulfate Digest, North Dakota Dept. of Health, Chemistry Div.

EPA (March 1983) Method 353.2 (colorimetric automated, cadmium reduction)

Lachat (Aug 1994) QuikChem Method 10-107-04-1-A (Nitrate/Nitrite)

Lachat (Feb 1996) QuickChem Method 10-115-01-1-B (Determination of Orthophosphate by FIA Colorimetry)

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 42

Phosphorus in Precipitation Study

SOP #2 Trace Metal Extraction for Precipitation Samples (5/15/00 Kelly Thommes)

- 1. Make up 1 L of 2.5 N HCl. Use high purity acid from Seastar. Include lot # of acid on bench sheet. When making up acid, anything coming into contact with the acid must be *extremely* clean. Volumetric should be acid washed, triple rinsed with DI water, and rinsed with a small amount of the high purity acid before using. Use a final rinse of DI water.
- 2. Teflon sample bottles must be labeled with the special plastic lab labels. MPCA sample #'s should be printed on the labels using the laser printer.
- 3. We will be running 10% duplicates. After every 10th sample, include a duplicate sample from that batch. Include 1 lab blank per batch and also run field blanks (acid preservative sent to us) as samples if available.
- 4. Record weight of Teflon bottle (including cap) on bench sheet (use laptop hooked to top-loading balance).
- 5. While wearing gloves, pour out 25 mL of sample into 60-mL Teflon bottle. Record sample weight on bench sheet.
- 6. Working from bench sheet, add 2.5 N HCl in calculated amount to adjust samples to 0.5 N. Use lab adjustable pipette that has been calibrated prior to each addition. Record weight (using balance) on bench sheet. Swirl sample to mix.
- 7. In some instances the sample will need to be diluted with DI-water to adjust the sample to 0.5 N. Use DI-water that has been recently taken from the "point of use gun" on the Millipore DI unit. Record weight of DI-water added.

From: Cliff Twaroski and Ron Reding

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Atmospheric Deposition

Date: November 25, 2003

Page: 43

8. Loosely cap bottles and digest in oven at 85 °C for 30 min. Include a PP bottle with DI and thermometer to determine when samples reach 85 °C (usually 1-1.5 hours) and then digest for 30 min. after samples have reached the appropriate temperature.

- 9. After digestion, cool completely in a refrigerator or freezer, cap tightly, and weigh bottle on balance. Record weight.
- 10. Calculate dilution and sample matrix.
- 11. Digested samples should be stored in refrigerator prior to sending to U of MN (Rick Knurr) for ICP-MS analysis. Send Rick approximately 100 ml of sample matrix for standards (i.e. 0.5 N HCl sample matrix-dilute 2.5 N HCl).

Trace metals of interest: Ni, Cu, Cd, Pb, Zn, Cr, Co, Se, Fe, Mn, Ca, Al

Technical Memorandum

To: Marvin Hora, Minnesota Pollution Control Agency

Mark Tomasek, Minnesota Pollution Control Agency

Doug Hall, Minnesota Pollution Control Agency

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Deicing

Agents

Date: December 17, 2003 **Project:** 23/62-853 DEIC 008

c: Greg Wilson

Henry Runke

The purpose of this memorandum is to provide a discussion on deicing agents as sources of phosphorus to Minnesota watersheds. This discussion is based on a review of the available literature, monitoring data and the results of phosphorus loading computations done for each of Minnesota's major watershed basins as part of this study. This memorandum is intended to:

- -- Provide an overview and introduction to deicing agents as a source of phosphorus
- -- Describe the results of the literature search and review of available monitoring data
- -- Discuss the characteristics of each watershed basin as it pertains to deicing agents as a source of phosphorus
- -- Describe the methodology used to complete the phosphorus loading computations and assessments for this study
- -- Discuss the results of the phosphorus loading computations and assessments
- Discuss the uncertainty of the phosphorus loading computations and assessment
- Provide recommendations for future refinements to phosphorus loading estimates and methods for reducing error terms
- -- Provide recommendations for lowering phosphorus export from deicing agents

To: Marvin Hora, Mark Tomasek and Doug Hall, Minnesota Pollution Control Agency

From: Jeffrey Lee

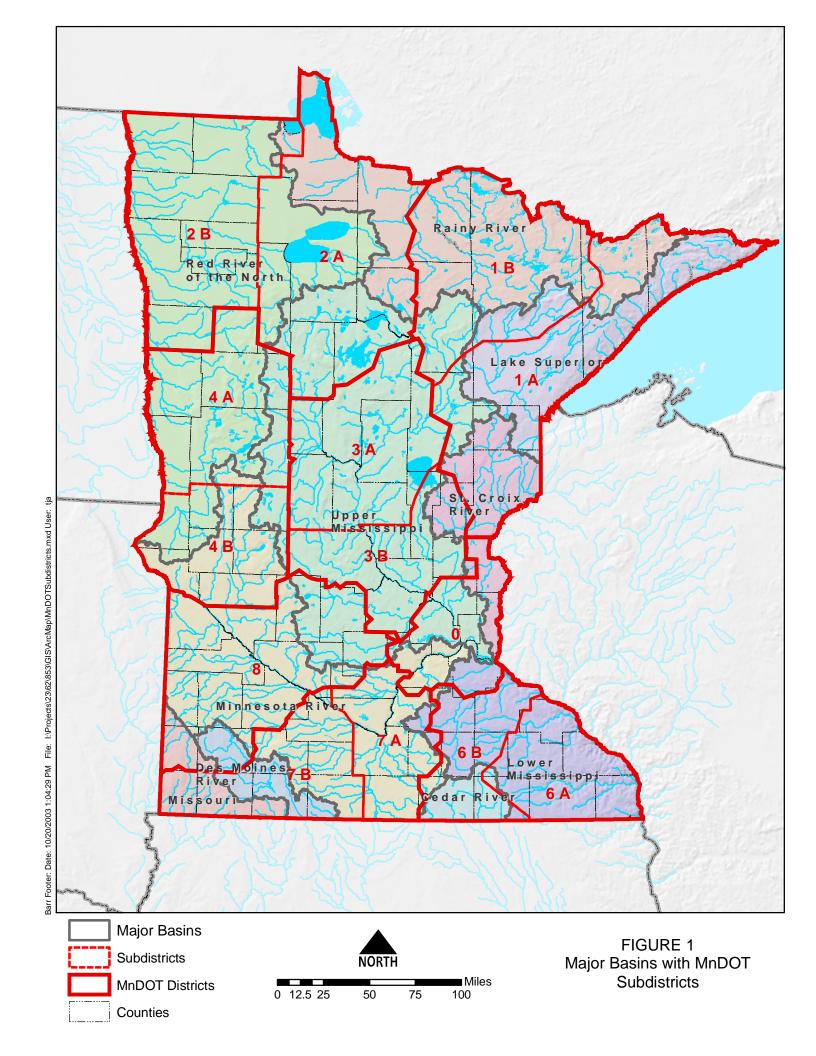
Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 2

Overview and Introduction to Deicing Agents as Source(s) of Phosphorus

The use of deicing chemicals has increased in the U.S. since the 1940s and 1950s to provide "bare pavement" for safe and efficient winter transportation. As more and more transportation agencies adopted the "bare pavement" policy, the use of salt, salt and sand mixtures, liquid brines and alternative deicers increased with the need to maintain this standard for pavement conditions during inclement weather. Sodium chloride (NaCl) is one of the most commonly used deicing chemicals. Concern about the effects of sodium chloride on the nation's environment and water quality has increased with this chemical's continued usage.


As environmental and associated impacts of salt usage became better documented, the Minnesota Department of Transportation (MnDOT) began implementing procedures to reduce the usage of salt and sand on the state maintained roadway system. In 1996 MnDOT conducted a pilot project – Salt Solutions – to develop tools for reducing their usage of deicing agents, while maintaining safe roadways (SRF Consulting Group, 1998). Following a successful pilot project in winter of 1996-97, the program was adopted state-wide. Other road agencies in Minnesota such as cities, townships and counties use deicing agents to maintain a similar standard for pavement conditions during inclement weather. Many of these agencies have less rigorous record keeping programs than MnDOT.

The search for alternatives to salt for road deicing has been prompted primarily due to the infrastructure corrosion concerns and the impacts of chloride on water quality and vegetation. Recent research in Colorado, New York, and British Columbia have documented water quality concerns related to phosphorus and other chemicals present in deicing agents, as well as the alternative compounds. Due to the recent nature of the work on phosphorus in road salt and alternative deicers, the amount of information present in the scientific literature is somewhat limited, scattered, and quite variable in quality.

Results of Literature Search and Review of Available Monitoring Data

Review of the existing scientific literature with regard to deicing agents as a phosphorus source was concerned with three major areas; 1) usage patterns of deicing agents in Minnesota and other states with regard to road types and road management agency, 2) the phosphorus content of deicing agents – salt, sand, and deicing alternatives, and 3) the impact of weather patterns on usage levels.

The data available for the usage patterns of deicing within the state of Minnesota available from MnDOT is extensive and detailed (MnDOT, 2003; MnDOT Office of Maintenance. 2003; MnDOT Office of Transportation Data & Analysis. 2002). MnDOT has undertaken extensive analyses of usage patterns with regard to road type, service levels and weather patterns. In 1996 MnDOT began a program to reduce the usage of deicers in District 1 and has subsequently expanded the program statewide (SRF Consulting Group, 1998). Figure 1 provides the MnDOT District boundaries in relation to the basin boundaries. The Minnesota Office of Legislative Auditor completed a report that identified some of the best techniques for snow and ice control in Minnesota with the purpose of

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 3

cataloging effective methods of snow and ice control and to encourage the adoption of practices as appropriate throughout the state (Minnesota Legislative Auditor, 1995). While this report attempted to identify practices, it provided little quantitative data on application rates and usage levels. Table 1 presents a summary of the local government salt to sand mix uses from this report.

The states of California, Colorado, Michigan and New Hampshire; as well as the province of British Columbia, Environment Canada and the U.S. Department of Transportation Federal Highway Administration have undertaken studies on the usage of deicing agents in an effort to document and reduce the environmental impacts of their use (Environment Canada and Health Canada, 2001; Fischel, 2001; Goldman, and Hoffman, 1975; Lewis, 1999; Public Sector Consultants, 1993; U.S. Department of Transportation Federal Highway Administration, 1996; Warrington, 1998; University of New Hampshire, 1996;) In nearly all cases, the various studies recommend that service levels be established to define acceptable road conditions and deicing guidelines that define the frequency of winter maintenance and service level needs based upon weather conditions. MnDOT and many other road agencies have developed and implemented sand and salt application guidelines to ensure safe roads and minimize the application of deicers. MnDOT has established targets for snow and ice removal based upon service levels:

Road Class	Avg. Annual Daily Traffic	Target Time to Bare Lane
Super Commuter	More than 30,000	1-3 hours
Urban Commuter	10,000-30,000	2-5 hours
Rural Commuter	2,000-10,000	4-9 hours
Primary	800-2,000	6-12 hours
Secondary	Under 800	9-36 hours

Attainment of the desired pavement conditions is dictated by several factors, including weather conditions and pavement temperature. Weather conditions, precipitation type and temperature determine the deicing mixture (ratio of sand to salt) or compound to be used, the rate of application (quantity per lane mile) and the frequency of application. The summary data for the state highway system and Twin Cities Metropolitan Area (TCMA) county roads in Tables 2 and 3 illustrates how the implementation of the maintenance guidelines is impacted by weather and the road service level needs across the state and TCMA counties.

Many local road agencies such as the City of Duluth and some out-state counties have adopted application guidelines similar to MnDOT guidelines, but a review of the literature yielded few examples of specific guidelines (Duluth Streams, 2003; SRF Consulting Group, 1998). Review of Minneapolis and St. Paul NPDES stormwater permit annual reports, various MnDOT reports and a database prepared by the Ramsey-Washington Metro Watershed District provided some information related to annual usage rates. In most cases the information in these reports did not provide detailed usage data that could be converted to lane mile usage levels. Lane mile usage levels were calculated or provided for the MnDOT data (City of Minneapolis and Minneapolis Park and Recreation Board, 2003; Weber, 2003; Watson, 2003; Ramsey-Washington Metro Watershed District. 1999; SRF Consulting Group, 1998;). SRF Consulting Group (1998) provided information on usage rates for the TCMA county road agencies for the winter of 1994 – 98. Information provided by Minnesota

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 4

Legislative Auditor (1995) indicates that many local units of government use higher ratios of sand to salt than does MnDOT. Some counties, such as Pine, St. Louis and Lake, report the use of sand only for winter road maintenance, while data for the eight TCMA counties indicates that the TCMA counties use a higher salt to sand ratio than what was indicated for other counties across the state (SRF Consulting Group, 1998). In many areas of the state MnDOT, some cities and counties now exclusively use salt without the use of sand for road deicing purposes.

Table 1. Percent of Local Governments Using Various Ratios of Sand to Salt in Mix (from: Minnesota Legislative Auditor, 1995)

Percent of	Counties	Cities	Townships
Sand in Mix	(n = 68)	(n = 137)	(n = 6)
99 to 90%	47%	28%	50%
89 to 80%	29%	39%	17%
79 to 70%	15%	10%	0
Less than 70%	3%	9%	16%
No Reply	6%	14%	17%

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 5

Table 2. MnDOT Sand & Salt Application Summary Analysis (Winter of 2002-2003)

	Summary per District		
District	Average Sand (Tons)/LM	Average Salt (Tons)/LM	Salt: Sand Ratio
1	7.8	6.9	0.5
2	3.5	2.5	0.4
3	3.5	5.8	0.6
4	3.4	3.5	0.5
METRO	0.4	11.4	1.0
6	4.5	8.0	0.6
7	2.2	3.3	0.6
8	3.6	2.6	0.4
STATEWIDE	3.5	5.9	0.6
	Summary per Service Level		
Service Level	Average Sand (Tons)/LM	Average Salt (Tons)/LM	Salt: Sand Ratio
Primary	3.6	3.5	0.5
Rural Commuter	4.3	5.0	0.5
Super Commuter	0.6	11.2	1.0
Secondary	3.6	3.1	0.5
Urban Commuter	3.6	9.0	0.7
ALL	3.5	5.9	0.6

Data based on MNDOT Report PS1A6 – "Sand, Salt, Brine Usage; Coverage Rates by Lane Miles Only" from 10/15/2002 to 4/20/2003

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 6

Table 3. TCMA County Road Agency Sand & Salt Application Summary (from: SRF Consulting Group, 1998).

Year	Sand Ap (tons/LM)	Salt Ap (tons/LM)	Sand + Salt Ap (tons/LM) *	% Salt
1994-95	5 10 5		15	33%
1995-96	1995-96 15		22	32%
1996-97	16	8	24	33%
1997-98	12	7	19	37%
AVG	13.25	6.75	20	33.75%

^{*}Calculated from data in SRF Consulting Group, 1998

Number of counties = 8

As a review of existing literature was undertaken it became obvious that the application rates and mixtures of deicers used are strongly predicated by weather conditions. Initially the concept of wet, dry and average year were proposed as the means of defining the average and extreme conditions. However a further examination of the MnDOT records indicated that the number of "events" per season appeared to be the driving factor in the quantities of material applied (MnDOT, 2003; MnDOT Office of Maintenance. 2003; MnDOT Office of Transportation Data & Analysis, 2002;). There was a limited amount of information as to how these vagarities in weather patterns impacted usage levels by counties and local units of government (SRF Consulting Group, 1998). The MnDOT application guidelines listed below in Table 4 provide some insight into this pattern.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 7

Table 4. MnDOT Sand and Salt Application Guidelines (from: SRF Consulting Group, 1998)

Pavement	Weather	Pounds per	Operation
Temperature	Conditions	Two Lane Mile	
30+	Snow	200 - 400	As needed
	Freezing rain	200	Re-apply as necessary
25 - 30	Wet Snow	400 - 500	Re-apply as necessary
	Freezing rain	300	Initial
		200	Re-apply as necessary
20 - 25	Wet snow / sleet	1200 sand/salt	Repeat as necessary
	Freezing rain	1200 sand/salt	Repeat as necessary
15 - 20	Dry snow	1200 sand/salt	Sand hazardous areas 20:1 Sand/salt mixture (stockpile)
	Wet snow / sleet	1200 sand	Repeat as necessary
Below 15	Dry Snow	1200 - 1500	Sand hazardous areas 20:1 Sand/salt mixture (stockpile)

Based upon an assessment of the snow data and usage levels provided by MnDOT for the period of 1971 to 2003 the amount of winter snow was used as a surrogate for the number of events. The high variability in the number of events between regions of the state in any given year, as well the year-to-year variability in the number of events precluded the use of events in this analysis. The winter snow fall amount at MSP Airport was used to define average, dry (low snowfall -90^{th} percentile) and wet $(10^{th}$ percentile) conditions.

As the concern over and documentation of the environmental impacts of deicing agents has increased, a number of authors and agencies have attempted to document the concentrations of other elements or compounds of concern that are introduced into the environment through road deicing. Some of the earliest studies were in high quality water basins such as Lake Tahoe and the TCMA (Goldman and Hoffman, 1975; Oberts, 1986). Subsequent studies have furthered the analyses and widened the scope of study (Environment Canada and Health Canada, 2001; Fischel, 2001; Lewis, 1999; Public Sector Consultants, 1993; Levelton Engineering, 1998, 1999, and 2000; Tierney and Silver, 2002;). Recent concern over the environmental impacts of chloride has led to searches for alternatives to salt and also widened the concerns for other elements present in these substances. Much of the recent research shows that road salt still is the best alternative for road deicing (Ohrel, 2000). Mangold (2000) references several studies that express concern over the biological oxygen demand exerted on surface waters by the acetate based substitutes and the New York State Attorney

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 8

General Office's analysis of the phosphorus content of readily available deicers has heightened concerns for protection of the New York water supply (Tierney and Silver, 2002;). The results from New York and the Levelton Engineering reports (1998, 1999, and 2000) document a wide variety of substances present in deicers and the concern over elevated levels of phosphorus in the deicers derived from agricultural waste products. Table 5 summarizes results from these various analyses and shows the wide variation in phosphorus concentrations among deicers.

Table 5. Phosphorus Concentrations in Deicers

Company or Item	Product or Product Constituent Name	Description	Total Phosphorus (ppm*)
Magnesium Chloride Deicing	Sears Ecological Applications Co. MgCl ₂ (30% solution)**	From Dead Sea	6.2 (1)
Products	Sears Ecological Applications Co. Magic-O: Laboratory measured value of product consisting of top two components	Ice B' Gone 1 (Spanish Cane) + MgCl ₂ - 50:50***	164.8 (1)
	Sears Ecological Applications Co. Magic-O: Estimate calculated from ratio of above two components	Ice B' Gone 1 (Spanish Cane) + MgCl2-50:50	194.2 (1)
	Sears Ecological Applications Co. Magic-O	Ice B' Gone 1 (Venezuelan Cane) + MgCl ₂ - 50:50	50.8 (1)
	Sears Ecological Applications Co. Magic-O	Ice B' Gone 1 (Sugar Beet) + MgCl ₂ 50:50	108.7 (1)
	Sears Ecological Applications Co. Ice B' Gone 2	Synthetic product	0.81 (1)
	Natural Solutions Summit M	Corn Steep residue + MgCl ₂ - 50:50	2281.9 (1); 3692.4(1)#
	Natural Solutions Performance Plus M	Corn Steep residue + MgCl ₂ - 16:84	1556.1 (1); 2062.1(1)#
	Natural Solutions Ultra M	Corn-based product + MgCl ₂	13.4 (1); 16.7 (1)#
	Natural Solutions MgCl ₂ (30% solution)**	From Great Salt Lake	13.4 (1); 12.1 (1)#
	SWP Caliber M1000	Manufactured corn product + MgCl ₂ -10:90 Manufactured	109.4 (1)
	SWP Caliber M2000	corn product + MgCl ₂ -20:80	249.6 (1)
	SWP MgCl ₂ w/rust inhibitor		259.5 (1)

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Deicing Agents
Date: December 17, 2003

		Carbohydrate, potassium	
		carboxylates	20.0 (1) =0 = (1)##
	SWP NC-3000	mix	90.6 (1); 50.5 (1)##
	Envirotech FreezGard Zero	MgCl ₂	42 (5)
	FreezGard Zero (with 4% Ice Ban)	MgCl ₂	230 (4)
		MgCl2 + Triethanolamine Inhibitor (5% by	
	FreezGard Zero/TEA	weight)	13 (4)
	80% Freezgard + 20% Ice Ban	MgCl ₂ + Ice Ban	800 (4)
	50% MgCl ₂ + 50% Ice Ban		2,160 (4)
	Calibre M1000	MgCl2 + 10% Corn-based Inhibitor	76 (4)
	Natural Solutions Performance Plus C	Corn Steep residue + CaCl ₂ -50:50	2,133.4 (1)
	Natural Solutions Performance Plus C	Corn Steep residue + CaCl ₂ -16:84	863.2 (1)
Calcium	Liquidow CaCl ₂ (Dow)	CaCl ₂	30 (4)
Chloride		CaCl2 with 4%	
Deicing Products	Inhibited CaCl ₂ (Dow)	Dow organic inhibitor	53 (4)
Troducts	50% CaCl ₂ + 50% Ice Ban		3,840 (4)
	70% CaCl ₂ + 30% Ice Ban		2,600 (4)
	80% CaCl2 + 20% Ice Ban		230 (4)
	Calibre C1500	CaCl2 + 15% Corn-based Inhibitor	324 (4)
	Sears Ecological Applications Co. Ice B' Gone	Spanish cane	324 (4)
	(concentrate)**	sugar byproduct	323.4 (1)
		Byproduct from wet milling of corn and alcohol	. ,
Other Deicing	Ice Ban	production	10,700 (4)
Products		Calcium	
	Liquid CMA (25%)	Magnesium Acetate	24 (4)
	Liquid Olvin (2070)	Potassium	۲٦ (٦)
	Liquid KA (50%)	Acetate	86 (4)
	Liquid CMAK	50% CMA + 50% KA	120 (4)
Salt	Westchester County salt	30 /0 ICA	4 (1)
	Westchester County salt		1 (1)
	Delaware Co. NYSDOT salt		2 (1)
1	Leslie Foods, Newark, California		0.213 (3)

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 10

	Utah Salt Co., Salt Lake City, Utah		0.231 (3)
	Southwest Salt Co., Los Angeles, California		25.696 (3)
	Morton Salt Co., Burlingame, California		0.872 (3)
	West Coast Salt & Milling Co., Bakersfield, California		14.312 (3)
	NaCl Brine 23%		<2 (4)
	23% NaCl Brine + 20%lce Ban		1020 (4)
		NaCl + 10% Corn-based	
	NaCl plus 10% Calibre Inhibitor	Inhibitor	559 (4)
	Minnesota Road Salt		4.6 (2)
	Hennepin County Hwy Dept Salt		1 (6)
	Westchester County sand		53.4 (1)
Sand	Westchester County sand		55 (1)
	Hennepin County Hwy Dept Sand		4.7 (6)
	Delhi (10:90)		113.5 (1)
	Walton Village (10:90)		55 (1)
Salt:Sand	Bloomville salt/sand (10:90)		163.5 (1)
Sait:Sand	Colorado Salt/Sand (18:82)		1.91 (5)
	Colorado Salt/Sand (5:95)		3.23 (5)
	Colorado Salt/Sand (5:95)		2.47 (5)

Notes: *ppm = p

Product was analyzed twice with a duplicate analysis each time. Agreement between duplicates was poor and outside quality control limits. Results of the four analyses ranged from 14.9 to 112.8 ppm. Lab concluded that there was interference with this sample and the method.

Source: (1) Office of NY Sate Attorney General, 2002. Scientific Guidance on Lower-Phosphorus Roadway Deicers http://www.oag.state.ny.us/environment/deicer.html

- (2) Biesboer and Jacobson, 1993.
- (3) Goldman and Hoffman, 1975.
- (4) Levelton Engineering Ltd. 1998.
- (5) Lewis, 1999.
- (6) Oberts, 1986.

Phosphorus Concentrations in Deicing Agents

Unfortunately much of the analysis done for phosphorus content have not been conducted under any type of standard testing protocol; as such much of the available data had to be converted to a standard measure of phosphorus concentration. For purposes of this analysis, all of the data was converted to concentration in parts per million (mg P/L or mg P/kg). The statistical summary data presented in Table 5 for salt, sand and salt/sand mixtures were the used for the phosphorus load calculations completed for the deicing agents for each of the basins.

^{*} ppm = parts per million

^{**} Product constituents = Ice B' Gone 1 concentrate and MgCl2 or magnesium chloride salt (30% solution)

^{*** 50:50 =} A ratio consisting of 50% Ice B'Gone 1 and 50% MgCl2.

[#] Sample re-analyzed

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 11

Table 5a. Summary statistics for salt, sand and salt/sand mixtures; all values in ppm – phosphorus.

	Salt (NaCl)	Sand	Sand salt mixes
Mean	4.99	37.70	33.93
Std. Dev.	7.97	28.59	55.05
Number	11	3	13

Watershed Basin Characteristics

The literature review made it obvious that the application rates and mixtures of deicers used are strongly predicated by weather conditions that are not always closely related to total annual precipitation levels. An assessment was completed for the snow and deicer usage levels provided by MnDOT for the period of 1971 to 2003. The lack of long term data on number of events, coupled with the high variability in the number of events between regions of the state in any given year and the year-to-year variability in the number of events precluded the use of events in this analysis. Based upon this data the amount of winter snow was used as a surrogate for the number of events, as the number of events is the main determinant for the amount of sand used in a winter season. Based upon this data the winter snow fall amount at MSP Airport was used to define average, dry (low snowfall – 90th percentile) and wet (10th percentile) conditions. The amount of deicer usage (sand and salt) varied between road class service levels, as did the ratio of sand and salt. The variation in weather patterns that determine the deicer usage appear to be too complex to define accurately across all of the basins on a year-to-year basis, so weather variability based upon annual snow fall and ratios established between the districts was based upon the best data years (1994-98 and 2002-03). Table 8 provides a tabular summary of the weather pattern, usage variability and the conditions selected for average, wet and dry years.

The initial attempt to estimate salt usage for the three scenarios was based upon these same conditions and assumptions. A subsequent assessment of those results and the actual MnDOT usage levels proved those assumptions to be invalid. Conversations with MnDOT staff strongly suggested that another estimation alternative would be needed to accurately predict the salt usage over the different weather conditions. The total season usage levels of salt are more strongly influenced by the number of events than the amount of snow, so the assumptions for sand and snowfall do not apply to salt. Also, since the implementation of the Salt Solutions study, the use of sand has been reduced and the amount of salt used has become more stable from year-to-year (Vasek, 2003). The salt usage rates that were used in the overall basin loading estimates are constant from year-to-year, but are variable with regard to road type. These results were compared for accuracy and uncertainty to salt used data for the last sevens years – the time period that coincides with implementation of the Salt Solutions study.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 12

MnDOT deicer usage data for the winters of 1994 – 1998 and the winter of 2002 – 2003 were also analyzed to determine the differences in application rates for the various portions of the state based upon the MnDOT Maintenance Districts and sub-district boundaries (SRF Consulting Group, 1998; MnDOT, 2003). This data shows that the Metro, Northeast and Southeast maintenance districts have the highest application rates for deicers (see Table 6). An analysis was completed for the state highway application rates for the Metro District and these were then adjusted based upon the variation for application rates with the individual districts to estimate lane miles applications rates for the three scenarios.

MnDOT databases and GIS were used to develop road miles for each county in the state and then the road miles were distributed by basin based upon area-weighting within county boundaries. Roads were categorized based upon the road type and lane miles as per Table 7.

Table 6. MnDOT Maintenance District Deicer Usage Rates Data – Comparison of Usage Rates for the Winter of 2002 – 2003

"Dry year" (Winter of 2002 – 2003) District	Service Level	Average Sand (Tons)/L M	Average Salt (Tons)/LM	Average Brine (Gals)/LM	Salt + Sand (Tons)/LM	Percent Salt+Sand Use - higher/lower than Metro	Total Miles Serviced
1	ALL	7.83	6.93	70.9	14.76	25%	3784
1A	ALL	6.6	7.01	48.15	13.61	15%	2010
1B	ALL	9.41	6.93	99.06	16.34	38%	1728
2	ALL	3.5	2.5	9.62	6	-49%	3904
3	ALL	3.52	5.75	62.12	9.27	-22%	3987
3A	ALL	5.1	5.46	40.3	10.56	-11%	1921
3B	ALL	1.96	5.77	80.75	7.73	-35%	2066
4	ALL	3.41	3.46	40.81	6.87	-42%	3588
METRO	ALL	0.4	11.43	8.63	11.83	0%	5333
6	ALL	4.52	7.95	62.42	12.47	5%	3691
6A	ALL	7.51	7.44	75.36	14.95	26%	1917
6B	ALL	1.28	8.5	48.44	9.78	-17%	1774
7	ALL	2.24	3.25	36.31	5.49	-54%	3217
7E	ALL	1.27	3.62	44.52	4.89	-59%	1631
7W	ALL	3.13	2.78	26.95	5.91	-50%	1639
8	ALL	3.62	2.61	42.57	6.23	-47%	2928
STATEWIDE	ALL	3.49	5.91	40.08	9.4	-21%	30386

Jeffrey Lee From:

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Deicing Agents
Date: December 17, 2003

Table 7. Total road lane miles by basin.

Road Type	Upper Mississippi River (Lane Miles)	St. Croix River (Lane Miles)	Red River of the North (Lane Miles)	Rainy River (Lane Miles)	Missouri River (Lane Miles)	Minnesota River (Lane Miles)	Lower Mississippi (Lane Miles)	Lake Superior (Lane Miles)	Des Moines River (Lane Miles)	Cedar River (Lane Miles)
Interstate Trunk Highway	2,558	890	497	0	497	1,175	1,224	290	191	550
U. S. Trunk Highway	3,718	71	2,237	368	134	2,143	1,852	726	155	159
Minnesota Trunk Highway	5,470	890	2,654	1,256	319	4,211	1,695	880	336	187
County State-aid Highway	16,640	2,705	11,779	2,456	1,761	14,768	6,652	2,871	1,538	1,207
Municipal State-aid Street	3,799	202	254	18	10	1,271	660	515	13	130
County Road	7,980	1,510	6,113	2,136	839	6,273	1,909	2,556	382	354
Township Road	26,665	4,185	27,859	1,210	3,713	28,613	11,425	1,801	3,285	2,035
Unorganized Township Road	554	68	578	1,686	0	0	0	379	0	0
Municipal Street	16,886	1,696	1,821	269	305	6,235	3,649	1,713	368	497
National Forest Development Road	831	0	0	816	0	0	0	1,000	0	0
Indian Reservation Road	83	0	633	94	0	0	0	0	0	0
State Forest Road	667	159	579	1,011	0	0	116	270	0	0
State Park Road	29	58	27	16	2	17	16	6	1	1
National Wildlife Refuge Road	0	0	0	0	0	10	0	0	0	0
Frontage Road	0	0	0	0	0	0	0	2	0	0
Ramp	331	31	30	2	11	155	72	26	4	27
Private Jurisdiction Road	17	3	0	0	0	35	0	0	0	0
Other	15	2	5	61	1	14	2	3	1	0
Total	86,240	12,469	55,066	11,399	7,592	64,919	29,271	13,038	6,275	5,147

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Table 8. Summary statisatics for MnDOT deicing applications for winters 1971 - 2003 and 1996 - 2003.

				Chemical			Sand+Salt	
1971 - 2003	Snowfall	Sand	Sand Applied	Applied (Salt	Salt Applied	Sand+Salt	Applied	Percent salt
	(inches)	(Tons)	(Tons/LM)	Tons)	(Tons/LM)	Applied (Tons)	(Tons/LM)	(tons/LM)
MAX =	99	397,798	13	251,159	8	620,448	20	75%
MIN =	17	106,478	4	56,295	2	224,634	7	34%
AVG =	58	279,765	9	154,956	5	434,721	14	64%
90th %ile	36	284,157	6	150,031	3	431,827	11	52%
Median	57	367,906	9	229,040	5	558,405	14	68%
10th %ile	76	174,393	12	95,325	8	326,804	18	72%
>90th %ile mean	24	177,818	6	117,483	4	295,301	10	60%
Mean	58	279,765	9	154,956	5	434,721	14	64%
<10th %ile mean	92	311,035	10	142,937	5	453,971	15	69%
1996 - 2003								
MAX =	76	369,289	12	251,159	8	620,448	20	59.5%
MIN =	35	106,478	4	171,087	6	287,039	9	33.6%
AVG =	55	220,529	7	215,445	7	435,974	14	48.6%
Median	57	229,263	8	222,894	7	441,526	15	51.9%
Median	57	229,263	8	222,894	7	441,526	15	51.9%

^{*} Assumes 30,386 Total Miles Serviced Statewide (2002-03 MNDOT data) for 1971 - 2003 time period

^{**} Within percentile values used for analysis based upon >10th %tile and <90 %tile, respectively for 1971 - 2003 only

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 15

Approach and Methodology for Phosphorus Loading Computations

Phosphorus loading computations were primarily based upon the MnDOT data sources as this was the most detailed data set and extended over the longest time period. Loading calculations for TCMA counties were from SRF Consulting Group (1998) and other road types were extrapolated using the MnDOT data trends, applications rates and deicing mixtures. The following discussion of loading rate calculations is organized around the application of deicing agents to the road classification based upon level of government maintaining the particular road type.

MnDOT Maintained Roads:

As has been previously mentioned, the MnDOT database was the most comprehensive and most useful in determining application rates across the range of conditions for wet, dry and average years. Table 8 presented the summary of weather patterns and application rates for the 1971 – 2003 time period. This data assessment shows that dry years result in decreased usage and wet years increase usage rates. The period of record used in this analysis was not used any further for the loading calculations as much of the data is from winters prior to the Salt Solutions Report (SRF Consulting Group, 1998) and thus may not be indicative of current winter road maintenance practices. It does however provide strong support for the adjustment of application rates due to weather variability from year-to-year based upon snowfall amounts.

The applications rates for each MnDOT District, and thus for each basin, is based upon the use of statewide averages based upon their relationship to snowfall amounts over a winter. Application rates for salt and sand were then adjusted to account for the wet, dry and average conditions based upon the ratios derived from the 1971 – 2003 time period and the relationship between the years of detailed information provided in the Salt Solutions Report and MnDOT's Work Management System Reports (SRF Consulting Group, 1998; MnDOT, 2003;). See Tables 9 – 11 for the results of these calculations for salt, sand and brine use for each scenario for the state highway types.

The use of brine for deicing has increased in recent years, but the period of record for its application is limited and thus 2002 rates were used in the calculations as insufficient data was available to attempt to adjust for year-to-year variability in its application rate. The NaCl brine solution used by MnDOT is a 26% solution having a delivered concentration of phosphorus of 0.49 ppm per gallon. MnDOT has also recently started use of MgCl₂, with 78,199 gallons applied in 2002 – 03 in Districts 1, 2 and 3 combined. MnDOT uses a number of different MgCl₂-based deicing agents in various quantities; Calibre M1000, Calibre M2000, 30% MgCl₂, and Freezgard Zero. The current data does not provide a breakdown of the amounts of each deicer, but if for discussion purposes the total volume applied was for each of the alternative compounds then the quantity of phosphorus would be as follows:

Deicing Compound	Phosphorus concentration	Kg of P for 78,199 gallons per year
Calibre M1000	76 ppm P	1.6 kg P
Calibre M2000	249 ppm P	5.1 kg P
30% MgCl ₂	6.2 ppm P	0.13 kg P
Freezgard Zero	42 ppm P	0.87 kg P

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 16

The limited quantity of phosphorus involved in this current use (less than 0.001% of annual deicer load), the short-term experience for use of these compounds, and limited records of use did not warrant its inclusion in this analysis.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Table 9. MnDOT Dry Year Deicer Usage Rate Calculations Based Upon 2002 - 2003 (Dry Year) Recorded Usage

"Dry year"	Avaraga Cand	Avaraga Salt	Avaraga Cand	Avorage Calt	Avaraga Sand	Avorage Calt	Avanaga Drina
	Average Sand (Tons)/LM	Average Salt (Tons)/LM	Average Sand (Tons)/LM	Average Salt (Tons)/LM	Average Sand (Tons)/LM	Average Salt (Tons)/LM	Average Brine (Gals)/LM
·	` ′	, ,	` ' '	, , ,	, ,	, ,	
District	Interstate Tru	nk Highways		Highways		unk Highways	All State Roads
1	0	14.76	4.43	10.33	7.38	7.38	70.9
1A	0	13.61	4.08	9.53	6.81	6.81	48.15
1B	0	16.34	4.90	11.44	8.17	8.17	99.06
2	0	6.00	1.80	4.20	3.00	3.00	9.62
3	0	9.27	2.78	6.49	4.64	4.64	62.12
3A	0	10.56	3.17	7.39	5.28	5.28	40.3
3B	0	7.73	2.32	5.41	3.87	3.87	80.75
4	0	6.87	2.06	4.81	3.44	3.44	40.81
METRO	0	11.83	3.55	8.28	5.92	5.92	8.63
6	0	12.47	3.74	8.73	6.24	6.24	62.42
6A	0	14.95	4.49	10.47	7.48	7.48	75.36
6B	0	9.78	2.93	6.85	4.89	4.89	48.44
7	0	5.49	1.65	3.84	2.75	2.75	36.31
7E	0	4.89	1.47	3.42	2.45	2.45	44.52
7W	0	5.91	1.77	4.14	2.96	2.96	26.95
8	0	6.23	1.87	4.36	3.12	3.12	42.57

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Table 10. MnDOT Average Year Deicer Usage Rate Calculations Based Upon 2002 - 2003 (Dry Year) Recorded Usage

"Average year"	A G 1	A C. I.	A 0 1	A G.1.	A G 1	A G.14	A D:
	Average Sand (Tons)/LM	Average Salt (Tons)/LM	Average Sand (Tons)/LM	Average Salt (Tons)/LM	Average Sand (Tons)/LM	Average Salt (Tons)/LM	Average Brine (Gals)/LM
	, ,		(TOHS)/LIVI	(10lis)/Livi	, ,	· · · · · · · · · · · · · · · · · · ·	, ,
District	Interstate Tru	nk Highways	US Trunk	Highways	Minnesota Tr	unk Highways	All State Roads
1	0	14.76	9.32	10.33	15.53	7.38	70.9
1A	0	13.61	11.18	9.53	18.63	6.81	48.15
1B	0	16.34	4.13	11.44	6.89	8.17	99.06
2	0	6.00	6.32	4.20	10.53	3.00	9.62
3	0	9.27	7.21	6.49	12.02	4.64	62.12
3A	0	10.56	5.27	7.39	8.78	5.28	40.3
3B	0	7.73	4.70	5.41	7.83	3.87	80.75
4	0	6.87	8.10	4.81	13.50	3.44	40.81
METRO	0	11.83	8.51	8.28	14.18	5.92	8.63
6	0	12.47	10.21	8.73	17.01	6.24	62.42
6A	0	14.95	6.72	10.47	11.21	7.48	75.36
6B	0	9.78	3.73	6.85	6.21	4.89	48.44
7	0	5.49	3.32	3.84	5.54	2.75	36.31
7E	0	4.89	4.05	3.42	6.75	2.45	44.52
7W	0	5.91	4.29	4.14	7.16	2.96	26.95
8	0	6.23	0.00	4.36	0.00	3.12	42.57

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Table 11. MnDOT Wet Year Deicer Usage Rate Calculations Based Upon 2002 - 2003 (Dry Year) Recorded Usage

"Wet year"	Aviana aa Camd	Aviana an Calt	Aviana ca Can d	A xxama a a C a 14	Avvana sa Can d	A xxama a a C a 14	Aviana an Duina
	Average Sand (Tons)/LM	Average Salt (Tons)/LM	Average Sand (Tons)/LM	Average Salt (Tons)/LM	Average Sand (Tons)/LM	Average Salt (Tons)/LM	Average Brine (Gals)/LM
District	` ′	ink Highways	, ,	Highways	` '	unk Highways	All State Roads
1	0	14.76	16.88	10.33	28.13	7.38	70.9
1A	0	13.61	15.53	9.53	25.88	6.81	48.15
1B	0	16.34	18.63	11.44	31.05	8.17	99.06
2	0	6.00	6.89	4.20	11.48	3.00	9.62
3	0	9.27	10.53	6.49	17.55	4.64	62.12
3A	0	10.56	12.02	7.39	20.03	5.28	40.3
3B	0	7.73	8.78	5.41	14.63	3.87	80.75
4	0	6.87	7.83	4.81	13.05	3.44	40.81
METRO	0	11.83	13.50	8.28	22.50	5.92	8.63
6	0	12.47	14.18	8.73	23.63	6.24	62.42
6A	0	14.95	17.01	10.47	28.35	7.48	75.36
6B	0	9.78	11.21	6.85	18.68	4.89	48.44
7	0	5.49	6.21	3.84	10.35	2.75	36.31
7E	0	4.89	5.54	3.42	9.23	2.45	44.52
7W	0	5.91	6.75	4.14	11.25	2.96	26.95
8	0	6.23	7.16	4.36	11.93	3.12	42.57

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 20

Application rates for state highways for all Districts used for the "dry" year scenario used application rates based upon the recorded uses for the winter of 2002 - 03. The level of detail in Work Management System Reports allowed for the development of usage rates for each of the districts and some of the sub-districts. Salt usage rates remained constant at the 2002 - 2003 rates throughout the three loading scenarios and varied based upon the sand/salt ratios described for each service level below.

"Wet" year conditions were calculated using the Metro District data for the winters of 1995 - 97 and then adjusting for the other district usage rates based upon percentage differences using the 2002 - 03 data. While the years of 1995 - 97 were not within the 10^{th} percentile of the years from 1971 - 2003 dataset, they were the wettest years for the time period since the implementation of the Salt Solutions Report recommendations and are the usage estimates that provided the closest agreement with actual use rates for sand (SRF Consulting Group, 1998).

"Average" year conditions and sand usage rates were calculated in a similar fashion using the winter of 1994 – 95 data and extrapolating to the other districts. Development of usage rates to the sub-district level allowed for a finer scale of estimation as to state highway loadings across the basins. See Figure 1 for MnDOT District, sub-district and watershed basin boundaries.

MnDOT's road classes (service levels) were used to further define the application assumptions for the mix ratios of deicers used on the three road types maintained by MnDOT. Based upon and examination of the 2003 – 02 deicer usage report the total salt plus sand application, in tons per lane mile, was modified for the three types of roads maintained by MnDOT (MnDOT, 2003a).

- 01 Interstate Trunk Highway uses a 100% salt assumption (assuming "super commuter" service level)
- 02 U.S. Trunk Highway uses a 70% salt assumption (assuming "urban commuter" service level)
- 03 Minnesota Trunk Highway uses a 50% salt assumption (assuming "rural commuter" service level)

County and Local Government Maintained Roads:

County and local road agency specific data was less readily available for use in this analysis, except for the TCMA counties (SRF Consulting Group, 1998). An analysis was undertaken using the 1994 – 1997 data available for the TCMA to develop usage rates for the County State Aid Highway (CSAH) system. The TCMA deicer usage rates were summarized based upon average conditions (1994 – 95) for both salt and sand usage on a lane mile basis. The 1995 – 1997 period was used for calculation of the wet year conditions. The dry year conditions were used based upon the 90th percentile summary statistics presented in Table 8. These usage numbers were applied to all CSAH miles across the state as they were viewed as the more heavily traveled and thus more highly maintained roads in both the TCMA and out-state areas. These usage numbers are conservatively high based upon the sand to salt ratios reported in the Minnesota Legislative Auditor (1995) report, with a salt percentage of 33%. The sand and salt application rates used for this analysis are shown in Table 12.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 21

Table 12. Sand and Salt Application Rates for County State Aid Highways for Loading Calculations.

Year	Sand (tons/LM)	Salt (tons/LM)
Dry	7.1	3.2
Average	10.0	5.0
Wet	15.5	7.5

Deicer usage rates for other county highways and local roads were developed based upon an even smaller database of actual usage rates. As such, the usage rates for the "rural" counties in the TCMA – Scott, Carver and Chisago counties – were used to develop usage rates for other roads included in this analysis. An analysis was undertaken using the 1994 – 1997 data available for these TCMA in manner consistent with the CSAH analysis described above. Again this estimate is conservatively high due to a lack of actual applications rate up0n which to further refine the estimates. Those rates are presented in Table 13.

Table 13. Sand and Salt Application Rates for County and Local Roads for Loading Calculations.

Year	Sand (tons/LM)	Salt (tons/LM)
Dry	3.8	1.4
Average	6.0	2.0
Wet	7.5	2.5

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 22

Results of Phosphorus Loading Computations and Assessments

The basin loading calculations were computed using the application rates and concentrations defined in the Approach and Methodology section for the lane miles in each basin. Each basin calculation was completed using the application rates for the respective MnDOT Districts that encompass the basin; whenever the basin includes TCMA counties, those state highway lane miles were calculated using the higher Metro District rates for each county. Table 14 provides a summary of the district and Metro counties included in each basin calculation.

Table 14. Summary of the district and Metro counties included in each basin calculation.

Basin	MnDOT District	Metro District
	(state roads)	(Metro counties)
St. Croix River	1A	Chisago, Ramsey, Washington Anoka, Carver, Dakota, Hennepin, Ramsey,
Upper Mississippi River	3	Washington
Lower Mississippi River	6	Dakota, Scott
Red River	2 & 4 avg	
Rainy River	1B	
Lake Superior	1A	
Missouri River	7W	
Minnesota River	7 & 8 avg	Carver, Dakota, Hennepin, Scott
Cedar River	6B	
Des Moines River	7W	

Table 15 presents the phosphorus loading results for each of the basins under the three loading scenarios and a summary for the state-wide total phosphorus load from deicing agents under the same three scenarios.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Deicing Agents

Date: December 17, 2003

Table 15. Phosphorus loading results for Minnesota basins and state-wide totals for three snowfall scenarios.

Basin	Snowfall Scenario	Tons of Salt	Tons of Sand	Gallons of Brine	Kg P from Salt	Kg P from Sand	Kg P from Brine	Total Kg P
	Dry Year	37,525	55,343	59,431	170	1893	0.03	2,063
St. Croix River	Avg Year	47,143	88,364	59,431	213	3022	0.03	3,236
	Wet Year	57,862	124,331	59,431	262	4252	0.03	4,514
	Dry Year	214,976	376,477	521,969	973	12876	0.26	13,849
Upper Mississippi River	Avg Year	279,640	600,253	521,969	1266	20529	0.26	21,795
**	Wet Year	350,167	835,955	521,969	1585	28590	0.26	30,176
_	Dry Year	88,034	132,454	268,117	399	4530	0.13	4,929
Lower Mississippi River	Avg Year	110,716	213,189	268,117	501	7291	0.13	7,793
**	Wet Year	136,270	302,924	268,117	617	10360	0.13	10,977
	Dry Year	112,554	240,506	135,874	510	8226	0.07	8,735
Red River	Avg Year	156,495	374,579	135,874	708	12811	0.07	13,519
	Wet Year	204,893	546,846	135,874	928	18703	0.07	19,630
	Dry Year	32,576	57,318	160,864	147	1960	0.08	2,108
Rainy River	Avg Year	41,389	95,993	160,864	187	3283	0.08	3,470
	Wet Year	51,190	138,824	160,864	232	4748	0.08	4,980
	Dry Year	37,625	60,767	91,289	170	2078	0.04	2,249
Lake Superior	Avg Year	47,755	98,765	91,289	216	3378	0.04	3,594
	Wet Year	59,068	140,577	91,289	267	4808	0.04	5,075
	Dry Year	16,903	32,231	25,586	77	1102	0.01	1,179
Missouri River	Avg Year	23,002	49,589	25,586	104	1696	0.01	1,800
	Wet Year	29,845	68,392	25,586	135	2339	0.01	2,474
	Dry Year	141,111	285,517	251,770	639	9765	0.12	10,404
Minnesota River	Avg Year	193,267	446,062	251,770	875	15256	0.12	16,131
	Wet Year	251,497	589,445	251,770	1138	20160	0.12	21,298
	Dry Year	15,504	21,514	43,379	70	736	0.02	806
Cedar River	Avg Year	19,503	33,493	43,379	88	1145	0.02	1,234
	Wet Year	24,042	46,803	43,379	109	1601	0.02	1,710
	Dry Year	13,370	27,606	18,403	61	944	0.01	1,005
Des Moines River	Avg Year	18,573	42,620	18,403	84	1458	0.01	1,542
	Wet Year	24,447	59,097	18,403	111	2021	0.01	2,132

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 24

		Tons of Salt	Tons of Sand	Gallons of Brine	Kg P from Salt	Kg P from Sand	Kg P from Brine	Total Kg P
	Dry Year	710,178	1,289,734	1,576,683	3,215	44,110	0.77	47,326
Statewide Totals	Avg Year	937,483	2,042,906	1,576,683	4,244	69,869	0.77	74,114
	Wet Year	1,189,280	2,853,194	1,576,683	5,384	97,582	0.77	102,966

Phosphorus Loading Variability and Uncertainty

All of the loading estimates prepared for phosphorus from deicing agents were based upon information reported by road maintenance agencies whenever possible. MnDOT and other agencies readily acknowledge that better record keeping is needed and better measurements are needed to document the actual usage numbers (SRF Consulting Group, 1998; Weber, 2003;). While MnDOT data is of relatively high quality, the near absence of local road agency data for use in this analysis creates concern for the accuracy of the final numbers beyond those for state maintained roads, given the amount of variability that currently exists due to year-to-year weather patterns and the resulting deicer usage patterns. For this uncertainty analysis we have confined the actual MnDOT usage data to the 1996 – 2003 time period. This period is the period of time that includes MnDOT operations since the start of implementation for the Salt Solutions study recommendations and most accurately represents current deicer use trends for the state highway system (Vasek, 2003).

Based upon a state-wide sum of salt and sand usage for MnDOT maintained roads and the reported state-wide deicer use data from MnDOT has allowed for an analysis of the loading estimate uncertainty against actual application information. The estimation methods were assessed against actual MnDOT usage levels and those results are summarized in Table 16, for the wet, average and dry years based upon a comparison to actual application quantities for similar years. The usage estimation for sand and salt usage, and thus the phosphorus load estimates from MnDOT uses for the three scenarios are reasonable given the limitations of the data (+/- 22%). The MnDOT salt usage estimate for the "average" year, i.e., for those years of data upon which the other scenario estimates were constructed has a smaller error than for the sand and brine. The error for Brine is about 30%, but the phosphorus loading due to brine is less than 0.001% of the total phosphorus load and thus is insignificant. Without further data for other road agencies the accuracy of the other estimates can only be assumed to be similar. Table 17 presents a breakout for the estimated MnDOT deicer usage by scenario for each basin.

Much of the phosphorus content analysis for these deicing agents has been collected from widespread sources having differing and sometime poorly documented analysis methods. The limited number of studies and the ongoing citation of a few early studies by current investigators suggest that more analytical studies on deicing agents and phosphorus should be completed. The summary statistics for the data on salt and sand gleaned from the literature presented in Table 5, highlight the relative lack of data on the subject and the variability of concentrations. Many of these analyses results are from across the U.S.; a data set that is confined to deicing agents used in Minnesota would provide a more accurate estimate of the loads.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Deicing Agents
Date: December 17, 2003

Table 16. Comparison of calculated and actual statewide deicer usage on Minnesota state

Snowfall Scenario	Calculated	Actual	% Difference
Database Year(s)	Tons sand	Tons sand	(calc/actual)
Calculated dry year	118,358		111 160/
2002 - 03		106,478	111.16%
Calculated average year	268,874		121.92%
Mean 1996 - 2003		220,529	121.92%
Calculated wet year	448,522		121.46%
1996 - 1997		369,289	121.40%
	Calculated	Actual	Difference
	Tons salt	Tons salt	%
Calculated	242,177		108.65%
Median 1996 - 2003		222,894	108.05%
	Calculated	Actual	Difference
	Gallons Brine	Gallons Brine	%
Calculated average year	1,576,683		129.67%
2002 -2003	2002 -2003		127.07%

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Deicing Agents

Date: December 17, 2003

Table 17. Estimated deicer usage totals by basin for Interstate, US Trunk and Minnesota Trunk highways.

Basin	Low Year Salt (tons)	Low Year Sand (tons)	Avg Year Salt (tons)	Avg Year Sand (tons)	High Year Salt (tons)	High Year Sand (tons)	Brine (gallons)
Upper Mississippi River	80,732	38,486	80,732	86,725	80,732	144,126	521,969
St. Croix River	17,789	6,065	17,789	13,830	17,789	23,048	59,431
Red River	21,801	12,857	21,801	29,393	21,801	80,026	135,874
Rainy River	14,469	12,066	14,469	27,515	14,469	45,858	160,864
Missouri River	4,434	1,180	4,434	2,692	4,434	4,487	25,586
Minnesota River	34,183	18,699	34,183	42,648	34,183	40,875	251,770
Lower Mississippi River	41,761	17,404	41,761	39,583	41,761	65,961	268,117
Lake Superior	16,858	8,954	16,858	20,431	16,858	34,046	91,289
Cedar River	7,381	1,378	7,381	3,159	7,381	5,265	43,379
Des Moines River	2,769	1,270	2,769	2,899	2,769	4,831	18,403
Estimated MnDOT Deicer Use	242,177	118,358	242,177	268,874	242,177	448,522	1,576,683
Estimated Total Deicer Use	710,178	1,289,734	1,246,445	2,042,906	1,868,976	2,853,194	1,576,683
MnDOT Percentage	34.1%	9.2%	19.4%	13.2%	13.0%	15.7%	100.0%

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 27

Recommendations for Future Refinements

See previous section for relevant discussion.

Recommendations for Lowering Phosphorus Export

Efforts currently underway as part of MnDOT's road weather information system (RWIS) use timely and accurate weather and road data in deicing application decisions; these efforts have optimized the use of deicing materials. The Minnesota Legislative Auditor (1995) reported that "(M)ost counties (93 percent), cities providing their own service (91 percent), and townships providing their own service (59 percent) rely on television or radio weather reports, including the National Weather Service reports via telephone, for weather information." More accurate weather information could lead to reduced usage of deicing agents. The use of brines can also improve the effectiveness of deicing agents and in all cases where the quantities of deicers are reduce there as cost savings to the road agency and safety benefits to the public.

The high phosphorus content of many of the agriculturally derived alternatives to road salt is noteworthy. In most cases the high phosphorus content for the alternatives is due to the corrosion inhibitor portion of the mixtures. As concerns for the environmental impacts has chlorides increased, additional emphasis may be placed on the use of these alternatives. While this analysis does not make any attempt to quantify what those impacts would be, a cursory evaluation of the concentrations shows that many of these products have phosphorus concentrations 100 to 10,000 times greater than road salt or sand.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 28

Literature Cited

Alger, R.G., Adams, E.E. and Beckwith, J.P. 1993. Development of Anti-Icing Technology - Chemical Treatment - Controlled Access Highway, Strategic Highway Research Program - National Research Council.

- Barr Engineering Company. 1993. Phosphorus Reduction Study for the Twin Cities Metropolitan Area. Prepared for the Minnesota Pollution Control Agency.
- Biesboer, David and Robert Jacobson. 1993. Screening and Selection of Salt Tolerance in Native Warm Season Grasses. Minnesota Department of Transportation, Report 94-11.
- City of Minneapolis and Minneapolis Park and Recreation Board. 2003. NPDES Stormwater Management Program and Annual Report. Prepared by Minneapolis Public Works Department in compliance with NPDES Permit No. MN0061018
- Duluth Streams.org. 2003. Road Salt: Can we have safe roads and healthy streams? http://www.duluthstreams.org/understanding/impact_salt.html
- Environment Canada and Health Canada. 2001. Priority Substances List Assessment Report Road Salts. Environment Canada and Health Canada, Hull, Québec. http://www.ec.gc.ca/substances/ese/eng/psap/final/roadsalts.cfm
- Fischel, Marion. 2001. Evaluation of Selected Deicers Based on a Review of the Literature. Report No. CDOT-DTD-R-2001-15. Prepared for Colorado Department of Transportation. The SeaCrest Group, Louisville, CO. http://www.dot.state.co.us/Publications/PDFFiles/deicers.pdf
- Goldman, C.R. and Hoffman, R.W. 1975. A study of the influence of highway deicing agents on the aquatic environment in the Lake Tahoe basin and drainages along Interstate 80. Ecological Associates Report, California Department of Transportation. Cited in: Environment Canada and Health Canada, 2001.
- Hanes, R.E., L.W. Zelazny and R.E. Blaser. 1970. Effects of deicing salts on water quality and biota; literature review and recommended research. National Cooperative Highway Research Program, Report 91.
- Levelton Engineering Ltd. 2000. Anti Icers Chemical Analysis and Toxicity Test Results. Prepared for the Insurance Corporation of British Columbia, Kamloops, BC.
- Levelton Engineering Ltd. 1999. Freezgard Zero Chemical and Toxicity Testing. Prepared for the Insurance Corporation of British Columbia, Kamloops, BC.
- Levelton Engineering Ltd. 1998. Liquid Road deicing Environmental Impact. Prepared for the Insurance Corporation of British Columbia, Kamloops, BC.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 29

Lewis, W.M., Jr. 1999. Studies of environmental effects of magnesium chloride deicer in Colorado. Prepared for the Colorado Department of Transportation, Denver, CO.

Lord, B.N. 1988. Program to Reduce Deicing Chemical Usage. Design of Urban Runoff Quality Controls.

Mangold, T. 2000. Road Salt Use for Winter Maintenance: A Review of Impacts, Alternatives, and Recommendations for the St. Paul Campus Stormwater Management Plan. Prepared for NRES5061, St. Paul MN.

Minnesota Legislative Auditor. 1995. Snow and Ice Control: A Best Practices Review. Report #95-06. Office of the Legislative Auditor, State of Minnesota. St. Paul, MN.

MnDOT. Undated. How does Mn/DOT set targets for snow & ice removal? http://www.dot.state.mn.us/dashboards/snowandice.html

MnDOT, 2003a. Sand, Salt and Brine Usage Coverage Rates by Lane Miles Only. Work Management System Report PS1A6.

MnDOT Office of Maintenance, 2003, Winter Maintenance Material Usage Reports for 2000-2001, 2001-2002, and 2002-2003. Electronic worksheets provided by Steve (Rocky) Haider, Maintenance Business Planning Administrator.

MnDOT Office of Transportation Data & Analysis. 2002. Statewide Mileage and Lane Miles.

Report 1: By County / Route System and by Route System Only

Report 2: By Construction District / Metro Division and Route System (Trunk Highways)

Report 3: —By County/City/Route System —By City only —By Route System Only

Report 4: By County / Surface Type and by Surface Type only

http://www.dot.state.mn.us/tda/reports/mileage_lanemiles.html

Oberts, G.L. 1986. Pollutants Associated with Sand and Salt Applied to Roads in Minnesota. Water Resources Bulletin, 22(3):479-483.

Ohrel, R.L. 2000. Rating deicing agents: salt still stands firm. (Watershed Protection Techniques 1(4):217-220). In: Schueler, T.R. and H.K. Holland. 2000. The Practice of Watershed Protection. The Center for Watershed Protection.

Pacific Northwest Snowfighters. 2002. Snow and ice control chemical products specifications and testing protocols for the PNS Association of British Columbia, Idaho, Montana, Oregon and Washington. http://www.wsdot.wa.gov/partners/pns/pdf/PNS_SPECS_2002_FINAL.pdf

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Deicing Agents

Date: December 17, 2003

Page: 30

Public Sector Consultants. 1993. The Use of Selected Deicing Materials on Michigan Roads: Environmental and Economic Impacts. Prepared for the Michigan Department of Transportation. http://www.michigan.gov/documents/toc-deice_51451_7.pdf

- Ramsey-Washington Metro Watershed District. 1999. RWMWD City Street Management Database Fall 1999. Electronic graphic file document.
- SRF Consulting Group, 1998. Salt Solutions Statewide Salt and Sand Reduction. Prepared for the Minnesota Department of Transportation Evaluation Report MN/RC 1988-20. St. Paul, MN. Trost, S.E., Heng, F.J., and Cussler, E.L., 1988, Chemistry of Deicing Roads Penetrating the Ice. Minnesota Department of Transportation UM-TOC-25; MN/RC-88/6.
- `Tierney, J. and Silver, C. 2002. Scientific Guidance on Lower-Phosphorus Roadway De-icers. New York State Attorney General's Office, Albany NY.
- Trost, S.E., Heng, F.J., and Cussler, E.L., 1988, Chemistry of Deicing Roads Penetrating the Ice. Minnesota Department of Transportation UM-TOC-25; MN/RC-88/6.
- U.S. Department of Transportation Federal Highway Administration, 1996. Manual of Practice for Effective Anti-icing Program: A Guide for Highway Winter Maintenance Personnel. Electronic Version of Publication No. FHWA-RD-95-202. http://www.fhwa.dot.gov/reports/mopeap/mop0296a.zip
- U.S. Environmental Protection Agency. 2002. Managing Highway Deicing to Prevent Contamination of Drinking Water. Source Water Protection Practices Bulletin. EPA 816-F-02-019. US EPA Office of Water, Washington, D.C.
- U.S. Environmental Protection Agency. 1999. Storm Water Management Fact Sheet Minimizing Effects from Highway Deicing. EPA 832-F-99-016. US EPA Office of Water, Washington, D.C. http://www.epa.gov/owm/mtb/ice.pdf
- University of New Hampshire, 1996. Manual of practice for Anti-icing of Local Roads. Technology Transfer Center, University of New Hampshire, Durham NH.
- Vasek, R. 2003. Personal communication. October 21, 2003.
- Warrington, P. D., 1998. Roadsalt and Winter Maintenance for British Columbia Municipalities.

 British Columbia Ministry of Water, Land and Air Protection, Water Quality Section, Vancouver,

 BC. http://wlapwww.gov.bc.ca/wat/wq/bmps/roadsalt.html#table%202
- Watson, L. 2003. Street management literature review, analysis and BMP recommendations report. Ramsey-Washington Metro Watershed District Report for the Development of a District-wide Street Management for Water Quality Program Plan.
- Weber, A. 2003. Personal communication. October 2003.

Technical Memorandum

To: Marvin Hora, Doug Hall and Mark Tomasek, Minnesota Pollution Control Agency

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds —

Streambank Erosion

Date: December 21, 2003

Project: 23/62-853 EROS 009

c: Henry Runke

The purpose of this memorandum is to provide a discussion about streambank erosion as a source of phosphorus to Minnesota watersheds. This discussion is based on a review of the available literature, monitoring data and the results of phosphorus loading computations done for each of Minnesota's major watershed basins as part of this study. This memorandum is intended to:

- Provide an overview and introduction to streambank erosion as a source of phosphorus
- Describe the results of the literature search and review of available monitoring data
- Discuss the characteristics of each watershed basin as it pertains to streambank erosion as a source of phosphorus
- Describe the methodology used to complete the phosphorus loading computations and assessments for this study
- Discuss the results of the phosphorus loading computations and assessments
- Discuss the uncertainty of the phosphorus loading computations and assessment
- Provide recommendations for future refinements to phosphorus loading estimates and methods for reducing error terms
- Provide recommendations for lowering phosphorus export from streambank erosion

Overview and Introduction to Streambank Erosion as a Source of Phosphorus

The stability of stream channels is a complex issue that is highly influenced by the dynamics of natural and anthropogenic disturbances. Under natural conditions, the processes of erosion and deposition result in imperceptible morphologic changes to streams over long periods of time. The banks of unstable streams typically undergo erosion, both in the form of particle detachment from hydrodynamic drag and mass failure following erosion of the bank toe (FEMA, 1999). These adjustments to unstable stream channels can involve small time (days) and spatial scales (a reach) or

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 2

a longer time (hundred or more years) and extent (entire systems), depending on the magnitude and scale of disturbance (Simon, 1994). Simon and Rinaldi (2000) determined that human disturbances to floodplains and upland areas in the loess area of the midwestern U.S., beginning around 1910, have resulted in accelerated channel erosion, degradation and property damages over the next 80 years. In Minnesota, this loess area covers all of the Lower Mississippi, Cedar and Missouri River Basins, along with a portion of the Minnesota River Basin (Simon and Rinaldi, 2000; Luttenegger, 1987). Adjustments occur in unstable streams until the distribution of particle sizes in each section of the stream reaches equilibrium (FISRWG, 2001).

Lane (1955) completed some of the early work of defining how alluvial channels become unstable and adjust to changes in order to re-establish equilibrium and offset the effects of the imposed changes. The general expression, presented by Lane (1995), shows that the product of the bed-material sediment load and median grain size should balance the product of the water discharge and channel slope. If any of these four variables are altered, it indicates that proportional changes in one or more of the other variables must take place to re-establish equilibrium in the stream.

Simon and Hupp (1986) developed a six-stage, semi-quantitative model of channel evolution in disturbed channels, for bed-level trends, that qualitatively recognizes bank slope development (as illustrated in Figure 1). Stages III and IV represent stream degradation, characterized by the lowering of the channel bed and basal erosion, with a subsequent increase in bank heights and slopes, leading to mass-wasting from slab, pop-out and deep-seated rotational failures (Simon and Hupp, 1986). The critical bank height (h_c) is the height of the bank, above which, the stream bank experiences mass wasting or slab failures. The degradation stage (Stage III) ends, and Stage IV begins, when the critical height of the bank material is reached (Simon and Hupp, 1986). This model of channel evolution is somewhat qualitative and requires a clear understanding of when the bank height has shifted to properly identify the stage class. Stage VI represents re-stabilization of the stream to the present watershed land use and altered hydrologic regimes (Simon and Rinaldi, 2000). Stage I represents a natural or "reference" condition for areas with minimal disturbance, while Stage VI represents a reference (or re-stabilized equilibrium) target for areas following significant disturbance (Simon et al., 2001).

The total suspended sediment load in streams includes the wash load (portion of the sediment load comprised of particle sizes finer than those present in the streambed, primarily derived from the

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

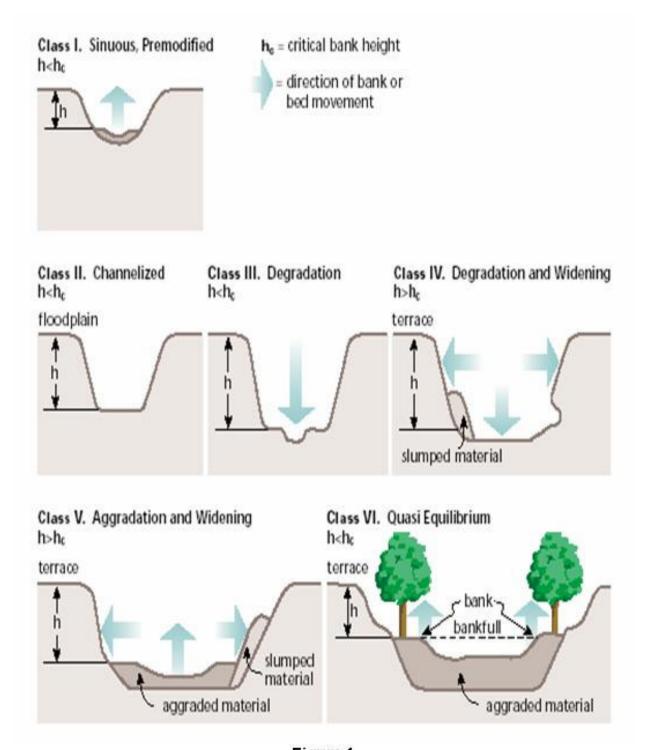


Figure 1 Six Stages of Channel Evolution (from Simon and Hupp, 1986)

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 4

watershed) and suspended bed material load or the portion of the total sediment load that is suspended by turbulent fluctuations of flowing water (FISRWG, 2001). The amount of sediment discharged at a given stream cross-section depends on the following (Colby, 1964):

• Depth, width, velocity, energy gradient, temperature, and turbulence of the flowing water

• Size, density, shape, and cohesiveness of particles in the banks and beds at the cross-section and in upstream channels

• Geology, meteorology, topography, soils, subsoils, and vegetal cover of the drainage area

Several researchers have determined that the stream sediment load is proportional to stream discharge (Lane, 1955; Glysson, 1987; Tornes, 1986; Kuhnle and Simon, 2000; Syvitski et al., 2000). Glysson (1987) provided methods for the development and interpretation of sediment-transport curves. Instantaneous flow and sediment transport data are used to develop sediment-transport rating curves based on the following regression relationship:

$$Q_S = a * Q^b$$
 or $\log Q_S = \log a + b * \log Q$

where: Q_S = sediment discharge, in tons per day

Q = stream discharge, in cubic-feet per second

a = constant, or intercept solved by regression

b = constant, slope of linear regression for log-log suspended-sediment rating relationship

Figure 2 provides an example of sediment-transport curves with two different slopes (based on Glysson, 1987). In some cases, two or three linear segments may be needed to adequately represent the sediment discharge at the various intervals of stream discharge (Glysson, 1987; Tornes, 1986; Simon, 1989; Simon et al., 2003). A steep regressed slope (as per Figure 2) to the rating relationship indicates both high sediment availability and high transport capacity. By multiplying the sediment concentration from the resulting rating relation by the discharge and percent occurrence for each discharge class, Simon et al. (2003) determined the discharge class contributing the highest sediment load, which is defined as the effective (or channel forming) discharge. This supported the work of Wolman and Miller (1960). The effective discharge is considered the discharge that shapes the channel, or performs the most geomorphic work, and may be analogous to the bankfull discharge in

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 5

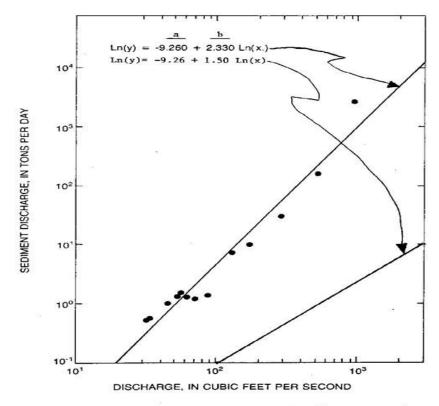


Figure 2 --Sediment-transport curve based on log-linear regression analysis (Based on Glysson, 1987)

stable streams (Simon et al., 2001). The slope of the suspended-sediment rating relationship (b, from the above expression) varies (Simon, 1989a; Simon et al., 2003), depending upon the stage of channel evolution shown in Figure 1. Figure 3 shows that the highest slope of the suspended-sediment rating relationship corresponds to the stream stages (III and IV) that are undergoing the highest degree of degradation (Simon, 1989a), as previously described above. Migration of knickpoints (or vertical step-changes in bed surface elevation) up tributary streams during Stage III, and bank failures by mass wasting during Stage IV, both serve to significantly increase sediment yield (Simon, 1989a). For re-stabilized streams (Stage VI), Figure 3 shows the slope of the suspended-sediment rating relation is approximately 1.5, as opposed to 1.0 for "natural" streams (Stage I).

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 6

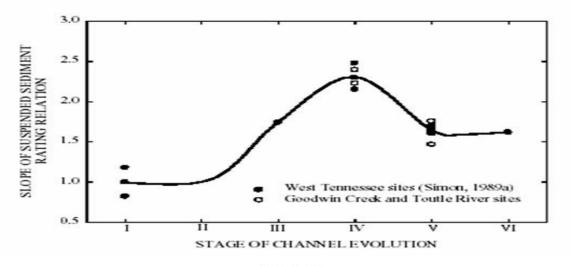


Figure 3 Relationship Between Stage of Channel Evolution and Suspended Sediment Transport (from Simon, 1989a)

The phosphorus attached to eroded streambank material is immediately delivered to the receiving water where it may ultimately become available for biologic uptake, re-deposited downstream, or transported with the flow out of the system. The approach for this assessment will utilize the data and techniques from the literature to estimate total phosphorus loadings to the surface waters within each of the ten major basins in Minnesota.

Results of Literature Search and Review of Available Monitoring Data

The literature search and review of available monitoring data involved a compilation of streambank erosion studies completed within Minnesota, along with an evaluation of the literature pertaining to sediment yield from Minnesota watersheds, to define the contribution of streambank erosion to the total phosphorus budget. Wherever possible, streambank erosion studies completed for Minnesota streams were used to determine the phosphorus load under low, average and high flow conditions for the respective basins. Sediment yield literature specific to the various regions of the state was consulted to develop an approach and assist with the assessment of the remaining unstudied watersheds.

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 7

In addition to the literature search, the following sources were consulted for streambank erosion studies or data compiled for Minnesota streams:

- The University of Minnesota Department of Soil, Water and Climate, Department of Forest Resources, Saint Anthony Falls Hydraulics Laboratory, Soil and Landscape Analysis Laboratory, and Water Resources Center
- Natural Resource Conservation Service (NRCS) and County Soil & Water Conservation
 Districts
- U. S. Geological Survey
- U.S. Forest Service
- U. S. Army Corps of Engineers
- Minnesota Pollution Control Agency
- Minnesota Department of Natural Resources
- Iowa State Water Resources Research Institute
- USDA-ARS National Sedimentation Laboratory

Literature and Monitoring Data Specific to Streambank Erosion in Minnesota Basins

Table 1 presents the results of the literature search and monitoring data specific to streambank erosion within Minnesota watersheds. Five published studies were found that specifically addressed streambank erosion for streams that originate in Minnesota. Wherever possible, average annual streambank sediment erosion, average annual erosion per stream mile, slope of suspended sediment rating relation, sediment erosion as a percentage of observed downstream suspended solids loading, and EPA Level III Ecoregion were expressed for each stream studied. Most of the estimates of streambank sediment erosion were the result of stream channel surveys (including aerial photos) to evaluate streambank retreat (or migration) and eroding bank area to determine the average annual volume of material eroded. The EPA Level III Ecoregion numbers refer to the areas shown in Figure 4. Each ecoregion is discussed in more detail in the following section "Watershed Basin Characteristics".

Table 1 shows that the average annual erosion rate per stream mile for the Iowa streams is significantly higher than the remaining studies. Also, the slope of the suspended sediment rating relations for the Iowa streams is indicative of degraded streams (Simon, 1989a). However, the

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 8

erosion rates per stream mile for the Des Moines and Cedar Rivers are based on data collected down to the southern portion of Iowa (Odgaard, 1984). As a result, these erosion rates are probably not as indicative of erosion from the respective streams in Minnesota. The estimated erosion rates for the Rock and Upper Iowa Rivers should be more indicative of the respective streams in Minnesota, as the downstream portions of these watersheds are very close to the Minnesota border. The Cedar, Rock, and Upper Iowa River erosion estimates in Table 1 are a result of modeling (Odgaard, 1984). With the exception of the Upper Iowa River, 90 percent, or more, of the eroded stream channel material remains in suspension as it flows downstream.

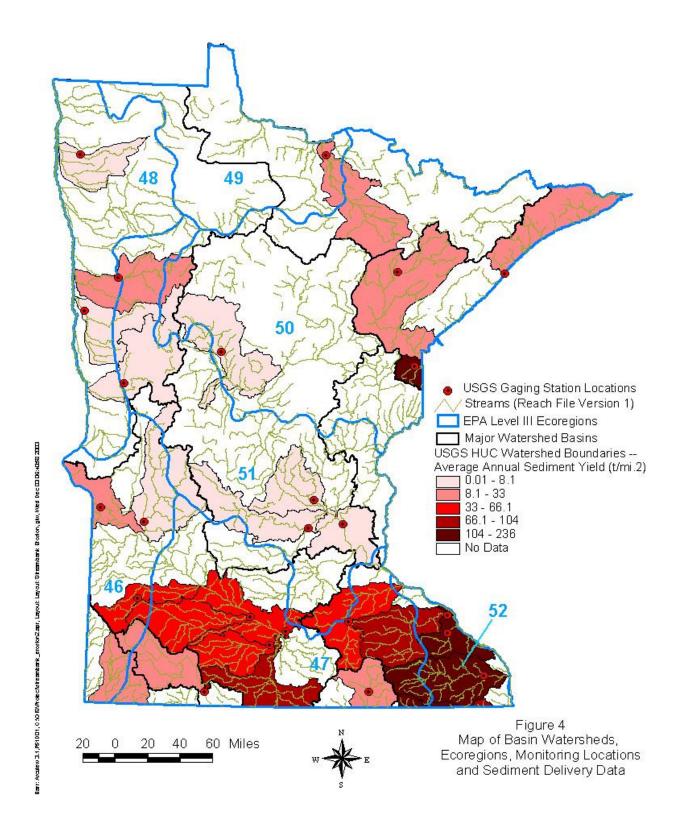
Skunk, Deer, and Elim Creeks are smaller streams within the Nemadji River watershed which drains into Wisconsin before discharging to Lake Superior. Channel incision into deposits of lacustrine red clay, combined with forest harvesting and land use conversion, have made this basin susceptible to streambank erosion (Riedel et al., 2002; NRCS & USFS, 1998a). Table 1 shows that approximately 98 percent of the eroded stream channel material is delivered to Lake Superior as suspended sediment. Riedel et al. (2002) noted that channel incision and mass wasting account for more than 95% of the annual sediment load in the Nemadji River basin. The authors also found that stream evolution within this basin was consistent with the model identified by Simon and Hupp (1986).

The Blue Earth River also produces significant streambank erosion, accounting for 31 to 44 percent of the sediment in the flow that discharges to the Minnesota River (Sekely et al., 2002). Sekely et al. (2002) also estimated that streambank slumping accounts for 7 to 10 percent of the annual contributions to total phosphorus load in the Blue Earth River. Bauer (1998) estimated that streambank slumping accounted for 36 to 84 percent of the total suspended solids load in the Blue Earth River. Sekely et al. (2002) also produced a probability plot of annual streambank erosion rates which indicates that erosion rate for the 10% flow rate exceedance probability is 374% higher than the erosion rate for the 50% exceedance probability, while the erosion rate for the 90% exceedance probability is 20% of the erosion rate for the 50% exceedance probability (see Figure 5). Water quality modeling, calibrated for major watersheds within the Minnesota River basin, indicates that bank and bluff erosion should account for 40% of the modeled total sediment load in the Blue Earth River watershed, approximately 35% for the Cottonwood and LeSueur River watersheds, 20 to 25% for the Watonwan and Redwood River watersheds, and 2% of the Yellow Medicine River watershed for the 1986-1992 time period (TetraTech, 2002).

From: Greg Wilson
Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion
Date: December 21, 2003

Page: 9

Literature and Monitoring Data Specific to Studies of Minnesota Basins


	Average Streambank	Average Erosion	Slope of Suspended	Sediment Erosion as a Percentage	EPA Level III	
Stream(s)	Sediment Erosion (tons/gr)	(tonstyrtstream mile)	Sediment Bating Belation	of Observed TSS Loading	Ecoregion	Beference
Des Moines River, Iowa		17,000	2	98	47	Odgaard, 1984
Cedar River, Iowa		5,100	2	100	47	Odgaard, 1984
Rock River, Iowa		8,400	2	93	46	Odgaard, 1984
Upper lowa River, lowa		1,180	က	7	52	Odgaard, 1984
Nemadji River	117,000	351	2	88	20	NRCS & USFS, 1998a
Skunk Creek	2,800	190		88	20	NRCS & USFS, 1998a
Deer Creek	4,800	516		88	20	NRCS & USFS, 1998a
Elim Creek	230	526		88	20	NRCS & USFS, 1998a
Blue Earth River	100,292			31-44	47	Sekely et al., 2002
Whitewater River, Beaver Creek	142,000	609		88	47/52	NRCS, USFS & MPCA, 1996
Bear Creek	2,200	440			52	NRCS & USFS, 1998b

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 10

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 11

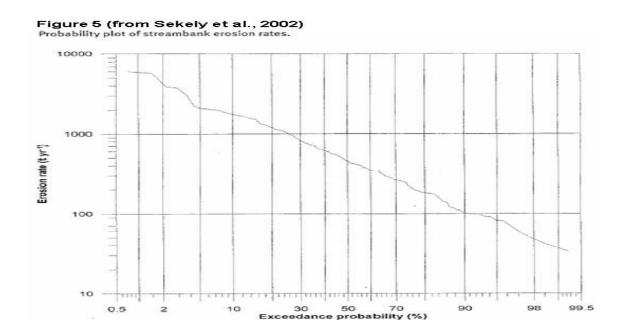


Table 1 shows that the Whitewater River, Beaver and Bear Creek watersheds produce some of the highest rates of streambank erosion in the state. A large part of the Bear Creek watershed is located in Iowa (NRCS & USFS, 1998b). Streambank erosion in the Whitewater River system also accounts

for 80 percent of the suspended solids loading that moves downstream (NRCS & USFS, 1998b).

Regional Sediment Yield Literature

In addition to the streambank sediment erosion studies (described above), two regional studies have been completed involving sediment yield data for Minnesota watersheds (Tornes, 1986; Simon et al., 2003). Tornes (1986) analyzed the average annual sediment yield data for 33 USGS gaging stations, in or adjacent to Minnesota, while Simon et al. (2003) determined sediment yield, on the basis of the 1.5-year recurrence interval flow rate, for each of the EPA Level III Ecoregions. Figure 4 shows the locations of the 24 gaging stations utilized for this study, along with the corresponding watersheds, based on the associated USGS Hydrologic Unit Code (HUC). The difference between the 33 USGS gaging locations used by Tornes (1986) and the 24 gaging station sediment yield watersheds utilized

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 12

for this study is due to the fact that some of the gaging stations were further upstream within monitored watersheds or were not located in Minnesota.

Tornes (1986) determined the average annual sediment yield for each of the gaging stations by developing sediment-transport curves for each of the stations and applying the relationships to flow-duration curves to calculate and sum the sediment loadings at each interval. Most of the sediment-transport curves were best represented by two linear segments. Tornes (1986) solved for and reported the slope and intercept for each segment of the sediment-transport curves for each station.

Tornes (1986) notes that, at extreme high flow, maximum daily sediment yields may nearly double the average annual sediment yield at several stations in southern Minnesota. During these extremely high flows, the normal sediment load for two years may be observed at the sampling station in slightly more than one day.

The recurrence interval of the effective discharge for sediment loading is typically 1.5 years (Wolman and Miller, 1960; Simon et al., 2003). Simon et al. (2003) determined sediment yield quartiles, minimum, and maximum yields, on the basis of the 1.5-year recurrence interval flow rate, for each of the EPA Level III Ecoregions shown in Figure 4. This analysis involved some of the same data and USGS gage locations used by Tornes (1986), but would have included data from other gages, outside of Minnesota, that were within the same ecoregions. This is primarily due to the fact that the USGS has developed a suspended-sediment database containing matching suspendedsediment sample results and instantaneous flow discharge measurements throughout the country (Turcios and Gray, 2001). Most of the Lake Agassiz Plain and all of the Northern Minnesota Wetlands Ecoregions are contained within Minnesota, while the remaining ecoregions generally possess half of their area outside of Minnesota. The difference between the 75th and 25th percent quartiles for sediment yields varied among the ecoregions. There was an order of magnitude difference for Ecoregions 46, 51 and 52; two orders of magnitude difference for Ecoregions 47 and 50; and less than an order of magnitude difference for Ecoregions 48 and 49. Finally, suspended sediment yields from stable streams in eight ecoregions were used by Simon et al. (2003) to determine "background" or "reference" conditions for sediment transport. Within a given ecoregion, the median value for stable sites is approximately one order of magnitude lower than for nonstable sites. None of the seven ecoregions used in this analysis were located in the upper Midwest.

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 13

Other literature sources reviewed for this analysis, but not cited, are listed at the end of this

memorandum.

Watershed Basin Characteristics

As discussed previously, the large range in observed sediment yields throughout the state (shown in

Figure 4) can be attributed to the variability of the geology, topography, land use and climatology of

each region. As a result, the following sections discuss the variability associated with the seven EPA

Level III ecoregions that cover the state (shown in Figure 4).

Northern Glaciated Plains Ecoregion (No. 46)

Located in the southwest portion of the state, this ecoregion consists of relatively flat agricultural

land with loess, clay and sandy soils and low annual precipitation. Tornes (1986) notes that the clay

and loess soils, combined with cultivation, result in average suspended solids concentrations above

50 mg/L.

Western Corn Belt Plains Ecoregion (No. 47)

Occupying most of the southern portion of the state, this ecoregion is predominantly agricultural

lands with variable topography, clayey and loess soils, and higher precipitation from west to east.

Tornes (1986) notes that average suspended solids concentrations in the Minnesota River basin were

near 100 mg/L, but it was not uncommon for the maximum concentrations to exceed 2,000 mg/L.

The wide fluctuations are presumably due to erosion of the fine-grained soils exposed by heavy

cultivation (Tornes, 1986).

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 14

Lake Agassiz Plain and Northern Minnesota Wetlands Ecoregions (Nos. 48 and 49)

Located in the north and west portion of the state, these ecoregions consist of relatively flat land, with peat and clayey soils, and low annual precipitation. Tornes (1986) notes that most of the suspended solids concentrations measured in these ecoregions were below 50 mg/L, primarily due to

the low precipitation and flat topography.

Northern Lakes and Forests Ecoregion (No. 50)

Located in the northeast portion of the state, this forested ecoregion consists of relatively hilly topography with rock, sand, and peat soils and higher annual precipitation. Most of the average suspended solids concentrations were below 50 mg/L, presumably due to the combination of rocky and sandy soils with forested land use (Tornes, 1986). The Nemadji River basin, with its highly

erodible clay soils and high runoff volumes, is a notable exception within this ecoregion.

Northern Central Hardwood Forests Ecoregion (No. 51)

Located in the central portion of the state, this ecoregion with mixed landuse, consists of variable topography, with sand and clay soils, and higher annual precipitation. Tornes (1986) notes that the area drains predominantly sandy soils which is not as easily carried as suspended sediment. This

land is not as heavily cultivated as the south portion of the state.

Driftless Area Ecoregion (No. 52)

Located in the southeast portion of the state, this ecoregion with mixed landuse, consists of hilly topography with highly erodible loess and rock or sandy soils, and high annual precipitation. Tornes (1986) notes that tillage of the loessial soils, combined with high runoff from the steep topography,

C:\Documents and Settings\gjw.BARR_ENG\My Documents\MPCA TMDL Documents\P Load Assessment\EROS\Final Streambank Erosion Technical Memorandum for MPCA's Detailed Assessment of Phosphorus Sources.doc

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 15

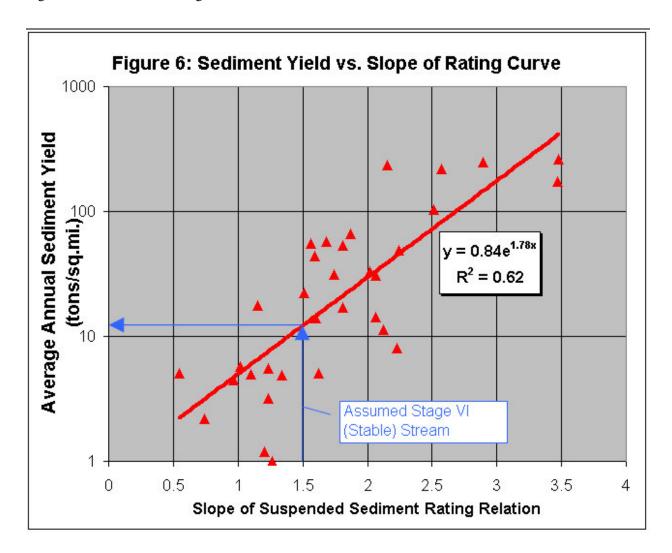
result in average suspended solids concentrations above 50 mg/L, and maximum concentrations exceeding 5,000 mg/L at several monitoring stations.

Approach and Methodology for Phosphorus Loading Computations

The approach for determining phosphorus loading from streambank erosion generally involves the following steps:

- Convert published streambank erosion estimates from Table 1 into average annual sediment yield
- Using the published sediment-transport curves from Tornes (1986), determine the relationship between average annual sediment yield and the slope of the sediment-transport curve segment containing the 1.5-year recurrence interval flow rate, as a surrogate for the effective discharge
- Apply average annual sediment yields from published streambank erosion estimates and Tornes (1986) to respective watershed units in GIS and determine average annual areaweighted monitored sediment yield for each of the EPA Level III Ecoregions in Minnesota
- Compare average annual monitored sediment yield for each of the EPA Level III Ecoregions in Minnesota to the effective discharge rate sediment yields published by Simon et al. (2003) for the same ecoregions and make adjustments, if necessary
- Assume that we can apply average annual sediment yield for each of the EPA Level III
 Ecoregions to the unmonitored portions of the state and estimate streambank sediment erosion component based on difference between average annual sediment yield for ecoregion and estimated annual sediment yield for stable (Stage VI) stream, with slope of suspended sediment rating relation equal to 1.5 (per Simon, 1989a)
- Estimate annual streambank sediment erosion for all watersheds under low and high flow conditions, based on the probability plot relationship (taken from Sekely et al., 2002) of annual streambank erosion rates, which indicates that the erosion rate for the 10% exceedance probability is 374% higher than the erosion rate for the 50% exceedance probability, and the erosion rate for the 90% exceedance probability is 20% of the erosion rate for the 50% exceedance probability
- Combine the streambank erosion sediment loadings associated with each watershed with the average soil test phosphorus concentration of 441 ppm (based on 16 surface samples collected from Blue Earth River escarpments, as described in Sekely et al., 2002) to calculate the total

From: Greg Wilson


Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 16

phosphorus load associated with sediment loading estimated from streambank erosion in each basin for each flow condition

With the exception of the Iowa streams (Odgaard, 1987), the published streambank erosion estimates from Table 1 were converted into average annual sediment yield. Using the published sediment-transport curves from Tornes (1986), the slope of the sediment-transport curve segment containing the 1.5-year recurrence interval flow rate, which is comparable to the effective discharge (Simon et al., 2003), was estimated and tabulated in Excel, along with average annual sediment yield for each watershed. The relationship between average annual sediment yield and the slope of the sediment-transport curve is shown in Figure 6. This graph also shows that the linear regression done on the log-transformed data was significant, with an r^2 of 0.62.

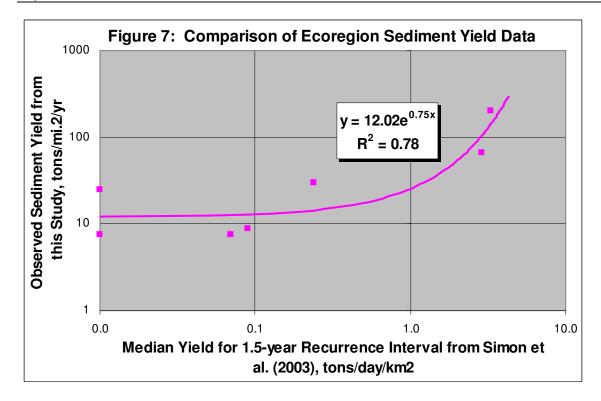
From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 17

Average annual sediment yields from the published streambank erosion estimates and Tornes (1986) were applied to their respective USGS HUC watershed areas in ArcView (GIS). The coverage of watershed areas representing published average annual sediment yields was intercepted with the coverage representing the EPA Level III Ecoregion areas. By area-weighting the watershed areas with the published sediment yields within each ecoregion, the average annual sediment yield was determined for each of the EPA Level III Ecoregions in Minnesota.


The average annual sediment yield determined for each of the EPA Level III Ecoregions in Minnesota was tabulated in Excel, along with the effective discharge rate sediment yields published by Simon et al. (2003) for each ecoregion. Both datasets were graphed as a means of verifying that the relative differences between the estimated annual sediment yield determined for each ecoregion corresponded well with the larger dataset developed by Simon et al. (2003). The relative difference and ranking of ecoregion sediment yields estimated for each dataset agreed well, with the exception of the Northern Minnesota Wetlands (No. 49 in Figure 4) Ecoregion, which had an average annual sediment yield of 33 tons per square mile. The estimated yield for this ecoregion is more than four times higher than the estimated yield for the nearby Lake Agassiz Plain ecoregion, at 7.59 tons per square mile. Simon et al. (2003) determined that the median sediment yield for the Northern Minnesota Wetlands ecoregion should be comparable to that of the Northern Glaciated Plains (No. 46) or the Lake Agassiz Plain (No. 48) ecoregions. In addition, there was only one data point for this analysis (the Little Fork River sediment yield) and only three data points in the analysis done by Simon et al. (2003) for the Northern Minnesota Wetlands ecoregion. No other published streambank erosion or sediment loading data could be found for this ecoregion. Tornes (1986) noted that the Little Fork River at Littlefork had a higher sediment yield than other sites in the area. As a result, the sediment yield used in this analysis for the Northern Minnesota Wetlands ecoregion was assumed to be the same as the calculated yield for the nearby Lake Agassiz Plain ecoregion. Following this adjustment, the relationship between average annual sediment yield and the effective discharge rate sediment yield for each ecoregion was developed, as shown in Figure 7. This graph also shows that the linear regression done on the log-transformed data was significant, with an r² of 0.78.

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 18

The average annual sediment yield determined for each of the EPA Level III Ecoregions was applied to the unmonitored watersheds within each ecoregion, based on the area of the respective ecoregions within each watershed area using ArcView. The estimated average annual sediment yield for each of the watersheds was then used to estimate the streambank sediment erosion component based on difference between its average annual sediment yield and the estimated annual sediment yield for a stable (Stage VI) stream, with a slope of the suspended sediment rating relation equal to 1.5 (per Simon, 1989a). The regression equation from Figure 6 shows that the suspended-sediment rating relation slope of 1.5 translates to an average annual sediment yield of 12.13 tons per square mile. As a result, it was assumed for this analysis that if the estimated average annual sediment yield was greater than 12.13 tons per square mile, then the difference in sediment yield was a result of streambank erosion under average flow conditions. With the exception of the observed streambank erosion sediment loadings from Table 1, streambank erosion sediment loadings were estimated for the remaining watersheds in the State, based on the difference between the estimated sediment yield and the average annual sediment yield of 12.13 tons per square mile. It was assumed that there was no streambank erosion occurring in watersheds with average annual sediment yields below 12.13 tons per square mile.

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 19

The annual streambank sediment yield for all watersheds under low and high flow conditions was then estimated, based on the probability plot relationship (see Figure 5; from Sekely et al., 2002). The probability plot of annual streambank erosion rates indicated that erosion rate for the 10% exceedance probability is 374% higher than the erosion rate for the 50% exceedance probability, while the erosion rate for the 90% exceedance probability is 20% of the erosion rate for the 50% exceedance probability (Sekely et al., 2002). For this analysis, the proportion of 10% and 90% exceedance probabilities to the 50% exceedance probability was assumed to represent the proportional difference between streambank sediment yield during average flow conditions and the high and low flow conditions, respectively. These relationships were then utilized to estimate the streambank sediment erosion loadings under low and high flow conditions.

Sekely et al. (2002) estimated streambank slumping phosphorus loadings based on an average soil total phosphorus concentration of 441 ppm, resulting from 16 surface samples collected from Blue Earth River escarpments. No other data for total phosphorus content in other escarpments, throughout the state, could be located in the literature. As a result, the total phosphorus load associated with sediment loading estimated from streambank erosion in each basin, for each flow condition, was estimated for this analysis based on an assumed soil total phosphorus concentration of 441 ppm.

Results of Phosphorus Loading Computations and Assessments

Table 2 presents the results of the phosphorus loading computations and assessments for each flow condition, by watershed basin and the entire state. Table 3 compares the phosphorus yield associated with streambank erosion for each flow condition, by watershed basin and the entire state. Table 2 shows that the estimated streambank erosion total phosphorus loadings under low flow conditions are approximately an order of magnitude lower than average flow conditions, while the streambank erosion estimates under high flow conditions are about a half an order of magnitude higher than average flow conditions.

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 20

Table 2
Summary of Total Phosphorus Loading Estimates for Streambank Erosion (kg/year)

<u>Basin</u>	Low Flow Conditions	Average Flow Conditions	High Flow Conditions
Cedar River	140	12,200	59,600
Des Moines River	130	7,350	47,900
Lake Superior	4,730	35,100	207,000
Lower Mississippi	45,500	322,000	1,280,000
Minnesota River	9,910	200,000	900,000
Missouri River	1,440	16,100	71,600
Rainy River	0	52,700	318,000
Red River of the North	0	8,840	146,000
St. Croix River	20	15,500	98,000
Upper Mississippi	430	79,900	477,800
Statewide Totals	62,300	750,000	3,606,000

Table 3
Summary of Total Phosphorus Yield Estimates for Streambank Erosion (kg/km²/year)

<u>Basin</u>	Average Flow Conditions
Cedar River	4.6
Des Moines River	1.9
Lake Superior	2.2
Lower Mississippi	19.7
Minnesota River	5.2
Missouri River	3.5
Rainy River	1.8
Red River of the North	0.2
St. Croix River	1.7
Upper Mississippi	1.5
Statewide Totals	3.4

Table 3 shows that the relative difference between the estimated phosphorus loadings for each basin corresponds well with the variation of observed sediment yields throughout the State (as shown in Figure 4), although sediment yield and streambank erosion loadings would not necessarily be expected to vary the same if other sources of phosphorus and sediment measured in the yield vary significantly. Based on the estimated yield from each basin, the Lower Mississippi River basin loadings are significantly higher than any other basin, followed by the Minnesota and Cedar River basins. This corresponds well with the portion of the State with significant loess deposits, and corresponds with the findings of other researchers (Tornes, 1986; Simon and Rinaldi, 2000; Simon et al., 2003). For each flow condition, the Lower Mississippi River basin streambank erosion estimates

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 21

from Table 2 account for more than a third of the total loading estimated for the State. Under the low flow condition, the Lower Mississippi River basin streambank erosion estimates accounts for more than 70 percent of the total loading estimated for the State.

Phosphorus Loading Variability and Uncertainty

The variability and uncertainty of the phosphorus loading computations done for this analysis is the result of each of the following sources of error:

- The natural variability associated with the published streambank erosion and sediment yield data
- the uncertainty that is introduced in this analysis as a result of extrapolating the monitored sediment yield data to the unmonitored areas for each ecoregion
- the variation in sediment yield within each ecoregion
- the assumptions that the Simon and Hupp (1986) model of channel evolution applied to Minnesota streams and the slope of the suspended-sediment rating relationship could be used to characterize stable versus unstable streams, based on data published in Simon (1989a)
- the standard error in the regression between the slope of the suspended-sediment rating relationship and the sediment yield
- the assumption that the probability plot of Blue Earth River streambank erosion rates from Sekely et al. (2002) could be utilized to estimate the variation of streambank erosion during low and high flow conditions for the remaining streams in the state
- the variation in the total phosphorus concentration of the sediment eroding from streambank escarpments throughout the state

Tornes (1986) reported coefficients of variation for the sediment-transport curves, used to estimate sediment discharge for each USGS gage site, in tons per day. Based on the sediment-transport curve segments used for this analysis, the median coefficient of variation was 13 percent, with most of the coefficients of variation below 33 percent (Tornes, 1986).

As previously mentioned, the difference between the 75th and 25th percent quartiles for sediment yields varied among the ecoregions (Simon et al., 2003). There was an order of magnitude difference for Ecoregions 46, 51 and 52; two orders of magnitude difference for Ecoregions 47 and 50; and less

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 22

than an order of magnitude difference for Ecoregions 48 and 49. This variation in sediment yield for each of the ecoregions indicates that the sediment yield can vary significantly, within each ecoregion. As a result, it may not be unexpected for the error of the streambank erosion estimates to approach an order of magnitude when comparing the observed loadings against the estimates for an average annual condition. A semi-quantitative study, completed by the NRCS (1996), estimated streambank sediment erosion in the Thief and Red Lake River basins based on assessments of 30 to 40 percent of the streambanks along each river. This study provided an opportunity to compare the sediment erosion estimates from this study with the estimates obtained by the NRCS (1996). The NRCS (1996) estimated that the long-term average annual streambank sediment erosion should be 31,200 tons per year for both river basins. Using the approach from this study, applied to the Thief and Red Lake River basins, the estimated streambank sediment erosion was 24,700 tons per year, under high flow conditions. This estimate is 20 percent less than the NRCS estimate for both basins, combined.

The Simon and Hupp (1986) model of channel evolution assume that channelization occurs during certain stages of the process. This should be a good assumption for many of the southern and western streams in Minnesota, with the exception of southeastern Minnesota. As discussed previously, the slope of the suspended-sediment rating relationship has been used to characterize stable versus unstable streams, based on data published in Simon (1989a) and shown in Figure 3. This is probably the most significant assumption made for this analysis since this relationship has not been broadly tested across a variety of climate and watershed conditions and may not apply to all of the streams in Minnesota. The slope of the suspended-sediment transport curves will be influenced by: cohesive versus noncohesive parent material, morphology of the new stream alignment, and extent of vegetative restoration during the last stage of evolution.

The relationship developed between the average annual sediment yield and the slope of the sediment-transport curve introduces some uncertainty into this analysis (as shown in Figure 6). The linear regression done on the log-transformed data explained approximately 62 percent of the observed variance. The primary impact of this regression on the overall analysis is that it both impacts the sediment yield (12.13 tons per square mile) assumed for a stable stream (Figure 3, taken from Simon, 1989a), as well as the magnitude of the estimated sediment yield used to estimate the streambank erosion loadings for the unmonitored portions of the State. Based on the 90 percent confidence intervals for the regression, the lower sediment yield estimate used for a stable stream would be 2.88 tons per square mile, while the higher sediment yield estimate is 51.3 tons per square mile. The

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 23

linear regression done on the log-transformed data was also done separately on the data from the western and eastern portions of the state, but each of the new relationships did not explain significantly more than 62 percent of the observed variance (as it did with all of the data), nor did it change the average annual sediment yield based on the assumed slope of the sediment-transport curve for a stable stream in each of the new regressions.

As discussed previously, the probability plot of Blue Earth River streambank erosion rates from Sekely et al. (2002) was utilized to estimate the variation of streambank erosion during low and high flow conditions for the remaining streams in the state. As a result, the annual streambank erosion rate under high flow conditions was assumed to be 374 percent higher than the rate under average flow conditions. This assumption should be good for streams located within glacial till plains (such as the Blue Earth River), but the proportion may not be high enough for use in estimating erosion from streambanks located within outwash plains.

The total phosphorus load associated with sediment loading estimated from streambank erosion in each basin, for each flow condition, was estimated for this analysis based on an assumed soil total phosphorus concentration of 441 ppm. Sekely et al. (2002) estimated streambank slumping phosphorus loadings based on an average soil total phosphorus concentration of 441 ppm, resulting from 16 surface samples collected from Blue Earth River escarpments. No other data for total phosphorus content in other escarpments or native soils, throughout the state, could be located in the literature. Most of the total phosphorus concentrations of the sixteen samples collected for the Blue Earth River study varied within 50 to 75 ppm of the median concentration (Thoma, 2003). As a result, variation in the estimated phosphorus load associated with streambank erosion from the Blue Earth River could vary by 10 to 20%, and would be expected to result in significantly more variation in the estimates made for the rest of the state.

Recommendations for Future Refinements

Figure 4 shows that many areas of the State have not been adequately sampled for definition of sediment-transport characteristics. Only a few or no sediment samples (with corresponding discharges) have been collected from most of the streams in northern and central Minnesota, with almost no samples present for the Northern Minnesota Wetlands Ecoregion (Tornes, 1986; Simon et al., 2003). Some rivers in west-central Minnesota, parts of the Red River of the North, the Rock

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 24

River, and the Pomme de Terre River drain areas underlain by clayey or loess soils may have sediment yields that are similar to those in the southeast part of the State (Tornes, 1986). In addition, no sediment-transport curves or erosion assessments have been published for streams in the St. Croix River basin. The current lack of sediment-transport data and erosion assessments throughout the state make it difficult to adequately ascertain the impacts of streambank erosion, especially as it pertains to impaired biota. Collecting more data for streambank erosion assessments can be used to further refine this analysis, reduce the current level of uncertainty, and improve the understanding of the linkage between sediment and phosphorus loadings with biological impairments.

The MPCA should install continuous flow monitoring equipment, and begin developing stage-discharge-sediment transport curves, as a means of assessing erosion within some of the existing State milestone monitoring watersheds, that are not currently being monitored by the USGS. Additional streambank erosion assessments, similar to those discussed in Table 1, should be done in conjunction with stream water quality and biological monitoring, and channel evolution stage determinations, to develop and refine empirical models and provide a better understanding of the impacts of streambank erosion throughout the State. One such assessment, recently completed by the MPCA, was done to evaluate the relationship between suspended sediment transport, stream classification and fish index of biological integrity (IBI) scores (Magner et al., 2003).

All of these assessments should also be done to evaluate streambank erosion during low and high flow conditions and address the variability and uncertainty associated with the estimates presented here. Also, more total phosphorus data should be collected from eroding streambanks across the state to further evaluate how much of the phosphorus loading is entering the streams from upland sources versus fluvial processes.

Recommendations for Lowering Phosphorus Export

There is the potential for substantial water quality benefits associated with lowering phosphorus export from streambank erosion, including reduced eutrophication and sedimentation and improved biological habitat within reservoirs, lakes and wetlands, along with the river systems themselves. Land use planning should consider the potential adverse impacts associated with the increased runoff volumes and sediment erosion. Stream road crossings should be designed with consideration to the

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 25

potential hydrodynamic changes to the system. Exclusion of pastured animals and preservation of riparian vegetation will also assist with maintaining streambank stability.

Literature Cited

- Bauer, D.W. 1998. Streambank erosion and slumping along the Blue Earth River. M.S. Thesis. University of Minnesota. St. Paul, MN.
- Colby, B.R. 1964. *Discharge of sands and mean-velocity relationships in sand-bed streams*. U.S. Geological Survey Professional Paper 462-A.
- Environmental Quality Board (EQB). 2002. FINAL Animal Agriculture Generic Environmental Impact Statement (GEIS). Minnesota Planning Agency.
- Federal Emergency Management Agency (FEMA). 1999. Riverine Erosion Hazard Areas—Mapping Feasibility Study. Technical Services Division. Hazards Study Branch.
- Federal Interagency Stream Restoration Working Group (FISRWG). 2001. *Stream Corridor Restoration: Principles, Processes, and Practices*. GPO Item No. 0120-A; SuDocs No. A 57.6/2:EN3/PT.653.
- Glysson, G.D. 1987. *Sediment-Transport Curves*. Technical Services Division. Hazards Study Branch. U.S. Geological Survey. Open-File Report 87-218. Reston, Virginia.
- Lane, E.W. 1955. *The importance of fluvial morphology in hydraulic engineering*. ASCE Proceedings. 81(745):1-17.
- Luttenegger, A.J. 1987. In Situ Shear Strength of Friable Loess. *In:* Loess and Environment. M. Pesci (Editor). Catena Supplement 9:27-34.
- Magner, J., Feist, M. and S. Niemela. 2003. *The USDA clean sediment TMDL procedure applied in southern Minnesota*. 2003 Proceedings of AWRA Agricultural Hydrology and Water Quality.
- Mulla, D.J. 2003. Personal Communication.
- Natural Resources Conservation Service. 1996. Erosion Sedimentation Sediment Yield Report, Thief and Red Lake Rivers Basin, Minnesota.
- Natural Resources Conservation Service and U.S. Forest Service. 1998a. *Erosion and Sedimentation in the Nemadji River Basin*. Nemadji River Basin Project.
- Natural Resources Conservation Service and U.S. Forest Service. 1998b. *Bear Creek Watershed, Watershed Plan and Environmental Assessment*. Public Law 83-566.

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 26

- Natural Resources Conservation Service, U.S. Forest Service and Minnesota Pollution Control Agency. 1996. *Watershed Plan and Environmental Assessment*. Whitewater River Watershed Project.
- Odgaard, A.J. 1984. *Bank Erosion Contribution to Stream Sediment Load*. Iowa Institute of Hydraulic Research. The University of Iowa. IIHR Report No. 280.
- Riedel, M.S., Verry, E.S. and K.N. Brooks. 2002. *Land use impacts on fluvial processes in the Nemadji River watershed*. Hydrological Science and Technology. 18(1-4):197-205.
- Sekely, A.C., Mulla, D.J. and D.W. Bauer. 2002. Streambank slumping and its contribution to the phosphorus and suspended sediment loads of the Blue Earth River, Minnesota. Journal of Soil and Water Conservation. 57(5):243-250.
- Simon, A. 1989a. *The discharge of sediment in channelized alluvial streams*. Water Resources Bulletin. 25(6): 1177-1188.
- Simon, A. 1994. Gradation Processes and Channel Evolution in Modified West Tennessee Streams: Process, Response, and Form. U.S. Geological Survey Professional Paper 1470.
- Simon, A., Dickerson, W., and A. Heins. 2003. Suspended-sediment transport rates at the 1.5-year recurrence interval for ecoregions of the United States: transport conditions at the bankfull and effective discharge? Geomorphology: Article in Press.
- Simon, A., and C.R. Hupp. 1986. *Channel evolution in modified Tennessee channels*. Fourth Federal Interagency Sedimentation Conference. Las Vegas, Nevada. March 24-27, 1986. Vol.2, pp. 5-71 to 5-82.
- Simon, A., R. Kuhnle, S. Knight, and W. Dickerson. 2001. "Reference" and enhanced rates of suspended-sediment transport for use in developing clean-sediment TMDL's: Examples from Mississippi and the Southeastern United States. USDA-Agricultural Research Service, National Sedimentation Laboratory.
- Simon, A., and M. Rinaldi. 2000. *Channel instability in the loess area of the Midwestern U.S.*Journal of the American Water Resources Association. 36(1): 133-150.
- Syvitski, J.P., Morehead, M.D., Bahr, D.B. and T. Mulder. 2000. Estimating fluvial sediment transport: The rating parameters. Water Resources Research. 36(9):2747-2760.
- Tetra Tech, Inc. 2002. *Minnesota River Basin Model: Model Calibration and Validation Report* (*Revised Draft*). Prepared for the Minnesota Pollution Control Agency.
- Thoma, D.P. 2003. Management impacts and remote sensing applications for water quality assessment. PhD Thesis. University of Minnesota, Minneapolis, Minnesota.
- Tornes, L.H. 1986. *Suspended sediment in Minnesota streams*. U.S. Geological Survey. Water-Resources Investigations Report 85-4312. St. Paul, MN.
- Turcios, L.M. and J.R. Gray. 2001. *U.S. Geological Survey sediment and ancillary data on the world wide web.* Seventh Federal Interagency Sedimentation Conference. Reno, NV.

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 27

Wolman, M.G. and J.P. Miller. 1960. *Magnitude and frequency of forces in geomorphic processes*. Journal of Geology. 68(1):54-74.

Literature Reviewed, But Not Cited

- Gupta, S.C and U.B. Singh. 1996. A review of non-point source pollution models: Implications for the Minnesota River basin. A Report Submitted to the Minnesota Department of Agriculture. Department of Soil, Water, and Climate. University of Minnesota. St. Paul, MN.
- Harmel, R.D., C.T. Haan, and R. Dutnell. 1999. *Bank erosion and riparian vegetation influences: Upper Illinois River, Oklahoma*. Transactions of the ASAE. 42(5):1321-1329.
- Hooke, J.M. 1980. *Magnitude and distribution of rates of river bank erosion*. Earth Surface Processes. 5:143-157.
- Kuhnle, R.A., and A. Simon. 2000. Evaluation of sediment transport data for clean sediment TMDLs. National Sedimentation Laboratory, USDA Agricultural Research Service. NSL Report No. 17.
- Leete, J.H. 1986. Sediment and phosphorus load to streamflow from natural and disturbed watersheds in northeastern Minnesota. PhD Thesis. University of Minnesota, Minnesota, Minnesota.
- Lyons, J., B.M. Weigel, L.K. Paine and D.J. Undersander. 2000. *Influence of intensive rotational grazing on bank erosion, fish habitat quality, and fish communities in southwestern Wisconsin trout streams*. Journal of Soil & Water Conservation. 55(3):271-276.
- Mason, J.A. 1995. Effects of glacial-interglacial climate change on mass wasting, southeastern Minnesota. PhD Thesis. University of Wisconsin, Madison, Wisconsin.
- Odgaard, A.J. 1987. Streambank erosion along two rivers in Iowa. Water Resources Research. 23(7):1225-1236.
- Payne, G.A. 1994. Sources and transport of sediment, nutrients, and oxygen-demanding substances in the Minnesota River basin, 1989-92. U.S. Geological Survey. Water-Resources Investigations Report 93-4232.
- Porterfield, G. 1972. *Computation of fluvial-sediment discharge*. U.S. Geological Survey. Techniques of Water-Resources Investigations, Book 3, Chapter C3.
- Senjem, N.B. 1995. *The Minnesota River: Problems and solutions*. Minnesota River Educational Initiative Vol. 1, No. 1. Minnesota Extension Service, University of Minnesota. St. Paul, MN.
- Simon, A. 1989b. *A model of channel response in disturbed alluvial channels*. Earth Surface Processes and Landforms. 14: 11-26.

From: Greg Wilson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Streambank Erosion

Date: December 21, 2003

Page: 28

- Simon, A., and P.W. Downs. 1995. *An interdisciplinary approach to evaluation of potential instability in alluvial channels*. Geomorphology. 12: 215-232.
- U.S. Environmental Protection Agency. 1999. *Protocol for Developing Sediment TMDLs*. First Edition. Watershed Branch, Assessment and Watershed Protection Division, Office of Water. EPA 841-B-99-004.
- Whiting, P.J., J.F. Stamm, D.B. Moog and R.L. Orndorff. 1999. *Sediment-transporting flows in headwater streams*. GSA Bulletin. 111(3): 450-466.

Technical Memorandum

To: Marvin Hora, Doug Hall and Mark Tomasek, Minnesota Pollution Control Agency

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds —

Individual Sewage Treatment Systems/Unsewered Communities

Date: January 16, 2004

Project: 23/62-853 ISTS 009

c: Henry Runke

The purpose of this memorandum is to provide a discussion about unsewered communities and Individual Sewage Treatment Systems (ISTS) as sources of phosphorus to Minnesota watersheds. This discussion is based on a review of the available literature, monitoring data and the results of phosphorus loading computations done for each of Minnesota's major watershed basins as part of this study. This memorandum is intended to:

- Provide an overview and introduction to these sources of phosphorus
- Describe the results of the literature search and review of available monitoring data
- Discuss the characteristics of each watershed basin as it pertains to these sources of phosphorus
- Describe the methodology used to complete the phosphorus loading computations and assessments for this study
- Discuss the results of the phosphorus loading computations and assessments
- Discuss the uncertainty of the phosphorus loading computations and assessment
- Provide recommendations for future refinements to phosphorus loading estimates and methods for reducing error terms
- Provide recommendations for lowering phosphorus export from unsewered communities and individual sewage treatment systems

Overview and Introduction to Unsewered Communities and ISTS Sources of Phosphorus

"Unsewered" or "undersewered" areas are communities or residential areas which have inadequate or no centralized wastewater treatment (sewer) systems. In many cases they may have a sanitary sewer system. Individual sewage treatment system (ISTS) refers to a sewage treatment and disposal system located on a property, using subsurface soil treatment and disposal for an individual home or establishment. MPCA

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 2

(2002a) states that most unsewered communities and many failing septic systems have relatively direct connections to surface waters through tiles lines, resulting in a very high delivery potential. Failing systems are systems that are adversely impacting groundwater, while those systems which discharge partially treated sewage to the ground surface, road ditches, tile lines, and directly into streams, rivers and lakes are considered an imminent threat to public health and safety (ITPHS).

Unsewered areas include but are not limited to incorporated cities (some), unincorporated communities, clusters of homes, trailer parks or other rural residential areas where wastewater collection is not done through a large sewer system. Undersewered areas may include unincorporated communities, incorporated cities (some), clusters of homes, trailer parks, or rural residential areas where existing wastewater treatment methods are not adequate to protect public health or the environment. The situations range from failing individual systems to cities with inadequate collection and treatment infrastructure.

Minnesota Rules Chapter 7080 contains minimum standards and criteria for the location, design, installation, use, maintenance and abandonment of ISTS, a licensing program for ISTS professionals and administrative requirements for local units of government. The conventional ISTS consists primarily of a septic tank and a soil absorption field. Septic tanks remove most settleable and floatable material and function as an anaerobic bioreactor that promotes partial digestion of retained organic matter (EPA, 2002). Septic tank effluent, which contains significant concentrations of pathogens and nutrients, has traditionally been discharged to soil, sand, or other media absorption fields for further treatment through biological processes, adsorption, filtration, and infiltration into underlying soils. Conventional systems work well if they are installed in areas with appropriate soils and hydraulic capacities; designed to treat the incoming waste load to meet public health, ground water, and surface water performance standards; installed properly; and maintained to ensure long-term performance (EPA, 2002).

Phosphorus is present in significant concentrations in most wastewaters treated by ISTS. After treatment and percolation of the wastewater through the infiltrative surface biomat and passage through the first few inches of soil, the wastewater plume begins to migrate downward until nearly saturated conditions exist (EPA, 2002). Reduced treatment occurs when the plume is mixing with an elevated water table (see Figure 1). At that point, the wastewater plume will move in response to the prevailing hydraulic gradient. The movement of subsurface aqueous contaminant plumes is highly dependent on soil type, soil layering, underlying geology, topography, and rainfall (EPA, 2002). In regions with moderate to heavy rainfall,

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 3

descending effluent plumes remain relatively intact as the water table is recharged from above.

Monitoring below ISTS systems has shown that the amount of phosphorus leached to ground water depends on several factors: the characteristics of the soil, the thickness of the unsaturated zone through which the wastewater percolates, the applied loading rate, and the age of the system (EPA, 2002). The amount of phosphorus in ground water varies from background concentrations to concentrations comparable to that of septic tank effluent. The capacity of the soil to retain phosphorus is finite. With continued loading, phosphorus movement deeper into the soil profile and downgradient water resources can be expected.

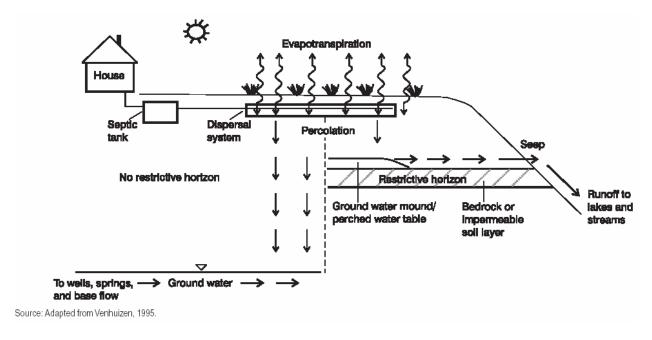


Figure 1: Schematic of ISTS wastewater discharge.

As previously discussed, conventional treatment systems work well if they are installed in areas with appropriate soils and hydraulic capacities; designed to treat the incoming waste load to meet public health, ground water, and surface water performance standards; installed properly; and maintained to ensure long-term performance (EPA, 2002). As a result, phosphorus export to surface waters from ISTS and unsewered communities is dependent on the following factors:

- Phosphorus content of waste load
- Population served by ISTS or unsewered communities
- Compliance of treatment systems with performance standards
- Characteristics of soil absorption field, groundwater conditions and proximity to surface waters

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 4

Review of Available Data and Estimation of Population Served by ISTS/ Unsewered Communities

Data pertaining to the phosphorus content of the untreated waste load from unsewered communities was addressed in the Point Sources Technical Memorandum (Barr, 2003), prepared for this project. For the purposes of this analysis, the phosphorus contained in untreated sewage discharge from ISTS or unsewered communities consists of the following sources, with the corresponding per capita loadings of phosphorus (taken from the Point Sources Technical Memorandum):

<u>Source</u>	Phosphorus Load (kg/cap/yr)
Automatic dishwasher detergent	0.1250
Dentifrices	0.0115
Food soils and garbage disposal wastes	0.1895
Ingested Human wastes	<u>0.5585</u>
Total	0.8845

Dentifrices include toothpaste and other dental care products. Food soils include waste food and beverages poured down the sink, and food washed down the drain as a result of dish rinsing and washing (Barr, 2003). The total per capita phosphorus load of 0.8845 kg/yr, which corresponds to 1.946 lbs/cap/yr, was assumed to apply to the population served by ISTS or unsewered communities throughout the state.

The number of people served by ISTS was estimated from a variety of data sources.

Table 1 provides a summary of population served by ISTS by basin using four data sources. A description of each of these data is discussed below. Two of the data sources were spreadsheets provided by the Minnesota Pollution Control Agency, another was the 1990 Census (United States Census Bureau, 1990), and the last was estimated based on the results from the Point Sources Technical Memorandum. Table 1 contains a summary of the population served by ISTS by major drainage basin for each of the four methods examined.

The method using the difference between the 2000 Census (United States Census Bureau, 2000) population and the POTW population served totals were used in the study to estimate phosphorus loadings from ISTS. This data showed good consistency with the other data available for ISTS in

To: Marvin Hora, Doug Hall and Mark Tomasek, Minnesota Pollution Control Agency
From: Greg Wilson and Tim Anderson
Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment Systems/Unsewered Communities

Date: December 29, 2003

Page: 5

Table 1 **Estimates of Population Served**

				POTW	Data		1990 Cens	sus Data	LUG Spre	adsheet	Unsewered Areas		
Major Basin	1990 Census Population	2000 Census Population	2000 POTW Population Served	Loss or gain of Population due to Basin Transfer	2000 ISTS by Difference	ISTS Percentage of 2000 Population	1990 Population Served by ISTS	ISTS Percentage of 1990 Population	Population Served by ISTS	ISTS Percent of 2000 Population	2002 Unsewered Population	Percentage of 2000 Population	
Cedar River	66,144	66,934	49,280	0	17,654	26%	16,687	25%	11,207	17%	299	0%	
Des Moines River	34,517	34,955	28,137	0	6,818	20%	12,231	35%	13,198	38%	1,028	3%	
Lake Superior	212,223	221,000	181,581	0	39,419	18%	62,885	30%	20,306	9%	342	0%	
Lower Mississippi	471,122	558,351	378,098	-36787	143,466	26%	136,049	29%	81,967	15%	11,272	2%	
Minnesota River	763,066	861,292	743,145	40110	158,257	18%	169,309	22%	162,244	19%	25,872	3%	
Missouri	35,377	33,777	17,080	0	16,697	49%	13,992	40%	12,858	38%	509	2%	
Rainy River	48,476	46,946	13,413	0	33,533	71%	26,855	55%	40,380	86%	6,216	13%	
Red River	237,920	244,216	131,742	0	112,474	46%	105,823	44%	100,025	41%	8,966	4%	
St. Croix River	157,613	206,190	52,242	-43,428	110,520	54%	85,184	54%	110,427	54%	32,612	16%	
Upper Mississippi	2,350,483	2,645,132	2,231,380	40105	453,857	17%	458,195	19%	520,096	20%	154,696	6%	
TOTAL	4,376,940	4,918,793	3,826,098	0	1,092,695	22%	1,087,208	25%	1,072,708	22%	241,812	5%	

LUG: Local Unit of Government

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: December 29, 2003

Page: 6

Minnesota. By using the by difference method, a total accounting of domestic waste disposal is provided in this study.

Below is a description of the data used to develop the summary in Table 1.

MPCA Unsewered Communities Spreadsheet

The MPCA developed a spreadsheet, updated in September, 2003, providing a list of unsewered communities within Minnesota (MPCA, 2003a). Included in the spreadsheet are 841 communities. The major basin for each of these communities was estimated by assigning an approximate geographic location based on a city, township, lake/county, or township-range-section location (whichever provided the most detailed location). The locations were determined for 785 of the 841 communities. The remaining 57 communities were not located. Many of the communities that were not located were subdivisions or unmapped communities using local names.

The sum of the population served by ISTS in these communities was approximately 253,000. The total for unsewered communities under-represents the amount of ISTS systems in the state since it includes only systems within a community. Although summarized in Table 1, these data were not directly used in the comparison of methods.

MPCA ISTS Local Units of Government (LUG) Spreadsheet

This spreadsheet consists of a summary of ISTS by local units of governments with ISTS ordinances in 2002 (MPCA, 2002b). Included in the spreadsheet was the LUG name and type (e.g. city, township or county). An estimate of the number of full time and seasonal residences served by ISTS was included in the spreadsheet. There was also an estimate of the number of failing systems and an estimate for the number of systems which are considered an ITPHS. The population served was estimated by multiplying the number of full time residences by the population per household values (for the 2000 census) for the LUG's respective county.

The LUGs in this spreadsheet were located geographically as polygons using MnDOT's base map GIS layers for municipalities, townships, and counties. To prevent overlap between counties and the smaller governmental units, ArcInfo GIS was used to clean the boundaries between the overlapping

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 7

jurisdictional boundaries. For example, if a municipality had its own ISTS ordinance, the city boundary was excluded from the area of the County (which would also have an ordinance) in which it is located.

The resulting polygons were overlaid with the ten major basins to estimate the ISTS totals for each major basin. In cases where a jurisdiction was in two or more major basins, the ISTS population served for each basin was weighted by area. The sum of all the population served for the State of Minnesota was approximately 1,073,000 based on the LUG spreadsheet.

1990 Census of the United States

The 1990 Census (United States Census Bureau, 1990) included questions regarding sewage disposal for both vacant and occupied housing units. Below is a description of the data provided by the Census Bureau:

SEWAGE DISPOSAL

The data on sewage disposal were obtained from questionnaire item H16, which was asked at both occupied and vacant housing units. This item was asked on a sample basis. Housing units are either connected to a public sewer, to a septic tank or cesspool, or they dispose of sewage by other means. A public sewer may be operated by a government body or by a private organization. A housing unit is considered to be connected to a septic tank or cesspool when the unit is provided with an underground pit or tank for sewage disposal. The category, "Other means" includes housing units which dispose of sewage in some other way.

Comparability--Data on sewage disposal have been collected since 1940. In 1970 and 1980, data were shown only for year-round housing units. In 1990, data are shown for all housing units.

Note that sewage disposal data were not collected in the 2000 census (United States Census Bureau, 2000). The "septic tank or cesspool" and "other units" were combined as an estimate for ISTS in this study.

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 8

In the 1990 census, the sewage disposal data were not split between year-round and vacant/seasonal housing. For this study, it was assumed that the percentage of all housing units with ISTS were equal to the percentage of year-round housing units with ISTS. Therefore, the total ISTS in each census-blockgroup was estimated by multiplying the ratio of year-round housing to all housing units by the total number of households with ISTS in that census-blockgroup. The population served was calculated by multiplying the number of households with ISTS by the population per household for the census blockgroup.

The estimated population served by ISTS in Minnesota using the 1990 census data is 1,087,000.

Estimation of Population Served by ISTS by Difference Between 2000 Census and WWTP Population Served (Difference Method)

The sum of the population served by public/private wastewater treatment systems and ISTS can be assumed to be the population of the State of Minnesota during the 2000 census. The estimate of population served using ISTS by basin can be estimated by calculating the difference between the total population of each basin and the number of persons served by wastewater treatment plants in the basin.

The population served for each of the POTWs and privately owned wastewater treatment facilities were estimated. The population served for each facility was not readily available for all of the permitted facilities. Therefore, the following approach was taken and the following assumptions made (as per the Point Sources Technical Memorandum):

- 1. MPCA Delta Database. When available, the population served by a treatment facility as listed in the Delta database was used.
- MNPRO Database. If population data was not available from the Delta database, the
 population of the community corresponding to the permit was assumed to equal the
 population served by the WWTP. This information was obtained from the MNPRO data
 base.
- 3. ISTS unsewered communities and LUG spreadsheets. These communities and the population served by ISTS systems were compared to the communities having an NPDES permit as listed in the Delta database. If a community had both a NPDES permit to discharge to

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 9

surface water and was listed as being served by an ISTS, the difference of the City's population and the ISTS population was used as the population served by the treatment facility. If no information could be located, the permit holder was called to determine the population served by each system.

- 4. MNPRO Database. The complete listing of communities within the state of Minnesota as contained in the MNPRO database was compared to both the NPDES list and the unsewered communities list to verify that all communities within the state were accounted for. Any communities with a population greater than 1,000, that were unaccounted for, were contacted and the final disposition of their wastewater was determined. In many cases these communities transferred their wastewater to another community's treatment facilities.
- 5. Communities with a population of less than 1,000 that did not have either an NPDES permit, or were listed as an ISTS or unsewered community, were assumed to be served by an ISTS system.
- 6. Finally, the population served by unsewered and ISTS systems was tallied on a major basin basis. These results are presented in Table 1.

The state-wide estimate for population served by ISTS based on the difference between the 2000 census and the POTW totals is approximately 1,094,000. The basin total ISTS values in Table 1 were corrected for the number of people whose domestic wastewater is treated in a wastewater treatment plant outside of the basin where they live. This correction was done for the four basins that include Twin City Metro Area. To determine the areas where there are basin transfers, 1997 Metropolitan Council sewersheds, showing the areas draining to specific wastewater treatment plants in the Metropolitan Area, were overlaid with the major basins. The result of this analysis was the area in each of the basins which discharge to a WWTP in a different basin. These data were then overlaid on the 2000 Census blockgroup data to determine the populations of the areas. The net results of this analysis are shown in Table 1.

The breakdown of population served by major basin presented in Table 1 was relatively consistent between the three methods summarized. The LUG spreadsheet and the POTW by difference methods showed the same overall percentage (22 percent) of the total population of the state is served by ISTS. The 1990 Census total had approximately the same state-wide population served value, but its percentage usage was higher since the population of the state was lower in 1990 compared to 2000.

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 10

In general, the three methods indicate that the total number of people served by ISTS in Minnesota is approximately 1,080,000, 22 percent of the total population in 2000.

The comparison shows a good match between the three methods for the Upper Mississippi River, Cedar River, St. Croix River, Red River of the North and Minnesota River basins. The Lake Superior and Rainy River basins have the largest discrepancy between the three methods, but the difference method value is near the average of the other two methods for both basins.

The smaller basins in southwest Minnesota (Missouri and Des Moines rivers) had the largest percentage differences, although their numerical differences were small since the populations of these basins are low. The reason the differences are so great in these two basins, on a percentage basis, is not clear.

The results in Table 1 show that using the difference method provides a good estimate for the number and distribution of ISTS users across the state. By using the difference method, the entire population of the state is accounted for in the phosphorus calculations for domestic wastewater generation.

Basin Characteristics

Population served by ISTS or unsewered communities, compliance of treatment systems with performance standards, groundwater conditions, and characteristics of soil absorption field and proximity to surface waters are important factors in determining phosphorus export. As previously discussed, the major basin for each of the communities in MPCA unsewered communities spreadsheet was determined by assigning an approximate geographic location based on the available city, township, lake/county, or township-range-section location data. The MPCA ISTS LUG spreadsheet provided estimates of the number of full time and seasonal residences served by ISTS, along with the number of failing systems and an estimate for the number of systems which are an ITPHS. The population data used for both ISTS and unsewered communities are included in Tables 1 and 2. Table 2 also shows the number of residential systems in each basin. The Upper Mississippi River basin accounts for almost one-quarter of the population served by ISTS and more than 60 percent of the unsewered areas population. The Minnesota, Lower Mississippi, Red and St. Croix River basins serve ISTS populations of between 110,000 and 160,000, while the Minnesota and St. Croix River basins have

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 11

unsewered area populations between 25,000 and 33,000. The remaining basins represent small fractions of the statewide populations served by ISTS and unsewered communities.

Table 2 shows the percentages of failing systems and systems which discharge partially treated sewage (or are considered an ITPHS), estimated for each of the basins and the state. These estimates show that the Des Moines River basin has the highest percentage (41%) of ISTS systems considered an ITPHS, followed by the Minnesota and Missouri River basins with 29 and 22 percent, respectively. The St. Croix, Lake Superior, Rainy and Upper Mississippi River basin estimates for percentages of ISTSs considered an ITPHS were all less than 8 percent. Table 2 shows that the Rainy River basin had the highest (43%), while the St. Croix basin had the lowest (11%), percentages of failing ISTS systems. All of the other basins had estimated percentages of failing ISTS systems between 24 and 35 percent. The high percentage for the Rainy River basin may be partially due to the presence of high water tables relative to the other basins.

Retardation of phosphorus contamination of surface waters from ISTSs is enhanced in fine-textured soils without continuous macropores that would allow rapid percolation. Increased distance of the system from surface waters is also an important factor in limiting phosphorus discharges because of greater and more prolonged contact with soil particle surfaces. The risk of phosphorus contamination, therefore, is greatest in karst regions and coarse-textured soils without significant iron, calcium, or aluminum concentrations located near surface waters (EPA, 2002). The presence of karst regions in portions of the Lower Mississippi River basin means that the 27 percent of failing ISTSs (from Table 2) might be lower than the actual percentage of systems adversely impacting groundwater. For this analysis, no attempt has been made to vary the estimates of phosphorus discharged to surface waters from conforming and non-conforming systems, based on the presence of karst regions, elevated water tables or various types of soils in each basin.

To: Marvin Hora, Doug Hall and Mark Tomasek, Minnesota Pollution Control Agency
From: Greg Wilson and Tim Anderson
Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment Systems/Unsewered Communities
Date: December 29, 2003

Page: 12

Table 2 Estimated Annual Phosphorus Loadings for ISTS/Unsewered Communities

	40.	-	30 C					ř.		r	Ertim	ated P Luc	d Produce	4 (kq)	Ertimete	d P Lead Dis	charged to	to Surface Wat	ters (kg)
Majar Baria	ISTS Papulation by Difference	Total Residential Systems	Percent Pertially Treated		Unrouered Areu Papulation	per	Direct-te- Tile Systems	THE RESERVE OF THE PARTY OF THE	Remaining ISTS Pap.		Unrevered Arear	Direct- tu-Tile Systems	Sewanal ISTS	Remaining ISTS	Vareuered Arear	Direct-tu- Tile Systems		Remaining ISTS	Tetal
Codar Rivor	17,654	4,500	15.7%	34.6%	299	3.92	514	2,016	15,339	0	264	1,784	0	13,568	114	767	0	2,999	3,880
Dar Mainar River	6,818	5,420	41.1%	23.8%	1,028	1.28	419	536	5,254	191	909	474	56	4,647	391	204	20	1,316	1,930
Lako Suporior	39,419	16,000	5.5%	35.0%	342	4.80	0	0	39,077	16,363	303	0	4,825	34,565	130	0	1,415	6,507	8,051
Lawer Mirsirsippi	143,466	31,002	10.6%	26.8%	11,272	4.75	450	2,137	130,057	1,676	9,971	1,891	494	115,041	4,287	813	141	21,707	26,948
Minnesota River	158,257	67,100	29.4%	32.8%	25,872	2.55	7,399	18,847	113,538	10,437	22,885	16,671	3,077	100,430	9,841	7,168	1,056	26,377	44,442
Mirrouri	16,697	5,233	22.1%	33.4%	509	3.27	227	743	15,445	281	450	658	83	13,662	194	283	27	3,275	3,778
Rainy Rivor	33,533	23,928	7.0%	43.1%	6,216	2.02	0	0	27,317	15,395	5,498	0	4,539	24,163	2,364	0	1,431	5,056	8,851
RadRivar	112,474	46,447	13.1%	27.0%	8,366	2.92	0	0	103,508	16,655	7,931	0	4,911	91,558	3,410	0	1,434	18,038	22,882
St. Craix River	110,520	45,249	2.3%	11.4%	32,612	2.76	0.00	O meses 0	77,908	10,857	28,847	0.00	3,201	68,913	12,404	0.00	741	8,987	22,132
Uppor Mirsirsippi	453,857	227,515	7.8%	24.7%	154,696	2.32	436	1,014	298,147	67,809	136,836	897	19,993	263,725	58,839	386	5,497	46,250	110,972
TOTAL	1,092,695	472,394	11.6%	26.4%	241,812	2.69	9,445	25,294	825,589	139,665	213,894	22,373	41,180	730,271	91,974	9,621	11,762	140,510	253,867

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

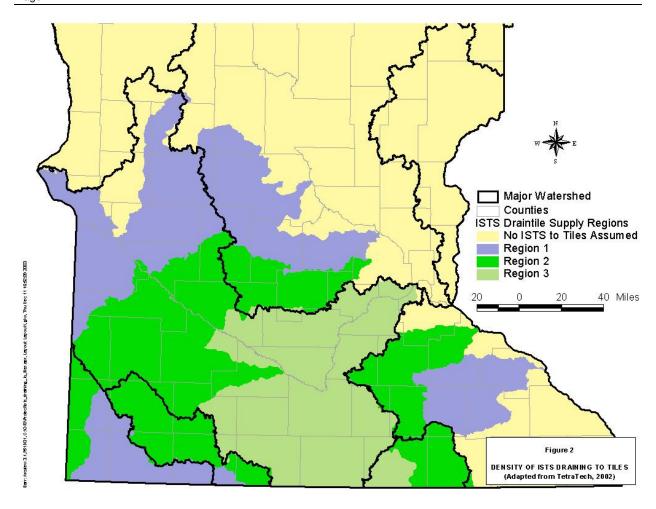
Systems/Unsewered Communities

Date: December 29, 2003

Page: 13

The Minnesota River basin had a significant number of households served by sewage treatment systems that involved direct discharge to a tile drain line (Tetra Tech, 2002). The majority of these systems, referred to as direct-to-tile ISTS, include a septic tank with no other treatment. Assuming that most of the direct-to-tile ISTS are located in rural areas with tile lines, Tetra Tech (2002) extracted data from the Minnesota River Assessment Project, or MRAP (MPCA, 1994), to develop a relationship between the number of direct-to-tile ISTS and cropland. The ISTS densities and cropland were then mapped by minor watersheds across the Minnesota River basin. The higher densities of direct-to-tile ISTS occurred in the southeastern watersheds, while the lower densities occurred in the northwestern watersheds (Tetra Tech, 2002). The geographic trend in density was assumed to be consistent with the MRAP designations for three nutrient source regions, and the average density of direct-to-tile ISTS per 10,000 acres of cropland was determined for each source region. The average densities determined for Source Regions 1, 2, and 3 were 0.78, 4.88, and 18.17 direct-to-tile ISTS per 10,000 acres of cropland, respectively (Tetra Tech, 2002). Source Regions 1, 2, and 3 progress from the northwest to the southeast in the Minnesota River basin.

For this analysis, the assumptions about direct-to-tile ISTS density per 10,000 acres of cropland for each source region were retained for the Minnesota River basin. Since no assessments of direct-to-tile ISTS had been published for any other basins in Minnesota, several of the minor watersheds in surrounding basins were assumed to have direct-to-tile ISTS densities comparable to Source Regions 1, 2, and 3, based on knowledge of the presence of drain tiles, cropland and their proximity to the MRAP study areas. Figure 2 shows how these minor watersheds, with their assumed Source Region designations, provide a transition in the direct-to-tile ISTS densities assumed to exist outside of the areas studied in MRAP (MPCA, 1994). The amount of cropland and area of each Source Region was determined and multiplied to determine the total number of direct-to-tile systems for each basin (shown in Table 2). The population served by direct-to-tile ISTS was estimated by multiplying the number of systems by the average household size for each basin (shown in Table 2).


From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 14

Approach and Methodology for Phosphorus Loading Computations

Based on the availability of data and the potential for variation in phosphorus export from unsewered communities and the various types of conforming and nonconforming ISTS, phosphorus loadings were estimated for each of the following source categories:

- Unsewered communities
- Direct-to-tile ISTS
- Conforming and nonconforming seasonal ISTS
- Remaining conforming and nonconforming ISTS

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 15

As previously discussed, Table 2 presents the populations associated with unsewered communities and direct-to-tile ISTS in each basin. The per capita total phosphorus wastewater load of 0.8971 kg/yr was applied to the population served by direct-to-tile ISTS and unsewered communities for each basin. Both of these source categories were assumed to receive treatment from septic tanks before discharging to surface waters. Forty-three percent of the incoming wastewater load from each source category was assumed to pass through the septic tank, which is consistent with the assumptions made for the Minnesota River Basin Model (Tetra Tech, 2002).

As previously discussed, the number of seasonal residences had been estimated in the MPCA ISTS LUG spreadsheet (MPCA, 2002). Since no data was available for the population served by seasonal ISTS, a household size of 2.1 was assumed and applied to the number of seasonal residences in each basin. This assumption is consistent with the household size used for the Minnesota River Basin Model (Tetra Tech, 2002). No literature was found, so it was assumed that each of the seasonal residences were occupied for four months each year. It was further assumed that, since seasonal residences are typically located in close proximity to surface waters, nonconforming ISTS (both failing and ITPHS) would contribute all of the 43 percent of phosphorus passing through a septic tank to surface waters. Conforming seasonal ISTS were assumed to remove 80 percent of the total phosphorus loading, due to treatment from the septic tank and soil absorption field, before discharging to surface waters in each basin.

As previously discussed, the total number of residential residences had been estimated in the MPCA ISTS LUG spreadsheet (MPCA, 2002) and the population served by ISTS had been estimated by difference (shown in Table 1). Since most of the permanent residences are not typically located as close in proximity to surface waters as seasonal residences, it was assumed that both fully conforming and failing ISTS would provide higher phosphorus attenuation for permanent residences than what was assumed for seasonal residences. Conforming ISTS were assumed to remove 90 percent of the overall total phosphorus loading, while failing ISTS were assumed to remove 70 percent of the overall total phosphorus loading, before discharging to surface waters in each basin. The nonconforming ISTS, considered an ITPHS, were assumed to be contributing all of the 43 percent of phosphorus passing through a septic tank to surface waters. The phosphorus removal and soil phosphorus attenuation percentages assumed for conforming and nonconforming ISTS in this

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 16

analysis are within the range of literature values (Viraraghavan and Warnock, 1975; Reckhow and Simpson, 1980; Kellog et al., 1995; EPA, 2002; ENSR, 2003).

Results of Phosphorus Loading Computations and Assessments

Table 2 presents the results of the phosphorus loading computations done for the assessment of ISTS and unsewered communities. The last five columns of Table 2 show the estimated total phosphorus loadings to surface waters from unsewered communities, direct-to-tile ISTS, all seasonal ISTS, the remaining ISTS, and the total load in each basin (and the state) from all four source categories. On a statewide basis, Table 2 shows that more than half of the phosphorus load from unsewered communities/ISTS is coming from permanent ISTS, while approximately 35 percent of the total load originates from unsewered communities. Unsewered communities represent a large percentage of the total load to the St. Croix and Upper Mississippi River basins (56 and 53 percent, respectively). Unsewered communities represent less than 27 percent of the total phosphorus load for the remaining basins. Direct-to-tile ISTS represents 20, 16 and 11 percent of the total phosphorus load in the Cedar Minnesota, and Des Moines River basins, respectively; but less than 8 percent for the remaining basins. The estimated seasonal ISTS contributions are 16 and 18 percent of the total phosphorus loads in the Rainy River and Lake Superior basins, respectively, and less than 7 percent for the remaining basins. The remaining ISTS contributions (from both conforming and nonconforming systems) accounts for more than 40 percent of the total phosphorus load from ISTS/unsewered communities in all of the basins. The highest total phosphorus contribution from the remaining ISTS category is 87 percent in the Missouri River basin.

Phosphorus Loading Variability and Uncertainty

The primary sources (and estimated magnitudes) of variability and uncertainty in the total phosphorus loading computations done for this assessment, in descending order, include:

Percentage of phosphorus attenuation in soil absorption field for permanent and seasonal
residences—(these percentages are likely to vary by 50 percent or more, depending on the
proximity to surface water, soils and water table characteristics, etc.; if the all of the
conforming systems from the remaining ISTS category removed 100% of the P load produced,

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 17

the 140,510 kg total P load discharged to surface waters [in Table 2] would be reduced by approximately 30%)

- Portion of unsewered communities receiving various levels of treatment, more or less than septic tank removals (as assumed)—(these percentages are likely to vary by 50 percent or more, as some of the unsewered communities may be receiving good treatment with soil absorption, while others may not even receive treatment from septic tanks)
- Population of unsewered communities—(population figures may vary significantly within
 each basin depending on each counties ability to determine, report or verify and update the
 presence and population of unsewered communities)
- Population served and portion of direct-to-tile ISTS receiving various levels of treatment, more or less than septic tank removals (as assumed)—(these values are likely to vary by 100 percent or more, as the number of systems and population served are extrapolated from a small subset of areas studied in the MRAP which may or may not have already been counted with the ITPHS percentages, and some of the direct-to-tile ISTS may not even receive treatment from septic tanks)
- Population served and per capita P loadings for permanent versus seasonal residences—(the current P loading estimates assume that all of the population served by seasonal residences [2.1 people per seasonal residence for 4 months each year] is in addition to all of the P loadings generated by the current permanent residents of Minnesota, which may overestimate the P load from permanent Minnesota residents that maintain seasonal residences, but helps to offset both the fact that seasonal residences may be under-represented in the databases and the fact that people from other states maintain seasonal residences; in addition, the per capita loadings for dishwashing detergents and dentifrices are based on actual nationwide consumption, while the per capita loadings for human waste and food soils are based on monitoring of permanent residences)

Table 2 shows that the average ISTS household size determined for each basin can vary significantly from the statewide average of 2.7. The average ISTS household size was determined by dividing the total population served by ISTS by the total number of residential systems. The low household size value of 1.3 for the Des Moines River basin, may be the result of an underestimate of the population served by ISTS and unsewered communities or an overestimate of the number of residential systems. The high household sizes of approximately 4.8 for the Lower Mississippi and Lake Superior basins

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 18

indicate that there may be an overestimate of the population served by ISTS and unsewered communities or an underestimate of the number of residential systems. There was much smaller variability from the statewide average for household size in the remaining basins. Over- or underestimates of population are much more important in the calculations of the total phosphorus loadings for each basin than the estimates of the number of residential systems because the population figures determine the amount of wastewater (and phosphorus) that is generated and available for export in each basin.

Recommendations for Future Refinements

The following refinements are recommended to reduce the error terms or uncertainty of the phosphorus loading estimates:

- The counties should work with the MPCA to develop, populate and maintain a geographic
 database, similar to MPCA's feedlot database that shows where each of the failing systems,
 straight pipe discharges and other types of ITPHS are located
- County personnel should be trained to assess the proper functioning of each type of system and be provided with an incentive to track all inspected and nonconforming systems, such that uniform assessments can be made throughout the state
- The estimates for population served by conforming and nonconforming systems, as well as unsewered communities and direct-to-tile ISTS, should be refined, updated and linked to a geographic database
- Additional analyses should be done to study the treatment effectiveness of conforming and nonconforming treatment systems, throughout the state, to evaluate the variability of the estimated phosphorus loadings to surface waters under various settings

Recommendations for Lowering Phosphorus Export

Many of the counties are delegated to implement the Minnesota Rules (Chapter 7080) for ISTS, which require conformance with state standards for new construction and disclosure of the state of the ISTS when a property transfers ownership. Several counties require ISTS upgrades at property transfer.

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 19

Lack of knowledge is thought to be a major impediment to making more rapid progress toward goals and objectives for ISTS and unsewered communities (MPCA, 2003b). This includes a lack of awareness of the management and operational requirements of ISTS, and the environmental consequences of widespread system failure. The complexity of addressing unsewered community issues tends to discourage county activity in this area. The availability of financial assistance, particularly low-interest loans, is thought to be an essential catalyst to accelerating fixes of failing ISTS. This and other forms of financial assistance are needed to accelerate progress with unsewered communities (MPCA, 2003b).

Owners of ISTS that are failing and pose an "Imminent Public Health Threat," through direct discharge to tile lines or surface ditches or system failure caused by lack of proper management should be targeted through mail surveys (and one-to-one visits in targeted watersheds) to help residents determine whether their ISTS are adequately functioning, inadequately installed, or are failing to function properly because of poor management (MPCA, 2003b). Programs proposed to follow up on specific problems include ISTS management workshops for failing systems and technical and financial assistance to owners needing new systems.

Residents of unsewered communities would be targeted to help them understand the need for wastewater treatment and assist them through each phase of the community decision-making process, while building the capacity of local and regional government staff to provide such assistance to other communities in the future (MPCA, 2003b).

County ISTS inspectors, Planning and Zoning Administrators, and County Water Planners should be targeted with MPCA audits of county ISTS programs to determine adequacy of performance in a number of key areas, including spot checks on recent ISTS installations, level of effort on ISTS inspections and follow-through on noncompliant systems, and dealing with contractors (MPCA, 2003b).

Since septic system failure is a widespread problem, a basinwide approach to reducing fecal coliform from this source should be pursued (MPCA, 2003b). Failing systems with potential for high delivery of pollutants to public waters, such as straight pipe discharges and other types of ITPHS should be given priority attention. Careful targeting is needed to ensure that resources devoted to providing wastewater treatment yield environmental results in the form of reduced concentrations of total phosphorus. The counties should work with the MPCA to develop, populate and maintain a database, similar to MPCA's

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 20

feedlot database that shows where each of the failing systems, straight pipe discharges and other types of ITPHS are located. County personnel should be trained about the assessment of each type of system and provided with an incentive to track all inspected and nonconforming systems, such that uniform assessments can be made throughout the state.

Literature Cited

- Barr Engineering Company (Barr). 2003. Detailed Assessment of Phosphorus Sources to Minnesota Watersheds—Point Sources Technical Memorandum. Prepared for Minnesota Pollution Control Agency.
- ENSR. 2003. Inputs of phosphorus to aquatic systems from machine dishwashing detergents: an analysis of measured and potential loading. Prepared for the Soap and Detergent Association.
- Kellogg, D.Q., L. Joubert, and A. Gold. 1995. MANAGE: a Method for Assessment, Nutrient-loading, and Geographic Evaluation of nonpoint pollution. Draft Nutrient Loading Component. University of Rhode Island, Kingston, RI.
- Metropolitan Council, 1997. Boundaries of the sewersheds for the Twin Cities metropolitan area. Downloaded from http://www.datafinder.org/
- Minnesota Department of Transportation, Basemap. Civil Townships, Municipalities. Downloaded from http://www.dot.state.mn.us/tda/basemap/index.html
- MPCA. 1994. *Minnesota River Assessment Project (MRAP) Report*. Report to the Legislative Commission on Minnesota Resources.
- MPCA. 2002a. Regional Total Maximum Daily Load Evaluation of Fecal Coliform Bacteria Impairments in the Lower Mississippi River Basin in Minnesota.
- MPCA. 2002b. Spreadsheet showing 2002 reported values for ISTS for all LUGs which have an ISTS ordinance.
- MPCA. 2003a. Spreadsheet listing unsewered communities in Minnesota.
- MPCA. 2003b. Implementation Plan. Regional Total Maximum Daily Load Study of Fecal Coliform Bacteria Impairments in the Lower Mississippi River Basin of Southeast Minnesota.
- Reckhow, K.H. and J.T. Simpson. 1980. A procedure using modeling and error analysis for the prediction of lake phosphorus concentration from land use information. Can.J.Fish.Aq.Sci. 37(9): 1439-1448.
- Tetra Tech, Inc. 2002. *Minnesota River Basin Model, Model Calibration and Validation Report*. Prepared for Minnesota Pollution Control Agency.

From: Greg Wilson and Tim Anderson

Subject: Final — Detailed Assessment of Phosphorus Sources to Minnesota Watersheds — Individual Sewage Treatment

Systems/Unsewered Communities

Date: January 16, 2004

Page: 21

Unites States Census Bureau. 1990. Census of Population and Housing.

Unites States Census Bureau. 2000. Census of Population and Housing.

United States Environmental Protection Agency (EPA). 2002. *Oniste Wastewater Treatment Systems Manual*. Office of Water, Office of Research and Development. EPA/625/R-00/008.

Viraraghavan, T. and R.G. Warnock. 1975. *Treatment efficiency of a septic tile system.* In Proc. National Home Sewage Disposal Symposium, ASAE., St. Joseph, MI. pp. 48-57.

Technical Memorandum

To: Marvin Hora, Minnesota Pollution Control Agency

Mark Tomasek, Minnesota Pollution Control Agency

Doug Hall, Minnesota Pollution Control Agency

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Non-

Agricultural Rural Runoff

Date: December 17, 2003

Project: 23/62-853 NARU 008

c: Greg Wilson

Henry Runke

The purpose of this memorandum is to provide a discussion of non-agricultural rural land use runoff as sources of phosphorus to Minnesota watersheds. This discussion is based on a review of the available literature, monitoring data and the results of phosphorus loading computations done for each of Minnesota's major watershed basins as part of this study. This memorandum is intended to:

- Provide an overview and introduction to this source of phosphorus
- Describe the results of the literature search and review of available monitoring data
- Discuss the characteristics of each watershed basin as it pertains to this source of phosphorus
- Describe the methodology used to complete the phosphorus loading computations and assessments for this study
- Discuss the results of the phosphorus loading computations and assessments
- Discuss the uncertainty of the phosphorus loading computations and assessment
- Provide recommendations for future refinements to phosphorus loading estimates and methods for reducing error terms
- Provide recommendations for lowering phosphorus export from this source

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 2

Overview and Introduction to Non-Agricultural Rural Runoff Sources of Phosphorus

The non-agricultural rural land use components of watershed ecosystems investigated in this technical memorandum includes native vegetation that still function at an ecosystem level in ways that are very similar to their undisturbed natural condition. The major natural land cover types included in this land use group are forests (coniferous, deciduous and mixed), grasslands and shrublands. Rural residential areas, transportation infrastructure, and other typically urban land uses such as residential and commercial developed areas outside the boundaries of incorporated urban areas are also included in this assessment.

Many of these natural plant communities in Minnesota have undergone change over the last two hundred years; in some cases these changes have led to the complete loss of a community type, i.e., conversion of native prairie to agricultural production, and in other cases the conversion of one community to another, i.e., regrowth of white pineries to mixed forests following extensive logging in the late 1800s and early 1900s. Many areas of native plant coverage have been lost to the growth of urban areas; in many instances the invasion of exotic species has altered the hydrologic cycles of these urban natural areas.

Within some of the major basins of Minnesota, forests and grasslands still cover up to 60% of the watershed area. The hydrologic cycling of annual precipitation in natural vegetation moves most of the water to infiltration and thus promotes stable stream base flows and reduces surface runoff. Native plant communities have relatively high rates of evapotranspiration (ET) and the loss of vegetation can lead to higher annual water yields due to decreased ET (Brooks et al, 2003).

In natural plant communities, much of the phosphorus pool is retained within the plant community and the soil profile, with plant biomass creation, senescence and subsequent decomposition processes cycling nutrients back into the soil profile. As a result most of the phosphorus pool is relatively immobile (Tester, 1995). The high soil infiltration rates in these plant communities lead to low surface runoff rates and little soil loss via erosion, and thus low rates of nutrient export to surface waters. In most cases the surface runoff rates are less than 10% of the annual precipitation for these plant communities and phosphorus export rates are below 0.169 kilograms of phosphorus per hectare per year (0.151 pounds per acre per year).

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 3

Results of Literature Search and Review of Available Monitoring Data

The scientific literature was reviewed to determine the hydrologic regimes, nutrient cycling mechanisms and phosphorus loading factors for each of the land use categories included in the Non-Agricultural Rural Runoff category. The hydrologic and nutrient export relationships examined for the rural land use categories are discussed in the Forest (Deciduous Forest, Evergreen (Coniferous) Forest, and Mixed Forest), Shrubland and Grasslands/Herbaceous vegetation below. The hydrologic and nutrient export relationships for rural residential areas within the land use categories are discussed in the Low Intensity Residential and High intensity residential land use sections of the urban runoff technical memorandum (Barr Engineering, 2003). The phosphorus loadings for Commercial/Industrial/Transportation land are also discussed in the urban runoff technical memorandum. That discussion will not be repeated here, other than a recap of loading calculations included in the methodology section.

Forests

Singer and Rust (1975) is the most frequently cited research for runoff from deciduous forests. Based upon runoff and nutrient studies on maple-basswood forest at the Minnesota Landscape Arboretum they found that the litter layer was responsible for high infiltration rates and thus little water loss to surface runoff occurred. Spring runoff over frozen soils accounted for most of the surface water runoff, and phosphorus loads in surface runoff occurred during the snowmelt period and immediately following leaf drop in the fall. They calculated the rate of phosphorus loss to be 0.09 kg P per hectare per year. They also found that the phosphorus export rate exceeded the atmospheric inputs of phosphorus on an annual basis. The authors cautioned that extrapolation of these loading rates to large forests areas may misrepresent actual loadings. Vaithiyanathan and Correll (1992) found that 77% of the phosphorus exported from forested watersheds was particulate phosphorus and primarily organic forms (61%). The authors suggest that this indicates that sediment movement was responsible for a large portion of the phosphorus exported by forests. St. Onge, *et al* (in press) reported increased total phosphorus concentrations in runoff from forested catchments that had been harvested or burnt, but also found that larger basins exported less phosphorus than smaller basins on a unit area basis.

Leete (1986) examined the runoff of phosphorus from mixed hardwood forests in the Superior Highlands of northeastern Minnesota. Leete found that phosphorus export from two plots before and after harvest to be 0.107 kg P/ha/yr and 0.207 kg P/ha/yr before harvest, and 0.159 kg P/ha/yr and .244 kg P/ha/yr post-harvest. Increased erosion was cited as the cause for the post-harvest phosphorus load increase. Leete also reviewed literature values at the time of her work and found phosphorus loadings rates for forests in Minnesota to range from 0.090 kg P/ha/yr (Sanger and Rust, 1975) to 0.71 kg P/ha/yr (Knighton and Steigler, 1980).

Sartz (1971) completed an assessment of runoff from dual-use watersheds (i.e., watersheds with agricultural and forested land covers) in the driftless area of southwestern Wisconsin near La Crosse. In a very elegantly designed study Sartz was able to document runoff from the upland pasture and hillside deciduous forest components of four watersheds to downhill lowland areas. The study

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 4

results showed that as much as 33% of the upland flow was retained in the hillside forests and the deciduous forest hillsides generated no runoff. Sartz (1969) also reported that peak flows from undisturbed deciduous forests were 0.010 inches per hour compared to 2.42 inches per hour for alfalfa for the same 3-hour 4-inch rainfall event. Sartz, et al (1977) reported that driftless area catchments smaller than 250 hectares had no perennial streams, and cropland was the major source of surface runoff. These findings have been further confirmed by recent runoff studies in the Whitewater River watersheds (Wotzka, 2003). Peterjohn and Correll (1984) found that phosphorus export (loss) from riparian forest systems was divided between surface runoff (59%) and groundwater flow (41%). The external phosphorus inputs to riparian forests were calculated to be 3.8% from bulk precipitation, 94% via surface runoff from and 2.5% via groundwater; the riparian forest had a calculated phosphorus retention of 80%.

Hewlett and Hilvey (1970) measured no storm event surface water flow volumes from a 108-acre intact mixed hardwood forest over 18 years of monitoring. Scott, et al, (2001) found that elevated phosphorus levels in runoff from early successional forests on abandoned agricultural lands were due to previous agricultural inputs of fertilizer. The authors concluded that this increase in soil phosphorus will be detectable in runoff for up to 40 years. Metcalfe and Buttle (1999) found that disturbances to boreal forests could lead to reduced runoff and lower stream flows due to increased evapotranspiration rates.

Binkley (2001) reviewed the literature related to harvesting and phosphorus concentrations in stream flow. He found little increase in phosphorus concentration – concentrations increased from 12 ug P/L to 13 ug P/L, following logging. Hewlett and Hilvey (1970) found that in mixed hardwood forests, following clear cutting, the storm flow volumes increased by 11% but this increase was confined to subsurface flow, so the site still provided very little overland flow. Devito, *et al*, (2000) report that in boreal forested lakes, the largest increases in post-harvest total phosphorus concentrations were found in areas with groundwater recharge or shallow local discharge to lakes and wetlands.

Interception of rainfall occurs at multiple levels within the forest – tree canopy, tree and shrub layer stems, shrub canopy, herbaceous layer and ground litter – to reduce overland flows (Brooks, et al, 2003; Verry 1976). Other authors have reported little or no overland flow from intact deciduous or coniferous forests due to interception (Binkley, 2001; Knighton and Steigler, 1980; Metcalfe and Butle, 1999; Verry, 1969). Martin, *et al*, (2000) reported that in northern hardwood forests, clear-cutting and strip-cutting lead to increased water yield due to decreased transpiration and interception. They also noted that the increased water yield disappeared within 4-6 years due to regrowth of natural vegetation. Boelter and Verry (1977) reported the phosphorus export rate from peatland forests to be 0.08 kg P/ha/yr.

Shrublands and Grasslands

While there exists a fair amount of literature on forest hydrology and nutrients, comparable literature for shrublands and grasslands is much less extensive. Many authors suggest that runoff rates and nutrient exports form these communities are low, however the supporting evidence is limited. In the

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 5

case of both plant communities, the limited number of studies related to phosphorus export rates required that export rates be developed for both plant communities based upon the limited data set.

Brye, et al (2000) and Brye, et al (2002) evaluated the water and phosphorus budgets of a restored prairie near Madison WI. The authors reported that rainfall interception by plant residue was a significant component of the annual water budget (nearly 70%). Higher soil storage and ET rates led to lower soil drainage and runoff volumes. Runoff volumes were 11% to 18% of the water budget, with a mean of 14.5% for the test plots. Snowmelt was responsible for nearly all of the runoff volumes.

Shjeflo (1968) reported on water budgets for prairie pothole wetlands in eastern North Dakota, including surface runoff from adjoining upland prairies. He reported that over the 1960 to 1964 time period, snowmelt contributed 1.0" of annual runoff and rainfall contributed 0.2" of runoff (ave. annual ppt. = 15.84") for a runoff rate of 7.5%.

Winter and Carr (1980), Winter, et al, (2001) and Winter and Rosenberry (1995 and 1998) examined the water budgets for wetlands in eastern North Dakota over a 17 year period. Their results indicate surface runoff rates of 10% or less were common and most of the overland flow occurred as snowmelt or during prolonged wet seasons. In all cases, the majority of overland flow occurs in the prairie vegetation during snowmelt, which also coincides with the greatest availability of soluble phosphorus from dead and dormant above ground plant tissues.

Timmons and Holt (1977) reported that phosphorus losses from grasslands to be in a range of 0.100 kg P/ha/yr to 0.250 kg P/ha/yr, with a phosphorus concentration in runoff of 0.200 mg P/L. Using the water budget data from Brye, et al (2000) and Brye, et al (2002) and phosphorus concentration data from Timmons and Holt (1977), an export loading rate of 0.169 kg P/ha/yr for ecoregion VIII was calculated. Using the water budget information from Winter and Carr (1980), Winter, et al, (2001), Winter, Rosenberry (1995 and 1998) and Shjeflo (1968) and concentration data from USACE (2001), a phosphorus export of 0.060 kg P/ha/yr was calculated for ecoregion VI. Data from Olness, et al (1988) and Menzel, et al (1978) provided an export rate 0.175 kg P/ha/yr for grassland pasture.

A search of the literature provided no reported shrubland phosphorus export rates (Holechek, et al, 1977; Dodds, et al, 1996: Burke, et al, 1990). Most shrublands are composed of a herbaceous layer of grasses and forbs with a sparse over story of trees and/or low shrubs. MN DNR (1993) and Leach and Givnish (1999) suggest that many of the hydrologic and ecologic attributes of forest and prairie communities are present in shrublands. Low runoff rates, high annual evapotranspiration and limited nutrient losses of the two shrubland community components of the provide a basis to conclude that shrublands are intermediate with regard to phosphorus export. Based upon these assumptions, the nutrient export rate for shrubland was determined from the average of the grassland and deciduous forest communities. The calculated value used for this assessment is 0.129 kg P/ha/yr.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 6

Watershed Basin Characteristics

This investigation of phosphorus loadings from non-agricultural rural land uses draws upon ecoregion-based loading and export rates for phosphorus in Minnesota. The basis for this assessment of nutrient export from native vegetation and other rural land uses within Minnesota requires an understanding of the underlying ecologic and hydrologic conditions of each of these plant communities. The use of ecoregions allows the similarities in underlying ecological conditions to be aggregated across basin boundaries and state boundaries to develop accurate estimates of loadings. This discussion will overview the concept of ecoregions, and integrate the land use categories and Minnesota's native vegetation to help define the underlying loading mechanisms and basin characteristics Within the major basins of Minnesota, forests and grasslands still cover between 10% and 60% of the watershed area (see table 1),

Ecoregions are defined as regions of relative homogeneity in ecological systems, such that geographic characteristics such as soils, vegetation, climate, geology, and land cover are relatively similar within the bounds of each ecoregion (Omernik, 2000). Omernik (1987) recognized that areas of the U.S. have naturally different soil and parent material nutrient content, and different precipitation regimes. Based upon these distinct patterns the application of sorting criteria allowed for the development of a scheme of ecological regions that reflect this regional variation. The ecoregional approach was initially completed for the continental United States and has been used for regional water quality assessment and plant community management strategies in the US, Canada and by a number of international conservation organizations (Omernik, 1995). The continental U.S. was divided into 14 separate Level III aquatic ecoregions for the purpose of aquatic resource investigation and management (Omernik, 1977a: Omernik, 1977).

The US EPA has developed generalized "nutrient Ecoregions" that are aggregations of the Level III Ecoregions (EPA 2000d, EPA 2000e). Within Minnesota there are seven Level III ecoregions and the use of the EPA Level III Aggregate Ecoregions reduces the number to three (see Figure 1 and 2). As the number of phosphorus export studies completed in Minnesota is relatively small, the use of export rates from the larger Level III aggregate regions provides a wider data set that can be extrapolated across the basins (MPCA, 2003).

The US EPA acknowledges that the Aggregate Level III ecoregions have a higher degree of variability because of the lumping, but the Level III ecoregions are useful for setting nutrient criteria. Recent EPA guidance for development of ambient water quality criteria for lakes, stream and reservoirs has proposed the use of the Level III ecoregional framework by states and tribes. See Figure 2, 3, 4 and 5 for the boundaries of the Aggregate Level III and Level III Ecoregions.

From: Jeffrey Lee

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: 28-Oct-03

Page: 7

			A.,,,,,,,,,,	Land Cover Percentages*					
Basin	Area (Sq Miles)	Average Precipitation (1979-2002)	Average Runoff (1979- 2002)	Urban	Forested	Tilled Agricultural	Pasture/ Grassland	Wetland/Open Water	Other
Cedar River	1,028	32.06	9.80	3.4%	3.3%	83.4%	6.2%	3.7%	0.0%
Des Moines River	1,535	27.98	5.68	1.8%	1.8%	79.9%	11.0%	5.5%	0.0%
Lake Superior	6,149	29.11	12.44	1.4%	57.1%	2.6%	3.5%	33.3%	2.1%
Lower Mississippi	6,317	33.29	10.28	2.4%	15.4%	52.2%	24.8%	5.1%	0.1%
Minnesota River	14,943	28.14	5.61	2.2%	4.6%	72.7%	12.6%	7.8%	0.1%
Missouri	1,782	27.16	5.25	1.5%	1.0%	78.9%	16.0%	2.6%	0.0%
Rainy River	11,236	26.20	8.01	0.4%	41.4%	2.0%	2.3%	52.5%	1.3%
Red River	17,741	23.29	3.42	0.7%	12.0%	54.6%	8.8%	23.8%	0.2%
St. Croix River	3,528	30.61	9.71	1.3%	36.8%	10.8%	20.6%	30.1%	0.2%
Upper Mississippi	14,943	28.07	6.87	3.5%	29.1%	20.2%	16.7%	29.7%	0.7%
State Wide	79,202	27.39	6.83	1.9%	22.7%	38.1%	12.0%	24.7%	0.6%

*Based on USGS National Land Cover Database (1992)

Table 1. Basin land use characteristics.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 8

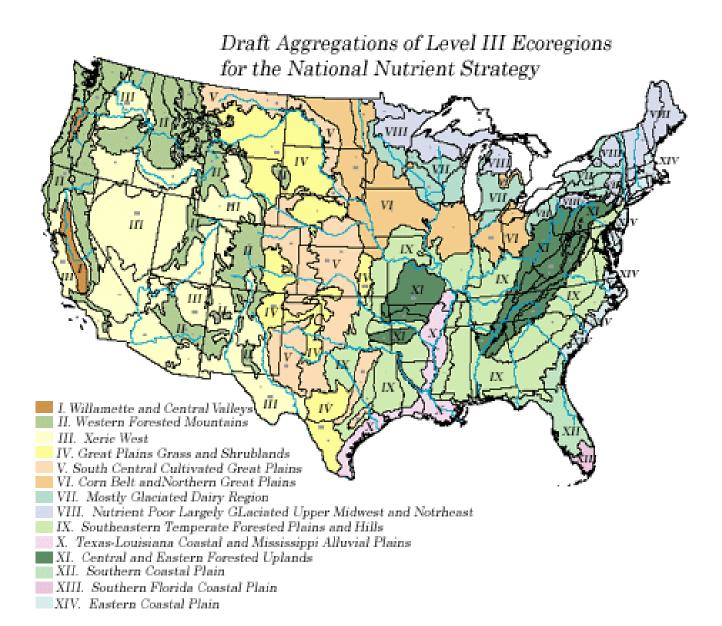


Figure 2 .Level III national aggregate nutrient ecoregions as delineated by Omernik (2000).

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 9

The Minnesota Pollution Control Agency has been at the forefront of the use of ecoregions for water quality assessment and management work (Heiskary, et al., 1987; Wilson and Walker 1989; McCollor, 1993). The MPCA has developed ecoregion-based assessments of lake and stream quality, evaluating water quality differences due to distinct ecoregion characteristics. The stream assessment information in Table 2 provides a summary of the differences in total phosphorus concentrations in Minnesota streams (MPCA, 2003). The ecoregion differences in stream phosphorus concentrations presented in Table 2 further validates the use of ecoregion-based loading rates for this assessment.

						-	
	Red River Valley	Northern Minnesota Wetlands	Northern Lakes and Forests	North Central Hardwood Forests	Northem Glaciated Plains	Westem Corn Belt Plains	Driftless Area
pН	8.0 – 8.4	7.6 – 7.9	7.4 – 7.9	7.9 – 8.3	8.0 – 8.3	8.0 – 8.2	7.9 – 8.3
TSS (in mg/L)	11 – 59	4.8 – 16	1.8 – 6	4.8 – 16	11 – 63	10 – 61	4.8 – 16
NO _x (in mg/L)	0.01 - 0.21	0.01 – 0.08	0.01 – 0.09	0.04 - 0.26	0.01 - 0.51	1.4 – 7.4	0.04 - 0.26
TP (in mg/L)	0.11 – 0.3	0.04 – 0.09	0.02 – 0.05	0.06 – 0.15	0.09 – 0.25	0.16 - 0.33	0.06 – 0.15
Turb (in NTU)	6 – 23	4.1 – 10	1.7 – 4.3	3 – 8.5	5.6 – 23.5	5.2 – 22	3 – 8.5
FC (# organisms per 100 ml)	20 – 220	20 – 40	11 – 20	40 – 360	20 – 410	70 – 790	40 – 360
Temp (degrees C)	0 – 21	0 – 20	0.5 – 17	2 – 21	2.5 – 22	3.5 – 20	2 – 21
BOD ₅ (in mg/L)	1.8 – 4.1	1.1 – 2.1	0.8 – 1.7	1.5 – 3.2	2.3 – 4.5	2.0 – 5.5	1.5 – 3.2

Table 2. Typical annual stream water quality conditions in Minnesota's ecoregions (from: MPCA, 2003).

A further description of the three Level III Aggregate Ecoregions is warranted so as to allow for a more complete understanding of the ecological conditions of each ecoregion and to provide a basis for the a discussion of the native vegetation that are found within the Minnesota boundaries of these regions (Omernik, 2000). The three Aggregate Level III ecoregions included in this assessment are (see Figure 2):

- VI Corn Belt and Northern Great Plains
- VII Mostly Glaciated Dairy Region
- VIII Nutrient Poor Largely Glaciated Upper Midwest and Northeast

The Corn Belt and Northern Great Plains – Aggregate Ecoregion VI – is comprised of rolling plains and flat lake beds, dominated by extensive, highly productive cropland (EPA, 2000a). Nutrient-rich soils significantly influence surface and subsurface water quality and high concentrations of nitrate and phosphorus cause water quality problems in many basins. Many of ecoregion VI's water quality problems are the result of nutrient-rich agricultural runoff and wastewater treatment plant effluent. High concentrations of suspended sediment are found in many streams especially those in flat, agricultural areas with clayey soils and artificial drainage. Many urban, suburban, and industrial

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 10

areas are also found in Region VI. Figure 3 presents the boundaries of Ecoregion VI and the Level III ecoregions included in this aggregate ecoregion. The Minnesota Level III ecoregions within the Aggregate Ecoregion VI (or 6 as in Figure 3) are described by EPA as:

46. Northern Glaciated Plains

The Northern Glaciated Plains ecoregion is characterized by a flat to gently rolling landscape composed of glacial till. The subhumid conditions foster transitional grassland containing tallgrass and shortgrass prairie. High concentrations of temporary and seasonal wetlands create favorable conditions for waterfowl nesting and migration. Though the till soils are very fertile, agricultural success is subject to annual climatic fluctuations (EPA, 2000a).

47. Western Corn Belt Plains

Once covered with tallgrass prairie, over 75 percent of the Western Corn Belt Plains is now used for cropland agriculture and much of the remainder is in forage for livestock. A combination of nearly level to gently rolling glaciated till plains and hilly loess plains, most of the annual precipitation occurs in the growing season, and fertile, warm, moist soils make this on of the most productive areas of corn and soybeans in the world. The region is also one of major environmental concerns regarding surface and groundwater contamination from fertilizer and pesticide applications as well as livestock concentrations (EPA, 2000a).

48. Lake Agassiz Plain (MPCA – Red River Valley)

Glacial Lake Agassiz was the last in a series of proglacial lakes to fill the Red River Valley in the three million years since the beginning of the Pleistocene. Thick beds of lake sediments on top of glacial till create the extremely flat floor of the Lake Agassiz Plain. The historic tallgrass prairie has been replaced by intensive row crop agriculture. The preferred crops in the northern half of the region are potatoes, beans, sugar beets and wheat; soybeans, sugar beets, and corn predominate in the south (EPA, 2000a).

From: Jeffrey Lee

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: October 27, 2003

Page: 11

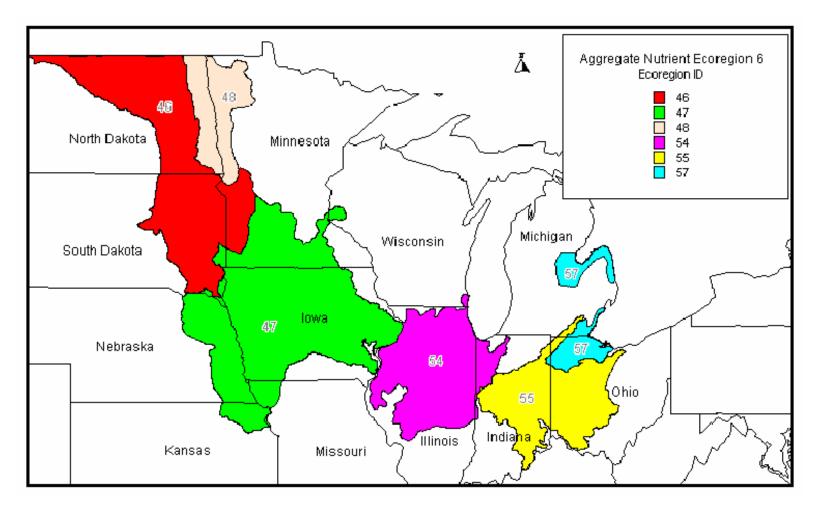


Figure 3. Level III ecoregions for Aggregate Ecoregion VI - Corn Belt and Northern Great Plains for Minnesota basins (from: US EPA 2000a;).

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 12

The Mostly Glaciated Dairy Region – Aggregate Ecoregion VII (or 7 as in Figure 4) – is dominated by forests, dairy operations, and livestock farming (EPA, 2000b). This ecoregion was mostly glaciated and includes flat lake plains, rolling till plains, hummocky stagnation moraines, hills, and low mountains. Figure 4 shows the boundaries and Level III ecoregions of Aggregate Ecoregion VII. Overall, it is not as flat nor as dominated by cropland as the Corn Belt and Northern Great Plains and has fewer lakes and less forests than Region VIII. Ecoregion VII has a mix of nutrient-rich and nutrient-poor soils that contrast with the mostly fertile soils of Region VI and the relatively thin, nutrient-poor soils of Region VIII. The Level III ecoregions within Minnesota Aggregate Ecoregion VII are described by EPA as:

51. Northern Central Hardwood Forests

The North Central Hardwood Forests is transitional between the predominantly forested Northern Lakes and Forests to the north and the agricultural ecoregions to the south. Land use/land cover in this ecoregion consists of a mosaic of forests, wetlands and lakes, cropland agriculture, pasture, and dairy operations (EPA, 2000b).

52. Driftless Area

The hilly uplands of the Driftless Area easily distinguish it from the surrounding ecoregions. Much of the area consists of a loess-capped plateau, deeply dissected by streams. Also called the Paleozoic Plateau, because there is evidence of glacial drift in this region, the glacial deposits have done little to affect the landscape compared to the subduing influences in adjacent ecoregions. Livestock and dairy farming are major land uses and have had a major impact on stream quality (EPA, 2000b).

From: Jeffrey Lee

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: October 27, 2003

Page: 13

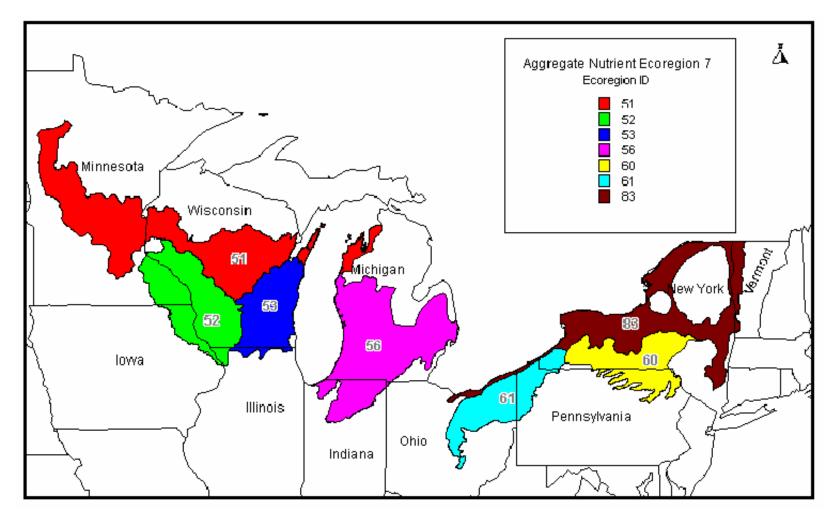


Figure 4. Level III ecoregions for Aggregate Ecoregion VII - Mostly Glaciated Dairy Region for Minnesota basins (from: US EPA 2000b).

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 14

The Nutrient Poor Largely Glaciated Upper Midwest and Northeast – Aggregate Ecoregion VIII (or 8 as in Figure 5) – is characterized by extensive forests, nutrient-poor soils, a short growing season, limited cropland, and many marshes, swamps, lakes, and streams (see Figure 5). Ecoregion VIII has less cropland and fewer people than in neighboring nutrient regions. Water quality issues center around the effects of acid precipitation, logging, lake recreation, and near lake septic systems (EPA, 2000c). Levels of total phosphorus and suspended sediment are also usually low and stream concentrations are typically much less than the more developed nutrient regions. The Minnesota Level III ecoregions within Aggregate Ecoregion VII are described by EPA as:

49. Northern Minnesota Wetlands

Much of the Northern Minnesota Wetlands is a vast and nearly level marsh that is sparsely inhabited by humans and covered by swamp and boreal forest vegetation formerly occupied by broad glacial lakes, most of the flat terrain in this ecoregion is still covered by standing water (EPA, 2000c).

50. Northern Lakes and Forests

The Northern Lakes and Forests is a region of nutrient poor glacial soils, coniferous and northern hardwood forests, undulating till plains, moraine hills, broad lacustrine basins, and extensive sandy outwash plains. Soils in this ecoregion are thicker than in those to the north and generally lack the arability of soils in adjacent ecoregions to the south. The numerous lakes that dot the landscape are clearer and less productive than those in ecoregions to the south (EPA, 2000c).

From: Jeffrey Lee

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: October 27, 2003

Page: 15

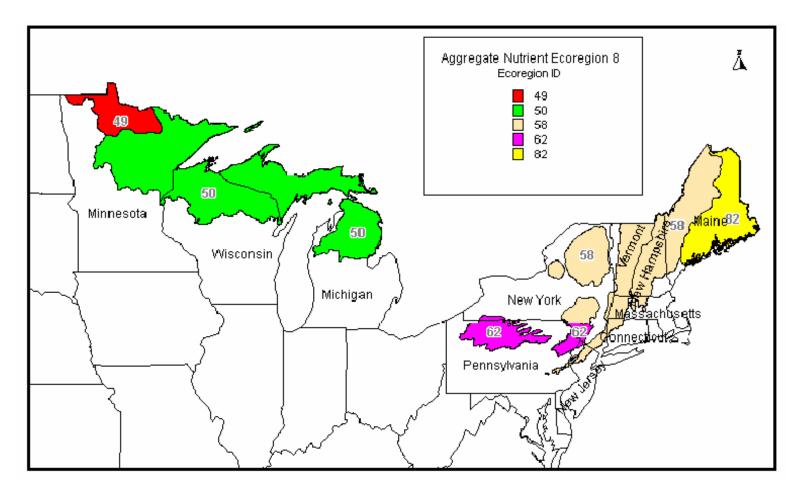


Figure 5. Level III ecoregions for Aggregate Ecoregion VIII - Nutrient Poor Largely Glaciated Upper Midwest and Northeast for Minnesota basins (from: US EPA 2000c).

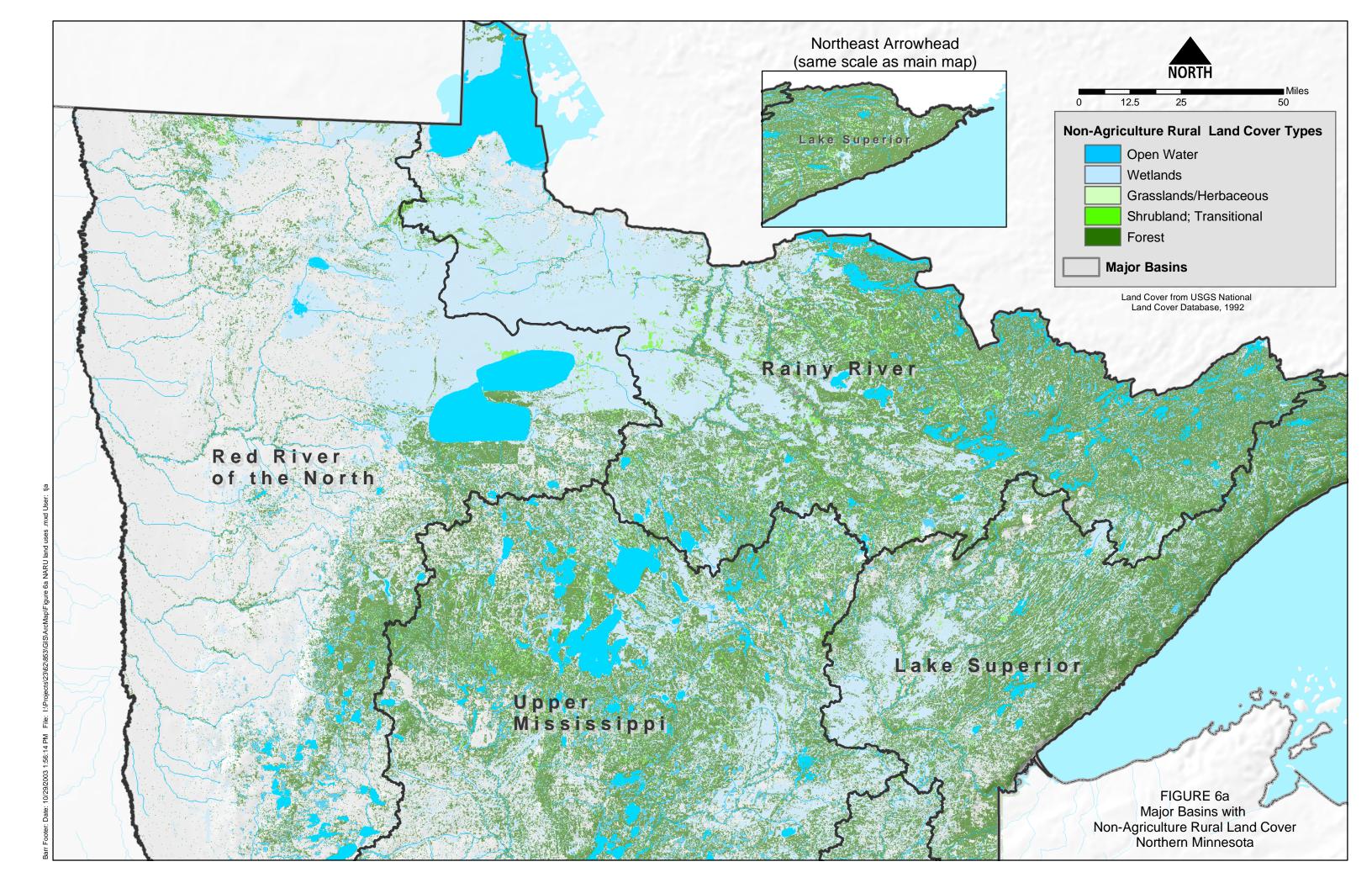
From: Jeffrey Lee

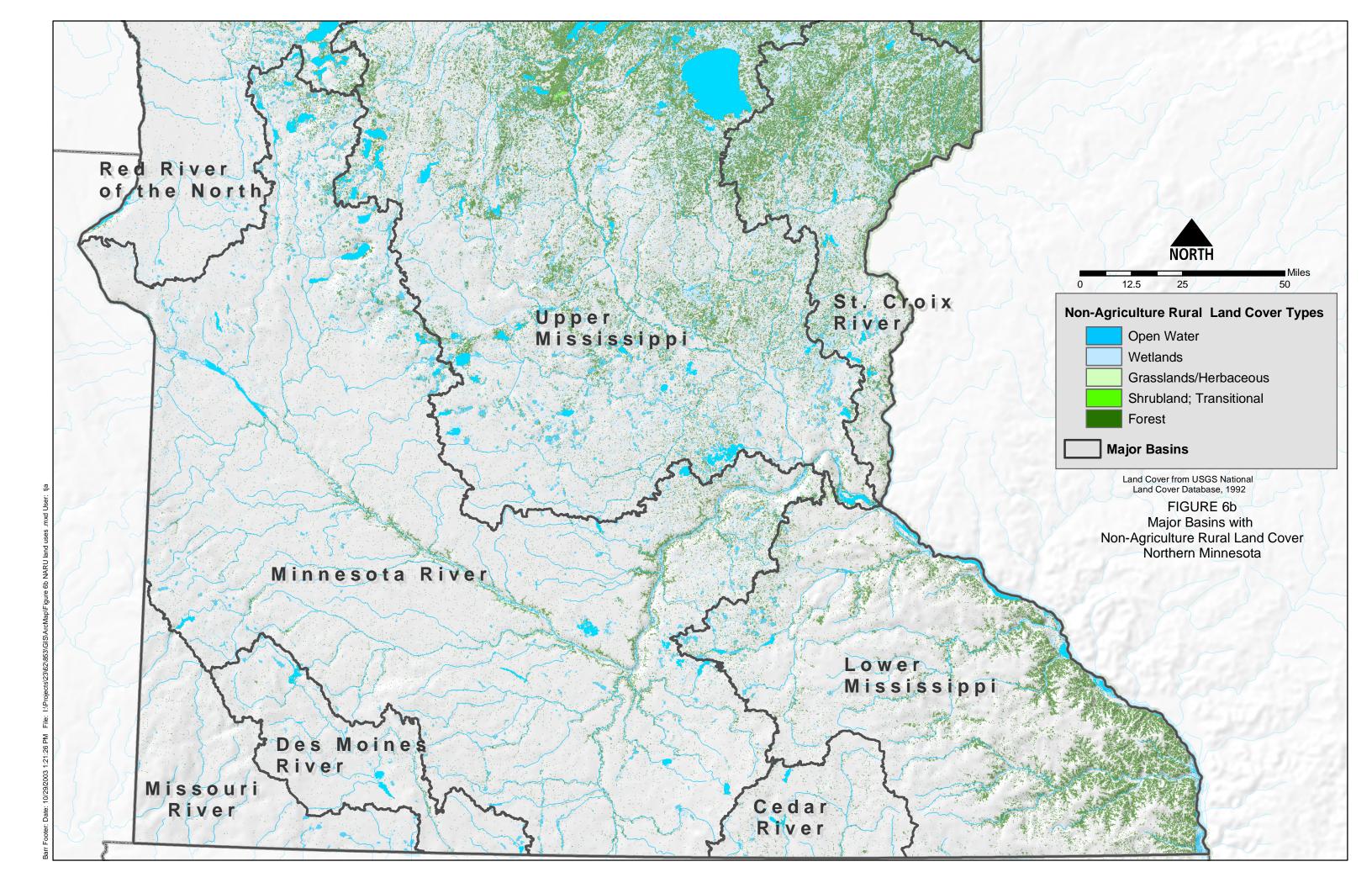
Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 16

For the purposes of defining and quantifying the phosphorus loads to Minnesota basins, the non-agricultural rural land uses within these three Aggregate Ecoregions were classified and enumerated using the USGS National Land Cover Data (NLCD). The National Land Cover Data Set for the Conterminous United States is derived from the Landsat thematic mapper data system (Vogelmann, 2001). While most of the non-agricultural rural land cover is composed of native vegetation, rural residential areas, transportation infrastructure, and other typically urban land uses such as residential and commercial developed areas outside the boundaries of incorporated urban areas are also included in this assessment. The NLDC cover classes included in the non-agricultural rural land uses assessed are:


- Unincorporated Urban Areas
 - Low intensity residential (outside incorporated urban areas)
 - High intensity residential (outside incorporated urban areas)
 - o Commercial/Industrial/Transportation (outside incorporated urban areas)
- Deciduous Forest
- Evergreen Forest
- Mixed Forest
- Shrubland
- Grasslands/Herbaceous
- Urban / Recreational Grasses
- Other
 - o Quarries/Strip Mines/Gravel Pits
 - Transitional


Figures 6a and 6b presents an overview of the land cover distribution of the non-agricultural rural land uses across the Minnesota basins.

The NLCD system of land cover classification defines each of these land use categories as follows:

Developed areas characterized by a high percentage (30 percent or greater) of constructed materials (e.g. asphalt, concrete, buildings, etc).

- 21.Low Intensity Residential Includes areas with a mixture of constructed materials and vegetation. Constructed materials account for 30-80 percent of the cover. Vegetation may account for 20 to 70 percent of the cover. These areas most commonly include single-family housing units. Population densities will be lower than in high intensity residential areas.
- 22. High intensity residential outside incorporated urban areas Includes highly developed areas where people reside in high numbers. Examples include apartment complexes and row houses. Vegetation accounts for less than 20 percent of the cover. Constructed materials account for 80 to 100 percent of the cover. Population densities will be higher than in low intensity residential areas.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 18

23. Commercial/Industrial/Transportation - Includes infrastructure (e.g. roads, railroads, etc.) and all highly developed areas not classified as High Intensity Residential.

Barren - Areas characterized by bare rock, gravel, sand, silt, clay, or other earthen material, with little or no "green" vegetation present regardless of its inherent ability to support life. Vegetation, if present, is more widely spaced and scrubby than that in the "green" vegetated categories; lichen cover may be extensive.

- 32. Quarries/Strip Mines/Gravel Pits Areas of extractive mining activities with significant surface expression.
 - 33. Transitional Areas of sparse vegetative cover (less than 25 percent of cover) that are dynamically changing from one land cover to another, often because of land use activities. Examples include forest clear cuts, a transition phase between forest and agricultural land, the temporary clearing of vegetation, and changes due to natural causes (e.g. fire, flood, etc.). For transitional areas that are forest clear cuts, the runoff volumes and flow regime will be higher, up to twice as high, as for forest land cover for a period of 6 to 15 years (Devito, et al, 2000; Martin et al, 2000).

Undeveloped areas with forested upland - Areas characterized by tree cover (natural or semi-natural woody vegetation, generally greater than 6 meters (20 feet) tall; tree canopy accounts for 25-100 percent of the cover.

- 41. Deciduous Forest Areas dominated by trees where 75 percent or more of the tree species shed foliage simultaneously in response to seasonal change.
- 42. Evergreen Forest Areas dominated by trees where 75 percent or more of the tree species are coniferous, i.e., they maintain their leaves all year. Canopy is never without green foliage in most locations.
- 43. Mixed Forest Areas dominated by trees where neither deciduous nor evergreen species represent more than 75 percent of the cover present. Clear-cut and burned areas are classed as "Transitional Bare" areas,

Shrubland - Areas characterized by natural or semi-natural woody vegetation with aerial stems, generally less than 6 meters (20 feet) tall, with individuals or clumps not touching to interlocking. Both evergreen and deciduous species of true shrubs, young trees, and trees or shrubs that are small or stunted because of environmental conditions are included.

51. Shrubland - Areas dominated by shrubs; shrub canopy accounts for 25-100 percent of the cover. Shrub cover is generally greater than 25 percent when tree cover is less than 25 percent. Shrub cover may be less than 25 percent in cases when the cover of other life forms (e.g. herbaceous or tree) is less than 25 percent and shrubs cover exceeds the cover of the other life forms.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 19

Herbaceous upland areas characterized by natural or semi-natural herbaceous vegetation; herbaceous vegetation accounts for 75-100 percent of the cover.

- 71. Grasslands/Herbaceous Areas dominated by upland grasses and forbs. In rare cases, herbaceous cover is less than 25 percent, but exceeds the combined cover of the woody species present. These areas are not subject to intensive management, but they are often utilized for grazing.
- 85. Urban / Recreational Grasses Vegetation (primarily grasses) planted in developed settings for recreation, erosion control, or aesthetic purposes. Examples include parks, lawn areas that include large residential lawns, golf courses, airport grasses and industrial grass sites.

Ecologic and Hydrologic Functions

Intact ecologic and hydrologic functions in natural vegetation control the nutrient export of these natural vegetation systems. Understanding the hydrologic mechanisms involved in the nutrient export from these natural vegetation systems requires a brief description of the plants communities. Detailed plant community descriptions from Minnesota's Native Vegetation: A Key to Natural Communities (MN DNR, 1993) provides a starting point for the development of the runoff-loading relationships and factors that were considered in the selection of export coefficients and the loading calculations. This vegetation classification system is based upon the native plant communities found in Minnesota and is used to classify and define land cover based upon plant assemblages. Many of these native plant communities have been highly altered by human activities, such as logging, drainage and urban development, but still retain many of their original ecologic and hydrologic functions discussed in the literature review section of this report (Brooks, 2003; Tester, 1995).

Within Minnesota there are three natural plant community zones: the prairie zone, deciduous forest-woodland and the conifer-hardwood forest zone. These three zones generally align with the Aggregate Level III ecoregions; with the prairie zone corresponding to the Corn Belt and Northern Great Plains (VI) ecoregion, the deciduous forest-woodland zone aligning with the Mostly Glaciated Dairy Region (VII) ecoregion and the conifer-hardwood forest zone with the Nutrient Poor Largely Glaciated Upper Midwest and Northeast (VIII) ecoregion (see Figure 7).

Deciduous forests occur primarily in the deciduous forest-woodland zone (Mostly Glaciated Dairy Region VII); the deciduous forests are less common in the other two zones, but are present over some large areas due to changes in the fire disturbance regime. On dry sites, the most common tree species present in the canopy are oak, aspen, and birch. Sugar maple, basswood, elm, and ash are common on moist sites, with pines, especially white pine, sometimes forming a minor portion of the forest. In oak forests where the canopy may be more broken, there is usually a dense layer of tall shrubs, including hazelnuts, dogwoods, prickly ashes, and cherries. In the denser sugar maple forests, the shrub layer is sparse or absent. The dominant tree species occur in assemblages that are established primarily based upon environmental features that include soil texture, bedrock, firebreaks, and depth to the water table.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 20

Many of the dry deciduous forests in the Corn Belt and Northern Great Plains (VI) ecoregion and Corn Belt and Northern Great Plains (VI) ecoregion have succeeded from deciduous brushland and savanna to forest communities over the past 100 to 125 years. This successional change has been attributed to forest fragmentation and fire suppression (MN DNR, 1993). In the Nutrient Poor Largely Glaciated Upper Midwest and Northeast (VIII) ecoregion, deciduous forests can be found on sites with poor drainage, in areas of locally high precipitation, or areas of high humidity, such as along the shore of Lake Superior. The dry deciduous forests of this zone are dominated by aspen, aspen-birch, and paper birch forests, occur on fire-prone sites and are considered early successional communities.

Coniferous forests are upland forest communities that occur primarily in Nutrient Poor Largely Glaciated Upper Midwest and Northeast (VIII) ecoregion, with small stands also found in southeastern Minnesota and in some parts of the Mostly Glaciated Dairy Region (VII) ecoregion. Generally, red pine forest and jack pine forest occur in dry fire-prone areas, while northern conifers such as white spruce, balsam fir, white cedar, and black spruce occur on wetter, fire-protected sites. In fire-protected areas, northern hardwoods, such as sugar maple, basswood and yellow birch, are commonly associated with these coniferous forests. The canopy trees sometimes occur in mixtures, but regularly form relatively pure stands that require fire for stand regeneration.

The mixed forests are upland forest communities composed of significant numbers of both coniferous and deciduous trees. The mixed forests are most common in the Nutrient Poor Largely Glaciated Upper Midwest and Northeast (VIII) ecoregion but can also occur in the Mostly Glaciated Dairy Region (VII) ecoregion. The logging and burning of coniferous forests that followed European settlement caused the loss of pine seed sources over large areas and has led to the conversion of large areas of coniferous forests to mixed forest and deciduous forests (MN DNR, 1993).

Shrublands are classified as upland brush-prairies in the MN DNR classification system and were originally found in all three ecoregions. Shrublands are open communities composed of various amounts of low brush with a ground layer of prairie species. Shrublands frequently have large numbers of small aspens and lesser number of balsam poplars, while on drier sites, bur oak grubs and stunted trees are often present. Frequent fire is important in maintaining shrublands, although in the past, bison and elk grazing may have maintained shrubland communities. Where they have not been converted to agricultural cropland, most remnants of shrubland have succeeded to woodland as the suppression of wild fires became widespread.

Grasslands (upland prairies) occur primarily in the Corn Belt and Northern Great Plains (VI) ecoregion, with scattered occurrences in the Mostly Glaciated Dairy Region (VII) ecoregion. The grasslands are dominated by grasses, with a forb component and a few widely scattered trees and shrubs. The variation in species composition in grasslands is due primarily to variation in soil moisture. The soil moisture regime is determined by slope, aspect, proximity to the water table, and soil texture. On a larger regional scale climatic variation due to the westward decline in precipitation and northward decline in temperature in Minnesota also become important. Prior to European settlement, the distribution of prairie across the landscape was controlled by local fire frequency and the growth rates of woody species. Fragmentation of grasslands since European settlement has

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 21

reduced fire frequency throughout both Corn Belt and Northern Great Plains (VI) and Mostly Glaciated Dairy Region (VII) ecoregions. Most the current prairie remnants have more brush and trees than would have been present in the past (MN DNR, 1993).

Table 3 provides a summary overview of the coverage extent of natural vegetation across the Minnesota landscape and the basins.

From: Jeffrey Lee

Subject: Draft – Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Non-Agricultural Rural Runoff

Date: 26-Nov-03
Page: 22 (11" x 17" page)

Table 3. Land use categories, total coverage (acres) and percent of land area for all rural land use areas.

BASIN	Open Water	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/ Clay	Quarries/ Strip Mines/Gravel Pits	Transitional	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Pasture/Hay	Row Crops	Small Grains	Urban/ Recreational Grasses	Woody Wetlands	Emergent Herbaceous Wetlands	Total
Cedar River	6,970	641	81	10,081	4	177	0	20,270	0	117	0	0	39,097	541,569	0	254	3,454	11,903	634,619
Des Moines River	23,781	337	8	8,206	0	180	6	17,009	248	378	16	0	106,152	778,146	760	977	2,767	25,947	964,918
Lake Superior	145,398	1,352	437	15,940	666	14,491	35,069	1,158,968	389,361	527,649	12,924	8,128	115,041	87,915	2,294	1,475	1,035,939	51,318	3,604,363
Lower Mississippi	64,627	1,867	344	26,624	30	762	124	553,528	4,497	22,002	8	3,495	947,042	2,039,213	279	2,439	44,446	69,123	3,780,451
Minnesota River	239,691	4,503	302	39,053	15	4,482	352	378,576	7,211	16,684	5,182	0	1,166,038	6,810,010	64,615	13,948	70,538	386,064	9,207,264
Missouri	7,444	414	9	9,353	2	181	6	11,015	33	172	13	24	179,044	888,132	2,051	609	999	20,049	1,119,552
Rainy River	823,490	1,207	178	18,907	317	4,455	80,345	1,181,229	764,487	872,322	128,826	1,059	163,495	115,785	29,071	1,268	2,689,976	238,071	7,114,491
Red River	611,325	2,779	332	28,149	190	6,646	16,910	1,251,965	36,897	29,227	35,718	6	981,060	5,300,452	859,966	8,466	1,204,292	870,281	11,244,661
St. Croix River	54,059	1,439	248	5,469	0	927	4,027	734,076	24,889	32,788	2,989	1,310	401,415	193,902	4,833	3,299	401,033	193,373	2,060,076
Upper Mississippi	994,904	17,353	2,309	35,693	100	16,512	52,218	2,781,790	344,959	289,012	86,785	108	1,929,973	2,184,390	251,745	23,027	1,450,853	1,101,065	11,562,798
Statewide Total for Land Use Category for All Basins	2,971,689	31,894	4,250	197,475	1,325	48,814	189,057	8,088,427	1,572,583	1,790,350	272,461	14,131	6,028,357	18,939,513	1,215,613	55,762	6,904,296	2,967,194	51,293,192
Percent of All Non-Urban Land Uses (Land use category total / Statewide rural land uses)	5.79%	0.06%	0.01%	0.38%	0.00%	0.10%	0.37%	15.77%	3.07%	3.49%	0.53%	0.03%	11.75%	36.92%	2.37%	0.11%	13.46%	5.78%	100.00%

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 23

Basin land use breakdown

Tables 4 and 5 provide a breakdown of the land uses included in the non-agricultural rural loading phosphorus calculations. The acreage totals, percentage of total state land cover and percentage of total non-agricultural rural lands are presented for the basins and the contributory areas of each basin. The original scope of work envisioned four land use classes in the non-agricultural rural assessment. The current loading estimates uses eleven land use classifications based upon the 1997 NLDC coverage.

- Unincorporated Urban Areas
 - o Low intensity residential (outside incorporated urban areas)
 - o High intensity residential (outside incorporated urban areas)
 - Commercial/Industrial/Transportation (outside incorporated urban areas)
- Deciduous Forest
- Evergreen Forest
- Mixed Forest
- Shrubland
- Grasslands/Herbaceous
- Urban / Recreational Grasses
- Other
 - Quarries/Strip Mines/Gravel Pits
 - o Transitional

From: Jeffrey Lee

Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: 26-Nov-03

Subject:

Page: 24 (11" x 17" page)

Table 4. Land use categories, total land area coverage in acres and percent of land area for all rural land use areas included in Non-Agricultural Rural Runoff Sources for Minnesota Basins.

BASIN	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/ Clay	Quarries/ Strip Mines/ Gravel Pits	Transitional	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Urban / Recreational Grasses	Non-Agricultural Rural Basin Total
Non-Agricultural Rural - Acres													
Cedar River	641	81	10,081	4	177	0	20,270	0	117	0	0	254	31,625
Des Moines River	337	8	8,206	0	180	6	17,009	248	378	16	0	977	27,366
Lake Superior	1,352	437	15,940	666	14,491	35,069	1,158,968	389,361	527,649	12,924	8,128	1,475	2,166,459
Lower Mississippi River	1,867	344	26,624	30	762	124	553,528	4,497	22,002	8	3,495	2,439	615,721
Minnesota River	4,503	302	39,053	15	4,482	352	378,576	7,211	16,684	5,182	0	13,948	470,309
Missouri River	414	9	9,353	2	181	6	11,015	33	172	13	24	609	21,832
Rainy River	1,207	178	18,907	317	4,455	80,345	1,181,229	764,487	872,322	128,826	1,059	1,268	3,054,602
Red River	2,779	332	28,149	190	6,646	16,910	1,251,965	36,897	29,227	35,718	6	8,466	1,417,286
St. Croix River	1,439	248	5,469	0	927	4,027	734,076	24,889	32,788	2,989	1,310	3,299	811,462
Upper Mississippi River	17,353	2,309	35,693	100	16,512	52,218	2,781,790	344,959	289,012	86,785	108	23,027	3,649,867
Non-Agricultural Rural Land Use Category Total in Acres for All Basins (1)	31,894	4,250	197,475	1,325	48,814	189,057	8,088,427	1,572,583	1,790,350	272,461	14,131	55,762	12,266,529
Non-Agricultural Rural Land Use expressed as Percent of State Total for Each Land Use Area													
Total (2)	8.89%	3.00%	60.29%	66.24%	45.06%	97.63%	95.10%	97.14%	96.68%	98.21%	80.03%	32.46%	23.00%
Non-Agricultural Rural Land Use expressed as Percent of All Non-Urban Land Uses Statewide (3)	0.26%	0.03%	1.61%	0.01%	0.40%	1.54%	65.94%	12.82%	14.60%	2.22%	0.12%	0.45%	100.00%

Notes:

- (1) Sum of each Non-Agricultural Rural land use acres by land cover category across all basins in the state of Minnesota.
- (2) Individual land use category area expressed as percent total statewide coverage for that land use category, i.e., a percentage of all low intensity residential land use, both urban and rural.
- (3) Non-Agricultural Rural area total in (1) expressed as a precent of the state total area for all non-urban lands uses, including natural vegetation, agricultural, surface waters and rural developed areas.

Table 5. Land cover for 100 meter contributory areas for major basins for non-agricultural rural land uses in Minnesota.

BASIN	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/ Clay	Quarries/ Strip Mines/ Gravel Pits	Transitional	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Urban/ Recreational Grasses	100 Meter Contributory Area Total	Basin Total Acres - All Non- Agricultural Rural Lands	Contributory Area as Percentage of Total Basin Area
Non-Agricultural Rural Runoff Sources	s - 100 meter Co	ontributory Area	as (Acres)												
Cedar River	273	25	2,777	4	89	0	10,605	0	63	0	0	111	13,945	31,625	44.1%
Des Moines River	128	3	2,058	0	110	3	9,757	231	229	7	0	353	12,879	27,366	47.1%
Lake Superior	656	262	9,393	122	5,360	16,998	587,549	251,377	325,811	8,034	4,755	666	1,210,983	2,166,459	55.9%
Lower Mississippi River	673	128	7,901	18	352	34	232,739	1,974	9,462	8	834	983	255,106	615,721	41.4%
Minnesota River	1,852	161	11,494	0	1,711	128	230,420	5,959	11,011	3,616	0	5,508	271,860	470,309	57.8%
Missouri River	143	2	2,861	0	113	1	5,616	20	97	1	9	185	9,048	21,832	41.4%
Rainy River	865	123	14,542	258	2,827	44,531	723,562	510,958	558,598	78,079	708	765	1,935,817	3,054,602	63.4%
Red River of the North	1,307	133	13,784	183	3,116	10,356	829,664	22,268	21,916	24,479	6	3,574	930,785	1,417,286	65.7%
St. Croix River	821	178	4,121	0	632	2,770	555,376	17,842	26,575	2,025	864	2,389	613,593	811,462	75.6%
Upper Mississippi River	9,510	1,494	22,201	37	7,761	25,618	1,734,728	201,739	210,629	48,252	35	11,584	2,273,590	3,649,867	62.3%
Total Contributory Area Acres by Category for All Basins (4)	16,229	2,507	91,132	622	22,071	100,439	4,920,017	1,012,368	1,164,392	164,501	7,211	26,117	7,527,607	12,266,529	61.4%
Contributory Area Expressed as a Percent of Total Non-Agricultural Rural Land Use (4)	50.88%	59.00%	46.15%	46.96%	45.21%	53.13%	60.83%	64.38%	65.04%	60.38%	51.03%	46.84%	61.37%		

Notes:

- (4) Sum of contributory area by land coverage category for all basins.
- (5) Contributory area for all basins, by land cover class, expressed as a percentage of the total acres for each of the Non-Agricultural Rural Land Use Category.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 25

Approach and Methodology for Phosphorus Loading Computations

The development of nutrient loading estimates in the absence of direct monitoring has generally been completed by applying areal based nutrient export rates to the watershed area to calculate the annual nutrient mass (Beaulac and Reckhow, 1982: Reckhow, et al, 1980; Panuska and Lillie, 1995; Clesceri, et al, 1986a; Clesceri, et al, 1986b; McFarland and Hauck, 2001). Phosphorus export coefficients assume 100% of phosphorus transported from land will reach surface water. The phosphorous export coefficient is part of the total phosphorous loading equation:

$$L = \sum_{i=1}^{m} c_i \bullet A_i$$

L is total phosphorus loading from land (in kilograms per year), m is number of land use types, c_i is the phosphorus export coefficient for land use i (in kilograms per hectare per year), and A_i is area of land use i (in hectares).

Over large watershed areas, the phosphorus export is not proportional to watershed area and some attenuation of phosphorus occurs, especially in natural vegetation that have low runoff rates. Recently, authors who have examined the nutrient export issue on landscape level scales (large watersheds and higher order streams) have raised concerns over the applicability of export coefficients across large watershed areas (Birr and Mulla, 2001; Cammermeyer, et al, 1999; Johnson and gage, 1997; Jones, et al, 2001; Mattson and Isaac, 1999; McFarland and Hauck, 1998; Richards, et al, 2001; Sharpley, et al, 1993; Soranno, et al, 1996; Worrall and Burt, 1999). The underlying issue related to this concern is that not all areas in a large watershed contribute nutrients and sediment equally. Novotny and Chester (1989) showed that the sediment delivery rate decreases with increasing watershed size. They report that in humid regions only a portion of a watershed contributes to surface runoff; they called these contributory areas of a watershed the "hydrologically active areas". (St. Onge, et al, in press). Frink (1991) reported that a review of the literature revealed a high degree of variability in phosphorus export rates reported. Johnes (1996) found that the application of export coefficients to the Slapton catchment in south Devon, U.K., resulted in a 9.12 % error in loads. The application of a distance decay function to the export rates for areas outside the 50 meter riparian corridor reduced the model error to 2.5% of the observed phosphorus load. Johnes (1996) stated that an understanding of hydrologic pathways and variability in transport mechanism is important for determining nutrient delivery to surface waters through the use of export coefficient models.

Soranno, et al. (1996) and Cammermeyer, et al, (1999) suggest two adjustments to account for the attenuation by including a transmission coefficient (T) that represents the proportion of phosphorus transported down slope along the path of overland flow and a phosphorus flux coefficient (f_i) , that represents the phosphorus production and transport that reaches a surface water body. While this equation applies more strictly to watershed modeling with GIS software, the underlying premises apply directly to the loading assessment methodology used here. The authors suggest that the phosphorus loading equation can be modified:

$$\underline{L} = \sum_{i=1}^{m} \sum_{n=1}^{n} f_{i} \bullet A_{p,i} \bullet T_{i}^{p}$$

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 26

T is the transmission coefficient (O<T<1) representing the proportion of phosphorus transported, f_i is the phosphorus flux coefficient, n is the number of pixels, and p is the pixel distance of overland flow.

Soranno, et al (1996) reported that the greatest contribution of loadings was derived from land uses within the riparian corridor, a corridor that varies in width depending upon topography and runoff conditions. Based upon modeling of monitored watersheds they found that the total annual rainfall affected the phosphorus loading from the riparian areas by creating variability as to the effective contributory area. In most cases, the transmission coefficient is determined through GIS modeling of the watershed area. Such modeling examines the down slope movement of water and thus nutrients from pixel to pixel across the watershed. The GIS-based development of transmission coefficients for use in this assessment was beyond the scope of the project. In the absence of a calculated T, an estimate of the contributory area of a watershed based upon land use and the application of a basin runoff factors were chosen for the load calculations. The basin runoff factor accounts for the differences in effective flow length and thus runoff volumes between the three precipitation scenarios (Soranno et al, 1996; Cammermeyer, et al, 1999; Barr Engineering, 2003b). The phosphorus loading estimation methodology used in this assessment assumes that c_i will be equal to f_i through the use of calculated loadings from the 100 meter contributory areas only.

The phenomenon of contributory area and variability in nutrient mass over a range of flow scenarios is a central question to the estimation of large basin loads. The literature was reviewed for a consensus on the size of this contributory area and the impact of hydrologic conditions upon the size and export estimation. Novotny and Chester (1989) calibrated and verified hydrologic models for a number of Milwaukee area basins and found that sediment delivery ratios ranged from 0.01 for pervious areas and 1.0 for completely storm-sewered urban areas. Naiman and Decamps (1997) emphasize that riparian zones strongly influence biogeochemical cycles and rates in streams and reduce external impacts to streams. Johnson, et al (1997) found that landscape factors within the 100 meter ecotone adjacent to streams were sufficient predictors of stream water chemistry. Richards, et al (1996) found that in central Michigan streams, the 100 meter area adjacent to streams was the strongest predictor of sediment related habitat variables. Tufford, et al, (1998) reported that the land within 150 meters of streams was a better predictor of nutrient concentrations. Predictor models for stream phosphorus concentrations best for land uses adjacent to streams, r2 = 0.183 for all land in the watershed versus $r^2 = 0.387$ and $r^2 = 0.334$ for land use within 31 - 150 meters and <150 meters of streams, respectively. Soranno, et al (1996) reported the variability in effective contributory area due to differences in runoff years was lowest for pre-settlement conditions, i.e., native plant communities.

The schedule and budget for this assessment did not allow for GIS modeling of the effective contributory area based upon hydrologic conditions. Many authors have suggested that riparian land cover within 100 meters can mediate upslope impacts on water quality (Schmitt, et al, 1999; Cole et al, 1997; Castelle, et al, 1994; Roth, et al, 1996; Osborne and Kovacic, 1993). Based upon this literature assessment, an evaluation was undertaken of two monitored watersheds. Phosphorus loadings were calculated based upon literature export rates applied to the entire watershed. This evaluation was completed for the Brule River using MPCA monitoring results for 2002 and the South

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 27

Branch of Valley Creek using results from the St. Croix Watershed Research Station (MPCA, 2003; Almendinger, et al, 1999; Zapp and Almendinger, 2001; Valley Branch Watershed District. 2002).

The application to literature derived phosphorus export loading rates to the Brule River watershed calculated a load that was 347% over the normalized annual phosphorus mass based upon 2002 monitoring data. Much of the phosphorus export predicted by the use of export coefficients is not measured at the river's mouth as annual load. A comparable assessment on the South Branch of Valley Creek provided similar results, but with an even greater margin of error – the annual load estimate is 732% of monitored loads for 1997-98. These results provide additional insight into the need to apply export coefficients only to the effective contributory areas of a large watershed.

Comparison of monitored and estimated phosphorus loads for the Brule River Watershed using watershed-wide application of export rates

Land Cover	Watershed Area	TP Export Rate	Calculated TP Load		
	(hectares)	(kg/ha/yr)	(kg P/yr)		
Deciduous Forest	19,045	0.155	2,952		
Evergreen Forest	13,436	0.123	1,653		
Mixed Forest	18,360	0.130	2,387		
Grasslands/Herbaceous	357	0.146	52		
Quarries/Strip Mines/Gravel Pits	8	0.000	0		
Transitional	1,347	0.129	174		
Pasture/Hay	176	0.250	44		
Row Crops	393	1.000	393		
Commercial/Industrial/Transportation	2	1.250	3		
Water	7,278	0.000	0		
Wetland	8,191	0.000	0		
Total	68,593		7,657		
2002 Monitored TP Load (kg)			1,735		
Percent Difference (calculated/monitor	red)		441.31%		
Normalized TP Load - Average Year (l		2202			
Percent Difference (calculated/normali	zed)		347.72%		

^{*} Nomalized load = 3 pounds of TP/square mile / inch runoff (3 # P x 265 sq.mi. x 6.1") as per MPCA (2003)

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 28

Comparison of monitored and estimated phosphorus loads for South Fork Valley Creek Watershed using watershed-wide application of export rates

Land Cover	Area (hectares)	TP Export Rate (kg/ha/yr)	Calculated TP Load (kg P/yr)
		· <u> </u>	
Forest	648	0.130	84
Urban	165	1.250	206
Grassland	165	0.169	28
Pasture	254	0.250	63
Agric, land	739	1.000	739
Roads	246	1.250	307
Water	41	0.000	0
Wetland	21	0.000	0
Total	2,064		1,428
Monitored TP Lo	ad (kg)		195
Percent Difference	732.13%		

Notes: 1997-98 data for calculations of load

Mean discharge 0.31 m^3/sec
Annual discharge 9,776,160 m^3
TP concentration 0.020 mg P/L

South Fork Valley Creek watershed area from VBWD

Based upon the literature review conclusion that the 100 meter riparian zone has the greatest influence on water chemistry, we have chosen to estimate phosphorus loads from the 100 meter zone of land use immediately adjacent to perennial streams, lakes and wetlands in all of the basins. The NLDC land use coverage for the non-agricultural rural was buffered using ArcView to create a land cover quantity for all lands within 100 meters of surface water – lakes, wetlands and perennial streams. This 100 meter wide area was used for the calculation of the effective contributory area for each land cover types for each basin (see Table 5).

An assessment was completed on the literature values for phosphorus export rates to examine any differences between the three aggregate level ecoregions. Tables 6 and 7 present the results of that analysis including summary statistics where available and the ecoregion mean value used for each plant community. These values were used for the phosphorus load calculations and provided the basis for discussion of load variability.

The phosphorus load for each land use was calculated by multiplying the phosphorus export coefficient by the 100 m contributory area and basin runoff factor for each land use category (see Table 8). The basin runoff factor is based upon the percent differences between runoff in the wet and dry precipitation scenarios compared to the average conditions for each basin. The basin runoff factor was developed to account for the changes in runoff volumes due to increased runoff and higher loadings due to longer overland flow lengths and thus larger contributory areas in wet years and inversely so for dry years. This information was generated from the basin hydrology technical memorandum (Barr Engineering, 2003b). The basin hydrology technical memorandum reported

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 29

significant variability of runoff and precipitation across the state. That technical memo examined the precipitation patterns and developed the basin-wide runoff conditions used for each of the loading scenarios assessed. The basin runoff factor used for each of the three scenarios for non-agricultural rural land uses is present in Table 9. Use of the basin runoff factor and contributory watershed area for loading calculations, allowed for adjustment of the loadings based upon the annual runoff.

Basin natural area load (kg) = Export rate (kg/ha/yr) * Contributory area (ha) * Basin runoff factor

The load from unincorporated urban areas within the otherwise rural areas was calculated in the same manner as the for in the urban areas as presented in the Draft – Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Urban Runoff (Barr Engineering, 2003a). The unincorporated urban areas usually have developed drainage systems that bypass natural vegetation and provide for direct delivery of storm water runoff to surface waters.

Basin load (kg) = Concentration (mg/L) * Contributory area (ha) * Percent impervious area

where, concentration is based upon the concentration regression equations developed for urban runoff in each of the basins, contributory area is equal to the total area for each land use class, runoff coefficient = 0.05 + 0.009 * impervious percentage, and annual rainfall depth is the annual precipitation for the loading flow condition scenario by basin.

To: From: Subject: Date: Jeffrey Lee
Draft – Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Non-Agricultural Rural Runoff
26-Non-03

30 (11" x 17" page)

Table 6. Phosphorus export coefficient of			pounds P/ ac /	Basis for	
Land Use Type / Location	Location / Aggregate Ecoregion	kg P/ ha / yr	yr	determination	Reference
11 Deciduous Forest					
	So Wisconsin - VII	0.100	0.089	literature estimation	Soranno et al, 1966
	east coast	0.120	0.107	median	Frink 1991
	NE MN - VIII	0.107	0.095	preharvest measured	Leete, 1986
	NE MN - VIII	0.159	0.142	post-harvest measured	Leete, 1986
	TCMA - VII	0.090	0.080	measure .01 ha sites	Singer and Rust, 1975
	Manitoba	0.120	0.107	literature review	Bourne, et al, 2002
	Minnesota - VIII	0.260	0.232	literature value cited Leete 1986	Timmons, et al, 1977
	So Ontario - VIII	0.107	0.095		that much of the upland derived flows were retained by the hillside forest communities
	New Hampshire - VIII	0.019	0.017		reported in:Reckhow, et al,1980
	Ohio - VII	0.035	0.031		reported in:Reckhow, et al,1980
	Tennessee - XI	0.025	0.022	oak-hickory	reported in:Reckhow, et al,1980
	Minnesota - VIII	0.280	0.250		reported in:Reckhow, et al,1980
	Mean	0.119	0.106		
	Standard deviation	0.082	0.074		
	Number	12	12		
	Number	12	12		
42 Evergreen Forest					
2 Evergreen 1 orest	WI - VIII	0.280	0.250	estimated - 84% forest/16% ag	Corsi, et al, 1997
	MN - VIII	0.080	0.071	peatland annual yields	Bolter and Verry, 1977
	No WI - VIII	0.112	0.100	mean - 3 sites 90% forest and wetlands	Clesceri, 1986a
		0.080	0.071	eastern US inc. MN	Omernik 1976
	Eastern US		0.071 0.123	Castelli US IIIC. IVIIV	OHATHA 1770
	Mean	0.138			
	Standard deviation	0.096	0.086		
	Number	4	4		
42 Mirrod Forest					
43 Mixed Forest	n . n	0.044	0.000		D. I. IVIII 10051 I. VOGG
	Popple River WI - VIII	0.044	0.039	wet year	Panuska and Lillie, 1995 based upon USGS data
	Popple River WI - VIII	0.094	0.084	average year	Panuska and Lillie, 1995 based upon USGS data
	Popple River WI - VIII	0.175	0.156	dry year	Panuska and Lillie, 1995 based upon USGS data
	statewide WI	0.040	0.036	extr low	Panuska and Lillie, 1995
	statewide WI	0.090	0.080	most likely	Panuska and Lillie, 1995
	statewide WI	0.180	0.161	extr high	Panuska and Lillie, 1995
	Menominee River basin - VIII	0.058	0.052	wet year	Panuska and Lillie, 1995 based upon USGS data
	Menominee River basin - VIII	0.093	0.083	average year	Panuska and Lillie, 1995 based upon USGS data
	Menominee River basin - VIII	0.112	0.100	dry year	Panuska and Lillie, 1995 based upon USGS data
	Ontario - VIII	0.309	0.276	Kenora - mixed	reported in:Reckhow, et al,1980
	Minnesota - VIII	0.157	0.140		reported in:Reckhow, et al,1980
	National median	0.206	0.184		reported in:Reckhow, et al,1980
	Mean	0.130	0.116		reported in Accession, et al, 1760
	Standard deviation	0.130	0.070		
	Number	12	12		
	rumber	12	12		
51 Shrubland / Transitional					
51 Shrubiand / Transitional					
]	
	Deciduous forest	0.151	0.135	calculated based upon average	
	Grassland	0.106	0.094	of deciduous forest and grassland	
	Calculated value	0.129	0.115		no literature values available
<u> </u>					
71 Grasslands/Herbaceous					
. 2 STUSSIGHUS/TICI DUCCOUS					
	Minnesota - VI	0.100	0.089	native pasture - high end of range	Timmons and Holt, 1977
		0.250	0.223	native pasture - low end of range	Timmons and Holt, 1977
		0.175	0.156	native pasture - mean of range	calculated from Timmons and Holt, 1977
	So WI -VII	0.169	0.151	restored prairie	calculated based upon Brye et al, 2000 water budget and [ave] from US ACE, 2001
	Eastern ND - VI	0.060	0.054	native grasses - prairie pothole region	calculated based upon Shjeflo, 1968 and Winter etal, 2001 water budgets and [ave] from US ACE, 2001
	Mean	0.151	0.135	1 1 1	2
	Standard deviation	0.073	0.066		
	Number	5	5		
		J	ž		
		Percent Impervio	ous		
		-			
21 Low Intensity Residential	Runoff coefficient	32%		calculated based upon urban loadings	Zielinski, 2002; Barr Engineering, 2003
22 High Intensity Residential	Runoff coefficient	42%		calculated based upon urban loadings	Zielinski, 2002; Barr Engineering, 2003
23 Commercial / Industrial /					
Transportation	Runoff coefficient	57%		calculated based upon urban loadings	Zielinski, 2002; Barr Engineering, 2003
32 Quarries/ Strip Mines/ Gravel Pits				not calculated	
95 Urban/ Dagrastianal C	Duraff andford	220		coloulated based	Tislindi 2000, Dom Fasinovina 2002
85 Urban/ Recreational Grasses	Runoff coefficient	32%		calculated based upon urban loadings	Zielinski, 2002; Barr Engineering, 2003
					•

P:\23\62\853\Non-Ag Rural\draft memo\coefficients.xls print version 11/26/2003

From: Jeffrey Lee

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: 26-Nov-03 Page: 31

Table 7. Level III Aggregate Ecoregion specific phosphorus export rates for natural plant communities.

Land Use Type / Location	Level III Aggregate Ecoregion	kg P/ ha / yr	pounds P/ ac / yr
41 Deciduous Forest		- · ·	¥
	41 Mean - Ecoregion VIII	0.155	0.139
	Standard deviation	0.100	0.089
	Number	6	6
	41 Mean - Ecoregion VII	0.075	0.067
	Standard deviation	0.035	0.031
	Number	3	3
	41 Mean - All Deciduous Forest	0.119	0.106
	Standard deviation	0.082	0.074
	Number	12	12
42 Evergreen Forest			
	42 Mean - Ecoregion VIII	0.123	0.110
	Standard deviation	0.111	0.099
	Number	4	4
	42 Mean - All Evergreen Forest	0.114	0.102
	Standard deviation	0.098	0.088
	Number	5	5
43 Mixed Forest			
	43 Mean - Ecoregion VIII	0.130	0.116
	Standard deviation	0.085	0.076
	Number	8	8
	43 Mean - All Mixed Forest	0.130	0.116
	Standard deviation	0.079	0.070
	Number	12	12
71 Grasslands/Herbaceous			
	71 Southern WI -VII	0.169	0.151
	71 Mean - Ecoregion VIII	0.146	0.130
	Standard deviation	0.084	0.075
	Number	4	4
	Mean - All Grasslands/Herbaceous	0.151	0.135
	Standard deviation	0.073	0.066
	Number	5	5

From: Jeffrey Lee

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: 26-Nov-03 Page:

Table 8. Ecoregion export coefficients for phosphorus load calcualtions; Applied export rate in bold.

		Ecor	egion Land Us	e Class Export C	Coefficient - kg	/ha/yr
Watershed	Level III Aggregate Ecoregion	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous
Cedar River	VI - Corn Belt and Northern Great Plains	0.119 (1)	0.114 (2)	0.130 (3)	0.129 (4)	0.151 (5)
Des Moines River	VI - Corn Belt and Northern Great Plains	0.119 (1)	0.114 (2)	0.130 (3)	0.129 (4)	0.151 (5)
Lake Superior	VIII - Nutrient Poor Largely Glaciated Upper Midwest and Northeast	0.155	0.123	0.130 (3)	0.129 (4)	0.146
Lower Mississippi River	VI - Corn Belt and Northern Great Plains	0.119 (1)	0.114 (2)	0.130 (3)	0.129 (4)	0.151 (5)
	VII - Mostly Glaciated Dairy Region	0.075	0.114 (2)	0.130 (3)	0.129 (4)	0.169
Minnesota River	VI - Corn Belt and Northern Great Plains	0.119 (1)	0.114 (2)	0.130 (3)	0.129 (4)	0.151 (5)
	VII - Mostly Glaciated Dairy Region	0.075	0.114 (2)	0.130 (3)	0.129 (4)	0.169
Missouri River	VI - Corn Belt and Northern Great Plains	0.119 (1)	0.114 (2)	0.130 (3)	0.129 (4)	0.151 (5)
Rainy River	VIII - Nutrient Poor Largely Glaciated Upper Midwest and Northeast	0.155	0.123	0.130 (3)	0.129 (4)	0.146
Red River	VI - Corn Belt and Northern Great Plains	0.119 (1)	0.114 (2)	0.130 (3)	0.129 (4)	0.151 (5)
	VII - Mostly Glaciated Dairy Region	0.075	0.114 (2)	0.130 (3)	0.129 (4)	0.169
	VIII - Nutrient Poor Largely Glaciated Upper Midwest and Northeast	0.155	0.123	0.130 (3)	0.129 (4)	0.146
St. Croix River	VII - Mostly Glaciated Dairy Region	0.075	0.114 (2)	0.130 (3)	0.129 (4)	0.169
	VIII - Nutrient Poor Largely Glaciated Upper Midwest and Northeast	0.155	0.123	0.130 (3)	0.129 (4)	0.146
Upper Mississippi River	VII - Mostly Glaciated Dairy Region	0.075	0.114 (2)	0.130 (3)	0.129 (4)	0.169
	VIII - Nutrient Poor Largely Glaciated Upper Midwest and Northeast	0.155	0.123	0.130 (3)	0.129 (4)	0.146

Statewide Land Class Export Coefficient

Used due to absence of ecoregion value

- (1) All Deciduous Forests export rate
- (2) All Conferous Forests export rate
- (3) All Mixed Forests export rate
- (4) All Shrublands export rate
- (5) All Grasslands export rate

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

	Dry Co	nditions	Average (Conditions	Wet Co	nditions
		Basin		Basin		Basin
	Runoff	Runoff	Runoff	Runoff	Runoff	Runoff
Basin	(inches)	Factor	(inches)	Factor	(inches)	Factor
Cedar River	5.6	0.57	9.8	1	17.5	1.79
Des Moines River	1.4	0.25	5.7	1	13.4	2.36
Lake Superior	7.9	0.63	12.4	1	16.7	1.35
Lower Mississippi River	7.1	0.70	10.3	1	15.6	1.51
Minnesota River	1.9	0.34	5.6	1	11.2	2.00
Missouri River	1.0	0.18	5.3	1	12.8	2.44
Rainy River	4.8	0.60	8.0	1	11.4	1.43
Red River	1.1	0.31	3.4	1	6.1	1.78
St. Croix River	5.6	0.58	9.7	1	14.3	1.47
Upper Mississippi River	3.6	0.52	6.9	1	10.4	1.52

Table 9. Basin runoff factor for non-agricultural rural land use phosphorus load calculations.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 34

Results of Phosphorus Loading Computations and Assessments

Export rates were applied to each of the basins for the natural plant community lands uses are listed in Table 8. The export coefficients highlighted in bold were applied to the watershed areas in the basin.

Land use totals for the basins and the contributory areas for each basin were previously listed in Tables 4 and 5.

The results of the basin loading calculations for each basin and state-wide totals are listed in table 10.

From: Jeffrey Lee

Subject: Draft – Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Non-Agricultural Rural Runoff

Date: 26-Nov-03
Page: 35 (11" x 17" page)

Table 10. Phosphorus loading results for watershed contributory areas for Minnesota basins and state-wide totals for three hydrologic scenarios; loads in kg.

Basin	Hydrology Scenario	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/ Clay	Quarries/ Strip Mines/ Gravel Pits	Transitional	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Urban/ Recreational Grasses	Total Kg P
	Dry Year	69.8	8.2	1263.7	2.7	Not Calculated	0.0	291.1	0.0	1.9	0.0	0.0	28.3	1,666
Cedar River	Avg Year	73.9	8.7	1338.2	2.9	Not Calculated	0.0	510.7	0.0	3.3	0.0	0.0	30.0	1,968
	Wet Year	75.7	8.9	1369.6	2.9	Not Calculated	0.0	914.2	0.0	5.9	0.0	0.0	30.7	2,408
	Dry Year	35.8	1.1	1020.1	0.0	Not Calculated	0.0	117.5	2.7	3.0	0.1	0.0	98.3	1,279
Des Moines River	Avg Year	41.5	1.3	1183.0	0.0	Not Calculated	0.1	469.9	10.6	12.0	0.4	0.0	114.0	1,833
	Wet Year	46.7	1.5	1332.3	0.0	Not Calculated	0.3	1108.9	25.1	28.4	0.8	0.0	128.4	2,673
	Dry Year	178.4	93.3	4546.1	92.9	Not Calculated	559.1	23219.3	7883.2	10799.0	264.2	177.0	181.0	47,993
Lake Superior	Avg Year	190.7	99.7	4859.4	99.3	Not Calculated	887.4	36856.1	12513.1	17141.2	419.4	281.0	193.5	73,541
	Wet Year	204.1	106.7	5201.1	106.3	Not Calculated	1198.0	49755.7	16892.7	23140.7	566.2	379.3	207.1	97,758
	Dry Year	214.9	53.6	4496.0	16.3	Not Calculated	1.2	4944.9	63.7	348.5	0.3	35.7	313.9	10,489
Lower Mississippi River	Avg Year	238.6	59.6	4991.9	18.1	Not Calculated	1.8	7064.2	91.1	497.8	0.4	51.0	348.6	13,363
	Wet Year	252.5	63.0	5284.0	19.2	Not Calculated	2.7	10667.0	137.5	751.7	0.6	77.0	369.0	17,624
	Dry Year	539.2	61.4	5962.3	0.3	Not Calculated	2.3	3772.9	93.5	197.0	64.2	0.0	1603.9	12,297
Minnesota River	Avg Year	627.1	71.4	6934.2	0.4	Not Calculated	6.7	11096.9	274.9	579.3	188.8	0.0	1865.3	21,645
	Wet Year	695.7	79.2	7693.0	0.4	Not Calculated	13.4	22193.8	549.9	1158.6	377.6	0.0	2069.5	34,831
	Dry Year	39.6	0.7	1412.6	0.0	Not Calculated	0.0	48.7	0.2	0.9	0.0	0.1	51.2	1,554
Missouri River	Avg Year	46.6	0.9	1662.6	0.0	Not Calculated	0.0	270.5	0.9	5.1	0.1	0.6	60.3	2,047
	Wet Year	53.0	1.0	1890.4	0.0	Not Calculated	0.1	659.9	2.3	12.5	0.2	1.4	68.5	2,689
	Dry Year	226.2	42.2	6770.8	189.7	Not Calculated	1394.9	27232.8	15260.7	17633.1	2445.7	25.1	199.9	71,421
Rainy River	Avg Year	248.5	46.4	7436.2	208.3	Not Calculated	2324.8	45388.0	25434.5	29388.4	4076.2	41.8	219.6	114,813
	Wet Year	273.7	51.1	8191.5	229.5	Not Calculated	3324.4	64904.8	36371.4	42025.4	5829.0	59.8	241.9	161,503
	Dry Year	310.8	41.4	5839.0	122.5	Not Calculated	167.6	7806.5	343.6	357.4	396.2	0.1	849.9	16,235
Red River of the North	Avg Year	362.5	48.2	6810.6	142.8	Not Calculated	540.7	25182.4	1108.4	1153.0	1278.0	0.4	991.3	37,618
	Wet Year	410.0	54.6	7702.9	161.5	Not Calculated	962.4	44824.6	1973.0	2052.4	2274.8	0.7	1121.1	61,538
	Dry Year	252.4	71.7	2257.9	0.0	Not Calculated	83.9	9777.1	515.1	810.9	61.3	34.3	734.8	14,599
St. Croix River	Avg Year	293.4	83.3	2624.8	0.0	Not Calculated	144.6	16857.1	888.1	1398.2	105.7	59.1	854.2	23,308
	Wet Year	320.0	90.9	2863.2	0.0	Not Calculated	212.6	24779.9	1305.6	2055.3	155.4	86.8	931.7	32,801
	Dry Year	2780.6	573.4	11562.3	30.5	Not Calculated	695.5	27379.7	5221.9	5762.3	1309.9	1.3	3386.8	58,704
Upper Mississippi River	Avg Year	3181.9	656.2	13231.0	34.9	Not Calculated	1337.4	52653.3	10042.2	11081.4	2519.1	2.4	3875.6	98,615
	Wet Year	3509.1	723.6	14591.4	38.5	Not Calculated	2032.9	80033.1	15264.1	16843.8	3829.0	3.7	4274.1	141,143

	Hydrology Scenario	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/	Quarries/ Strip Mines/ Gravel Pits		Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Urban/ Recreational Grasses	Total Kg P
	Dry Year	4,648	947	45,131	455	Not Calculated	2,904	104,591	29,385	35,914	4,542	274	7,448	236,238
Statewide Totals	Avg Year	5,305	1,076	51,072	507	Not Calculated	5,244	196,349	50,364	61,260	8,588	436	8,552	388,751
	Wet Year	5,840	1,181	56,120	558	Not Calculated	7,747	299,842	72,522	88,075	13,034	609	9,442	554,968

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 36

Phosphorus Loading Variability and Uncertainty

The variability and uncertainty of these phosphorus loading computations and assessment is currently difficult to assess due to the lack of monitoring data that would allow a rigorous evaluation of the application of the concepts of contributory area and the use basin runoff factor.

The procedures used for the basin calculations were applied to the Brule River and South Fork Valley Creek watersheds and compared to the normalized loads determined from 2002 monitoring and 1997-98 monitoring data, respectively (MPCA, 2003a; Almendinger, et al, 1999; Zapp and Almendinger, 2001; Valley Branch Watershed District. 2002). The results are tabulated below in Table 11. The comparison shows that the method used to estimate the annual loadings over predicts the loadings by 28.7% in dry years and 100% in wet years. However, this predicted load for the Brule River is significantly lower than the calculated load that would result if phosphorus export rate coefficients were applied to the entire basin, which over-predicted observed loads by 347%. Results for the South Fork of Valley Creek using the contributory area approach under predicts the total load by 75% in dry years and 33% in wet years. The large volume of groundwater in the South Fork of Valley Creek's annual water budget most likely leads to the under prediction.

While the current estimation method used in this report still over or under predicts loads, the difference between calculated and gauged apparent loads is less, and there is no way to determine how much of the actual load has been retained in upstream water bodies in the Brule River Watershed (i.e., the gauged load is a net statistic). This load assessment's purpose was to estimate surface runoff loads to all surface waters of the state, and it should be recognized that retention of phosphorus in upstream water bodies will reduce the watershed output for all of the basins and phosphorus inputs from groundwater will not be accurately accounted.

Brule River Watershed

Land Cover	Contributory Area	TP Export Rate	Calcu	lated TP Load (kg	g P/yr)
Land Cover	(hectares)	(kg/ha/yr)	Dry Year	Average Year	Wet Year
Deciduous Forest	8,072	0.155	788	1,251	1,689
Evergreen Forest	8,469	0.123	656	1,042	1,406
Mixed Forest	10,561	0.130	865	1,373	1,853
Grasslands/Herbaceous	141	0.146	13	21	28
Quarries/Strip Mines/Gravel Pits	7	0.000	0	0	0
Transitional	498	0.129	40	64	87
Pasture/Hay	52	0.250	8	13	18
Row Crops	175	1.000	110	175	236
Commercial/Industrial/Transportat	2	1.250	2	3	3
Water	7,191	0.000	0	0	0
Wetland	8,094	0.000	0	0	0
Total	43,262		2,483	3,941	5,320
Normalized TP Load*			1,929	2,202	2,656
Percent Difference (calculated/norm	nalized)		128.7%	179.0%	200.3%

^{*} Nomalized load as per MPCA (2003)

Dry Year = 3 pounds of TP /square mile / inch runoff (3 # P x 265 sq.mi. x 5.4") as per MPCA (2003)

Average Year = 3 pounds of TP/square mile / inch runoff (3 # P x 265 sq.mi. x 6.1") as per MPCA (2003)

Wet Year = 3 pounds of TP /square mile / inch runoff (3 # P x 265 sq.mi. x 7.4") as per MPCA (2003)

Calculated TP Load = Export rate (kg/ha/yr) * Contributory area (ha) * Basin runoff multiplier

Contributory Area = all watershed area within 100m of surface waters

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 37

South Fork Valley Creek Watershed

Land Cover	Area	TP Export Rate	Calcu	ulated TP Load (kg	P/yr)	
Land Cover	(hectares)	(kg/ha/yr)	Dry Year	Average Year	Wet Year	
Forest	40	0.130	3	5	8	
Urban	10	1.250	7	13	19	
Grassland	10	0.169	1	2	3	
Pasture	16	0.250	2	4	6	
Agric, land	46	1.000	27	46	68	
Roads	15	1.250	11	19	28	
Water	3	0.000	0	0	0	
Wetland	1	0.000	0	0	0	
Total	142		52	89	131	
Monitored TP Load (I	kg)		195	195	195	
Percent Difference (ca	lculated/monitored)	26.48%	45.66%	67.12%	

Notes: Contributory area calculated for stream corridor and adjacent upland wetlands.

Total load does not account for ground water inputs of phosphorus.

Table 11. Comparison of calculated and normalized loads for the Brule River watershed and monitored and estimated phosphorus loads for South Fork Valley Creek Watershed, using the application of export rates to the contributory area of each watershed..

The annual loads to the basin derived using the contributory area approach to loads were compared to the loads that would be predicted using the watershed-wide application of export rates to assess the difference between the methods across all of the basins in Minnesota. This side-by-side method evaluation was completed on the non-agricultural land uses outside of incorporated areas only. Table 12 summarizes the phosphorus loading estimates for both methods and the percent differences. The loading totals for non-agricultural land uses from the entire basin is larger than would be expected due to the larger land areas, with the state-wide total loads being 56.4% greater in a dry year, 58.0% greater in an average year, and 58.9% greater in a wet year, with a mean difference of 57.8%.

From: Jeffrey Lee

Subject: Draft - Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: 26-Nov-03 Page: 38

Table 12. Phosphorus loading results for Minnesota basins and state-wide totals comparing application of export rates to contributory areas and all watershed rural land use areas for three hydrologic scenarios; loads in kg.

Basin	Hydrology Scenario	Total Kg P - Contributory Area Application of Export Rates	Total Kg P - Basin-wide Application of Export Rates	Percent Difference (Contributory Area Load/Basin Area Load)
	Dry Year	1,666	5,407	30.8%
Cedar River	Avg Year	1,968	6,115	32.2%
	Wet Year	2,408	7,011	34.3%
	Dry Year	1,279	4,650	27.5%
Des Moines River	Avg Year	1,833	5,996	30.6%
	Wet Year	2,673	7,804	34.2%
	Dry Year	47,993	86,529	55.5%
Lake Superior	Avg Year	73,541	132,606	55.5%
	Wet Year	97,758	176,283	55.5%
	Dry Year	10,489	29,568	35.5%
Lower Mississippi River	Avg Year	13,363	36,925	36.2%
	Wet Year	17,624	47,388	37.2%
	Dry Year	12,297	32,467	37.9%
Minnesota River	Avg Year	21,645	49,689	43.6%
	Wet Year	34,831	72,698	47.9%
	Dry Year	1,554	5,005	31.1%
Missouri River	Avg Year	2,047	6,318	32.4%
	Wet Year	2,689	7,893	34.1%
	Dry Year	71,421	111,161	64.3%
Rainy River	Avg Year	114,813	179,730	63.9%
	Wet Year	161,503	253,499	63.7%
	Dry Year	16,235	28,507	57.0%
Red River of the North	Avg Year	37,618	61,419	61.2%
	Wet Year	61,538	98,101	62.7%
	Dry Year	14,599	19,460	75.0%
St. Croix River	Avg Year	23,308	30,994	75.2%
	Wet Year	32,801	43,554	75.3%
	Dry Year	58,704	95,883	61.2%
Upper Mississippi River	Avg Year	98,615	159,965	61.6%
	Wet Year	141,143	228,174	61.9%

	Hydrology Scenario	Total Kg P - Contributory Area Application of Export Rates	Total Kg P - State-wide Application of Export Rates	Percent Difference (Contributory Area Load/Basin Area Load)
	Dry Year	236,238	418,636	56.4%
Statewide Totals	Avg Year	388,751	669,758	58.0%
	Wet Year	554,968	942,406	58.9%

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 39

Recommendations for Future Refinements

Refinement of the application of export coefficients to Minnesota watershed will require further monitoring and research into the development and application of transmission coefficients. This work will require more detail investigation into the relationships that exist between phosphorus-flux coefficients, land use export coefficients, and transmission factors and their impact on the effective contributory area for large watersheds. As was seen in the literature review, many of the export coefficients for natural vegetation were developed on very small sites. Larger scale studies, comparable to the work by Sartz and others in the driftless area should be undertaken.

The width of the effective contributory area has major implications for water quality management. Much of the research conducted on buffer systems provides some insight into contributory watershed area functions. However, refinement of the interactions of soil type, topography and vegetative cover on the transmission of phosphorus to surface waters needs further research. Research and monitoring efforts on this topic should include GIS modeling efforts to help define these relationships and allow for state-wide spatial database development.

Further investigation into ground water interactions in the Driftless area, Washington County and other high ground water recharge areas are needed to develop a better understanding of groundwater recharge and the impacts upon stream quality and quantity and how this impacts watershed nutrient loadings.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 40

Recommendations for Lowering Phosphorus Export

The protection of natural areas is needed to insure they retain the hydrologic and ecologic functions that keep surface runoff volumes low, nutrient export low and groundwater recharge rates high. Many natural areas are under stress due to development pressures, invasion by exotic species and increased nutrient loading from adjacent land uses. While the overall percentage of land cover represented by these natural plant communities is only 23%, they provide valuable ecologic and hydrologic value.

Conservation easements, such as CREP and RIM, provide additional opportunities for reducing phosphorus export from contributory watershed areas. The impact of these easements on phosphorus export from converted agricultural lands is evaluated as part of the Agricultural Runoff Technical Memorandum.

All land use decisions will need to consider the loss of these functions, and provision of economic mechanisms that allow landowners to retain these functions is needed.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 41

Literature Cited

- Almendinger, J.E., Schottler, S.P. and Thommes, K.E. 1999. Monitoring and modeling Valley Creek Watershed: 3. Surface-water hydrology. Final project Report to the Legislative Commission on Minnesota Reosurces. St. Croix Watershed Research Station, Science Museum of Minnesota.
- Bailey, R.G. 1980. Description of ecoregions of the United States. U.S. Department of Agriculture, Miscellaneous Publication No. 1391.
- Bannerman, R.T. 2003. Personal communications, October 7, 2003.
- Barr Engineering Company. 2003a. Draft Detailed Assessment of Phosphorus Sources to Minnesota Watersheds Urban Runoff. Prepared for the Minnesota Pollution Control Agency.
- Barr Engineering Company. 2003b. Draft Basin Hydrology Technical Memorandum. Prepared for the Minnesota Pollution Control Agency
- Beaulac, M. N., and Reckhow, K. H. 1982. An examination of land use-nutrient export relationships. Water Resour. Bull. 18(6):1013-24.
- Binkley, D. 2001. Patterns and processes of variation in nitrogen and phosphorus concentrations in forested streams. National Council for Air and Stream Improvement, Technical Bulletin #836. Research Triangle Park, NC.
- Birr, A.S. and Mulla, D.J. 2001. Evaluation of the phosphorus index in watersheds at the regional scale. J. Environ. Qual. 30:2018-2025.
- Boelter, D.H. and Verry, E.S. 1977. Peatland and water in the northern Lake States. General Technical Report NC-31, US Department of Agriculture Forest Service, St. Paul, MN.
- Borkholder, B.D., A.J. Edwards, and D.J. Vogt. 1999. Biological, physical, and chemical characteristics of the Cloquet River from the Island Lake Dam to the St. Louis River, 1996 1998. Fond du Lac Reservation Resource Management Technical Report, No. 26. Cloquet, MN.
- Bourne, A., N. Armstrong, and G. Jones. 2002. A preliminary estimate of total nitrogen and total phosphorus loading to streams in Manitoba, Canada. Water Quality Management Section. Manitoba Conservation Report No. 2002 04.
- Brooks, K.N., Ffolliott, P.F., Gregersen, H.M. and DeBano. L.F. 2003. *Hydrology and the Management of Watersheds, Third Edition*. Iowa Sate Press, Ames. IA.
- Bundy, L.G. 1998. A Phosphorus Budget for Wisconsin Cropland. A report submitted to The Wisconsin Department of Natural Resources & the Wisconsin Department of Agriculture, Trade & Consumer Protection. Prepared by the Department of Soil Science, University of Wisconsin. http://ipcm.wisc.edu/pubs/pdf/pbudget.pdf
- Brye, K.R., Norman, J.M., and Gower, S.T. 2002. The fate of nutrients following three- and six-year burn intervals in a tallgrass prairie restoration in Wisconsin. Am. Midl. Nat. 148:28-42.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

- Brye, K.R., Andraski, T.W., Jarrell, W.M., Bundy, L.G. and Norman, J.M. 2002. Phosphorus leaching from a restored tallgrass prairie and corn agroecosystems. J. Environ. Qual. 31:769-781
- Brye, K.R., Norman, J.M., Bundy, L.G. and Gower, S.T. 2000. Water-budget evaluation of prairie and maize ecosystems. Soil. Sci. Soc. Am. J. 64:715-724.
- Burke, I. C., Schimel, D. S., Yonker, C. M., Parton, W. J., Joyce, L. A. and Lauenroth, W.K. 1990. Regional modeling of grassland biogeochemistry using GIS. Landscape Ecology 4:45-54.
- Cammermeyer. J., Conrecode, P., Hansen, J., Kwan, P. and Maupin, M., 1999. Phosphorus Flux Spatial Model Group. Student Paper Urbanization, Water Resources & Lake Water Quality in the Seattle area. University of Washington CEWA 599/ZOO 572. http://courses.washington.edu/cewa599c/paper2.html
- Chambers, P. A and A. R. Dale. 1997. Contribution of industrial, municipal, agricultural and groundwater sources to nutrient export, Athabasca, Wapiti and Smoky rivers, 1980 to 1993. Northern River Basins Study, Edmonton AB.
- Clark, G. M., Mueller, D. K. and Mast, M.A. 2000. Nutrient concentrations and yields in undeveloped stream basins of the United States. *Journal of the American Water Resources Association* 36(4):849-860. http://water.usgs.gov/nawqa/nutrients/pubs/awra_v36_no4/report.pdf
- Cleseri N. L., S. J. Curran, and R. I. Sedlak 1986a. Nutrient loads to Wisconsin lakes: Part I. Nitrogen and P-export coefficients. Water Resour. Bull. 22(6):983-990.
- Cleseri N. L., S. J. Curran, and R. I. Sedlak 1986b. Nutrient loads to Wisconsin lakes: Part II. Relative importance of nutrient sources. Water Resour. Bull. 22(6):991-1000.
- Cole, J.T., Baird, J.H., Basta, N.T., Huhnke, R.L., Strom, D.E., Johnson, G.V., Payton, M.D., Smolen, M.D., Martin, D.L., and Cole, J.C. 1997. Influence of buffers on pesticide and nutrient runoff from Bermudagrass turf. J. Environ. Qual. 26:1589-1598.
- Correll, D. L., Jordan, T.E. and Weller, D.E. 1999. Transport of nitrogen and phosphorus from Rhode River watersheds during storm events. Wat. Res. Research 35(8):2513–2521.
- Corsi, S.R., Graczyk, D.J., Owens, D.W. and Bannerman, R.T. 1997. Unit-area loads of suspended sediment, suspended solids, and total phosphorus from small watersheds in Wisconsin. USGS Fact Sheet FS-195-97.
- Devito, K.J., I.F. Creed. R.L. Rothwell and E.E. Prepas. 2000. Landscape controls on phosphorus loading to boreal lakes: implications for future impacts of forest harvesting. Canadian Journal of Fisheries and Aquatic Sciences 57(10):1977-1984.
- Dodds, W.K., Blair, J.M., Henebry, G.M., Koelliker, J.K., Ramundo, R., Tate, C.M. 1996. Nitrogen transport from tallgrass prairie watersheds. Journal of Environmental Quality 25:973-981.
- Dunne, T., J. Agee, S. Beissinger, W. Dietrich, D. Gray, M. Power, V. Resh, and D. Rodrigues. 2001. A scientific basis for the prediction of cumulative watershed effects. University of California, Wildland Resources Center, Berkeley, CA.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

- Fallon, J.D. and McNellis, R.P. 2000. Nutrients and suspended sediment in snowmelt runoff from part of the Upper Mississippi River Basin, Minnesota and Wisconsin, 1997. USGS Water Resource Investigation Report 00-4165. Mounds View, MN.
- Fisher, T.R., Lee, K.Y., Berndt, H., Benitez, J.A. and Norton, M.M., 1998. Hydrology and chemistry of the Choptank river basin. Water Air and Soil Pollution 105: 387–397.
- Frink, C.R. 1991. Estimating nutrient exports to estuaries. Journal of Environmental Quality 20:717-724.
- Heiskary, S.A., Wilson, C.B. and Larsen, D.P. 1987. Analysis of regional patterns in lake water quality: Using ecoregions for lake management in Minnesota. Lake and Reservoir Management 3:337-344.
- Hernandez, M., W.G. Kepner, D.J. Semmens, D.W. Ebert, D.C. Goodrich and S.N. Miller. 2003. Integrating a landscape/hydrologic analysis for watershed assessment. The First Interagency conference on Research in the Watersheds. October 2003, Benson, AZ.
- Hewlett, J.D. and J.D. Helvey. 1975. Effects of forest clear-felling on the storm hydrograph. Water Resources Research 6(3):768-782.
- Holechek, J.L., R.D. Piper and C.H. Herbal. 1995. Range management: principles and practices. 2nd edition. Prentice Hall, Englewood Cliffs, New Jersey.
- Johnes, P.J. 1996. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modeling approach. Journal of Hydrology 183:323-349.
- Johnson, L.B. and Gage, S.H., 1997. Landscape approaches to the analysis of aquatic ecosystems. Freshwater Biology 37:113-132. http://colargol.ibg.uit.no/biologi/botanikk/lennart/GIS-kurs/pdf/Artkl9.pdf
- Johnson, L.B., Richards, C., Host, G. and Arthur, J.W., 1997. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology 37:193-208. http://landscape.forest.wisc.edu/courses/readings/Johnson etal1997.pdf
- Jones, K.B., Neale, A.C., Nash, M.S., van Remortel, R.D., Wickham, J.D., Riitters, K.H. and O'Neill, R.V. 2001. Predicting nutrient and sediment loadings to streams from landscape metrics: A multiple watershed study from the United States Mid-Atlantic Region. Landscape Ecology 16: 301-312.
- Knighton, M.D and Steigler, J.H. 1980. Phosphorus releases following clearcutting of a black spruce fen and a black spruce bog. In: 6th International Peat Congress. 577-583.
- Lassevils, J.F. and Berrux, D. 2000. Sources of phosphorus to surface waters: comparing calculated with measured P loadings for three French Rivers. Prepared for CEEP by Geoplus Consultants, Drome, France.
- Leach, M.K. and Givnish, T.J. 1999. Gradients in the composition, structure, and diversity of remnant oak savannas in southern Wisconsin. Ecological Monographs 69(3):353-374.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

- Leete, J.H. (1986). Sediment and phosphorus load to streamflow from natural and disturbed watersheds in northeastern Minnesota. Ph.D. Thesis, University of Minnesota, Minneapolis, MN.
- Martin, C.W. J.W. Hornbeck, G.E. Likens and D.C. Buso. 2000. Impacts of intensive harvesting on hydrology and nutrient dynamics of northern hardwood forests. Canadian Journal of Fisheries and Aquatic Sciences 57(S2):19-29.
- Mattson, M.D. and R.A. Isaac. 1999. Calibration of phosphorus export coefficients for total maximum daily loads of Massachusetts lakes. Journal of Lake and Reservoir Management 15(3):209-219.
- McCollor, S. and Heiskary, S. 1993. Selected water quality characteristics of minimally impacted streams from Minnesota's seven ecoregions. Minnesota Pollution control Agency, Water Quality Division, St. Paul, MN.
- McDowell, R., Sharpley, A., and Folmar, G., 2001. Phosphorus export from an agricultural watershed: Linking source and transport mechanisms, J. Environ. Qual. 30:1587-1595. http://jeq.scijournals.org/cgi/reprint/30/5/1587.pdf
- McFarland, A.M.S. and L.M. Hauck. 2001. Determining nutrient export coefficients and source loading uncertainty using in-stream monitoring data. Journal of the American Water Resources Association. 37:223-236.
- McFarland, A.M.S. and L.M. Hauck. 1998. Determining nutrient contribution by land use for the Upper North Bosque River Watershed. Texas Institute foe Applied Environmental Research, Stephenville, TX.
- McMahon, G., Gregonis, S.M., Waltman, S.W., Omernik, J.M., Thorson, T.D., Freeouf, J.A., Rorick, A.H., and Keys, J.E. 2001. Developing a spatial framework of common ecological regions for the conterminous United States. Environmental Management. 28:3, 293-316.
- Meeuwig, J.J. and R.H. Peters Circumventing phosphorus in lake management: a comparison of chlorophyll *a* predictions from land-use and phosphorus-loading models. Canadian Journal of Fisheries and Aquatic Sciences (53):1795-1806
- Menzel, R.G., Rhoades, E.D., Olness, A.E. and Smith, S.J. 1978. Variability of annual nutrient and sediment discharges in runoff from Oklahoma cropland and rangeland. J. Environ. Qual. 7:401-406.
- Metcalfe, R.A. and Butle, J.M. 1999. Semi-disturbed water balance dynamics in a small boreal forest basin. Journal of Hydrology 226:66-87.
- Metropolitan Council Environmental Services. 2003. Metropolitan Council Environmental Services 2001 Stream Monitoring Report. Metropolitan Council Environmental Services, Environmental Quality Assurance Department, St. Paul MN.
- Meyer, J.L. and G.E. Likens. 1979. Transport and transformation of phosphorus in a forest stream ecosystem. Ecology 60(6):1255-1269.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 45

Minnesota Department of Natural Resources. 1993. Minnesota's Native Vegetation: A Key to Natural Communities (Version 1.5). MN DNR, Natural Heritage Program. St. Paul, MN. http://files.dnr.state.mn.us/ecological_services/nhnrp/nckey.pdf

- Minnesota Pollution Control Agency. 2003. Comparison of typical Minnesota water quality conditions. Water Quality/Surface Water #1.02, July 2003. Minnesota Pollution Control Agency, St. Paul, MN. http://www.pca.state.mn.us/publications/wq-s1-02.pdf
- Minnesota Pollution Control Agency. 2003a. An assessment of representative Lake Superior basin tributaries 2002. Minnesota Pollution Control Agency, St. Paul, MN
- Naiman, R.J. and Descamps, H. 1997. The ecology of interfaces: Riparian zones. Annual Review of ecology and Systematics 28:621-658.
- National Council for Air and Stream Improvement, Inc. (NCASI). 1994. Forests as non-point sources of pollution and effectiveness of best management practices. Technical Bulletin No. 672. Research Triangle Park, NC: National Council for Air and Stream Improvement, Inc. http://www.ncasi.org/forestry/research/watershed/tb672.pdf
- Novotny, V. and G. Chesters. 1989. Delivery of sediment and pollutants from nonpoint sources: A water quality perspective. Journal of Soil and Water Conservation 44:568-576.
- Olness A., Rhodes, E.D., Smith S.J. and Menzel, R.G. 1980. Fertilizer nutrient losses from rangeland watersheds in central Oklahoma. J. Environ. Quality 9(1):81-85.
- Omernik, J. M. 1977. The influence of land use on stream nutrient levels. United States Environmental Protection Agency, Ecol. Res. Series. EPA-600/3-7-104.
- Omernik, J. M. 1977. Nonpoint source-stream nutrient level relationships: a nationwide study. U.S. United States Environmental Protection Agency, Ecol. Res. Series. EPA-600/3-77-105.
- Omernik, J. M. 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77:118-125.
- Omernik, J. M. 1995. Ecoregions: A spatial framework for environmental management. In: Davis, W.S. and Simon, T.P. 1995. Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. CRC Press, Inc. Boca Raton, Florida.
- Omernik, J.M., 2000, Draft aggregations of Level III eco-regions for the National Nutrient Strategy. National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency. http://www.epa.gov/ost/standards/ecomap.html.
- Omernik, J.M. and Bailey, R.G. 1997. Distinguishing between watersheds and ecoregions. Journal of the American Water Resources Association. 33:5. pp. 935-949.
- Omernik, J.M. and A.L. Gallant. 1988. Ecoregions of the upper Midwest States. USEPA, ERL, Corvallis, OR. EPA/ 600/3-88/037
- Osborne, L.L. and Kovacic, D.D. 1993. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology 29:243-258.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

- Panuska, John C. and Richard A. Lillie. 1995. Phosphorus loadings from Wisconsin watersheds: Recommended phosphorus export coefficients for agricultural and forested watersheds. Research Management Findings, Number 38. Wisconsin Department of Natural Resources.
- Perkins, W. W., Welch, E. B., Frodge, J. and Hubbard, T. 1997. A zero degree of freedom total phosphorus model; 2. Application to Lake Sammamish, Washington. Lake and Reservoir Management Volume 13(2):131-141.
- Peterjohn, W.T. and D.L. Correll. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65(5):1466-1475.
- Reckhow, K.H., M.N. Beaulac, and J.T. Simpson. 1980. Modeling phosphorus loading and lake response under uncertainty: A manual and compilation of export coefficients. U.S. Environmental Protection Agency, Washington, D.C. EPA 440/5-80-011.
- Richards, C., Johnson, L.B. and Host, G.E. 1996. Landscape-scale influences on stream habitats and biota. Canadian Journal of Fish. Aquat. Sci. 53(Suppl. 1):295-311.
- Richards, C., White, M., Axler, R., Hershey, A. and Schomberg, J. 2001. Simulating effects of landscape composition and structure on stream water quality in forested watersheds. Verh. Internat. Limnol. 27:3561-3565.
- Roberson, T., L.G. Bundy, and T. W. Andraski, 2003. Phosphorus runoff losses from alfalfa. 2003 Wisconsin Fertilizer, Aglime, and Pest Management Conference. http://www.soils.wisc.edu/extension/FAPM/2003proceedings/Bundy-2.pdf
- Robertson, D. M. and E. D. Roerish, Influence of various water quality sampling strategies on load estimates for small streams, Water Resour. Res., 35(12), 3747-3759, 1999.
- Robertson, D. M. and Richards, K. D., 2000. Influence of different temporal sampling strategies on estimating loads and maximum concentrations in small streams. Conference Proceedings NWQMC National Monitoring Conference. http://www.nwqmc.org/2000proceeding/papers/pap_porterfield.pdf
- Roth, N.E., Allan, J.D. and Erickson, D.L. 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11(3):141-156.
- Sartz, R.S. 1969. Effects of watershed cover on overland flow from a major storm in southwestern Wisconsin. Research Note NC-82, US Department of Agriculture Forest Service, St. Paul, MN.
- Sartz, R.S. 1971. Storm flow form dual-use watersheds in south-western Wisconsin. Research Paper NC-69, US Department of Agriculture Forest Service, St. Paul, MN. http://www.ncrs.fs.fed.us/pubs/rp/rp_nc069.pdf
- Sartz, R.S., Curtis, W.R. and Tolsted, D.N. 1977. Hydrology of small watersheds in Wisconsin's Driftless Area. Water Resourc. Res. 13(3):524-530.
- Sartz, R.S. and Tolsted, D.N. 1976. Snowmelt runoff from planted conifers in southwestern Wisconsin. Research Note NC-205, US Department of Agriculture Forest Service, St. Paul, MN.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

- Schmitt, T.J., Dosskey, M.G. and Hoaglund, K.D. 1999. Filter Strip performance and processes for different vegetation, widths, and contaminants. J. Environ. Quality 28:1479-1489.
- Scott, C.A., Walter, M.F., Nagle, G.N., Walter, M.T., Sierra, N.V. and Brooks, E.S. 2001. Residual phosphorus in runoff from successional forest on abandoned agricultural land: 1. Biogeochemical and hydrologic process. Biogeochemistry 55:293-309.
- Sharpley, A.N., T.C. Daniel, and D.R. Edwards. 1993. Phosphorus movement in the landscape. J. Prod. Agric.6:492-500.
- Seltzer, N. and D. Wang. 2000. The importance of hydric soils and near-lake areas as phosphorus source areas in the Lake Champlain Basin: Evidence from a landscape-scale model. University of Vermont, School of Natural Reosurces.
- Shjeflo, J.B. 1968. Evapotranspiration and the water budget of prairie potholes in North Dakota. Geological Survey Professional Paper 585-B.
- Singer, M.J., and R.H. Rust. 1975. Phosphorus in surface runoff from a deciduous forest. J. Environ. Qual. 4:307-311.
- Soil Conservation Service, 1986. Urban Hydrology for Small Watersheds. Technical Release 55. US Department of Agriculture, Soil Conservation Service Engineering Division.
- Soranno, P.A., S.L. Hubler, S.R. Carpenter, and R.C. Lathrop. 1996. Phosphorus loads to surface waters: a simple model to account for spatial pattern. Ecological Applications 6(3):865-878.
- St. Onge, P.D., J. Klaff, R. Carignan and R.H. Peters. (in press). The forest is more than trees: The effect of clear cutting on whole-lake hypolimnetic oxygen deficits in remote Canadian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences. Manuscript submission.
- Stark, J.R., P.E. Hanson, R.M. Goldstein, J.D. Fallon, A.L. Fong, K.E. Lee, S.E. Kroening, and W.J. Andrews. 1999. Water quality in the Upper Mississippi River Basin, Minnesota, Wisconsin, South Dakota, Iowa, and North Dakota, 1995–98. USGS Water Resources Circular 1211. http://water.usgs.gov/pubs/circ/circ1211/pdf/circular1211.pdf
- Steegen, A., Govers, G., Takken, I. Nachtergaele, J., Poesen, J. and Merckx, R. 2001. Factors controlling sediment and phosphorus export from two Belgian agricultural catchments. J. Environ. Qual. 30:1249-1258.
- Tester, J.R. 1995. Minnesota's Natural Heritage. University of Minnesota Press, Minneapolis, MN.
- Timmons, D.R., and Holt, R.F. 1977. Nutrient losses in surface runoff from a native prairie. Journal of Environmental Quality 4(6): 369-73.
- Tornes, L.H., Brigham, M.E. and Lorenz, D.L. 1997. Nutrients, suspended sediment, and pesticides in streams of the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1993-1995. U.S. Geological Survey Water-Resources Investigations Report 97-4053. Mounds View, MN.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

- Tufford, D.L., H.N. McKellar, Jr., and J.R. Hussey. 1998. In-stream nonpoint source nutrient prediction with land-use proximity and seasonality. Journal of Environmental Quality 27:100-111.
- US Army Corps of Engineers. 2001. The WES handbook on water quality enhancement techniques for reservoirs and tailwaters. US Army Engineer Research and Development Center, Waterways Experiment Station Vicksburg, MS.
- US EPA. 2000a. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria: Lakes and Reservoirs in Nutrient Ecoregion VI Corn Belt and Northern Great Plains. United States Environmental Protection Agency, Office of Water. EPA 822-B-00-008.
- US EPA. 2000b. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria: Lakes and Reservoirs in Nutrient Ecoregion VII Mostly Glaciated Dairy Region. United States Environmental Protection Agency, Office of Water. EPA 822-B-00-009.
- US EPA. 2000c. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria: Lakes and Reservoirs in Nutrient Ecoregion VIII Nutrient Poor Largely Glaciated Upper Midwest and Northeast. United States Environmental Protection Agency, Office of Water. EPA 822-B-00-010.
- U.S. EPA. 2000d. Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs, U.S. Environmental Protection Agency, Washington, DC. EPA-822-B00-001.
- U.S. EPA. 2000e. Nutrient Criteria Technical Guidance Manual: Rivers and Streams, U.S. Environmental Protection Agency, Washington, DC. EPA-822-B00-002.
- Vaithiyanathan, P., and D.L. Correll. 1992. The Rhode River Watershed: Phosphorus distribution and export in forest and agricultural soils. J. Environ. Qual. 21:280-288.
- Valley Branch Watershed District. 2002. Valley Creek Subwatershed Plan. Developed by the Valley Branch Subwatershed Advisory Committee.
- Verry, E.S. 1976. Estimating water yield difference between hardwood and pine forests: an application of net precipitation data. Research Paper NC-128, US Department of Agriculture Forest Service, St. Paul, MN.
- Verry, E.S. 1969. Water storage and related physical characteristics of four mineral soils in north central Minnesota. Research Note NC-78, US Department of Agriculture Forest Service, St. Paul, MN.
- Vogelmann, J.E., S.M. Howard, L. Yang, C.R. Larson, B.K. Wylie, N. Van Driel, 2001. Completion of the 1990s National Land Cover Data Set for the Conterminous United States from Landsat Thematic Mapper Data and Ancillary Data Sources. Photogrammetric Engineering and Remote Sensing, 67:650-652. http://landcover.usgs.gov/nationallandcover.asp

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Non-Agricultural Rural Runoff

Date: December 17, 2003

Page: 49

Wickham, James D.; Wade, Timothy G.; Riitters, Kurt H.; O'Neill, R.V.; Smith, Jonathan H.; Smith, Elizabeth R.; Jones, K.B.; Neale, A.C, 2003. Upstream-to-downstream changes in nutrient export risk. Landscape Ecology 18:195-208. http://www.srs.fs.usda.gov/pubs/ja/ja_wickham003.pdf

- Wilson, C.B. 2003. Personal communications, various dates October 2003. Minnesota Pollution Control Agency.
- Wilson, C.B. and Walker, Jr., W.W. 1989. Development of lake assessment methods based upon the aquatic ecoregion concept. Lake and Reservoir Management 5(2):11-22.
- Winter, T.C., and Carr, M.R., 1980, Hydrologic setting of wetlands in the Cottonwood Lake area, Stutsman County, North Dakota: U.S. Geological Survey Water-Resources Investigations 80-99
- Winter, T.C., Rosenberry, D.O., Buso, D.C. and Merk, D.A. 2001. Water source to four U.S. wetlands: Implications for wetland management. Wetlands 21(4):462-473.
- Winter, T.C. and Rosenberry, D.O. 1995. The interaction of ground water with prairie pothole wetlands in the Cottonwood Lake area, east-central North Dakota. Wetlands 15(3):193-211.
- Winter, T.C. and Rosenberry, D.O. 1998. Hydrology of prairie pothole wetlands during drought and deluge: a 17-year study of the Cottonwood Lake wetland complex in North Dakota in the perspective of longer term measured and proxy hydrologic records. Climatic Change 40:189-209.
- Wotzka, P.J. 2003. Personal communications, various dates October 2003. Minnesota Department of Agriculture.
- Worrall, F. and T.P. Burt. 1999. The impact of land-use change on water quality at the catchment scale: the use of export coefficient and structural models. *Journal of Hydrology*. 221(1): 5-90.
- York M. T. Auer, S. M. Doeer, S. W. Effler and E. M. Owens, 1997. A zero degree of freedom total phosphorus model; 1. Development for Onondaga Lake, New York. Lake and Reservoir Management Volume 13(2):118-130.
- Zapp, M.J. and Almendinger, J.E. 2001. Nutrient dynamics and water quality of Valley Creek, a high-quality trout stream in southeastern Washington County. Final Project Report to the Valley Branch Watershed District.
- Zielinski, J. 2002. Watershed Vulnerability Analysis. Center for Watershed Protection, Ellicott City, MD.

Technical Memorandum

To: Marvin Hora, Minnesota Pollution Control Agency

Mark Tomasek, Minnesota Pollution Control Agency

Doug Hall, Minnesota Pollution Control Agency

From: Jeffrey Lee and Keith Pilgrim

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Urban

Runoff

Date: December 22, 2003

Project: 23/62-853 URBN 008

c: Greg Wilson

Henry Runke

The purpose of this memorandum is to provide a discussion of urban land use runoff as a source of phosphorus to Minnesota watersheds. This discussion is based on a review of the available literature, monitoring data and the results of phosphorus loading computations done for each of Minnesota's major watershed basins as part of this study. This memorandum is intended to:

- Provide an overview and introduction to this source of phosphorus
- Describe the results of the literature search and review of available monitoring data
- Discuss the characteristics of each watershed basin as it pertains to this source of phosphorus
- Describe the methodology used to complete the phosphorus loading computations and assessments for this study
- Discuss the results of the phosphorus loading computations and assessments
- Discuss the uncertainty of the phosphorus loading computations and assessment
- Provide recommendations for future refinements to phosphorus loading estimates and methods for reducing error terms
- Provide recommendations for lowering phosphorus export from this source

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 2

Overview and Introduction to Urban Runoff Sources of Phosphorus

The conversion of land areas to urban land uses leads to changes in watershed hydrology and pollutant load rates. The areal increase in impervious surfaces in urban areas over undeveloped rural and natural land uses leads to greater surface water runoff volumes. The increased runoff coupled with human activities increases the types of pollutants and delivery rate of these pollutants to surface waters. The impacts of the increased runoff volumes and pollutant mass to downstream waters often leads to declines in water quality and ecological function.

Urban land uses have higher percentages of impervious surfaces than natural land cover. The road and street infrastructure, parking lots and buildings all increase the area of hard surfaces. These impermeable surfaces shed water as surface runoff, lowering the infiltration and evapotranspiration components of the hydrologic cycle. Up to 90% of the annual precipitation may become surface runoff in high density urban environments (Center for Watershed Protection, 2003). This water is generally directed to storm sewers and other conveyance systems to rapidly move the large volumes to receiving waters and prevent flooding.

The intense human use in urban watersheds leads to a larger range of pollutants and large quantities of these pollutants when compared to natural vegetative land cover. Human activities related to automobiles, industrial uses, and the prevalence of turf grass as a groundcover provides a ready supply of pollutants. The storm water conveyance systems promote the rapid movement of water to receiving waters, increasing the efficiency of runoff water at entraining and removing pollutants from the landscape. The result is that urban landscapes generate a larger volume of surface runoff that transports a larger load of pollutants compared to pre-development conditions. This increase in runoff volumes reduces the infiltration volume and thus reduces stream base flows and shallow groundwater levels.

This resulting urban stormwater runoff channels large quantities of pollutants and water to lakes, streams and wetlands where the impact on ecological function is nearly always negative. The increased loading of nutrients, especially phosphorus, leads to eutrophication of lakes and wetlands, as well as stream systems. The resulting eutrophication leads to increased algal growth, decreased water clarity and loss of recreational uses, as well as human health concerns, increased periphyton

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 3

growth and increased treatment costs for industrial uses of water. Remediation of the resulting water quality problems is costly and many times may not fully restore water to the pre-impacted conditions.

Results of Literature Search and Review of Available Monitoring Data

Initially, the literature review efforts attempted to document urban runoff studies within each of the basins in Minnesota, but it became readily apparent that the quality and quantity of the data available was insufficient for the use of quantifying basin-specific data for this assessment. See Table 1 for a listing and summary of the initial 31 data sets reviewed for this assessment. The need to quantify phosphorus loadings across basins with regard to three different hydrologic conditions (low, average and high flow conditions) required that a method be developed to model phosphorus loadings with regard to land use and hydrologic conditions. The scientific literature was thus reviewed to determine the hydrologic regimes, nutrient cycling mechanisms and phosphorus loading factors for each of the land use categories included in the Urban Runoff category. Phosphorus monitoring results for urban watersheds, the hydrologic and nutrient export relationships related to the urban land uses, runoff modeling techniques, and methods for assessing variability in stormwater modeling results were the main areas of investigation of the review.

Stormwater Runoff Monitoring

The variability in storm water runoff data is inherent in studies of this type, and storm water runoff data should always be subject to scrutiny to insure that the variability is not beyond the expected range. One recurring point noted during this review of the literature was agreement by all authors that runoff data is log-normally distributed and highly variable (Bannerman, 1983). In an attempt to determine the range of phosphorus concentrations in urban runoff, we reviewed summary data provided by investigators and wherever possible examined the site specific data from previous or ongoing monitoring studies. The monitoring data presented in Table 1 is a combination of flow-weighted mean concentrations, event mean concentrations, expressed as median geometric mean or arithmetic mean. The inconsistency in data reporting limited the use of many of the data sets found during the literature review process.

From all of the available published and unpublished urban runoff total phosphorus data that were assessed in the development of estimates of phosphorus concentrations in urban storm water runoff, only a limited number of data sets were used. The elimination of data from consideration was based upon information from various investigators related to bias and accuracy of load estimates (Schwartz and Naiman, 1999; Marsalek, 1991; Marsalek, 1990). Schwartz and Naiman (1999) reviewed the

Table 1. Storm event runoff total phosphorus conce	entrations (concentration	ations - mg P/L).* Source of data	Notes:	
Nokomis/Hiawatha watersheds Hiawatha watersheds - 1996	0.510	Wenck/MCWD, 1998	Autes.	
Minnehaha Creek 1997 Storm event flows Storm event flows	0.380 0.690	Wenck/MCWD, 1998	[average] of overflows July 1, 1997 storm	s from MC to L.Nokomis following rain events
Minneapolis NPDES report (92 only) Ave. EMC w/o Jimmy's	0.417	City of Minneapolis, 1992	, ., .,	
White Bear Lake storm sewer FWMC	0.242	Schuler, 1998	arithmetic mean of an	nual FWMC for 12 years (1985-96)
Metropolitan Area 208 Study	0.560	Oberts, 1983	median flow-weighted	
Plymouth, MN	0.258	Barten, 1994	5 samples - July - Oct	
	0.238			1 1993
TCMA - NURP site data Yates watershed Iverson watershed	0.630 0.620	USGS, 1982 (from Brach, 1989)	mean FWMC values	
Wisconsin storm-sewer samples	0.290 0.450	Bannerman et al, 1996	EMC median; n=204 EMC mean; n=204	
Madison, WI geometric mean arithmetic mean	0.660 0.860	Bannerman, et al, 1992	storm sewer outfalls - cv = 0.70 cv = 0.70	urban areas
Michigan NPDES residential sites	0.380	Cave and Roesner, 1994	mean EMC 1992-93;	n=24
Marquette, MI	0.290	Steuer et al., 1997		11-34
	0.290	Steuer et at , 1997	geometric mean	
Minneapolis/St. Paul NPDES Monitoring Lake Harriet Parkway at W. 44th St., Minnear	0.541	MPRB 2002.	May-October	2001
Luella St. at Orange Ave, St. Paul, MN Vandalia St350 feet south of Capp Rd.,St. Pa	0.652 0.255		May-October May-October	2001 2001
Charles Ave-Mackubin to Arundel St., St. Pau E. 29th St. at 31st Ave. S., Minneapolis, MN	0.377 0.525		May-October May-October	2001 2001
Souix Falls SD		Niehus, 1997		
Site 1, Sioux Falls, SD Site 2, Sioux Falls, SD Site 3, Sioux Falls, SD	0.217 0.613 0.114		June 1995-July 1996 June 1995-July 1996 June 1995-July 1996	
Fish Lake Watershed - Eagan MN I-2 inlet to Fish Lake Watershed, Eagan, MN	0.235	City of Eagan, 1995	All Year	1993
I-3, Eagan, Fish Lake Watershed, MN	0.371		All Year	1993
Lake Harriet watershed, Minneapolis Lake Harriet Parkway at W. 44th St., Minnear	0.934	MPRB unpublished	April-October	1995
Lake Harriet Parkway at W. 44th St., Minnear Lake Harriet Parkway at W. 44th St., Minnear	0.635 0.466		June-November June-August	1996 1997
Lake Harriet Parkway at W. 44th St., Minnear	0.366		May-October	2002
Minneapolis/St. Paul NPDES Monitoring Luella St. at Orange Ave, St. Paul, MN	0.344	MPRB 2003a	May-October	2002
Vandalia St350 feet south of Capp Rd.,St. Pa Charles Ave-Mackubin to Arundel St., St. Pau E. 29th St. at 31st Ave. S., St. Paul, MN	0.278 0.391 0.305		May-October May-October May-October	2002 2002 2002
Tanners Lake Watershed, Maplewood, MN	0.303	Barr 1993	May Sciober	2002
G1AB, Tanners Lake Watershed, Maplewood,	0.240 0.410	Dail 1773	All Year All Year	1989 1989
G4A, Tanners Lake Watershed, Maplewood, N G3, Tanners Lake Watershed, Maplewood, M1	0.340		All Year	1989
Minneapolis Chain of Lakes CWP project LH1, Lake Harriet, Minneapolis, MN	0.224	Barr 1992	April-October	1990-1991
LH8, Lake Harriet, Minneapolis, MN LC15, Lake Calhoun, Minneapolis, MN	0.213 0.211		April-October April-October	1990-1991 1990-1991
LC17, Lake Calhoun, Minneapolis, MN LC20, Lake Calhoun, Minneapolis, MN	0.179 0.255		April-October April-October	1990-1991 1990-1991
LC22, Lake Calhoun, Minneapolis, MN LC26, Lake Calhoun, Minneapolis, MN	0.224 0.230		April-October April-October	1990-1991 1990-1991
LI31, Lake of the Isles, Minneapolis, MN	0.232 0.211		April-October	1990-1991 1990-1991
CD36, Cedar Lake, Minneapolis, MN CD37, Cedar Lake, Minneapolis, MN	0.173		April-October April-October	1990-1991
TCMA golf course study	0.479	Barten 1995	Annil Ortobon	1994
Baker Golf Course, Minneapolis, MN Meadowbrook Golf Course, Minneapolis, MN Woodhill Golf Course, Minneapolis, MN	0.892 0.476		April-October April-October April-October	1994 1994 1994
Plymouth MN	0.470	TRPD unpublished	Aprii-Octoba	1574
Three Rivers Park District	0.341	TRED unpublished	July-November	2001
Three Rivers Park District Three Rivers Park District	0.195 0.377		April-October July-November	2002 2001
Three Rivers Park District Three Rivers Park District	0.254 0.244		April-October July-November	2002 2001
Three Rivers Park District Three Rivers Park District	0.219 0.213		April-October July-November	2002 2001
Three Rivers Park District Three Rivers Park District	0.249 0.329		April-October July-November	2002 2001
Three Rivers Park District	0.290		April-October	2002
Tanners Lake Watershed, Maplewood, MN	0.222	Barr 2003	May Cart	2002
G1AB Inlet (Dennys) to Tanners Lake, Oakdal G4A Inlet (Glenbrook) to Tanners Lake, Maple G3 Inlet to Tanners Lake, Mapleyayed, MN	0.232 0.308		May-September May-September	2002
G3 Inlet to Tanners Lake, Maplewood, MN	0.202		May-September	2002
Superior, WI Urban Undeveloped Lot, Superior, WI	0.065	USGS 1996	May-September	1996
Urban Undeveloped Lot, Superior, WI Golf Course, Superior, WI	0.115 0.247		July-September June-October	1995 1996
Madison WI Monroe Neighborhood, Madison, WI	0.640	Waschbusch, etal 1999	May-October	1994
Harper Neighborhood, Madison, WI	0.930		June-October	1995
Woodbury MN PFS Study Site, East Pond, Woodbury, MN	0.398	RWMWD unpublished	May-September	2001
PFS Study Site, East Pond, Woodbury, MN PFS Study Site, West Pond, Woodbury, MN	0.332 0.446		May-September May-September	2002 2001
PFS Study Site, West Pond, Woodbury, MN	0.322		May-September	2002
Minneapolis/St. Paul NPDES Monitoring Lake Harriet Parkway at W. 44th St., Minnear	0.588	MPRB unpublished	March-September	2003
Luella St. at Orange Ave, St. Paul, MN	0.539		May-September	2003
Vandalia St350 feet south of Capp Rd.,St. Pa Charles Ave-Mackubin to Arundel St., St. Pau	0.296 0.426		May-September May-September	2003 2003
St. Paul MN Como Lake Rain Water Garden, St. Paul, MN	0.253	Ramsey County Public Works, unpublished	April-September	2002
Hennepin County Storm Sewer at Torah School, St. Louis Park,	0.930		July-November	1989
Storm Sewer at Torah School, St. Louis Park,	0.470	DUDANG	April-October	1989
Keller Lake watershed Keller Lake Parkway and HWY 36, St. Paul, N	0.316	RWMWD unpublished	June-October	2002
Canadian Cities Sarnia, ON	0.299			
ult Ste. Marie, ON Windsor, ON	0.309 0.231	Marsalek, 1991		
Toronto, ON	0.200	191a(Saich, 177)		
warm weather cold weather	0.280 0.230	Din and M. I. 1995		
Sault Ste. Marie, ON	0.246	Pitt and McLean, 1986		
		Marsalek, 1990		
Summary statistics	Mean	Standard deviation		
	0.379	0.195		

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 5

level and cause of uncertainty in planning level estimates of pollutant loads. They defined planning level estimates as methods that make use of an annual runoff volume and a representative pollutant concentration to estimate annual loads. The use of planning level estimates is widespread, but the authors note that very little work has been completed to measure the accuracy or confidence of these estimates. Schwartz and Naiman (1999) noted that errors in planning level pollutant loads have been reported to be in the range of 50 – 300%. Schwartz and Naiman (1999) suggest using the mean concentration as the representative concentration introduces significant bias into the annual load estimates and report that the use of flow-weighted mean concentration (FWMC) provides an unbiased estimate of annual load. They further note that the use of arithmetic means for event concentrations can yield a range of bias from -40% to 40%.

Data collected in the literature review, chosen for inclusion in the database, had to meet the following criteria:

- 1) phosphorus data was collected for the duration of individual storm events and was reported as Event Mean Concentration, (EMC)
- 2) numerous samples had to be collected at the same monitoring location throughout a given year,
- 3) land use was either reported in adequate detail or land use could be determined using ArcView with delineated watersheds and USGS National Land Cover Data (NLCD), and
- 4) a large fraction of the runoff generated from a monitored watershed was not routed through storm water treatment BMPs such as detention ponds.

With regard to criteria #4, the urban runoff dataset is intended to represent the concentration of phosphorus in untreated urban runoff. For a majority of the datasets (71 percent), the annual average total phosphorus concentration reported was weighted by the volume of runoff produced for each storm event (i.e. flow weighted mean concentration), the remainder of the annual total phosphorus concentrations reported were arithmetic averages. One study (Niehus, 1997) did not meet criterion #2 but was included in the dataset because of limited runoff data for small urban areas and the need to represent less populated urban areas in the dataset. All of the data included in this dataset are presented in Table 2. Precipitation data that is shown in Table 2 was gathered from the rain gage nearest to the monitoring site. Rain gage data was provided by the State Climatology Office Climatology Working Group web page.

To: Marvin Hora, Mark Tomasek and Doug Hall, Minnesota Pollution Control Agency
From: Jeffrey Lee and Keith Pilgrim
Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Urban Runoff
Date: December 22, 2003
Page: 6 (11" x 17" page)

Table 2. Dataset of flow-weighted annual total phosphorus concentration in urban runoff.

			Landı	use ¹							
Location	% LIR	%CIT	%RG	%HIR	% Impervious	Watershed Size (ac)	Total Precipitation for Monitoring Year (in)	Monitoring Year	Sampling Period	Flow Weighted TP Concentration (ug/L)	Reference ²
Lake Harriet Parkway at W. 44th St., Minneapolis, MN	100	0	0	0	32	143	36	2001	May-October	541	1
Luella St. at Orange Ave, St. Paul, MN	100	0	0	0	32	95	34	2001	May-October	652	1
Vandalia St350 feet south of Capp Rd.,St. Paul, MN	0	100	0	0	57	80	34	2001	May-October	255	1
Charles Ave-Mackubin to Arundel St., St. Paul, MN E. 29th St. at 31st Ave. S., Minneapolis, MN	60 50	40 45	0 5	0	42 43	63 100	34 36	2001 2001	May-October May-October	377 525	1
Site 1, Sioux Falls, SD	30	70	0	0	50	145	23	1995 to 1996	June 1995-July 1996	217	2
Site 2, Sioux Falls, SD	0	96	0	0	55	695	23	1995 to 1996	June 1995-July 1996	613	2
Site 3, Sioux Falls, SD	76	0	18	0	30	328	23	1995 to 1996	June 1995-July 1996	114	2
I-2 inlet to Fish Lake Watershed, Eagan, MN	80	20	0	0	37	124	34	1993	All Year	235	3
I-3, Eagan, Fish Lake Watershed, MN	100	0	0	0	32	40	34	1993	All Year	371	3
Lake Harriet Parkway at W. 44th St., Minneapolis, MN	100	0	0	0	32	143	26	1995	April-October	934	4
Lake Harriet Parkway at W. 44th St., Minneapolis, MN	100	0	0	0	32	143	26	1996	June-November	635	4
Lake Harriet Parkway at W. 44th St., Minneapolis, MN Lake Harriet Parkway at W. 44th St., Minneapolis, MN	100 100	0	0	0	32 32	143 143	34 39	1997 2002	June-August May-October	466 366	4 5
Luella St. at Orange Ave, St. Paul, MN	100	0	0	0	32	95	42	2002	May-October	344	5
Vandalia St. 350 feet south of Capp Rd.,St. Paul, MN	0	100	0	0	57	80	42	2002	May-October	278	5
Charles Ave-Mackubin to Arundel St., St. Paul, MN	60	40	0	0	42	63	42	2002	May-October	391	5
E. 29th St. at 31st Ave. S., St. Paul, MN	50	45	5	0	43	100	42	2002	May-October	305	5
G1AB, Tanners Lake Watershed, Maplewood, MN	0	82	18	0	53	65	27	1989	All Year	240	6
G4A, Tanners Lake Watershed, Maplewood, MN	0	83	17	0	53	43	27	1989	All Year	410	6
G3, Tanners Lake Watershed, Maplewood, MN	41	11	48	0	35	1354	27	1989	All Year	340	6
LH1, Lake Harriet, Minneapolis, MN LH8, Lake Harriet, Minneapolis, MN	100 82	0 18	0	0	32 37	142 50	36 36	1991 1991	April-October April-October	224 213	7 7
LC15, Lake Calhoun, Minneapolis, MN	81	12	7	0	35	232	36	1991	April-October	213	7
LC17, Lake Calhoun, Minneapolis, MN	26	42	25	0	40	1385	36	1991	April-October	179	7
LC20, Lake Calhoun, Minneapolis, MN	34	31	0	27	40	146	36	1991	April-October	255	7
LC22, Lake Calhoun, Minneapolis, MN	69	31	0	0	40	177	36	1991	April-October	224	7
LC26, Lake Calhoun, Minneapolis, MN	27	41	0	27	43	46	36	1991	April-October	230	7
LI31, Lake of the Isles, Minneapolis, MN	79	21	0	0	37	229	36	1991	April-October	232	7
CD36, Cedar Lake, Minneapolis, MN	100	0	0	0	32	115	36	1991	April-October	211	7
CD37, Cedar Lake, Minneapolis, MN Baker Golf Course, Minneapolis, MN	64	17 0	15 100	0	35 32	1714 47	36 30	1991 1994	April October	173 479	7 8
Meadowbrook Golf Course, Minneapolis, MN	0	0	100	0	32	47 94	30	1994	April-October April-October	892	8
Woodhill Golf Course, Minneapolis, MN	0	0	100	0	32	31	30	1994	April-October	476	8
Three Rivers Park District	100	0	0	0	32	14	36	2001	July-November	341	9
Three Rivers Park District	100	0	0	0	32	14	41	2002	April-October	195	9
Three Rivers Park District	100	0	0	0	32	9	36	2001	July-November	377	9
Three Rivers Park District	100	0	0	0	32	9	41	2002	April-October	254	9
Three Rivers Park District	100	0	0	0	32	12	36	2001	July-November	244	9
Three Rivers Park District Three Rivers Park District	100 100	0	0	0	32 32	12 17	41 36	2002 2001	April-October July-November	219 213	9
Three Rivers Park District	100	0	0	0	32	17	41	2001	April-October	249	9
Three Rivers Park District	100	0	0	0	32	14	36	2002	July-November	329	9
Three Rivers Park District	100	0	0	0	32	14	41	2002	April-October	290	9
G1AB Inlet (Dennys) to Tanners Lake, Oakdale, MN	0	80	20	0	52	65	42	2002	May-September	232	10
G4A Inlet (Glenbrook) to Tanners Lake, Maplewood, MN	85	0	15	0	32	74	42	2002	May-September	308	10
G3 Inlet to Tanners Lake, Maplewood, MN	49	19	25	0	35	1368	42	2002	May-September	202	10
Urban Undeveloped Lot, Superior, WI	0	0	100	0	32	76 76	40	1996	May-September	65	11 11
Urban Undeveloped Lot, Superior, WI Golf Course, Superior, WI	0	0	100 100	0	32 32	76 12	32 40	1995 1996	July-September June-October	115 247	11
Monroe Neighborhood, Madison, WI	97	0	0	0	31	232	36	1996	May-October	640	12
Harper Neighborhood, Madison, WI	100	0	0	0	32	41	33.6	1995	June-October	930	12
PFS Study Site, East Pond, Woodbury, MN	100	0	0	0	32	21	36.0	2001	May-September	398	13
PFS Study Site, East Pond, Woodbury, MN	100	0	0	0	32	21	41.0	2002	May-September	332	13
PFS Study Site, West Pond, Woodbury, MN	100	0	0	0	32	15	36.0	2001	May-September	446	13
PFS Study Site, West Pond, Woodbury, MN	100	0	0	0	32	15	41.0	2002	May-September	322	13
Lake Harriet Parkway at W. 44th St., Minneapolis, MN	100	0	0	0	32	143	30.8	2003	March-September	588	14
Luella St. at Orange Ave, St. Paul, MN	100	0	0	0	32 57	95 80	26.8	2003	May-September	539	14 14
Vandalia St350 feet south of Capp Rd.,St. Paul, MN Charles Ave-Mackubin to Arundel St., St. Paul, MN	0 60	100 40	0	0	57 42	80 63	26.8 26.8	2003 2003	May-September May-September	296 426	14 14
Como Lake Rain Water Garden, St. Paul, MN	100	0	0	0	32	5	26.8	2003	April-September	253	15
Storm Sewer at Torah School, St. Louis Park, MN	100	0	0	0	32	31	26.8	1989	July-November	930	16
Storm Sewer at Torah School, St. Louis Park, MN	100	0	0	0	32	31	38.25	1990	April-October	470	16
Keller Lake Parkway and HWY 36, St. Paul, MN	27	53	20	0	45	53	42	2002	June-October	316	17

¹ LIR= Low Intensity Residential, CIT= Commercial, Industrial, Transportation, RG= Urban Recreation Grasses, HIR=High Intensity Residential

² References

 $¹⁾ Minneapolis\ Park\ and\ Recreation\ Board,\ 2002.\ \ National\ Pollutants\ Discharge\ Elimination\ System\ (NPDES)\ Monitoring$

²⁾Niehus, C.A. 1997. Characterization of stormwater runoff in Sioux Falls, South Dakota, 1995-1996. USGS Water-Resources Investigations Report 97-4070.

³⁾City of Eagan. 1995. Diagnostic/feasibility study of Fish Lake, Eagan, MN.

⁴⁾ Minneapolis Park and Recreation Board, 1997. Unpublished Data.

⁵⁾Minneapolis Park and Recreation Board, 2003a. National Pollutants Discharge Elimination System (NPDES) Monitoring

⁶⁾Barr Engineering. 1993. Diagnostic/feasibility study of water quality problems and restorative measures for Tanner's Lake. Prepared for the Ramsey Washington Metro Watershed District.

⁷⁾Barr Engineering. 1992. Minneapolis chain of lakes clean water partnership project. Prepared for Minneapolis Park and Recreation Board.

 $⁸⁾ Barten, J.\ 1995.\ Quantity\ and\ quality\ of\ runoff\ from\ four\ golf\ courses\ in\ the\ twin\ cities\ metropolitan\ area.\ Suburban\ Hennepin\ Regional\ Park\ District.$

⁹⁾Three River Park District, unpublished data

¹⁰⁾ Barr Engineering. 2003. Tanners Lake CIP Performance Evaluation. Prepared for Ramsey-Washington Metro Watershed District.

 $^{11) \} USGS.\ 1996.\ Water\ resources\ data\ Wisconsin\ Water\ Year\ 1996.\ U.S.\ Geological\ Survey\ Water-Data\ Report\ WI-96-1.$

¹²⁾ Waschbusch, R.J., et al. 1999. Sources of phosphorus in stormwater and street dirt from two urban residential basins in Madison, Wisconsin. 1994-95. USGS Water-Resources Investigation Report 99-4021.

¹³⁾ Ramsey Washington Metro Watershed District. Unpublished Data.

 $^{14)\} Minneapolis\ Park\ and\ Recreation\ Board,\ 2003b.\ \ Unpublished\ monitoring\ data\ for\ the\ 2003\ NPDES\ permit.$

 $^{15)\} Ramsey\ County\ Public\ Works.\ 2003.\ Unpublished\ data.$

¹⁶⁾ Hennepin Conservation District. 1991. Toxic and hazardous substances in urban runoff. February 1991.

¹⁷⁾ Ramsey Washington Metro Watershed District. 2003. Unpublished data.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 7

Hydrologic and nutrient export relationships

Driver and Tasker (1990) found that, in developing linear regression equations for the estimation of storm water loads, the total storm rainfall, and total contributory drainage area were the most significant factors, while impervious area, land-use and mean annual climatic characteristics were also significant.

The high level of correlation between land use type and effective impervious area has also been noted by many investigators (Schueler, 1987; Driver and Tasker, 1990; Beaulac and Rechkow, 1982). Likewise nutrient loadings increase with increasing impervious surface area, most likely due to the ease of washoff and transport in curb and gutter systems and on other hard surfaces (Brezonik, et al, 2002; Schueler, 1994). Higher impervious percentage watersheds yield lower phosphorus concentrations, but the larger volume of water leads to the higher phosphorus loading rates (Bannerman, et al, 1992; Swenson, 1998; Beaulac and Rechkow, 1982). Schwartz and Naiman (1999) propose that in small watersheds the pollutant and buildup functions may dominate the pollutant delivery patterns. Thus precipitation patterns can move the pollutant delivery between supply-limited and transport-limited conditions depending upon rainfall amounts. These conditions make the correlation of flow and concentration difficult. This transition between supply-limited conditions and transport-limited is also helpful in explaining the observed concentration and loading differences with annual rainfall amounts. Walker (1992) found similar relationships for runoff data for the Vadnais Lake watershed and noted that antecedent flow conditions are important, with high loads in years following drought. The regression analysis preformed for this assessment supports this theory, in that during wet years the phosphorus storm FWMC are lower and the annual loadings are higher.

Clesceri, et al, (1986) report that years (and seasons) that are wetter or dryer than average, or generally abnormal, can cause large deviations in the annual export rate. They suggest that more accurate loading estimates can be calculated if export rates used were determined from watersheds having similar watershed characteristics or at least from the same regions. Beaulac and Rechkow (1982) also suggest that there is wide variability in loading estimates due to watershed characteristics that influence runoff rates, pollutant sources and delivery. US EPA (1997) and Brezonik, *et al* (2002) provide information on the use of regression analysis for evaluating non-point source pollutant loads. Brezonik *et al* (2002) presented Walker's (1987) regression relationship between

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 8

phosphorus export and percent urban cover, and the regression relationships between percent urban and percent impervious surface from Twin Cities watershed studies.

Runoff modeling techniques

Marsalek (1991) noted that the simplest methods for estimating annual loads is made by applying monitoring data expressed as annual unit loads to unmonitored watersheds, with the use of summary statistics from larger data bases, regression models and simulation models being progressively more complex. He felt that the best load estimates would be obtained through runoff sampling programs, and that the correlation between runoff volumes and event mean concentrations were critical to the accuracy of the estimates.

Export coefficients are commonly reported according to land use and are developed during a given year under a particular hydrologic condition, such as a wet year (Beaulac and Reckhow, 1982: Reckhow, et al, 1980; Panuska and Lillie, 1995; Clesceri, et al, 1986a; Clesceri, et al, 1986b; McFarland and Hauck, 2001). In some cases the export coefficient is adjusted to reflect a normal climatic year. The most common approach to estimating loads is based upon Schueler's (1987) regression of rainfall runoff volume and percentage imperviousness of a watershed combined with a flow-weighted mean concentration. The equation is widely used for loading estimates and is used in this assessment to determine runoff coefficient based upon impervious fraction:

Runoff coefficient (
$$R_v$$
) = 0.05 + 0.009 (I)

where I = the percentage of site imperviousness.

Using the direct average method, the pollutant load is calculated by multiplying runoff volume with the pollutant concentration to obtain a mass load (Marsalek, 1990). The phosphorus export coefficients used for urban areas assume 100% of phosphorus transported from land will reach surface water due to developed conditions. The mass per unit area derived from the pollutant can be used to calculate the areal loading rate or export coefficient.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 9

The phosphorous export coefficient is part of the total phosphorous loading equation:

$$L = \sum_{i=1}^{m} c_i \bullet A_i$$

L is total phosphorus loading from land (in kilograms per year), m is number of land use types, c_i is the phosphorus export coefficient for land use i (in kilograms per hectare per year), and A_i is area of land use i (in hectares).

Over large watershed areas, the phosphorus export may not be proportional to watershed area and some attenuation of phosphorus occurs, especially in natural plant communities that have low runoff rates (Soranno, et al, 1996). Panuska and Lillie (1995) report that watershed phosphorus export rates are highly variable and are affected by many factors. Among the factors sited are watershed size, land use, soil types, annual rainfall and the drainage system efficiency.

Walker (1986) developed the FLUX program for the US Army Corps of Engineers (ACOE) to estimate watershed loads from monitoring data sets. The FLUX program allows for the estimation of tributary loadings from sample concentration data and continuous flow records. Five estimation methods are available and potential errors in estimates are quantified. This software is widely used where both flow and concentration data are available. FLUX was used by the Minneapolis Chain of Lakes Clean Water Partnership (and many other monitoring efforts) to estimate annual loads (MPRB, 1993). This data was examined and used in the development of the regression equations (see Approach and Methodology for Phosphorus Loading Computations section) and was used in the assessment of loading variability and uncertainty analysis undertaken for this assessment (see Phosphorus. Loading Variability and Uncertainty section).

McFarland and Hauck (2001) used a multiple regression approach to determine nutrient export coefficients for the Bosque River. They advise that the use of regression analysis using measured flows and water quality data for heterogeneous land uses allows the estimation of loads that represent average conditions accurately.

Methods for Assessing Variability

Schwartz and Naiman (1999) reviewed bias in planning level estimates of pollutant loads. They defined planning level estimates as methods that make use of an annual runoff volume and a

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 10

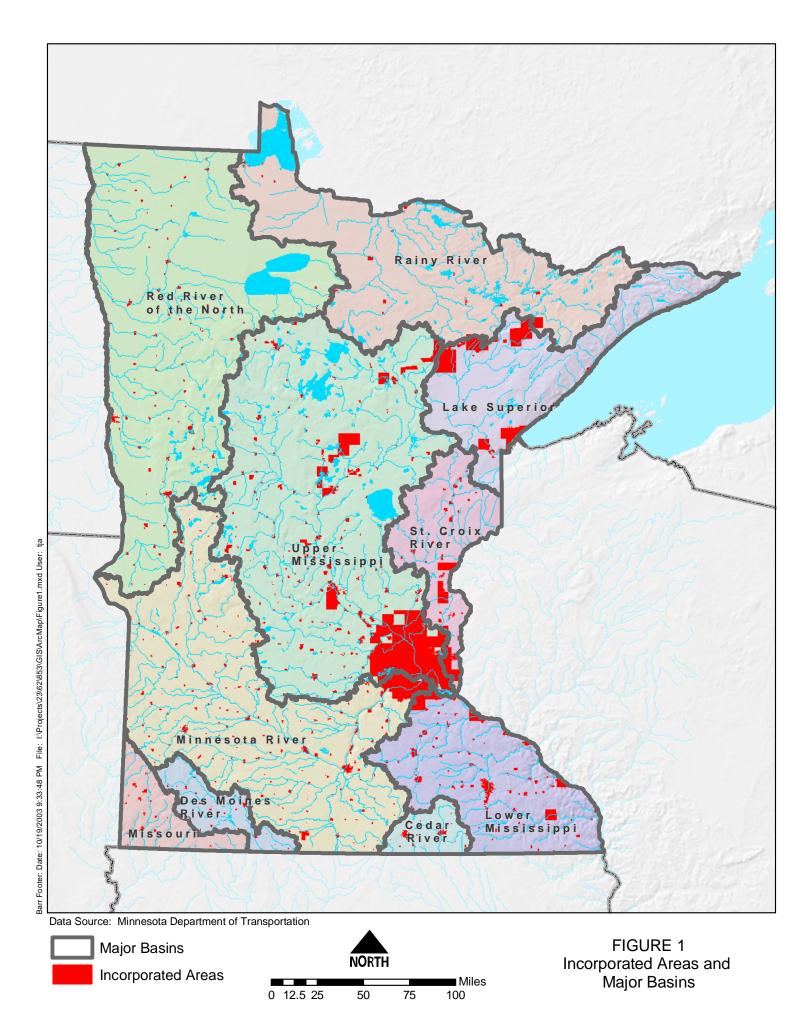
representative pollutant concentration (literature derived or monitoring-based measure of central tendency) to estimate annual loads. The use of planning level estimates is widespread, but the authors note that very little work has been completed to measure the accuracy or confidence of these estimates. They noted that errors in planning level pollutant loads have been reported to be in the range of 50 – 300%. Schwartz and Naiman (1999) suggest using the mean event concentration as the representative concentration introduces significant bias into the annual load estimates and report that the use of flow-weighted mean concentration (FWMC) provides an unbiased estimate of annual load. They further note that the use of arithmetic means for EMCs can yield a range of bias from -40% to 40%.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 11


Watershed Basin Characteristics

For the purposes of defining and quantifying the phosphorus loads to Minnesota basins, the land uses within incorporated areas were classified and enumerated using the USGS National Land Cover Data (NLCD). Figure 1 shows the locations of the incorporated areas included in this assessment in relation to the basin boundaries. The National Land Cover Data Set for the Conterminous United States is derived from the Landsat thematic mapper data system (Vogelmann, 2001). The NLDC cover classes included in the land uses within incorporated areas assessed are:

- Urban Developed Areas
 - o Low intensity residential
 - o High intensity residential
 - o Commercial/Industrial/Transportation
- Deciduous Forest
- Evergreen Forest
- Mixed Forest
- Shrubland
- Grasslands/Herbaceous
- Urban / Recreational Grasses
- Agricultural lands
 - o Pasture/Hay
 - o Row Crops
 - o Small Grains
- Other
- Quarries/Strip Mines/Gravel Pits
- Transitional (new development)

Tables 3 and 4 provide an overview of the basin characteristics and basin hydrology for each of the ten basins.

Tables 5 and 6 present an overview of the land cover distribution within incorporated areas across the Minnesota basins. Table 5 provides a breakout of all the land cover classes found in the incorporated area boundaries, while Table 6 provides a detailed breakdown of only the urban land cover classes assessed for phosphorus loads.

From: Jeffrey Lee and Keith Pilgrim

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Urban Runoff

Date: December 22, 2003

Table 3. Basin watershed areas, precipitation, runoff and land cover percentages.

						Land Cover	Percentages	; *	
Basin Area (Sq Miles)		Average Precipitation (1979-2002)	Average Runoff (1979- 2002)	Urban	Forested	Tilled Agricultural	Pasture/ Grassland	Wetland/Open Water	Other
Cedar River	1,028	32.06	9.80	3.4%	3.3%	83.4%	6.2%	3.7%	0.0%
Des Moines River	1,535	27.98	5.68	1.8%	1.8%	79.9%	11.0%	5.5%	0.0%
Lake Superior	6,149	29.11	12.44	1.4%	57.1%	2.6%	3.5%	33.3%	2.1%
Lower Mississippi	6,317	33.29	10.28	2.4%	15.4%	52.2%	24.8%	5.1%	0.1%
Minnesota River	14,943	28.14	5.61	2.2%	4.6%	72.7%	12.6%	7.8%	0.1%
Missouri	1,782	27.16	5.25	1.5%	1.0%	78.9%	16.0%	2.6%	0.0%
Rainy River	11,236	26.20	8.01	0.4%	41.4%	2.0%	2.3%	52.5%	1.3%
Red River	17,741	23.29	3.42	0.7%	12.0%	54.6%	8.8%	23.8%	0.2%
St. Croix River	3,528	30.61	9.71	1.3%	36.8%	10.8%	20.6%	30.1%	0.2%
Upper Mississippi	14,943	28.07	6.87	3.5%	29.1%	20.2%	16.7%	29.7%	0.7%
State Wide	79,202	27.39	6.83	1.9%	22.7%	38.1%	12.0%	24.7%	0.6%

^{*}Based on USGS National Land Cover Database (1992)

Table 4. Basin hydrologic conditions for assessment scenarios.

			Dry Cond	litions	Average	Conditions	Wet	Conditions
Basin	Total Watershed Area - Square Miles (at discharge point from State)	Minnesota Watershed Area	Rainfall (inches)	Runoff (inches)	Rainfall (inches)	Runoff (inches)	Rainfall (inches)	Runoff (inches)
Cedar River	1,028	1,028	27.5	5.6	32.1	9.8	41.3	17.5
DesMoines River	1,535	1,535	22.0	1.4	28.0	5.7	36.8	13.4
Lake Superior	6149*	6,149	25.5	7.9	29.1	12.4	35.1	16.7
Lower Mississippi	21,073	6,317	27.0	7.1	33.3	10.3	39.8	15.6
Minnesota River	16,879	14,933	22.1	1.9	28.1	5.6	34.8	11.2
Missouri River	1,782	1,782	21.1	1.0	27.2	5.3	35.6	12.8
Rainy River	>22,000*	11,236	22.4	4.8	26.2	8.0	32.1	11.4
Red River	38,183	17,741	18.6	1.1	23.3	3.4	28.9	6.1
St. Croix River	7,728	3,528	23.7	5.6	30.6	9.7	37.6	14.3
Upper Mississippi River	20,100	20,100	22.6	3.6	28.1	6.9	34.3	10.4

From: Jeffrey Lee and Keith Pilgrim

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Urban Runoff

Date: December 22, 2003 Page: 14 (11" x 17" page)

Table 5. All land use cover classes, total coverage (acres) and percent of land area for all urban land uses within incorporated areas.

WATERSHED	Open Water	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/ Clay	Quarries/ Strip Mines/Gravel Pits	Transitional	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Pasture/Hay	Row Crops	Small Grains	Urban/ Recreational Grasses	Woody Wetlands	Emergent Herbaceous Wetlands	Total
Cedar River	1,420	2,721	3,645	4,088	0	57	0	1,118	0	5	0	0	1,644	6,719	0	965	202	575	23,161
Des Moines River	880	3,712	657	2,038	0	0	0	497	9	6	0	0	1,759	6,248	0	1,558	87	309	17,762
Lake Superior	12,500	12,465	6,773	11,558	438	31,536	1,086	105,427	20,564	28,412	1,829	1,243	13,003	12,207	121	4,696	61,323	5,607	330,787
Lower Mississippi	11,364	26,611	11,619	13,993	0	803	324	39,953	583	1,957	4	1,026	52,126	72,531	21	14,634	8,125	6,887	262,562
Minnesota River	19,097	79,112	22,044	29,134	15	726	402	30,006	1,070	1,087	139	17	36,206	75,097	2,450	26,042	6,548	20,458	349,650
Missouri	874	3,102	601	1,458	2	45	0	380	0	4	0	25	3,529	9,065	193	1,323	16	320	20,938
Rainy River	2,578	2,883	1,054	2,073	174	8,154	418	17,004	5,305	7,896	513	45	4,148	1,939	493	818	13,491	2,192	71,179
Red River	7,046	15,745	6,701	10,168	0	196	32	7,348	219	130	10	0	14,212	31,002	4,604	6,178	1,782	3,497	108,869
St. Croix River	9,656	8,839	1,737	3,857	0	389	42	31,342	2,842	2,877	6	310	62,842	44,247	1,873	4,994	11,352	10,919	198,126
Upper Mississippi	112,290	172,383	82,717	61,800	50	17,791	2,293	203,942	15,688	19,224	2,476	859	218,513	152,854	15,440	55,046	64,030	103,844	1,301,239
Total Area in Acres by Category for All Basins (1)	177,705	327,573	137,548	140,168	679	59,698	4,598	437,017	46,280	61,598	4,978	3,526	407,981	411,910	25,196	116,253	166,956	154,609	2,684,274
Area Expressed as a Percent of Total Urban Land Use (1)	6.62%	12.20%	5.12%	5.22%	0.03%	2.22%	0.17%	16.28%	1.72%	2.29%	0.19%	0.13%	15.20%	15.35%	0.94%	4.33%	6.22%	5.76%	100.00%

Notes:

⁽¹⁾ Sum of each land use acreage within incorporated areas by cover class across all basins in Minnesota.(2) Individual land use category expresses as a percent of the total statewide land use within incorporated areas.

From: Jeffrey Lee and Keith Pilgrim

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Urban Runoff

Date: December 22, 2003
Page: 15 (11" x 17" page)

Table 6. Land cover classifications, total land area coverage (acres) and percent of land area for all land areas within incoprorated areas included in Urban Runoff Sources.

WATERSHED	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/ Clay	Quarries/ Strip Mines/ Gravel Pits	Transitional	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Pasture/ Hay	Row Crops	Small Grains	Urban / Recreational Grasses	Total
Cedar River	2,721	3,645	4,088	0	57	0	1,118	0	5	0	0	1,644	6,719	0	965	20,964
Des Moines River	3.712	657	2.038	0	0	0	497	9	5	0	0	*	6,248	0	1,558	16,485
	3,712 12,465	6.773	2,038 11,558	438	· ·	1,086		20,564	28,412	1,829	•	1,759 13,003	12,207	121	1,538 4.696	
Lake Superior	· ·	- /	*	438	31,536		105,427	,	,	1,829	1,243	· ·			,	251,358
Lower Mississippi River	26,611	11,619	13,993	0	803	324	39,953	583	1,957	4	1,026	52,126	72,531	21	14,634	236,186
Minnesota River	79,112	22,044	29,134	15	726	402	30,006	1,070	1,087	139	17	36,206	75,097	2,450	26,042	303,547
Missouri River	3,102	601	1,458	2	45	0	380	0	4	0	25	3,529	9,065	193	1,323	19,728
Rainy River	2,883	1,054	2,073	174	8,154	418	17,004	5,305	7,896	513	45	4,148	1,939	493	818	52,918
Red River	15,745	6,701	10,168	0	196	32	7,348	219	130	10	0	14,212	31,002	4,604	6,178	96,544
St. Croix River	8,839	1,737	3,857	0	389	42	31,342	2,842	2,877	6	310	62,842	44,247	1,873	4,994	166,199
Upper Mississippi River	172,383	82,717	61,800	50	17,791	2,293	203,942	15,688	19,224	2,476	859	218,513	152,854	15,440	55,046	1,021,075
Land Uses within Incorporated Areas - Land Use Category Total in																
Acres for All Basins (1)	327,573	137,548	140,168	679	59,698	4,598	437,017	46,280	61,598	4,978	3,526	407,981	411,910	25,196	116,253	2,185,004
Land Uses within Incorporated Areas expressed as Percent of State Total for Each Land Use Category (2)	91.29%	97.06%	42.79%	33.96%	55.10%	2.37%	5.14%	2.86%	3.33%	1.79%	19.97%	6.38%	2.19%	2.03%	67.68%	4.10%
Land Uses within Incorporated Areas expressed as Percent of All Incorporated Area Land Uses Statewide (3)	14.99%	6.30%	6.42%	0.03%	2.73%	0.21%	20.00%	2.12%	2.82%	0.23%	0.16%	18.67%	18.85%	1.15%	5.32%	100.00%

Notes:

⁽¹⁾ Sum of each land use acres by land cover category across all basins in the state of Minnesota.

⁽²⁾ Individual land use category area expressed as percent total statewide coverage for that land use category, i.e., a percentage of all low intensity residential land use, both urban and rural.

⁽³⁾ Incorporated land use area total in (1) expressed as a precent of the state total area for all urban lands uses, including natural vegetation, agricultural, surface waters and developed areas.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 16

The NLCD system of land cover classification defines each of these land use categories as follows:

Developed areas characterized by a high percentage (30 percent or greater) of constructed materials (e.g. asphalt, concrete, buildings, etc).

- 21. Low Intensity Residential Includes areas with a mixture of constructed materials and vegetation. Constructed materials account for 30-80 percent of the cover. Vegetation may account for 20 to 70 percent of the cover. These areas most commonly include single-family housing units. Population densities will be lower than in high intensity residential areas.
- 22. High intensity residential urban areas Includes highly developed areas where people reside in high numbers. Examples include apartment complexes and row houses. Vegetation accounts for less than 20 percent of the cover. Constructed materials account for 80 to 100 percent of the cover. Population densities will be higher than in low intensity residential areas.
- 23. Commercial/Industrial/Transportation Includes infrastructure (e.g. roads, railroads, etc.) and all highly developed areas not classified as High Intensity Residential. Phosphorus in gasoline (1.2 2.0 ppm) and the resulting automobile emissions can contribute to the phosphorus load from roads. This load is included in the Atmospheric Deposition Technical Memorandum (Barr, 2003c)) and likewise would be reflected in the urban loads as part of the runoff concentration. Based upon an annual gasoline consumption in Minnesota of 6.8 million gallons the resulting phosphorus input would be 34 kilograms per year (Mike Hensel, personal communication, 2003).

Barren - Areas characterized by bare rock, gravel, sand, silt, clay, or other earthen material, with little or no "green" vegetation present regardless of its inherent ability to support life. Vegetation, if present, is more widely spaced and scrubby than that in the "green" vegetated categories; lichen cover may be extensive.

32. Quarries/Strip Mines/Gravel Pits - Areas of extractive mining activities with significant surface expression. Runoff from these sites is either covered under NPDES permitted discharges under the point source category, or any overland runoff has been considered to be internal and thus does not leave the site.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 17

33. Transitional - Areas of sparse vegetative cover (less than 25 percent of cover) that are dynamically changing from one land cover to another, often because of land use activities. Examples include forest clear cuts, a transition phase between forest and agricultural land, the temporary clearing of vegetation, and changes due to natural causes (e.g. fire, flood, etc.). This land use classification has been treated in the same manner as the Commercial/Industrial/Transportation class for loading calculations, as in most urban areas this class represents land undergoing development. Only 2% of the land use in this category is found within incorporated areas.

Undeveloped areas with forested upland - Areas characterized by tree cover (natural or semi-natural woody vegetation, generally greater than 6 meters tall); tree canopy accounts for 25-100 percent of the cover.

- 41. Deciduous Forest Areas dominated by trees where 75 percent or more of the tree species shed foliage simultaneously in response to seasonal change.
- 42. Evergreen Forest Areas dominated by trees where 75 percent or more of the tree species are coniferous, i.e., they maintain their leaves all year. Canopy is never without green foliage in most locations.
- 43. Mixed Forest Areas dominated by trees where neither deciduous nor evergreen species represent more than 75 percent of the cover present. Clear-cut and burned areas are classified as "Transitional Bare" areas,

Shrubland - Areas characterized by natural or semi-natural woody vegetation with aerial stems, generally less than 6 meters tall, with individuals or clumps not touching to interlocking. Both evergreen and deciduous species of true shrubs, young trees, and trees or shrubs that are small or stunted because of environmental conditions are included.

51. Shrubland - Areas dominated by shrubs; shrub canopy accounts for 25-100 percent of the cover. Shrub cover is generally greater than 25 percent when tree cover is less than 25 percent. Shrub cover may be less than 25 percent in cases when the cover of other life forms

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 18

(e.g. herbaceous or tree) is less than 25 percent and shrubs cover exceeds the cover of the other life forms.

Herbaceous upland areas characterized by natural or semi-natural herbaceous vegetation; herbaceous vegetation accounts for 75-100 percent of the cover.

71. Grasslands/Herbaceous - Areas dominated by upland grasses and forbs. In rare cases, herbaceous cover is less than 25 percent, but exceeds the combined cover of the woody species present. These areas are not subject to intensive management, but they are often utilized for grazing.

Planted/Cultivated - Areas characterized by herbaceous vegetation that has been planted or is intensively managed for the production of food, feed, or fiber; or is maintained in developed settings for specific purposes. Herbaceous vegetation accounts for 75-100 percent of the cover.

- 81. Pasture/Hay Areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops.
- 82. Row Crops Areas used for the production of crops, such as corn, soybeans, vegetables, tobacco, and cotton.
- 83. Small Grains Areas used for the production of graminoid crops such as wheat, barley, oats, and rice.
- 85. Urban / Recreational Grasses Vegetation (primarily grasses) planted in developed settings for recreation, erosion control, or aesthetic purposes. Examples include parks, lawns, golf course, airport grasses and industrial grass sites.

Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Urban Runoff

Date: December 22, 2003

Page:

The percent imperviousness applied to each of these urban land uses and then used in calculation of the runoff coefficient for this assessment are as follows:

Land cover class	Percent impervious
Low intensity residential	32%
High intensity residential	42%
Commercial/Industrial/Transportation	57%
Urban / Recreational Grasses	32%
Transitional	57%

(adapted from Zielinski, 2002 and analysis of TCMA GIS coverage)\

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 20

Approach and Methodology for Phosphorus Loading Computations for Incorporated (Urban) Areas

The development of nutrient loading estimates in the absence of direct monitoring has generally been completed by applying areal based nutrient export rates to the watershed area to calculate the annual nutrient mass (Beaulac and Reckhow, 1982: Reckhow, et al, 1980; Panuska and Lillie, 1995; Clesceri, et al, 1986a; Clesceri, et al, 1986b; McFarland and Hauck, 2001). Inherent in the export coefficient is the climatic condition under which the coefficient was developed and the difficulty lies in trying to adjust this export coefficient to reflect loading under dry, normal, and wet climatic conditions because it is not known for a particular site what the relationship is between precipitation and runoff. The phosphorus export coefficients used for land uses within incorporated area boundaries assume 100% of phosphorus transported from land will reach surface water due to developed conditions. The phosphorous export coefficient is part of the total phosphorous loading equation:

$$L = \sum_{i=1}^{m} c_i \bullet A_i$$

where: L is total phosphorus loading from land (in kilograms per year),

m is number of land use types,

 c_i is the phosphorus export coefficient for land use i (in kilograms per hectare per year),

 A_i is area of land use i (in hectares).

Over large watershed areas, the phosphorus export may not be proportional to watershed area and some attenuation of phosphorus occurs, especially in natural plant communities that have low runoff rates. Recently, authors who have examined the nutrient export issue on landscape level scales have raised concerns over the applicability of export coefficients across large watershed areas (Birr and Mulla, 2001; Cammermeyer, et al, 1999; Johnson and gage, 1997; Jones, et al, 2001; Mattson and Isaac, 1999; McFarland and Hauck, 1998; Richards, et al, 2001; Sharpley, et al, 1993; Soranno, et al, 1996; Worrall and Burt, 1999). The underlying issue related to this concern is that not all areas in a large watershed contribute nutrients and sediment equally. For this assessment, all of the developed urban uses are assumed to have storm water conveyance systems in place – minimally drainage ditches and conveyance channels up to full curb and gutter with piping.

An alternative approach is to estimate the phosphorus load from urban sources using annual estimates of the average flow-weighted total phosphorus concentration in urban runoff. There are several

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 21

variables that may potentially affect the concentration of phosphorus in storm water runoff, however, development of a relationship between phosphorus concentration and these variables is limited by the variables that are typically reported. The most common variables are land use and precipitation.

For this assessment of monitoring data an evaluation was completed for data that were collected at the same location for multiple years and under different hydrologic conditions. These data shows that the concentration of phosphorus in stormwater at the same site is often higher during dry years compared to an average year, and is lower during a wet year compared to an average year (Table 2). From the available studies that had multiple years of monitoring data, a ratio was developed by dividing the concentration of total phosphorus in runoff for a wet year by the average year, and by dividing the concentration of total phosphorus in runoff for a dry year by the average year (Table 7). Overall, the wet to average ratio was 0.8 and the dry to average ratio was 1.18. This qualitatively shows that less precipitation leads to higher total phosphorus concentrations in runoff, and more precipitation leads to lower phosphorus concentrations in runoff.

To quantify the relationship between annual precipitation, land use (the four urban NLCD land uses: low intensity residential, high intensity residential, commercial-industrial-transportation, and urban recreational grasses), percent impervious area, and the annual flow-weighted total phosphorus concentration, single variable and multivariate linear regressions were performed. The percent impervious area for the watershed that contributed runoff to each monitoring point was calculated from the land use data collected for each watershed (see Table 2), based on a 32 percent impervious area for low density residential, 47 percent for high density residential, 42 percent for commercialindustrial-transportation, and 32 percent for urban/recreational grasses. There was a significant relationship (P<0.1 for each variable, R²=0.19 for the overall model) between annual flow-weighted mean total phosphorus concentration, percent impervious area, and annual precipitation (Table 8). Although the overall R² was slightly greater for the regression that included annual precipitation and land use composition expressed as a percent, no single land use variable was significant when considered as a separate variable. This may have been because many of the watersheds that were tributary to the monitoring locations reported for each study were not uniform or singular land uses. The land use was often mixed resulting in the effective "canceling out" of one land use versus another. It was determined that the only way to determine the aggregate effect of land use on phosphorus concentration for a particular watershed was to express that land use as percent impervious.

From: Jeffrey Lee and Keith Pilgrim

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003
Page: 22 (11" x 17" page)

Table 7. Effect of precipitation on annual total phosphorus EMC

	Flow-Weighted Average Annual			Wet,Dry, or		
	Concentration		Annual	Average	Ratio (Wet/Average, or	
Location	(ug/L)	Year	Precipitation	Precipitation Year	Dry/Average)	Reference
G3 Inlet to Tanners Lake, Maplewood, MN	340	1989	27	Dry	0.83	1
G3 Inlet to Tanners Lake, Maplewood, MN	411	2001	32	Average		2
G3 Inlet to Tanners Lake, Maplewood, MN	202	2002	42	Wet	0.49	2
G4A, Tanners Lake Watershed, Maplewood, MN	410	1989	27	Dry	 .	1
G4A, Tanners Lake Watershed, Maplewood, MN	308	2002	42	Wet	0.75'	2
Lake Harriet Parkway at W. 44th St., Minneapolis,MN	245	1991	37	Wet	0.49	3
Lake Harriet Parkway at W. 44th St., Minneapolis,MN	935	1995	26	Dry	1.86	4
Lake Harriet Parkway at W. 44th St., Minneapolis,MN	635	1996	26	Dry	1.26	4
Lake Harriet Parkway at W. 44th St., Minneapolis,MN	466	1997	34	Average		4
Lake Harriet Parkway at W. 44th St., Minneapolis,MN	541	2001	34	Average		5
Lake Harriet Parkway at W. 44th St., Minneapolis,MN	373	2002	39	Wet	0.74	6
Lake Harriet Parkway at W. 44th St., Minneapolis,MN	588	2003	31	Dry	1.17	7
MG1, Three Rivers Park District, Maple Grove, MN	341	2001	36	Average		8
MG1, Three Rivers Park District, Maple Grove, MN	223	2002	41	Wet	0.65	8
MG2, Three Rivers Park District, Maple Grove, MN	329	2001	36	Average		8
MG2, Three Rivers Park District, Maple Grove, MN	252	2002	41	Wet	0.77	8
P1, Three River Park District, Plymouth, MN	238	2001	36	Average		8
P1, Three River Park District, Plymouth, MN	219	2002	41	Wet	0.92	8
P2, Three River Park District, Plymouth, MN	213	2001	36	Average		8
P2, Three River Park District, Plymouth, MN	245	2002	41	Wet	1.15	8
P3, Three River Park District, Plymouth, MN	256	2001	36	Average		8
P3, Three River Park District, Plymouth, MN	233	2002	41	Wet	0.91	8
Luella St. at Orange Ave, St. Paul, MN	652	2001	34	Average		5
Luella St. at Orange Ave, St. Paul, MN	344	2002	42	Wet	0.53	6
Luella St. at Orange Ave, St. Paul, MN	539	2003	27	Dry	0.83	7
Vandalia St350 feet south of Capp Rd.,St. Paul, MN	255	2001	34	Average		5
Vandalia St350 feet south of Capp Rd.,St. Paul, MN	278	2002	42	Wet	1.09	6
Vandalia St350 feet south of Capp Rd.,St. Paul, MN	296	2003	27	Dry	1.16	7
Charles Ave-Mackubin to Arundel St., St. Paul, MN	377	2001	34	Average		5
Charles Ave-Mackubin to Arundel St., St. Paul, MN	391	2002	42	Wet	1.04	6
Charles Ave-Mackubin to Arundel St., St. Paul, MN	426	2003	27	Dry	1.13	7
E. 29th St. and 31st Ave. S., Minneapolis, MN	525	2001	36	Average		5
E. 29th St. and 31 st Ave. S., Minneapolis, MN	305	2002	39	Wet	0.58	6
PFS Study Site, East Pond, Woodbury, MN	398	2001	32	Average		9
PFS Study Site, East Pond, Woodbury, MN	332	2002	42	Wet	0.83	9
PFS Study Site, West Pond, Woodbury, MN	446	2001	32	Average		9
PFS Study Site, West Fond, Woodbury, MN	322	2002	42	Wet	0.72	9

¹ Ratio of wet/dry year.

0.80 1.18

² References

¹⁾Barr Engineering. 1993. Diagnostic/feasibility study of water quality problems and restorative measures for Tanner's Lake. Prepared for the Ramsey Washington Metro Watershed District.

²⁾ Barr Engineering. 2003. Tanners Lake CIP Performance Evaluation. Prepared for Ramsey-Washington Metro Watershed District.

³⁾Barr Engineering. 1992. Minneapolis chain of lakes clean water partnership project. Prepared for Minneapolis Park and Recreation Board.

⁴⁾ Minneapolis Park and Recreation Board, 1997. Unpublished Data.

⁵⁾ Minneapolis Park and Recreation Board, 2001. NPDES permit application monitoring report.

⁶⁾ Minneapolis Park and Recreation Board, 2002. NPDES permit application monitoring report.

⁷⁾ Minneapolis Park and Recreation Board, 2003. Unpublished monitoring data for the 2003 NPDES permit.

⁸⁾ Three River Park District: Lawn Fertilizer Experiment, unpublished data

⁹⁾ Ramsey Washington Metro Watershed District. Unpublished Data.

From: Jeffrey Lee and Keith Pilgrim

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Urban Runoff

Date: December 22, 2003

Page: 23

Table 8. Regression results between flow-weighted TP concentration in runoff and land use, percent imperviousness, and total precipitation recorded during the monitoring year.

Multple Variable Regressions:

			•		
Set	4	_	D 4	\mathbf{a}	\sim
► ΔT		•	K -		ンく
UCL				v	

Variables	Coefficient	P-Value
Intercept	-978	0.49
%LIR	19.0	0.18
%CIT	17.5	0.22
%RG	18.3	0.20
%HIR	19.9	0.27
Total Precipitation (in) in		
Monitoring Year	-14.7	0.001

Set 2: R²=0.19

Variables	Coefficient	P-Value
Intercept	1075	0.000001
% Impervious	-14.4	0.06
Total Precipitation (in) in		
Monitoring Year	-5.7	0.001

Single Variable Regression

Set 1: R²=0.13

Variable	Coefficient	P-Value
Intercept	802.3	0.000001
Total Precipitation (in) in		
Monitoring Year	-12.6	0.003

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 24

The number of acres for each of the four developed urban land uses was determined for the incorporated areas in each of the ten basins. In the incorporated areas the total area of each land cover was considered to be contributory. To calculate the expected concentration of total phosphorus in urban runoff for each basin, the average percent imperious area for the four developed urban land uses (high and low intensity residential, commercial/industrial/transportation and urban/recreational grasses) in each basin and the annual precipitation for the dry, average, and wet year were used as inputs to the regression model.

Phosphorus loading from the four developed urban land uses in each basin was then calculated according to the following equation:

Basin load = Concentration * Contributory area * Runoff coefficient * Annual Rainfall Depth

where: concentration is based upon the concentration regression equations developed for urban runoff in each of the basins.

contributory area is equal to the total area for each land use class,

runoff coefficient = 0.05 + 0.009 * impervious percentage.

annual rainfall depth is the annual precipitation for the loading flow condition scenario by

The phosphorus load for each of the other non-agricultural land uses within incorporated areas (natural vegetation within incorporated areas) were calculated by multiplying the phosphorus export coefficient by the contributory area and basin runoff factor. The basin runoff factor is based upon the percent differences between the wet and dry precipitation scenarios compared to the average conditions for each basin (Barr Engineering, 2003a). The basin runoff factor was developed to account for the changes in runoff volumes due to increased precipitation and higher loadings due to longer overland flow lengths and thus larger contributory areas. This information was generated from the basin hydrology technical memorandum (Barr Engineering, 2003b). The basin hydrology technical memorandum reported significant variability of runoff and precipitation across the state. That technical memorandum examined the precipitation patterns and developed the basin-wide precipitation conditions used for each of the loading scenarios assessed. The basin runoff factor used for each of the three scenarios for natural areas within incorporated areas is present in Table 9 of the Non-Agricultural Rural Land use Technical Memorandum (Barr Engineering, 2003a).

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 25

The calculation formula for the natural areas was:

Basin natural area load $(kg) = Export \ rate \ (kg/ha/yr) * Contributory \ area \ (ha) * Runoff factor$

Phosphorus loads from agricultural land uses within incorporated areas were calculated using the same methodology as for other agricultural areas statewide as per Mulla (2003).

The export rates used for natural areas within the incorporated area boundaries are listed in Table 9.

From: Jeffrey Lee and Keith Pilgrim

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Urban Runoff

Date: December 22, 2003

Page: 26

Table 9. Natural vegetation ecoregion and agricultural land use export coefficients for phosphorus load calculations applied to urban areas.

		Land Use	Export Coefficient -	kg/ha/yr	
Watershed	Deciduous Forest (3)	Evergreen Forest (3)	Mixed Forest (3)	Shrubland (3)	Grasslands/ Herbaceous (3)
Cedar River	0.119	0.114	0.130	0.129	0.151
Des Moines River	0.119	0.114	0.130	0.129	0.151
Lake Superior	0.155	0.123	0.130	0.129	0.146
Lower Mississippi River	0.075	0.114	0.130	0.129	0.151
Minnesota River	0.119	0.114	0.130	0.129	0.151
Missouri River	0.119	0.114	0.130	0.129	0.151
Rainy River	0.155	0.123	0.130	0.129	0.146
Red River	0.075	0.123	0.130	0.129	0.151
St. Croix River	0.075	0.123	0.130	0.129	0.169
Upper Mississippi River	0.075	0.123	0.130	0.129	0.169

References:

- (1) Beaulac, M. N., and Reckhow, K. H. 1982. An examination of land use-nutrient export relationships. Water Resour. Bull. 18(6):1013-24.
- (2) Panuska, J.C. and Lillie, R.A. 1995. Phosphorus loadings from Wisconsin watersheds: Recommended phosphorus export coefficients for agricultural and forested watersheds. Research Management Findings, Number 38. Wisconsin Department of Natural Resources.
- (3) Barr Engineering Company. 2003a. Detailed Assessment of Phosphorus Sources to Minnesota Watersheds Non-Agricultural Rural Runoff. Prepared for the Minnesota Pollution Control Agency.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 27

Results of Phosphorus Loading Computations and Assessments

The percentage of imperviousness and export rates, as applicable for urban land use for each of the basins are listed on page 19 and in Table 9, respectively.

Land use totals for the basins and the phosphorus contributory areas for each basin were previously listed in Table 6.

The results of the basin loading calculations for each basin and state-wide totals are listed in Table 10.

From: Jeffrey Lee and Keith Pilgrim

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Urban Runoff

Date: December 22, 2003 (revised January 5, 2003)

Page: 28 (11" x 17" page)

Table 10. Phosphorus loading results from incorporated urban areas for Minnesota basins and state-wide totals for three hydrologic scenarios; loads in kg/yr.

Basin	Hydrology Scenario	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/ Clay	Quarries/ Strip Mines/ Gravel Pits	Transitional	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Urban/ Recreational Grasses	Agricultural Lands in Incorporated Areas	Total Kg P
	Dry Year	738.7	1,251.5	1,827.8	0.0	Not Calculated	0.0	46.2	0.0	0.2	0.0	0.0	262.1	413	4,539
Cedar River	Avg Year	782.3	1,325.3	1,935.6	0.0	Not Calculated	0.0	53.9	0.0	0.3	0.0	0.0	277.5	1,002	5,377
	Wet Year	800.6	1,356.4	1,981.0	0.0	Not Calculated	0.0	69.4	0.0	0.3	0.0	0.0	284.0	1,278	5,770
	Dry Year	1,097.6	245.8	992.7	0.0	Not Calculated	0.0	18.8	0.3	0.2	0.0	0.0	460.6	351	3,167
Des Moines River	Avg Year	1,272.8	285.0	1,151.1	0.0	Not Calculated	0.0	23.9	0.4	0.3	0.0	0.0	534.1	537	3,805
	Wet Year	1,433.5	321.0	1,296.4	0.0	Not Calculated	0.0	31.5	0.6	0.4	0.0	0.0	601.6	1,042	4,727
	Dry Year	3,598.6	2,472.8	5,495.7	320.0	Not Calculated	516.4	5,794.7	896.9	1,309.8	83.7	64.3	1,355.6	1,060	22,969
Lake Superior	Avg Year	3,846.7	2,643.3	5,874.5	342.1	Not Calculated	552.0	6,613.3	1,023.6	1,494.8	95.5	73.4	1,449.0	1,824	25,832
	Wet Year	4,117.2	2,829.2	6,287.6	366.1	Not Calculated	590.8	7,966.8	1,233.2	1,800.7	115.0	88.5	1,550.9	3,134	30,080
	Dry Year	9,032.4	4,987.8	7,823.2	0.4	Not Calculated	181.1	983.8	21.8	83.5	0.2	50.9	4,967.4	5,291	33,423
Lower Mississippi River	Avg Year	10,028.5	5,537.9	8,685.9	0.4	Not Calculated	201.1	1,212.7	26.9	103.0	0.2	62.7	5,515.2	10,535	41,909
	Wet Year	10,615.5	5,862.0	9,194.3	0.5	Not Calculated	212.8	1,449.9	32.2	123.1	0.2	74.9	5,838.0	12,809	46,212
	Dry Year	24,477.9	8,625.8	14,846.9	11.6	Not Calculated	205.0	1,135.2	38.8	44.9	5.7	0.8	8,057.5	5,723	63,173
Minnesota River	Avg Year	28,467.9	10,031.9	17,267.0	13.5	Not Calculated	238.4	1,445.1	49.4	57.2	7.2	1.1	9,371.0	11,275	78,225
	Wet Year	31,583.3	11,129.8	19,156.6	15.0	Not Calculated	264.5	1,786.3	61.0	70.7	8.9	1.3	10,396.5	16,541	91,015
	Dry Year	913.6	223.8	707.4	1.8	Not Calculated	0.0	14.2	0.0	0.2	0.0	1.2	389.7	614	2,866
Missouri River	Avg Year	1,075.3	263.4	832.6	2.1	Not Calculated	0.0	18.3	0.0	0.2	0.0	1.6	458.7	1,000	3,652
	Wet Year	1,222.7	299.5	946.7	2.3	Not Calculated	0.0	24.0	0.0	0.3	0.0	2.0	521.5	1,859	4,878
	Dry Year	800.7	370.1	948.4	122.1	Not Calculated	191.4	913.8	226.2	355.9	23.0	2.3	227.1	218	4,399
Rainy River	Avg Year	879.4	406.5	1,041.6	134.1	Not Calculated	210.2	1,066.6	264.1	415.4	26.8	2.7	249.5	502	5,199
	Wet Year	968.7	447.8	1,147.4	147.7	Not Calculated	231.6	1,305.2	323.1	508.3	32.8	3.3	274.8	874	6,265
	Dry Year	3,978.4	2,141.3	4,231.8	0.0	Not Calculated	13.2	177.9	8.7	5.4	0.4	0.0	1,561.0	1,229	13,347
Red River of the North	Avg Year	4,640.4	2,497.6	4,936.0	0.0	Not Calculated	15.4	223.0	10.9	6.8	0.5	0.0	1,820.7	3,599	17,750
	Wet Year	5,248.4	2,824.8	5,582.7	0.0	Not Calculated	17.5	277.1	13.5	8.5	0.7	0.0	2,059.3	5,101	21,133
	Dry Year	2,888.4	718.1	2,076.0	0.0	Not Calculated	22.8	735.7	109.4	117.1	0.3	16.4	1,631.9	3,397	11,713
St. Croix River	Avg Year	3,357.8	834.7	2,413.3	0.0	Not Calculated	26.6	951.3	141.5	151.4	0.3	21.2	1,897.1	7,309	17,104
	Wet Year	3,662.7	910.5	2,632.5	0.0	Not Calculated	29.0	1,168.2	173.7	185.9	0.4	26.1	2,069.3	13,421	24,279
	Dry Year	53,550.4	32,497.7	31,620.6	38.9	Not Calculated	1,173.4	4,982.4	628.5	814.1	104.1	47.3	17,099.9	21,243	163,800
Upper Mississippi River	Avg Year	61,278.5	37,187.6	36,183.9	44.5	Not Calculated	1,342.7	6,190.1	780.9	1,011.4	129.3	58.8	19,567.7	38,038	201,813
	Wet Year	67,579.4	41,011.4	39,904.5	49.1	Not Calculated	1,480.8	7,560.0	953.7	1,235.2	157.9	71.8	21,579.7	68,981	250,565

	Hydrology Scenario	Low Intensity Residential	High Intensity Residential	Commercial/ Industrial/ Transportation	Bare Rock/Sand/	Quarries/ Strip Mines/ Gravel Pits		Deciduous Forest	Evergreen Forest	Mixed Forest	Shrubland	Grasslands/ Herbaceous	Urban/ Recreational Grasses	Agricultural Lands in Incorporated Areas	Total Kg P
	Dry Year	101,077	53,535	70,570	495	Not Calculated	2,303	14,803	1,931	2,731	217	183	36,013	39,539	323,397
Statewide Totals	Avg Year	115,630	61,013	80,321	537	Not Calculated	2,586	17,798	2,298	3,241	260	221	41,140	75,621	400,667
	Wet Year	127,232	66,992	88,130	581	Not Calculated	2,827	21,638	2,791	3,933	316	268	45,176	125,040	484,924

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 29

Phosphorus Loading Variability and Uncertainty

In an effort to define the accuracy of the pollutant loading estimates derived from the regression equations, a comparison was completed using FLUX calculated loads for the Minneapolis Chain of Lakes watershed. This assessment was completed on the residential watersheds that had direct storm water flow from the 1991 monitoring stations. All of the sites had continuous flow measurement and flow-composite runoff samples; the data was reduced to a flow-weighted mean concentration using FLUX (MPRB, 1993; Walker, 1986). Not all of the watersheds assessed in the Chain of Lakes project are included in Table 11, as a number of them had upstream wetlands or large areas of natural land cover that attenuated the phosphorus loadings.

For purposes of this loading variability and uncertainty discussion, the loading regression equation developed for this assessment was used to calculate loads to the eight watersheds. All of the load estimates were calculated using the 1991 monitored flow volumes. The 1991 FLUX-derived loadings based upon FWMC concentrations are, for this discussion considered, the baseline loadings. Annual loadings were also estimated using the mean 1991 EMC for each specific watershed, using a national EMC for residential watersheds of 320 ug/L (Center for Watershed Protection, 2003) and the regression equation result of 326 ug/L.

The results of those calculations and assessments are presented in Table 12. The loads calculated with the national EMC for residential watersheds and the regression equation were 100.6% and 102.5% of the FLUX model loadings, respectively. The results of the regression equation are very similar to the monitored loads.

Stormwater monitoring results are highly variable and the 102.5% average variance from the 1991 monitored loads is quite good. The variance range for the Minneapolis 1991 FWMC and EMC stormwater data of 168% to 456% reflects that variability. The regression equation developed for the urban land use loads estimation explains 19% of the variance for stormwater using precipitation and impervious percentage (see Table 8).

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds –Urban Runoff

Date: December 22, 2003
Page: 30 (11" x 17" page)

Table 11. Chain of Lakes CWP project monitored watersheds, FLUX loadings and comparisons for alternative load estimate methodologies.

	1991 Flow Weighted Mean Concentrations (MPRB, 1993) FLUX - UNSTRATIFIED			1991 Flow Weighted Mean Concentrations (MPRB, 1993) FLOW - 2 STRATA			1991 Subwatershed Event Mean Concentrations (MPRB, 1993)			Literature Values - Residential Land Uses Mean EMC (Center for Watershed Protection, 2003)			Regression Equation Based Values Assessment of Phosphorus Sources (Barr 2003)					
Subwatershed	Q	FWMC	CV	LOAD - P kg	Q	FWMC	CV	MASS-P kg	Q	FWMC	CV	MASS-P kg	Q	EMC	LOAD kg	Q	FWMC	LOAD kg
S57-020	0.019	245	0.640	4.7	0.019	338	0.376	6.4	0.019	559	0.33	10.6	0.019	320	6.1	0.019	326	6.2
S57-100	0.252	694	0.168	174.9	0.252	688	0.299	173.4	0.252	480	0.25	121.0	0.252	320	80.6	0.252	326	82.2
S57-120	0.041	219	0.456	9.0	0.041	182	0.291	7.5	0.041	267	0.41	10.9	0.041	320	13.1	0.041	326	13.4
S54-080	0.171	263	0.407	45.0	0.171	343	0.158	58.7	0.171	413	0.33	70.6	0.171	320	54.7	0.171	326	55.7
S54-040	0.162	225	0.398	36.5	0.162	156	0.305	41.5	0.162	1360	0.38	220.3	0.162	320	51.8	0.162	326	52.8
S53-120	0.085	320	0.303	27.2	0.085	320	0.353	27.2	0.085	633	0.35	53.8	0.085	320	27.2	0.085	326	27.7
S53-160	0.212	194	0.444	41.1	0.212	285	0.413	63.6	0.212	359	0.35	76.1	0.212	320	67.8	0.212	326	69.1
S53-150	0.082	350	0.453	28.7	0.082	345	0.434	28.3	0.082	555	0.35	45.5	0.082	320	26.2	0.082	326	26.7

Notes

Q = hm3/yr, FWMC = ug/L; Watershed land uses = mixed urban residential

Center for Watershed Protection. 2003. Impacts of Impervious Cover on Aquatic Systems. Watershed Protection Research Monograph No. 1. Center for Watershed Protection, Ellicott City, MD. Table 16. Minneapolis Park and Recreation Board, 1993. Minneapolis Chain of Lakes Clean Water Partnership Project Phase I – Diagnostic Report. Minneapolis Park & Recreation Board, Minneapolis, MN 1991 was an wet year based upon Barr Engineering, 2003b.

Bold values used in 1991 modeling results for Chain of Lakes Phase I CWP Project

Table 12. Comparison of percent difference for FLUX derived (FWMC) loads and other load estimation methods.

	FLUX	1991 EMC	% Difference	CWP, 2003	% Difference	Regression	% Difference
SITE	LOAD - P kg	LOAD - P kg	vs. FLUX Load	LOAD - P kg	vs. FLUX Load	LOAD - P kg	vs. FLUX Load
S57-020	6.4	10.6	165.4%	6.1	94.7%	6.2	96.4%
S57-100	174.9	121.0	69.2%	80.6	46.1%	82.2	47.0%
S57-120	9.0	10.9	121.9%	13.1	146.1%	13.4	148.9%
S54-080	58.7	70.6	120.4%	54.7	93.3%	55.7	95.0%
S54-040	41.5	220.3	531.3%	51.8	125.0%	52.8	127.3%
S53-120	27.2	53.8	197.8%	27.2	100.0%	27.7	101.9%
S53-160	63.6	76.1	119.7%	67.8	106.7%	69.1	108.7%
S53-150	28.3	45.5	160.9%	26.2	92.8%	26.7	94.5%
	Mean % Difference for Method		185.8%		100.6%		102.5%

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 31

Recommendations for Future Refinements

Refinement of the load estimate for phosphorus in urban runoff will require that additional, long-term monitoring sites be established across the state. Most of the long-term monitoring locations used for the regression equation development were located within the Twin Cities metropolitan area or other large cities. There were some out-state sites but most lacked multiple years of data or were quite old and therefore were not usable in this assessment. The lack of data for out-state sites could introduce some bias into the results due to differing watershed conditions and characteristics.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 32

Recommendations for Lowering Phosphorus Export

The design, construction and maintenance of watershed BMPs will help reduce pollutant loads to surface waters. However, the current dependence of watershed managers and regulators upon "NURP-type" ponds will not prevent the degradation of surface water resources due to increased phosphorus loadings. While the NURP-style ponds can remove particulate phosphorus, they are relatively ineffective at removing soluble phosphorus (which can comprise up to 50% of the phosphorus in urban runoff). The phosphorus removal efficiency of ponds are also only in the 40 – 50% range, so that in many urban developments, the phosphorus load increase exceed the removal effciency of ponds. The ponds required by regulators to mediate the increased runoff therefore do not fully mitigate the increases in runoff loads. In essence the BMP treatment, whether ponds or otherwise, never keeps the post-development loadings at pre-development levels once impervious area surpasses 40 – 50% (Schueler, 1995). Another critical flaw is that many urban planners assume that urban turf grass is an effective infiltrator of runoff, when in actuality most urban turf grows on highly compacted soils and can have a runoff rate of up to 45% during large storm events (Schueler, 1996a, 1996b; Legg, et al, 1996). Urban soils need to be protected from compaction during development/construction activities and likewise need to be actively managed to reduce compaction and increase infiltration over the long term.

Water quality protection requires that all urban development design use a water budget approach, where the preservation of the infiltration and evapotranspiration components of the hydrologic cycle are primary considerations. Site planning that reduces impervious surface area and preserves infiltration will help attain water quality protection. Caraco, et al (1998) recommends that site design in urban areas create urban spaces that:

- reduce impervious cover
- spread runoff over pervious areas
- utilize open channel drainage
- conserve forests and natural areas
- reduce the amount of managed turf and lawn
- create more effective stream buffers and riparian areas

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 33

A number of stormwater management and urban best management practices manuals are available that provide design guidance for controlling the impacts of urban runoff and promoting infiltration (Metropolitan Council, 2001; Schueler, 1995; Brach, 1989; US EPA. 2001)

The National Pollutant Discharge Elimination System (NPDES) permit administered by the MPCA regulates runoff from construction sites, industrial facilities and municipal separate storm sewer systems to reduce the pollution and ecological damage. Phase I focused on large construction sites, 11 categories of industrial facilities, and major metropolitan MS4s. Phase II broadened the program to include smaller construction sites, small municipalities (populations of less than 100,000) that were exempted from Phase I regulations, industrial activity, and MS4s.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 34

Literature Cited

Bannerman, R.T., A.D. Legg, and S.R. Greb, 1996. Quality of Wisconsin Stormwater, 1991-94. Open-File Report 96-458. US Geological Survey, Madison, WI.

- Bannerman, R.T., K. Baun, and M. Bohn, 1983. Evaluation of urban nonpoint source pollution management in Milwaukee County, Wisconsin. Prepared for US EPA Region V by the Wisconsin Department of Natural Resources, Madison, WI.
- Bannerman, R.T., R. Dodds, D. Owens, and P. Hughes, 1992. Sources of pollutants in Wisconsin stormwater. Wisconsin Department of Natural Resources, Madison, WI.
- Barr Engineering Company. 1992. Minneapolis Chain of Lakes Clean Water Partnership Project Stormwater Monitoring Study. Prepared for the Minneapolis Park and Recreation Board.
- Barr Engineering Company. 2003a. Detailed Assessment of Phosphorus Sources to Minnesota Watersheds Non-Agricultural Rural Runoff. Prepared for the Minnesota Pollution Control Agency.
- Barr Engineering Company. 2003b. Basin Hydrology Technical Memorandum. Prepared for the Minnesota Pollution Control Agency
- Barr Engineering Company. 2003c. Detailed Assessment of Phosphorus Sources to Minnesota Watersheds Atmospheric Deposition Prepared for the Minnesota Pollution Control Agency.
- Barr Engineering Company. 2003d. Water quality and sediment composition study of the Lake Madison Watershed and Bourne Slough. Prepared for the Lake County Watershed Improvement Project, Madison, SD.
- Barr Engineering Company. 2003e. Tanners Lake CIP Performance Evaluation. Prepared for Ramsey-Washington Metro Watershed District.
- Barr Engineering Company. 1993. Diagnostic/feasibility study of water quality problems and restorative measures for Tanner's Lake. Prepared for the Ramsey Washington Metro Watershed District.
- Barten, J. 1995. Quantity and quality of runoff from four golf courses in the twin cities metropolitan area. Suburban Hennepin Regional Park District. Report to the Legislative Commission on Minnesota Resources.
- Barten, J., 1994. Fish Lake Pond monitoring results. Report prepared for the Elm Creek Watershed Management Commission. Hennepin Parks, Maple Plain, MN.
- Barth, C.A., 1995. Nutrient movement from the lawn to the stream. Watershed Protection Techniques 2(1):239-246

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

- Barth, C.A., 1995a. The peculiarities of perviousness. Watershed Protection Techniques 2(1):233-238.
- Beaulac, M. N., and Reckhow, K. H. 1982. An examination of land use-nutrient export relationships. Water Resour. Bull. 18(6):1013-24.
- Booth, D. B. 2000. Forest cover, impervious surface are, and the mitigation of urbanization impacts in King County, Washington. Center for Urban Water Resources Management, University of Washington, Seattle, WA.
- Brach, J., 1989. Protecting Water Quality in Urban Areas. Report prepared for the Minnesota Pollution Control Agency.
- Brezonik, P.L., R.A. Osgood, L. Olmanson, E. Day, L. Hatch, J. Doyle, J.A. Perry, M. Bauer, E. MacBeth, and T. Anderle. 2002. Cumulative Impacts of Development on Lakes in the North Central Hardwood Forest Ecoregion of Minnesota: An Exploratory Study. University of Minnesota, Water Resources Center Technical Report 144.
- Brooks, K.N., Ffolliott, P.F., Gregersen, H.M. and DeBano. L.F. 2003. Hydrology and the Management of Watersheds, Third Edition. Iowa Sate Press, Ames. IA.
- Brush, S.W., M.E. Jennings, P.J. Young and H.C. McWreath, 1994. NPDES monitoring -- Dallas-Fort Worth, Texas Area. In: B. Urbonas, 1994. Stormwater NPDES Related Monitoring Needs Conference Proceedings. Engineering Foundation Conference, Crested Butte, CO.
- Brye, K.R., Norman, J.M., and Gower, S.T. 2002. The fate of nutrients following three- and six-year burn intervals in a tallgrass prairie restoration in Wisconsin. Am. Midl. Nat. 148:28-42.
- Brye, K.R., Norman, J.M., Bundy, L.G. and Gower, S.T. 2000. Water-budget evaluation of prairie and maize ecosystems. Soil. Sci. Soc. Am. J. 64:715-724.
- Cammermeyer. J., Conrecode, P., Hansen, J., Kwan, P. and Maupin, M., 1999. Phosphorus Flux Spatial Model Group. Student Paper Urbanization, Water Resources & Lake Water Quality in the Seattle area. University of Washington CEWA 599/ZOO 572. http://courses.washington.edu/cewa599c/paper2.html
- Caraco, D., Claytor, R. and Zielinski, J. 1998. Nutrient Loading from Conventional and Innovative Site Development. Prepared for Chesapeake Research Consortium. Center for Watershed Protection, Ellicott City, MD.
- Cave, K.A. and L.A. Roesner, 1994. Overview of stormwater monitoring needs. In: B. Urbonas, 1994. Stormwater NPDES Related Monitoring Needs Conference Proceedings. Engineering Foundation Conference, Crested Butte, CO.
- Center for Watershed Protection. 2003. Impacts of Impervious Cover on Aquatic Systems. Watershed Protection Research Monograph No. 1. Center for Watershed Protection, Ellicott City, MD.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 36

Central Iowa Committee. 2002. Iowa Statewide Urban Design Standards Manual. Iowa State University, Center for Transportation Research, Ames, IA.

- City of Eagan. 1995. Diagnostic/feasibility study of Fish Lake, Eagan, MN.
- City of Minneapolis, 1992. NPDES Permit Application for discharges from Municipal Separate Storm Sewer Systems Part 2. Prepared By Minneapolis Public Works Department for the Minnesota Pollution Control Agency.
- Clesceri N. L., S. J. Curran, and R. I. Sedlak 1986a. Nutrient loads to Wisconsin lakes: Part I. Nitrogen and P-export coefficients. Water Resour. Bull. 22(6):983-990.
- Clesceri N. L., S. J. Curran, and R. I. Sedlak 1986b. Nutrient loads to Wisconsin lakes: Part II. Relative importance of nutrient sources. Water Resour. Bull. 22(6):991-1000.
- Cole, J.T., Baird, J.H., Basta, N.T., Huhnke, R.L., Strom, D.E., Johnson, G.V., Payton, M.D., Smolen, M.D., Martin, D.L., and Cole, J.C. 1997. Influence of buffers on pesticide and nutrient runoff from Bermudagrass turf. J. Environ. Qual. 26:1589-1598.
- Correll, D. L., Jordan, T.E. and Weller, D.E. 1999. Transport of nitrogen and phosphorus from Rhode River watersheds during storm events. Wat. Res. Research 35(8):2513–2521.
- Corsi, S.R., Graczyk, D.J., Owens, D.W. and Bannerman, R.T. 1997. Unit-area loads of suspended sediment, suspended solids, and total phosphorus from small watersheds in Wisconsin. USGS Fact Sheet FS-195-97. US Geological Survey, Middleton, WI.
- Dane County Regional Planning Commission, 1992. Yahara-Monona Priority Watershed Plan. Madison, WI.
- Dindorf, C.J., 1992. Toxic and Hazardous Substances in Urban Runoff. Hennepin Conservation District, Minnetonka, MN.
- Driver, N.E. and Tasker, G.D. 1990. Techniques for estimation of storm-runoff loads, volumes, and selected constituent concentrations in urban watersheds in the United States. USGS Water-Supply Paper 2363.
- Dunne, T., J. Agee, S. Beissinger, W. Dietrich, D. Gray, M. Power, V. Resh, and D. Rodrigues. 2001. A scientific basis for the prediction of cumulative watershed effects. University of California, Wildland Resources Center, Berkeley, CA.
- Erdich, L.P. 1991. Characterization of urban runoff in the Fargo-Moorhead area. Masters Thesis, North Dakota State University, Fargo, ND.
- Fallon, J.D. and McNellis, R.P. 2000. Nutrients and suspended sediment in snowmelt runoff from part of the Upper Mississippi River Basin, Minnesota and Wisconsin, 1997. USGS Water Resource Investigation Report 00-4165. Mounds View, MN.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

- Fossum, K.D. and McDoniel, D.S. 1998. Comparison of NPDES program findings for selected cites in the United States. USGS Fact Sheet FS-192-97.
- Frink, C.R. 1991. Estimating nutrient exports to estuaries. Journal of Environmental Quality 20:717-724.
- Heiskary, S.A., Wilson, C.B. and Larsen, D.P. 1987. Analysis of regional patterns in lake water quality: Using ecoregions for lake management in Minnesota. Lake and Reservoir Management 3:337-344.
- Hensel, M. 2003. Personal communication. Barr Engineering Company.
- Holechek, J.L., R.D. Piper and C.H. Herbal. 1995. Range management: principles and practices. 2nd edition. Prentice Hall, Englewood Cliffs, New Jersey. 526p.
- Horner, R.R., 1992. Water quality criteria/pollutant loading estimation/treatment effectiveness estimation. In: R.W. Beck and Associates. Covington Master Drainage Plan. King County Surface Water Management Division, Seattle, WA.
- Johnson, L.B. and Gage, S.H., 1997. Landscape approaches to the analysis of aquatic ecosystems. Freshwater Biology 37:113-132. http://colargol.ibg.uit.no/biologi/botanikk/lennart/GIS-kurs/pdf/Artkl9.pdf
- Lassevils, J.F. and Berrux, D. 2000. Sources of phosphorus to surface waters: comparing calculated with measured P loadings for three French Rivers. Prepared for CEEP by Geoplus Consultants, Drome, France.
- Leete, J.H. 1986. Sediment and phosphorus load to streamflow from natural and disturbed watersheds in northeastern Minnesota. Ph.D. Thesis, University of Minnesota, Minneapolis, MN.
- Legg, A.D., R.T. Bannerman, and J. Panuska. 1996. Variation in the relation of rainfall to runoff from residential lawns in Madison, Wisconsin, July and August 1995. USGS Water-Resources Investigations Report 96-9194.
- Loehr, R.C., 1974. Characteristics and comparative magnitude of nonpoint sources. J. Water Pollution Control Fed. 46(8):1849-1872. (reported in Mulcahy, 1990).
- Marsalek, J., 1990. Evaluation of pollutant loads from urban nonpoint sources. Water Sci. Tech., 22(10/11):23-30.
- Marsalek, J., 1991. Pollutant loads in urban stormwater: Review of methods for planning level estimates. Water Resources Bulletin, 27(2):283-291.
- Mattson, M.D. and R.A. Isaac. 1999. Calibration of phosphorus export coefficients for total maximum daily loads of Massachusetts lakes. Journal of Lake and Reservoir Management 15(3):209-219.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

- McFarland, A.M.S. and L.M. Hauck. 1998. Determining nutrient contribution by land use for the Upper North Bosque River Watershed. Texas Institute foe Applied Environmental Research, Stephenville, TX.
- McFarland, A.M.S. and L.M. Hauck. 2001. Determining nutrient export coefficients and source loading uncertainty using in-stream monitoring data. Journal of the American Water Resources Association. 37:223-236.
- Metropolitan Council. 2001. Minnesota Urban Small Sites BMP Manual. Prepared by Barr Engineering for Metropolitan Council Environmental Services. St. Paul, MN
- Metropolitan Council Environmental Services. 2003. Metropolitan Council Environmental Services 2001 Stream Monitoring Report. Metropolitan Council Environmental Services, Environmental Quality Assurance Department, St. Paul MN.
- Minneapolis Park and Recreation Board, 1993. Minneapolis Chain of Lakes Clean Water Partnership Project Phase I Diagnostic Report. Minneapolis Park & Recreation Board, Minneapolis, MN.
- Minneapolis Park and Recreation Board, 1997. Unpublished data.
- Minneapolis Park and Recreation Board, 2002. National Pollutant Discharge Elimination System (NPDES) Monitoring. In: 2001 Water Resources Report. Minneapolis Park & Recreation Board Environmental Operations, Minneapolis, MN.
- Minneapolis Park and Recreation Board, 2003a. National Pollutant Discharge Elimination System (NPDES) Monitoring. In: 2002 Water Resources Report. Minneapolis Park & Recreation Board Environmental Operations, Minneapolis, MN.
- Minneapolis Park and Recreation Board, 2003b. Unpublished monitoring data for the 2003 NPDES permit.
- Minnesota Pollution Control Agency. 2003. Comparison of typical Minnesota water quality conditions. Water Quality/Surface Water #1.02, July 2003. Minnesota Pollution Control Agency, St. Paul, MN. http://www.pca.state.mn.us/publications/wq-s1-02.pdf
- Minnesota Pollution Control Agency. 2003a. An assessment of representative Lake Superior basin tributaries 2002. Minnesota Pollution Control Agency, St. Paul, MN
- Mulcahy, J.P., 1990. Phosphorus Export in the Twin Cities Metropolitan Area. Prepared for the Minnesota Pollution Control Agency by the Metropolitan Council of the Twin Cities Area, St. Paul, MN.
- Mulla, D. 2003. Detailed Assessment of Phosphorus Sources to Minnesota Watersheds Agricultural Runoff. Prepared for Barr Engineering Company and the Minnesota Pollution Control Agency.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

- Naiman, R.J. and Descamps, H. 1997. The ecology of interfaces: Riparian zones. Annual Review of ecology and Systematics 28:621-658.
- Noonan, T., 1990. Personal communication. Ramsey County Department of Public Works. (reported in Mulcahy, 1990).
- Novotny, V., 1992. Unit pollutant loads. Water Environment & Technology, Jan. 92: 40-43.
- Novotny, V., and G. Chesters, 1989. Delivery of sediment and pollutants from nonpoint sources: A water quality perspective. Journal of Soil and Water Conservation, Nov/Dec 1989: 568-576.
- Oberts, G., 1983. Surface water management: Evaluation of Nationwide Urban Runoff Program. Metropolitan Council of the Twin Cities Area, St. Paul, MN.
- Oberts, G., 1990. Design considerations for management of urban runoff in wintry conditions. Proceedings: international conference on urban Hydrology Under Wintry Conditions. Narvik, Norway.
- Oberts, G., 1994. Influence of snowmelt dynamics on stormwater runoff quality. Watershed Protection Techniques 1(2):55-61.
- Oberts, G.L., 1985. Magnitude and problems of nonpoint pollution from urban and urbanizing areas. Symposium presentation Nonpoint Pollution Abatement Technical, Managerial and Institutional Problems and Solutions. Milwaukee, WI April 1985.
- Ohrel, R.L. 1995. Simple and complex stormwater pollutant load models compared. Watershed Protection Techniques 2(2):364-368.
- Omernik, J. M. 1977. Nonpoint source-stream nutrient level relationships: a nationwide study. U.S. United States Environmental Protection Agency, Ecol. Res. Series. EPA-600/3-77-105.
- Omernik, J. M. 1977. The influence of land use on stream nutrient levels. United States Environmental Protection Agency, Ecol. Res. Series. EPA-600/3-7-104.
- Omernik, J.M. and A.L. Gallant. 1988. Ecoregions of the upper Midwest States. USEPA, ERL, Corvallis, OR. EPA/ 600/3-88/037
- Omernik, J.M. and Bailey, R.G. 1997. Distinguishing between watersheds and ecoregions. Journal of the American Water Resources Association. 33:5. pp. 935-949.
- Omernik, J.M., 2000, Draft aggregations of level III eco-regions for the National Nutrient Strategy. National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency. http://www.epa.gov/ost/standards/ecomap.html.
- Osborne, L.L. and Kovacic, D.D. 1993. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology 29:243-258.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 40

Panuska, J.C. and Lillie, R.A. 1995. Phosphorus loadings from Wisconsin watersheds: Recommended phosphorus export coefficients for agricultural and forested watersheds. Research Management Findings, Number 38. Wisconsin Department of Natural Resources.

- Perkins, W. W., Welch, E. B., Frodge, J. and Hubbard, T. 1997. A zero degree of freedom total phosphorus model; 2. Application to Lake Sammamish, Washington. Lake and Reservoir Management Volume 13(2):131-141.
- Pitt, R., 1997. Storm water quality management through the use of detention basins. Class materials Earle Brown Center, University of Minnesota.
- Pitt, R., and J. McLean, 1986. Toronto area watershed management strategy study: Humber River pilot watershed project. Ontario Ministry of the Environment, Toronto, Ontario.
- Ponce, S.L., 1980. Statistical Methods Commonly Used in Water Quality Data Analysis. Watershed Systems Development Group Technical Paper WSDG-TP-00001. USDA, Fort Collins, CO.

Ramsey County Public Works. Unpublished data.

Ramsey Washington Metro Watershed Distinct. 2002. Unpublished Data.

Ramsey Washington Metro Watershed District. 2003. Unpublished data.

- Rast, W. and G.F. Lee, 1983. Nutrient loading estimates for lakes. J. Env. Eng. Div. ASCE 109(2):502-517. (reported in Mulcahy, 1990).
- Reckhow, K.H., M.N. Beaulac, and J.T. Simpson. 1980. Modeling phosphorus loading and lake response under uncertainty: A manual and compilation of export coefficients. U.S. Environmental Protection Agency, Washington, D.C. EPA 440/5-80-011.
- Richards, C., Johnson, L.B. and Host, G.E. 1996. Landscape-scale influences on stream habitats and biota. Canadian Journal of Fish. Agaut. Sci. 53(Suppl. 1):295-311.
- Robertson, D. M. and E. D. Roerish, Influence of various water quality sampling strategies on load estimates for small streams, Water Resour. Res., 35(12), 3747-3759, 1999.
- Robertson, D. M. and Richards, K. D., 2000. Influence of different temporal sampling strategies on estimating loads and maximum concentrations in small streams. Conference Proceedings NWQMC National Monitoring Conference.

 http://www.nwqmc.org/2000proceeding/papers/pap_porterfield.pdf
- Roth, N.E., Allan, J.D. and Erickson, D.L. 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11(3):141-156.
- Sartz, R.S. 1969. Effects of watershed cover on overland flow from a major storm in southwestern Wisconsin. Research Note NC-82, US Department of Agriculture Forest Service, St. Paul, MN.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

- Sartz, R.S., Curtis, W.R. and Tolsted, D.N. 1977. Hydrology of small watersheds in Wisconsin's Driftless Area. Water Resourc. Res. 13(3):524-530.
- Schmitt, T.J., Dosskey, M.G. and Hoaglund, K.D. 1999. Filter Strip performance and processes for different vegetation, widths, and contaminants. J. Environ. Quality 28:1479-1489.
- Schueler, T. R. 1996a. The compaction of urban soils: Watershed Protection Techniques 3(2):661-665.
- Schueler, T. R. 1996b. Can Urban soil compaction be reversed: Watershed Protection Techniques 3(2):666-669.
- Schueler, T. R. 1995. The peculiarities of perviousness: Watershed Protection Techniques 2(1):233-238.
- Schueler, T. R. 1994. Controlling urban runoff: A practical manual for planning and designing urban BMPs. Prepared for the Washington Metropolitan Council of Governments. Washington, DC.
- Schueler, T. R. 1994. The importance of imperviousness: Watershed Protection Techniques 1(3):100-111.
- Schueler, T.R. 1995. Site planning for urban stream protection. Prepared for the Washington Metropolitan Council of Governments. Washington, DC. Center for Watershed Protection, Ellicott City, MD.
- Schwartz, S.S. and Naiman, D.Q. 1999. Bias and variance of planning level estimates of pollutant loads. Water Resour. Res. 35(11):3475-3487.
- Scott, C.A., Walter, M.F., Nagle, G.N., Walter, M.T., Sierra, N.V. and Brooks, E.S. 2001. Residual phosphorus in runoff from successional forest on abandoned agricultural land: 1. Biogeochemical and hydrologic process. Biogeochemistry 55:293-309.
- Sharpley, A.N., T.C. Daniel, and D.R. Edwards. 1993. Phosphorus movement in the landscape. J. Prod. Agric.6:492-500.
- Singer, M.J., and R.H. Rust. 1975. Phosphorus in surface runoff from a deciduous forest. J. Environ. Qual. 4:307-311.
- Soil Conservation Service, 1986. Urban Hydrology for Small Watersheds. Technical Release 55. US Department of Agriculture, Soil Conservation Service Engineering Division.
- Soranno, P.A., S.L. Hubler, S.R. Carpenter, and R.C. Lathrop. 1996. Phosphorus loads to surface waters: a simple model to account for spatial pattern. Ecological Applications 6(3):865-878.
- Stark, J.R., P.E. Hanson, R.M. Goldstein, J.D. Fallon, A.L. Fong, K.E. Lee, S.E. Kroening, and W.J. Andrews. 1999. Water quality in the Upper Mississippi River Basin, Minnesota, Wisconsin, South Dakota, Iowa, and North Dakota, 1995–98. USGS Water Resources Circular 1211. http://water.usgs.gov/pubs/circ/circ1211/pdf/circular1211.pdf

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

Page: 42

Steuer, J., W. Selbig, N. Hornewer, and J. Prey, 1997. Sources of contamination in an Urban Basin in Marquette, Michigan and an Analysis of Concentrations, Loads, and Data Quality. Water-Resources Investigation Report 97-4242. US Geological Survey, Middleton, WI.

Swenson, J. 1998. Urban landscapes as a source of phosphorus in surface waters. Prepared for Metropolitan Council Environmental Services Division.

Three River Park District, 2003. Unpublished data

- Timmons, D.R., and Holt, R.F. 1977. Nutrient losses in surface runoff from a native prairie. Journal of Environmental Quality 4(6): 369-73.
- Tornes, L.H., Brigham, M.E. and Lorenz, D.L. 1997. Nutrients, suspended sediment, and pesticides in streams of the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1993-1995. U.S. Geological Survey Water-Resources Investigations Report 97-4053. Mounds View, MN.
- United States Geological Survey, 1982. Quality of Runoff from Small Watersheds in the Twin Cities Metropolitan Area, Minnesota Hydrologic Data for 1980. Open File Report 82-504. St. Paul, MN.
- US Army Corps of Engineers. 2001. The WES handbook on water quality enhancement techniques for reservoirs and tailwaters. US Army Engineer Research and Development Center, Waterways Experiment Station Vicksburg, MS.
- US EPA, 1996. Protecting Natural Wetlands: A Guide to Stormwater Best Management Practices. United States Environmental Protection Agency, Office of Water, Washington, DC. EPA-843-B-96-001. http://www.epa.gov/owow/wetlands/pdf/protecti.pdf
- US EPA. 1986. Methodology for analysis of detention basins for control of urban runoff quality. Environmental Protection Agency, Office of Water. EPA-440-5-87-001.
- US EPA. 1997. Linear regression for nonpoint source pollution analyses. Environmental Protection Agency, Office of Water. EPA-841-B-97-007.
- US EPA. 2000a. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria: Lakes and Reservoirs in Nutrient Ecoregion VI Corn Belt and Northern Great Plains. United States Environmental Protection Agency, Office of Water. EPA 822-B-00-008.
- US EPA. 2000b. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria: Lakes and Reservoirs in Nutrient Ecoregion VII Mostly Glaciated Dairy Region. United States Environmental Protection Agency, Office of Water. EPA 822-B-00-009.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

- US EPA. 2000c. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria: Lakes and Reservoirs in Nutrient Ecoregion VIII Nutrient Poor Largely Glaciated Upper Midwest and Northeast. United States Environmental Protection Agency, Office of Water. EPA 822-B-00-010.
- US EPA. 2000d. Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs, U.S. Environmental Protection Agency, Washington, DC. EPA-822-B00-001.
- US EPA. 2000e. Nutrient Criteria Technical Guidance Manual: Rivers and Streams, U.S. Environmental Protection Agency, Washington, DC. EPA-822-B00-002.
- US EPA. 2001. National Menu of Best Management Practices for Storm Water Phase II. http://cfpub1.epa.gov/npdes/stormwater/menuofbmps/pdf/small_files/Main.pdf
- USGS. 1996. Water resources data Wisconsin Water Year 1996. U.S. Geological Survey Water-Data Report WI-96-1.
- Uttormark, P.D., J.D. Chapin, and K.M. Green, 1974. Estimating nutrient loadings of lakes from nonpoint sources. EPA-660/3/74-020. (reported in Mulcahy, 1990).
- Vaithiyanathan, P., and D.L. Correll. 1992. The Rhode River Watershed: Phosphorus distribution and export in forest and agricultural soils. J. Environ. Qual. 21: 280-288.
- Valley Branch Watershed District. 2002. Valley Creek Subwatershed Plan. Developed by the Valley Branch Subwatershed Advisory Committee.
- Vellanki, V.R. 1994. . Characterization of residential runoff in the Fargo. Masters Thesis, North Dakota State University, Fargo, ND.
- Vogelmann, J.E., S.M. Howard, L. Yang, C.R. Larson, B.K. Wylie, N. Van Driel, 2001. Completion of the 1990s National Land Cover Data Set for the Conterminous United States from Landsat Thematic Mapper Data and Ancillary Data Sources. Photogrammetric Engineering and Remote Sensing, 67:650-652. http://landcover.usgs.gov/nationallandcover.asp
- Walker, W.W. 1992. Analysis of 1990-1992 monitoring data from the Vadnais lakes diagnostic study. Prepared for the Board of Water Commissioners, St. Paul, MN.
- Walker, W.W. 1987. Phosphorus removal by urban detention basins. Proc. Lake and Reservoir Management Conference: Influence on Nonpoint Source Pollutants, Volume III.
- Walker, W. W. 1986. Empirical Methods for Predicting Eutrophication in Impoundments; Report 3, Phase III: Applications Manual. Technical Report E-81-9, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

From: Jeffrey Lee

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds - Urban Runoff

Date: December 22, 2003

- Walker, W.W. 1985. Analysis of 1984 monitoring data from the Vadnais lakes diagnostic study. Prepared for the Board of Water Commissioners, St. Paul, MN. (reported in Mulcahy, 1990).
- Walker, W.W. 1984. Watershed monitoring data from the Twin cities Area. Appendix A. Prepared for St. Paul Water Utility.
- Waschbusch, R.J., Selbig, W.R. and Bannerman, R.T. 1999. Sources of phosphorus in stormwater and street dirt from two urban residential basins in Madison, Wisconsin. 1994-95. USGS Water-Resources Investigation Report 99-4021.
- Wenck Associates, 1998. Lake Nokomis and Hiawatha Diagnostic-Feasibility Study; Diagnostic Study. Prepared for the Minnehaha Creek Watershed District.
- Wickham, James D.; Wade, Timothy G.; Riitters, Kurt H.; O'Neill, R.V.; Smith, Jonathan H.; Smith, Elizabeth R.; Jones, K.B.; Neale, A.C, 2003. Upstream-to-downstream changes in nutrient export risk. Landscape Ecology 18:195-208. http://www.srs.fs.usda.gov/pubs/ja/ja_wickham003.pdf
- Wilson, C.B. 2003. Personal communications, various dates October 2003. Minnesota Pollution Control Agency.
- Wilson, C.B. and Walker, Jr., W.W. 1989. Development of lake assessment methods based upon the aquatic ecoregion concept. Lake and Reservoir Management 5(2):11-22.
- Wilson, G.J., & P. Brezonik (1998). An analysis of urban stormwater quality from the Minneapolis Chain of Lakes watershed. In: E. Derby, J. Lee & D. Pilger (Eds.) Minneapolis Lakes and Parks—Special Session Proceedings. Sixteenth Annual North American Lakes Management Society International Symposium. Minneapolis, MN.
- Winter, J.G. and Duthie, H.C. 2000. Export coefficient modeling to assess phosphorus loading in an urban watershed. Journal of the American Water Resources Assn. 36(5):1053-1061.
- Worrall, F. and T.P. Burt. 1999. The impact of land-use change on water quality at the catchment scale: the use of export coefficient and structural models. Journal of Hydrology. 221(1): 5-90.
- Wotzka, P.J. 2003. Personal communications, various dates October 2003. Minnesota Department of Agriculture.
- York M. T. Auer, S. M. Doeer, S. W. Effler and E. M. Owens, 1997. A zero degree of freedom total phosphorus model; 1. Development for Onondaga Lake, New York. Lake and Reservoir Management Volume 13(2):118-130.
- Zapp, M.J. and Almendinger, J.E. 2001. Nutrient dynamics and water quality of Valley Creek, a high-quality trout stream in southeastern Washington County. Final Project Report to the Valley Branch Watershed District.

From:

Subject: Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Urban Runoff Date: December 22, 2003

Page:

Zielinski, J. 2002. Watershed Vulnerability Analysis. Center for Watershed Protection, Ellicott City,

Technical Memorandum

To: Hal Runke, Barr Engineering

Greg Wilson, Barr Engineering

From: Hans Holmberg, LTI

Joe DePinto, LTI

Jagjit Kaur, LTI

Subject: Assessment of Bioavailable Fractions of Phosphorus and Annual Phosphorus

Discharge for Each Major Basin

Date: January 16, 2004

Project: MNBAP

cc: Dave Dilks, LTI

The purpose of this memorandum is to provide a discussion about the bioavailable phosphorus fraction of individual point and nonpoint sources of phosphorus. This discussion is based on a review of the available literature, results of POTW-specific and basin-specific sampling and analysis, and the results of basin-specific total and bioavailable phosphorus annual discharge calculations. This memorandum is intended to:

- Provide an introduction to the forms of phosphorus in the aquatic environment.
- Describe the results of the literature review for each category of point and nonpoint sources.
- Present the results of POTW-specific and basin-specific sampling and analysis for bioavailable phosphorus.
- Compare and summarize estimates of bioavailable phosphorus fraction for each source type.
- Describe methods used for developing estimates of annual phosphorus discharge for each of Minnesota's major watershed basins.
- Present the results of the basin-specific annual discharge calculations.
- Discuss the uncertainty of the bioavailable phosphorus fraction estimates and basin-specific discharge calculations.
- Provide recommendations for future refinements of bioavailable phosphorus fraction estimates and basin-specific discharge calculations.

Date: January 16, 2004

Page: 2

Introduction to Forms of Phosphorus in the Aquatic Environment

Under natural conditions, phosphorus is typically scarce in the aquatic environment. Human activities, however, have resulted in excessive loading of phosphorus into many freshwater systems. A portion of the total phosphorus concentration in surface waters is available to plants to support their growth. The available portion is commonly called bioavailable phosphorus. Excess bioavailable phosphorus in freshwater systems can result in accelerated plant growth. Phosphorus is the principal nutrient causing excessive growth of algae and other aquatic plants in Minnesota's surface waters.

Phosphorus exists in water in either a dissolved phase or a particulate phase. Dissolved phosphorus is operationally-defined as passing a 0.45 µm filter. Dissolved phosphorus in natural waters is usually found in the form of phosphates (PO₄-³). Dissolved phosphates exist in three forms: inorganic (commonly referred to as orthophosphate or soluble reactive phosphorus- SRP), inorganic polyphosphate (or metaphosphate) and organically bound phosphate. Particulate phosphorus contains phosphorus sorbed to inorganic (mineral) and organic particles, including phosphorus contained within algae. Dissolved inorganic phosphate (orthophosphate) is the form required by plants for growth. Animals can utilize either organic or inorganic phosphate. The analytical procedure for measuring total phosphorus, which includes a sulfuric acid extraction, accounts for all forms of phosphorus, both dissolved and particulate, including phosphorus contained in algae.

Orthophosphates are immediately available in the aquatic environment for algal uptake. Natural processes produce orthophosphates, but major man-influenced sources include: partially treated and untreated sewage; runoff from agricultural sites; and application of some lawn fertilizers.

Orthophosphate concentrations in a water body vary widely over short periods of time as plants take it up and release it.

Polyphosphates are used for treating boiler waters and in detergents. Also, polyphosphates are used in drinking water treatment in many municipalities. In water, polyphosphates are unstable and will eventually convert to orthophosphate and become available for plant uptake.

Organic phosphates (particulate and dissolved) are bound or tied up in plant or animal tissue, waste solids, or associated with other organic matter. Organic phosphates are formed primarily by biological processes. They are contributed to sewage by body waste and food residues, and also may be formed from orthophosphates in biological treatment processes or by receiving water biota. After

Date: January 16, 2004

Page: 3

decomposition, the organic form can be converted to orthophosphate as a result of microbially-induced mineralization of phosphorus-containing organic matter.

Not all forms of phosphorus are utilized to the same degree or at the same rate by plants and microbial communities. Association of phosphorus with particulate or organic matter reduces bioavailability; such forms of phosphorus are immediately unavailable for uptake by algae. While a significant amount of phosphorus can enter water bodies in an immediately unavailable form, there is the potential for this unavailable phosphorus to undergo physical or chemical cycling process that may convert it (all or partially) to the readily bioavailable form of phosphorus, orthophosphate. For example, the decomposition of organic matter by microbial activities can result in mineralization of phosphorus to orthophosphate. Desorption or dissolution of particle-associated phosphate represents another mechanism of conversion from unavailable to bioavailable forms.

In an assessment of the biological effects of phosphorus, it is important to consider the rate at which unavailable forms of phosphorus become bioavailable within the receiving waters. This is true, since the rate of conversion of unavailable but potentially-bioavailable phosphorus to readily bioavailable phosphorus competes in time with the rate of other processes, for example: adsorption; precipitation; sedimentation; and dilution. Though readily bioavailable phosphorus, orthophosphate, is directly responsible for plant growth, total phosphorus is an equally important indicator of a water body's nutrient status because of these internal cycling processes.

DePinto *et al.* (1986) characterized phosphorus into three forms: orthophosphate – immediately bioavailable for algal uptake; external ultimately-available phosphorus – not immediately available but ultimately converted to orthophosphate at a specific rate; and external refractory phosphorus – not available while in the water column. Total bioavailable phosphorus is then comprised of orthophosphate and the external ultimately-available phosphorus. It is indeed the bioavailable phosphorus that affects the algal production in the aquatic environment in combination with other nutrients (e.g. nitrogen and silicon), light, and temperature. Methodologies for the analysis of the bioavailable phosphorus content of water samples are presented in Attachment A.

Within the aquatic environment, plants, algae, and animals take in orthophosphate and convert it to organic phosphorus as it becomes part of their tissues. After algal death, the phosphorus associated with the minimum cell quota becomes unavailable and the phosphorus that is in excess of internal

Date: January 16, 2004

Page: 4

level becomes readily bioavailable (Bierman *et al.*, 1980). The unavailable form can remain in water or can settle to the bottom, where bacterial decomposition converts it back to inorganic phosphorus. This inorganic phosphorus re-enters the water column when the bottom gets stirred up by animals, chemical interactions, and water currents. Then it is taken up by plants and the cycle begins again.

Bioavailable Phosphorus Fractions in Individual Point and Nonpoint Sources of Phosphorus

Different sources provide water bodies with a variety of the forms of phosphorus described above, in variable proportions. Phosphorus in lakes and streams comes from both point and nonpoint sources. Point sources are typically publicly-owned wastewater treatment plants (POTWs) and permitted industrial discharges. Point sources usually have distinct pipe discharges to surface water and are regulated under state and federal water pollution permit programs. Phosphorus discharged from wastewater treatment plants may come into the plant from a variety of sources. Nonpoint sources are typically polluted runoff from cities and farmland, erosion and sedimentation, atmospheric deposition, direct input by animals and wildlife, and natural decomposition of rocks and minerals. Nonpoint sources do not have distinct discharge points and are not typically regulated under State water pollution permit programs.

A comprehensive literature search and review was conducted to compile available information on the bioavailable phosphorus fractions of individual point and nonpoint sources of phosphorus to surface waters. The results of this literature review are presented in the following discussion.

Bioavailable Phosphorus in POTW Effluent

The bioavailable phosphorus fraction in POTW effluent is generally assumed to be high compared to that of other sources to surface waters (Lee *et al.*, 1980). Young *et al.* (1982) sampled the effluent from four municipal treatment plants in the vicinity of the Great Lakes during the summer of 1979 for bioavailable phosphorus. They conducted bioassays where measurement of phosphorus taken up by *Scenedesmus* sp. provided the measure of bioavailable phosphorus fraction. They developed a series of relationships among different forms of phosphorus. The following is a summary of those relationships.

Date: January 16, 2004

Page: 5

On average, 82% of the dissolved phosphorus was bioavailable in the short term (less than 30 days from sample collection). The relationship was:

$$BADP = 0.82 \ TDP - 0.03$$

where: *BADP* is the bioavailable dissolved phosphorus and *TDP* is the total dissolved phosphorus.

Orthophosphate was a major component of the dissolved phosphorus (69% on average). Moreover, the regression coefficient relating bioavailable dissolved phosphorus to orthophosphate was unity, indicating that the orthophosphate fraction was totally available.

For particulate phosphorus, they found that the bioavailable particulate phosphorus correlated closely with the total particulate phosphorus fractions. On average (with the samples taken from the effluent of the four wastewater treatment plants), 55% of the total particulate phosphorus was bioavailable in the short term (again, less than 30 days). The relationship was:

$$BAPP = 0.55 TPP + 0.02$$

where: *BAPP* is the bioavailable particulate phosphorus and *TPP* is the total particulate phosphorus.

The relationship between the ultimately bioavailable dissolved phosphorus (became bioavailable after 30 days) and total dissolved phosphorus was:

$$UADP = 0.99 TDP - 0.04$$

where: *UDAP* is the ultimately bioavailable dissolved phosphorus and *TDP* is the total dissolved phosphorus.

The relationship between the ultimately bioavailable particulate phosphorus and total particulate phosphorus was:

$$UAPP = 0.63 TPP + 0.013$$

where: *UAPP* is the ultimately bioavailable particulate phosphorus and *TPP* is the total particulate phosphorus. This relationship was obtained when bioavailable phosphorus

Date: January 16, 2004

Page: 6

was regressed on total particulate phosphorus for raw influent, biological effluent, and final effluent of the wastewater treatment plants.

The relationship between the ultimately available phosphorus and total phosphorus was:

$$UAP = 0.83 TP + 0.035$$

where: *UAP* is the ultimately available phosphorus and *TP* is the total phosphorus.

Data from the wastewater treatment plants indicated that 83% of the total wastewater phosphorus in those effluent samples was ultimately available.

Results of Bioavailable Phosphorus Sampling of Minnesota POTWs

In addition to the information gathered from the literature review, effluent from eight Minnesota POTWs was sampled between October 13 and October 17, 2003. Grab samples were collected by Barr Engineering with facilitation from the MPCA. The samples were analyzed for total phosphorus and orthophosphate. The ultimately bioavailable particulate phosphorus was estimated using the relationship developed by Young *et al.* (1982) described above.

The results of this analysis are presented in Table 1. The bioavailable phosphorus fraction in these samples ranged from 75-96%, with an average of 85.5%, which is typical for POTW effluents based on the results of the literature review. Measured particulate phosphorus concentrations also are consistent with expected range based on the literature. Chemical and biological phosphorus removal is implemented at all of these POTWs with the exception of Albert Lea and Wilmar. Albert Lea and Wilmar also have industrial discharges to the POTW that contain high phosphorus levels.

Date: January 16, 2004

Page: 7

Table 1: Estimated bioavailable phosphorus (BAP) fractions of samples collected from the final effluent of eight Minnesota POTWs.

City	TSS (mg/L)	Total P mg/L)	Orthophosphate (mg/L)	Particulate P (mg/L)	Ultimately Bioavailable Particulate P (mg/L) [0.63TPP+0.013]	Particulate BAP fraction	Total BAP fraction
Albert Lea	< 5.0	5.32	4.31	1.01	0.65	0.64	0.93
Alexandria	< 5.0	0.187	0.102	0.085	0.07	0.78	0.90
St. Cloud	< 5.0	0.250	0.068	0.182	0.13	0.70	0.78
Fergus Falls	< 5.0	0.166	0.019	0.147	0.11	0.72	0.75
Mankato	11	2.04	1.57	0.47	0.31	0.66	0.92
MCES-Metro	< 5.0	0.293	0.130	0.163	0.12	0.71	0.84
Rochester	13	0.948	0.286	0.662	0.43	0.65	0.76
Wilmar	10	7.24	6.41	0.83	0.54	0.65	0.96

Bioavailable Phosphorus in Runoff

The contribution of phosphorus from nonpoint sources of runoff has rarely been clearly defined, largely because point sources are often the major and more controllable source of phosphorus loads (Sharpley *et al.*, 2000). In addition, phosphorus losses in land runoff are difficult to quantify due to their diffuse nature. The transfer of phosphorus from terrestrial to aquatic systems in runoff can occur in dissolved and particulate forms. Phosphorus loading from nonpoint sources depends on a large number of factors, such as geology and hydrology of the region, land use, and population density. For example, sandy soils have less retention of phosphorus than clays and high slope and high runoff lead to lower retention.

Caraco (1995) found that population density was related to orthophosphate export from watersheds and predicted 47% of the variation in orthophosphate export in the dataset from 32 large rivers. Other variations could be related to the geochemical factors that alter orthophosphate in rivers or could be due to variability in human behaviors that lead to variable phosphorus export. For example, human agricultural practices, soil composition, diets, detergent use, and extent of sewer services and sewage treatment can vary greatly between different areas. Phosphorus loss from land not only affects the surface runoff, but also gets transferred in subsurface flow (Gaynor and Findley, 1995; Lennox *et al.*, 1997; Haygarth *et al.*, 1998; and Withers *et al.*, 1999).

Date: January 16, 2004

Page: 8

It has been shown that the orthophosphate concentration in surface runoff is related to the soil phosphorus concentration in the topsoil (McDowell and Sharpley, 2001). For example, Pote *et al*. (1996) found that that the orthophosphate concentration in surface runoff was linearly related to phosphorus extracted by Mehlich-3 (r^2 of 0.72), Bray-I (r^2 of 0.75), Olsen (r^2 of 0.72), distilled water (r^2 of 0.82), iron oxide paper (r^2 of 0.82), acidified ammonium oxalate (r^2 of 0.85), and phosphorus sorption saturation (r^2 of 0.77).

Surface runoff from grassland, forest land or nonerosive soils carries little sediment and is generally dominated by dissolved phosphorus, although phosphorus transport attached to colloidal material also may be important where land is overstocked (Haygarth and Jarvis, 1997; Simrad *et al.*, 2000). Sharpley *et al.* (1995) also reported that runoff from grass and forestland carries little sediments, and is therefore, generally dominated by orthophosphate.

As reported by Sharpley *et al.* (1995), the discharge of organic and inorganic phosphorus in runoff from several Atlantic Coastal Plain watersheds was related to soil phosphorus composition. The high organic phosphorus content of forest soils (331 mg/kg; 70% of total phosphorus) contributed 51% of total phosphorus loss in runoff (0.31 kg/ha/y) as particulate organic phosphorus and 10% as dissolved organic phosphorus. For agricultural soils of lower organic phosphorus content (161 mg/kg, 25% of total phosphorus), only 32% of total phosphorus loss in runoff (2.41 kg/ha/y) was particulate organic phosphorus and 1% was dissolved organic phosphorus (Vaithiyanathan and Correll, 1992). Similarly, from 16 to 38% of phosphorus in runoff from Polish meadows and cultivated fields and as much as 70% of lake water phosphorus was bound to organic compounds (Szpakowska and Zyczynska-Baloniak, 1989). These losses varied seasonally, with both inorganic and organic phosphorus concentrations in canal and lake water decreasing during summer months (Ryszkowski *et al.*, 1989).

Estimates for urban runoff particulates, tributary particulates and lake sediments in the lower Great Lakes basins by bioassay methods have reported an average of 30% bioavailable phosphorus (Cowen and Lee, 1976; Williams *et al.*, 1980).

Bioavailable Phosphorus in Agricultural Runoff

The sources of phosphorus from agricultural land can include soil phosphorus, manure or fertilizer applications. Those sources of phosphorus emanate from a number of source areas within the landscape and their amount, form, and timing are very variable as a result of short-term and often

Date: January 16, 2004

Page: 9

unpredictable changes in hydrological conditions and farming practices, including crop rotation, the application of fertilizers and manures, or the movement of animals from one field to another (Lennox *et al.*, 1997).

Phosphorus may be transported to a water body from agricultural lands by leaching, runoff or erosion. The loss of phosphorus in surface runoff from agricultural lands occurs as particulate and dissolved forms (Haygarth and Sharpley, 2000). Particulate phosphorus includes phosphorus associated with soil particles and large molecular-weight or organic matter eroded during flow events and constitute the major proportion of phosphorus transported from most cultivated lands (60-90%, Pietilainen and Rekolainen, 1991).

Several studies have reported that the loss of dissolved phosphorus in surface runoff from agricultural land depends on the phosphorus content of surface soil (STP- soil test P concentration), but that the relationship varies with soil type, tillage, and crop management (Pote *et al.*, 1996; Sharpley *et al.*, 1996). Moreover, it will depend on the topography and soil hydrology.

James *et al.* (2002) used fractionation procedures and phosphorus adsorption-desorption assays to delineate bioavailable forms and refractory or unavailable forms of phosphorus in the runoff of the Redwood River basin, an agriculturally-dominated tributary of the Minnesota River. Over several storm periods monitored in 1999, 75% of the phosphorus load originating from the watershed was in bioavailable forms while only 25% was in refractory forms. Bioavailable particulate forms included phosphorus loosely bound to suspended sediments (19%), phosphorus bound to iron (11%), and bioavailable particulate organic phosphorus (14%). After runoff discharges to receiving waters, the former two forms of bioavailable particulate phosphorus can be transformed to dissolved forms that are available to biota for uptake via eH and pH reactions and kinetic processes, while the latter form can be mineralized via decomposition processes. Bioavailable dissolved forms included orthophosphate and dissolved organic phosphorus.

Several studies have suggested that agricultural management may influence the bioavailability of phosphorus transported in runoff (McDowell and McGregor, 1980; Wendt and Corey, 1980). Concentration and amounts of bioavailable phosphorus in runoff from corn (*Zeamays* L.) were lower from no till compared to conventionally tilled plots under simulated rainfall (Andraski *et al.*, 1985; Mueller *et al.*, 1984). Bioavailable phosphorus in these studies was measured by resin extraction of

Date: January 16, 2004

Page: 10

unfiltered runoff, and thus includes dissolved phosphorus plus phosphorus desorbed from sediment (Huettl *et al.*, 1979). However, Andraski *et al.* (1985) calculated that bioavailable phosphorus averaged 20% of total phosphorus and was not affected by tillage treatment.

Sharpley et al. (1992) assessed the impact of agricultural practices on phosphorus bioavailability in runoff by determining dissolved phosphorus, bioavailable particulate phosphorus, and particulate phosphorus in runoff from 20 watersheds (in the Southern Plains region of Oklahoma and Texas) unfertilized and fertilized, grassed and cropped watersheds over a 5-yr period. Although bioavailable phosphorus and bioavailable particulate phosphorus losses in runoff were reduced by agricultural practices minimizing runoff and erosion, the proportion of phosphorus transported in bioavailable forms increased. Both total phosphorus (14-88% as bioavailable phosphorus) and particulate phosphorus (9-69% as bioavailable particulate phosphorus) bioavailability varied appreciably with agricultural practices. Thus, bioavailable phosphorus is a dynamic function of physical and chemical processes controlling both dissolved phosphorus and bioavailable particulate phosphorus transport. Dissolved phosphorus transport depends on desorption-dissolution reactions controlling phosphorus release from soil, fertilizer reaction products, vegetative cover, and decaying plant residues. Bioavailable particulate phosphorus is a function of physical processes controlling soil loss and particle-size enrichment and chemical properties of the eroded soil material governing phosphorus sorption availability. The authors also found that the percent bioavailability of particulate phosphorus transported in runoff from each of these watersheds decreased with an increase in sediment concentration of runoff averaged for each watershed. They found a linear regression relationship between particulate phosphorus availability and logarithm of sediment concentration (with $r^2 = 0.84$):

Particulate Phosphorus Bioavailabilty (%) = $82 - 15 \log$ sediment conc. (g/L)

This relationship may be attributed to an increased transport of silt- and sand-sized (>2 µm) particles, of lower phosphorus content than finer clay-sized (<2 µm) particles, as sediment concentration of runoff increases. Further, particulate phosphorus bioavailability may decrease with an increase in size of eroded soil particles, which contain less sorbed phosphorus and more primary mineral phosphorus (i.e., apatite) of lower availability compared with finer clay-sized particles (Dorich *et al.*, 1984; Sharpley *et al.*, 1981; Syers *et al.*, 1973).

Date: January 16, 2004

Page: 11

O'Connor *et al.*, (2002) compared phosphorus bioavailability of biosolids, manures and fertilizer. They found that phosphorus bioavailability was greater for phosphorus-fertilizer than manures and biosolids. However, if biological phosphorus removal is implemented in the treatment process, phosphorus in biosolids tends to be as bioavailable (74% to 132%) as fertilizer phosphorus. Note that values greater 100% are a result of the uncertainty in the analytical methods used to measure phosphorus forms.

A study conducted by Ekholm and Krogerus (2003), with samples from different sources, concluded that phosphorus in agricultural runoff appeared to be more bioavailable to algae (31%) than phosphorus in forest runoff (16%).

Bioavailable Phosphorus in Atmospheric Deposition

The contribution of phosphorus in rainfall can play an important part in the phosphorus cycle of oligotrophic sites (Carlisle *et al.* 1966; Miller 1961). For Lake Michigan, Murphy and Doskey (1975) reported a 30-fold greater total phosphorus concentration in rainfall than in lake water. Since 25-50% of the total phosphorus in rainfall is soluble, it is directly available to organisms in the lake (Murphy and Doskey 1975; Peters 1977). As a result, most of the enrichment of Clear Lake, Ontario (Schindler and Nighswander 1970) and of several Wisconsin Lakes (Lee 1973) has been attributed to rainfall (Sharpley *et al.* 1995).

The bioavailability of dry deposition or the particulate fraction of wet deposition can be characterized by the bioavailability of phosphorus in the soils in the region.

Increases in the atmospheric deposition of phosphorus may result from annual climatic changes (Sharpley *et al.* 1995). For example, the input of phosphorus in rainfall to an Oklahoma watershed in 1981 (208 g/ha/yr) was much greater than that in either 1982 (49 g/ha/yr) or 1983 (41 g/ha/yr) (Sharpley *et al.* 1985). This increase was attributed to the low annual rainfall in 1980 (642 mm, 105 mm below average). The drier soil was more susceptible to wind erosion and the airborne material increased the phosphorus content of subsequent rainfall and dry deposition.

Date: January 16, 2004

Page: 12

Comparison of Phosphorus Bioavailability from Different Sources

Many forms of particulate matter in the waters of the State of Minnesota contain a certain amount of bioavailable phosphorus, the actual rate and extent of release of the bioavailable component depends on the physical and chemical characteristics of the material. It also depends on the biological characteristics as well, as the population of the micro-organisms in the suspended material mineralizes the organic detritus material. Young et al. (1995) have compared the relative bioavailability of particulate phosphorus from various sources to the Great Lakes by comparing the bioavailable phosphorus in particulate matter from point sources (wastewater suspended solids), and nonpoint sources (suspended solids and bottom sediments from tributaries, lake bottom sediments, and eroding bluff solids from the region). A wastewater treatment plant at Ely, Minnesota was also sampled and it showed the highest rate of release of bioavailable particulate phosphorus (0.27 grams released/gram particulate phosphorus/day, or 0.27/day) among the point and nonpoint sources sampled in that study (Young and DePinto, 1982). The release rate did appear to decline in magnitude as treatment of wastewater progressed from the raw influent → biologically treated effluent \rightarrow final effluent (i.e., 0.30 /day \rightarrow 0.27 /day \rightarrow 0.20 /day). Young and DePinto (1982) summarized the results on relative bioavailability of particulate phosphorus for the point and nonpoint sources (Table 2).

Table 2: Relative bioavailability of particulate phosphorus from various sources to the lower Great Lakes (Young and DePinto 1982)

With respect to total particulate phosphorus:

Wastewater ($\leq 80\%$)

Bottom sediments ($\leq 50\%$)

Tributary suspended sediment (≤ 40%)

Eroding bluff (~0)

With respect to rate of release:

Wastewater ($\leq 0.4 / day$)

Tributary suspended sediment ($\leq 0.2 / \text{day}$)

Bottom sediment ($\leq 0.1 / day$)

Eroding bluffs (~ 0)

Date: January 16, 2004

Page: 13

Ekholm and Krogerus (2003) analyzed 172 samples (during 1990-2000) representing phosphorus in point and nonpoint sources and in lacustrine matter. The bioavailability of phosphorus expressed as the proportion of potentially bioavailable phosphorus ranged from 3.3 to 89% (Table 3).

Table 3: Proportion of bioavailable phosphorus in total phosphorus by different sources (Ekholm and Krogerus 2003).

	Bioavailab	le P (% of Tot-P)
Source	Mean	MinMax.
Wastewater effluent from rural population	89	74-98
Biologically treated urban wastewater effluent	83	61-103
Dairy house wastewater	69	27-93
Biologically and chemically treated wastewater effluent	36	0-67
Field runoff	31	15-50
Industrial wastewater effluent	30	4-89
Fish fodder and feces	29	9-72
Large Rivers water	20	3-45
Agricultural rivers	20	12-30
Field surface soils	19	6.8-24
Forest runoff	16	0-55
Lake settling matter	7.9	1.6-21
Lake bottom sediments	3.3	0.1-11

Summary of Literature Review

The above review covers as much research and data from phosphorus bioavailability studies as could be found in the available time and resources. There is a desire to estimate the fraction of phosphorus in each potential source category identified by the MPCA as contributing phosphorus to Minnesota waters. However, the bioavailability of some of these individual source categories has not been studied; therefore, we were not able to find directly applicable estimates for bioavailable fractions in the literature. The general categories for which data are available include: municipal wastewater treatment plants, agricultural, forest and urban runoff, and atmospheric deposition.

While the dissolved phosphorus from any of these sources can generally be assumed to be 100% bioavailable, the particulate phosphorus associated with these various source categories in general exhibit a wide range of bioavailability.

Date: January 16, 2004

Page: 14

For point sources, the fraction of total phosphorus in the discharge that is bioavailable is not only governed by the sources of phosphorus to the treatment plant influent (e.g., human wastes, household cleaners, groundwater infiltration, etc.) but it will be dependent on the treatment train being employed within the plant. Data are generally available for wastewater treatment plant influent and effluent, however not for all individual phosphorus source categories. Knowing, however, that household cleaners and detergents are amended with polyphosphates, it is reasonable to assume that virtually 100% of these categories will ultimately become available by hydrolysis to orthophosphates.

For nonpoint sources, the input of total phosphorus and bioavailable phosphorus will be strongly dependent on the land use from which the phosphorus load is derived (e.g., agricultural runoff will be different from forestland runoff). Furthermore, agricultural practices can affect bioavailable phosphorus appreciably. Another determinant is the surficial geology within the watershed. We have seen, for example, that phosphorus associated with calcareous minerals like apatite is much less bioavailable than phosphorus adsorbed to iron-oxide minerals. At any rate the particulate phosphorus in non-point sources derived from land runoff tends to be less bioavailable than point source particulate phosphorus.

Bioavailable phosphorus fractions for each of the specific source categories of interest were estimated by combining the results of the literature review with best professional judgment to specify a most likely value for a number of the phosphorus source categories listed by the MPCA as being of interest. A range was also estimated in an attempt to cover the potential range site-specific determinations might show. These estimates are presented in Table 4. These estimates of bioavailable fraction should be used with care, understanding the uncertainty inherent in each estimate. Nevertheless, they can be used to assess relative contributions of bioavailable phosphorus from the source categories to assist in planning additional data collection or targeting specific sources for control.

As evident from the literature review, wide ranges of bioavailable fractions were noted for runoff sources, while estimation techniques for the bioavailable fraction from POTW effluent were better quantified. Future refinements to the estimation of bioavailable fractions of various phosphorous sources would be benefited by additional sample collection and analysis to best represent the source of interest.

Table 4. Estimates of Bioavailable Phosphorus Fractions for Specific Source Categories.

	Phosphorus Sources		Fraction of PP that is Bioavailable (Range)	Fraction of PP that is Bioavailable (Most Likely)	Fraction of DP that is Bioavailable (Most Likely)	Fraction of TP that is Particulate (Most Likely)	Estimate of TP that is Bioavailable (Most Likely)
		Automatic Dishwasher Detergent	NA	NA	1.0	0.0	1.0
		Dentifrices (toothpastes)	0 – 0.1	0.05	NA	1.0	0.05
		Other Household Cleaners or Non- ingested Sources	NA	NA	1.0	0.0	1.0
	Phosphorus Sources to POTWs	Food Soils/Garbage Disposal Wastes	0.7 - 0.9	0.8	1.0	0.9	0.8
		Human Waste Products	0.7 - 0.9	0.8	1.0	0.3	0.94
		Raw/Finished Water Supply	0.4 - 0.6	0.5	1.0	0.1	0.95
Point Sources		Groundwater Intrusion (I&I)	0.2 - 0.5	0.3	1.0	0.5	0.65
		Process Water	0.2 - 1.0	0.7	1.0	0.1	0.97
		Noncontact Cooling Water	0.4 - 0.8	0.6	1.0	0.3	0.88
		Car Washes	0.2 - 0.8	0.5	1.0	0.3	0.85
		POTW Effluent	0.6 – 0.8	0.7	1.0	0.5	0.855
		d Wastewater Treatment Systems for omestic Use (effluent)	0.6 - 0.9	0.8	1.0	0.3	0.94
	Commercial	Industrial Wastewater Treatment Systems (effluent)	0.2 - 0.8	0.6	1.0	0.3	0.88

	Phosphorus Sources			Fraction of PP that is Bioavailable (Most Likely)		Fraction of TP that is Particulate (Most Likely)	Estimate of TP that is Bioavailable (Most Likely)
	Individual Sewage Treatme	ent Systems	0.6 - 0.9	0.8	1.0	0.2	0.96
	Agricultural Runoff	Improperly Managed Manure	0.5 - 0.7	0.6	1.0	0.5	0.80
		Crop Land Runoff	0.2 - 0.7	0.4	1.0	0.7	0.58
	Urban Runoff	Turfed Surfaces	0.2 - 0.7	0.4	1.0	0.7	0.58
Non-Point		Impervious Surfaces	0.10 - 0.5	0.2	1.0	0.5	0.60
Sources	Forested Land	0.2 - 0.5	0.3	1.0	0.8	0.44	
	Roadway and Sidewalk Deicing	salt	0.2 - 0.8	0.6	1.0	0.2	0.92
	Chemicals	sand	0.1 - 0.3	0.2	1.0	0.8	0.36
	Stream Bank Eros	Stream Bank Erosion			1.0	0.8	0.44
	Atmospheric Deposition	Dry	0.05 - 0.4	0.2	NA	1.0	0.2
	Authosphieric Deposition	Wet	0.05 - 0.4	0.2	1.0	0.6	0.5

Date: January 16, 2004

Page: 17

Basin-wide Annual Phosphorus Discharge Calculations

Basin-specific analyses of existing hydrologic and water quality data were conducted to develop estimates of the annual total and bioavailable phosphorus discharge for each of the major Minnesota surface water basins. All annual calculations were based on the water year (October-September). While these calculations do not provide direct information on the specific point and nonpoint sources contributing to each basin, they can be used in a number of ways: 1) provide a check on the sum of point and nonpoint phosphorus loads for each basin; 2) provide a relative comparison between basins of annual phosphorus loads, yields, and ambient surface water concentrations and compare to land uses in the basins; and 3) provide some initial understanding of the relative water quality benefits to be gained by phosphorus source controls.

Methodology

For each major basin, basin-specific characteristics and data were compiled and analyzed. This information included drainage area and approximate land cover percentages as presented in separate technical memorandums for this project. Land uses were taken from USGS National Land Cover Database (1992). Soil phosphorus content for each major basin was estimated from soil phosphorus data compiled by Dr. Mulla at the University of Minnesota, Department of Soil, Water and Climate. Bray phosphorus values for all counties except Anoka (no data available there) were available in GIS format. Bray-P values were converted to soil total phosphorus content using the following two-step conversion provided by Dr. Mulla:

To covert to Bray-P to soil total phosphorus content:

Olsen-P =
$$0.7117 * (Bray-P)$$

Soil Total Phosphorus Content [mg/kg] = 3.3173 * (Olsen-P) + 453.79

The conversion of Bray-P to total phosphorus is applicable on a state-wide basis. Soil total phosphorus content values were then area-weighted and used to calculate area-weighted average soil total phosphorus content for each major basin. The results of this analysis are presented in Table 5.

Date: January 16, 2004

Page: 18

Table 5: Average soil phosphorus content for each Basin in Minnesota.

Major Basin	Area (sq. mi.)	Area-weighted Bray-P	Area-weighted Average Soil Total Phosphorus Content (mg/kg)
Cedar River	1,028	32.21	529.84
Des Moines River	1,535	23.04	508.18
Lake Superior	6,149	28.91	522.04
Lower Mississippi (Below St. Croix)	6,317	39.35	546.69
Minnesota River	14,933	24.37	511.33
Missouri	1,782	13.69	486.10
Rainy River	11,236	25.65	514.36
Red River	17,741	18.02	496.34
St. Croix River	3,528	41.19	551.03
Upper Mississippi (Above St. Croix)	20,100	29.70	523.90
Statewide	84,349	26.48	516.30

Representative USGS flow gauges were selected for each basin. These gauges are a subset of the gauges selected for analyses of hydrologic conditions, as presented in the Basin Hydrology Technical Memorandum. Flow rate and water quality data were compiled for these gauges. Water quality data available from the Minnesota Pollution Control Agency (MPCA) was also compiled for water quality sampling locations at or near the representative USGS gauging stations. This data included results of queries of the Environmental Data Access (EDA) database, available on-line and containing data for calendar years 1985-1992. MPCA queries of recent STORET data provided a third source of water quality data. Finally, data from the USGS Long Term Resource Monitoring Program (LTRMP) were compiled for stations in the Lower Mississippi basin. Parameters of interest included suspended sediment (analyzed as either suspended sediment concentrations (SSC)), total nonfilterable residue or total suspended solids (TSS)), total phosphorus (TP), and total dissolved phosphorus or orthophosphate (both assumed to represent total dissolved phosphorus (TDP) for this analysis). Water quality data collected from 1979 to the present were considered for use in these analyses.

Date: January 16, 2004

Page: 19

When available data permitted, concurrent flow suspended sediment, total phosphorus, and total dissolved phosphorus data were plotted and a simple power function was fit to the data (y=aQ^b). While more complex methods are available for developing rating curves, the power function has proven to be an efficient means of relating suspended sediment and phosphorus concentrations to flow (Dolan *et al.*, 1981; Asselman, 2000; and Horowitz, 2002). Best professional judgment was used to determine whether the relationship was better represented by a simple average of the water quality parameter when the correlation coefficient for the fitted power function was very small (typically less than 0.1).

Following the development of rating curves for solids, total phosphorus, and total dissolved phosphorus, the fitted power equations, and in some cases simple averages, were applied to calculate concentrations for daily flow values for the water years identified as representing low, average and high flow conditions in each watershed. Particulate phosphorus was calculated as the difference between the total phosphorus and total dissolved phosphorus predictions. If sufficient total dissolved phosphorus or orthophosphate measurements had not been available to develop a rating curve, particulate phosphorus concentrations could have been estimated by multiplying the predicted suspended sediment concentration by the soil total phosphorus content for that basin, and then adjusting the resulting value with a potency factor. The potency factor is a site-specific calibration parameter accounting for such things as land use and agricultural practices.

When sufficient data was available for TP and TDP rating curves: $Total\ Particulate\ Phosphorus\ (TPP) = TP - TDP$

When insufficient data for TDP rating curves:

TPP = Suspended Sediment (SS) * Soil Phosphorus Content * Potency Factor (PF)

Bioavailable fraction of particulate phosphorus was estimated based on the results of the literature review and the recent water quality data collected as part of this project. The literature review produced values ranging from 5% to 40% of suspended sediment particulate phosphorus being bioavailable (see Attachment B for more details). Between September 24, 2003 and October 21, 2003, MPCA, with facilitation from Barr, collected one 10-liter stream sample from each of the ten major watersheds and analyzed the samples using a base-extractable inorganic P testing procedure adapted from Young *et al.* (1988). The results of these analyses are presented in Table 6.

Date: January 16, 2004

Page: 20

These watershed-specific samples resulted in a range of 3%-31% of particulate phosphorus as bioavailable, consistent with the literature review results. Because a single sample from each watershed does not provide much certainty, a statewide average value of 18% was applied in the calculations.

Subsequent to calculating the solids and phosphorus concentrations and fractions bioavailable, the daily mass loading rates were calculated using flow and concentration and then summed over the water years of interest.

Table 6: Estimated BAP fractions of samples collected from ten Minnesota rivers.

Basin/Date/ Location/ID	Solids, total suspend ed (mg/L)	Phosphorus, total (mg/l)	Particulate Phosphorus (mg total P/g dry weight solids)	Orthophospha te (mg/L)	Particulate Phosphorus, NaOH Extractable (mg/l)	Particulate NaOH Extractable Phosphorus (mg of NaOH extractable P/g dry weight solids)	Bioavailable Particulate P (mg P/g) [(Ultimately avail PP = 1.08 NaOH -P-0.008)]	Bioavailable Particulate Phosphorus Fraction
Lake Superior	Basin							
Date: 10/13/200	3							
BRULE R UPS	TRM OF US-6	1 AT JUDGE CR	MAGNEY PARK					
BRU-0.4	<5.0	0.014		<0.006				
BRU-0.4 Solids	<100	0.185	2.8		0.012	0.106	0.11	0.038
BRU-0.4 Solids	<100	0.149	2.25		0.007	0.063	0.06	0.027
BRU-0.4	<100	0.169	2.55		0.007	0.063	0.06	0.024
Solids							Average =	3%
Cedar River Ba Date: 10/08/200 CEDAR RIVER	13	3 MILES SOUTH	OF AUSTIN					
CD-10	48	0.694		0.570				
CD-10 Solids	740	7.69	10.4		0.171	1.4	1.49	0.143
CD-10 Solids	830	7.71	9.3		0.217	1.6	1.69	0.182
CD-10 Solids	1300	7.47	5.7		0.435	2.0	2.16	0.376
							Average =	23%
Minnesota Rive							•	
Date: 10/14/200	-							
		DING LIGHTS FT	. SNELLING PK					
MI-3.5	18	0.124		0.037				
MI-3.5 Solids	1200	5.43	4.5		0.089	0.4	0.47	0.104
MI-3.5 Solids	1100	5.29	4.8		0.079	0.4	0.46	0.095
MI-3.5 Solids	1100	5.40	4.9		0.080	0.4	0.46 Average =	0.094 10%

Basin/Date/ Location/ID	Solids, total suspend ed (mg/L)	Phosphorus, total (mg/l)	Particulate Phosphorus (mg total P/g dry weight solids)	Orthophospha te (mg/L)	Particulate Phosphorus, NaOH Extractable (mg/l)	Particulate NaOH Extractable Phosphorus (mg of NaOH extractable P/g dry weight solids)	Bioavailable Particulate P (mg P/g) [(Ultimately avail PP = 1.08 NaOH -P-0.008)]	Bioavailable Particulate Phosphorus Fraction
Red River Basi	n							
Date: 10/12/200)3							
OTTER TAIL R	BRIDGE ON	4TH ST N AT BR	ECKENRIDGE					
OT-RIV	12	0.036		<0.006				
OT-RIV	1400	1.61	1.2		0.073	0.3	0.33	0.287
Solids								
OT-RIV	1300	1.60	1.2		0.037	0.2	0.18	0.143
Solids OT-RIV	1300	1.62	1.2		0.037	0.2	0.18	0.142
Solids	1300	1.02	1.2		0.037	0.2	0.10	0.142
							Average =	14%
Lower Mississi	ppi River Ba	sin					-	
Date: 09/24/200								
ROOT RIVER A	T BRIDGE O	N MN-26 3 MI EA	ST OF HOKAH					
RT-3	15	0.054		0.037 h				
RT-3 Solids	1500	2.12	1.4		0.044	0.2	0.18	0.129
RT-3 Solids	1600	2.12	1.3		0.048	0.2	0.19	0.141
RT-3 Solids	1600	2.00	1.3		0.042	0.2	0.16	0.130
					V.V.=	V. -	Average =	13%
Lake Superior	Rasin						Avolugo =	1070
Date: 10/13/200								
		E ON MN-23 AT F	OND DILLAC					
SL-9	<5.0	0.029		0.006				
SL-9 Solids	190	0.508	2.7		0.024	0.8	0.81	0.303
SL-9 Solids	140	0.479	3.4		0.023	1.0	1.06	0.309
SL-9 Solids	140	0.515	3.7		0.025	1.1	1.15	0.312
3L-9 3011us	140	0.515	3.1		0.025	•••	Average =	31%
St. Croix River	Pacin						Average =	3170
Date: 10/06/200								
		AT CCALLO O MIL	NE OF DINE CITY					
SN-10: SNAKE SN-10	: K BKIDGE / 9	AT CSAH-9, 2 MI I 0.051		-0.006				
-	_		 E 4	<0.006		4.4	4.50	0.005
SN-10 Solids	980	4.99	5.1		0.228	1.4	1.50	0.295
SN-10 Solids	1000	4.87	4.9		0.241	1.4	1.55	0.319
SN-10 Solids	1100	5.01	4.6		0.232	1.3	1.36	0.298

Date: Page:

23

Basin/Date/ Location/ID	Solids, total suspend ed (mg/L)	Phosphorus, total (mg/l)	Particulate Phosphorus (mg total P/g dry weight solids)	Orthophospha te (mg/L)	Particulate Phosphorus, NaOH Extractable (mg/l)	Particulate NaOH Extractable Phosphorus (mg of NaOH extractable P/g dry weight solids)	Bioavailable Particulate P (mg P/g) [(Ultimately avail PP = 1.08 NaOH -P-0.008)]	Bioavailable Particulate Phosphorus Fraction
		_					Average =	30%
Upper Mississi		sin						
Date: 10/14/200	-	DWODKO NITAK	E AT EDIDLEY					
	_	RWORKS INTAK		0.000				
UM-859	8	0.041		0.006		4.0	4.05	0.000
UM-859 Solids	410	1.81	4.4		0.086	1.3	1.35	0.306
UM-859	390	1.81	4.6		0.087	1.3	1.44	0.310
Solids								
UM-859	420	1.85	4.4		0.088	1.3	1.35	0.306
Solids							Average =	31%
Missouri River	Basin						, wordgo	3.70
Date: 10/21/200	03							
ROCK RIVER E	BR ON STATE	ELINE RD 10 MI S	OF LUVERNE					
RO-0	5	0.055		0.012				
RO-0 Solids	560	3.49	6.2		0.121	1.3	1.39	0.223
RO-0 Solids	520	3.44	6.6		0.119	1.4	1.47	0.223
RO-0 Solids	540	3.34	6.2		0.119	1.3	1.42	0.230
							Average =	23%
Des Moines Ri	ver Basin						•	
Date: 10/21/200	03							
W FK DES MO	INES R CSAF	I-23 BRIDGE S OI	F PETERSBURG					
WDM-3	34	0.331		< 0.006				
WDM-3	2300	16.3	7.1		0.164	0.4	0.45	0.064
Solids								
WDM-3	2400	16.8	7.0		0.136	0.3	0.36	0.051
Solids WDM-3	2400	16	6.7		0.142	0.4	0.38	0.056
Solids	2400	10	0.7		0.142	0.4	0.30	0.000
							Average =	6%

⁻⁻ Not analyzed.

h EPA sample extraction or analysis holding time was exceeded.

Date: January 16, 2004

Page: 24

Results of Basin Discharge and Bioavailable Fraction Calculations

The results of the basin discharge calculations and resulting bioavailable fractions are presented in Tables 7, 8 and 9 and Figures 1-17. Attachment C contains summary sheets for each major basin and additional sheets when multiple locations were included in developing an estimate for an individual basin. Only one location was used in the Minnesota River, Upper Mississippi River and Des Moines River basins. In these cases, the discharge calculations were adjusted using a drainage area ratio multiplier (basin area:drainage area at monitoring location). No monitoring locations with sufficient water quality data were identified in either the Cedar River or Missouri River basins. For these cases, water quality relationships to flow from the Des Moines River basin were applied. The Des Moines, Cedar and Missouri River basins in Minnesota share similar land use characteristics and are located relatively close to each other. Multiple stations were used in the following basins: Lower Mississippi River; St. Croix River; Lake Superior; Rainy River; and Red River. In these cases, discharge calculations were conducted at monitoring locations in subwatersheds. The discharge calculations at each location were adjusted using a drainage area multiplier and then added within a basin such that the entire basin area was represented. In the case of the St. Croix River basin, the discharge calculations at the Snake and Kettle Rivers were used equally to represent the entire basin. In the case of the Lake Superior basin, a monitoring location on the St. Louis River represented the St. Louis River drainage area while a monitoring location on the Baptism River represented the remainder of the basin. In the case of the Rainy River basin, monitoring locations on the Rainy River and Little Fork Rivers were assumed to equally represent the entire basin. In the case of the Red River basin, monitoring locations in the Red Lake River and Otter Tail River watersheds represented their respective drainage areas, while a monitoring location on the Wild Rice River represented the remainder of the basin. All drainage area multipliers are presented in the summary sheets in Attachment C.

Annual suspended sediment yields ranged from 6.2 lbs/acre/yr for low flow years in the St. Croix River basin, to 73.9 lbs/acre/yr in the Minnesota River basin, and a statewide average of 31.4 lbs/acre/yr. During high flow years, suspended sediment yields were considerably higher, ranging from 21 lbs/acre/yr in the Lake Superior basin to 528 lbs/acre/yr in the Lower Mississippi River basin, and a statewide average of 215 lbs/acre/yr. Average flow conditions produced a statewide-suspended sediment area-weighted average of 104 lbs/acre/yr.

Date: January 16, 2004

Page: 25

Annual total phosphorus yields ranged from 0.023 lb/acre/yr during low flow years in the Lake Superior basin, to 1.056 lbs/acre/yr during high flow years in the Lower Mississippi River basin. The unusually high phosphorus yield in the Lower Mississippi River was based on two USGS gauging stations, one on the Cannon River at Welch, MN. Water quality data were somewhat limited at this site (28 total phosphorus samples) and showed no correlation with flow. An average total phosphorus concentration of 0.21 mg/l was applied in the discharge calculations. This site is influenced by an upstream discharge and may not be representative of other areas of the Lower Mississippi River basin. The other site was on the Root River near Beaver, MN. This site was selected to represent the remainder of the Lower Mississippi River basin outside of the Cannon River. USGS Long Term Monitoring Program (LTRMP) water quality data were available and showed a very strong response to increasing flows, with rapidly increasing solids and phosphorus concentrations with increases in flow. Water quality data were not available for significantly high flows and, therefore, extrapolation of the rating curves to higher flows than what were monitored is questionable. LTRMP data at a site on the Whitewater River were also evaluated and here too a very strong response to increasing flows was observed. Data at locations on the Zumbro River in the Lower Mississippi River basin were also evaluated but insufficient data were available to develop rating curves. Average flow conditions produced a statewide total phosphorus yield of 0.202 lb/acre/yr.

Total dissolved phosphorus yields were estimated as low as 0.005 lb/acre/yr in the Des Moines River, Cedar River, Missouri River, and Lake Superior basins during low flow years. The Cedar and Missouri River basins did not contain sufficient data to produce basin-specific estimates, but because of their proximity to the Des Moines River basin and similar land covers, the same rates were applied to these basins. High flow years produced total dissolved phosphorus yields as high as 0.312 lb/acre/yr in the Lower Mississippi River basin. Average flow conditions produced a statewide total dissolved phosphorus yield of 0.066 lb/acre/yr.

Particulate phosphorus yields during low flow conditions were lowest in the Red River basin at 0.024 lb/acre/yr. Particulate phosphorus yields were highest in the Lower Mississippi River basin at 0.744 lb/acre/yr during high flow years. Average flow conditions produced a statewide total particulate phosphorus yield of 0.136 lb/acre/yr.

All dissolved phosphorus was considered bioavailable, and 18% of the particulate phosphorus was considered bioavailable as discussed previously. Total bioavailable phosphorus yields were estimated

Date: January 16, 2004

Page: 26

as low as 0.008 lb/acre/yr in the Lake Superior basin during low flow years. High flow years produced total bioavailable phosphorus yields as high as 0.446 lb/acre/yr in the Lower Mississippi River basin. Average flow conditions produced a statewide total bioavailable phosphorus yield of 0.090 lb/acre/yr.

The resulting bioavailable fraction of total phosphorus ranged from 27% to 53% at low flow, with the lowest fraction in the Des Moines, Cedar and Missouri River basins, and the highest fraction in the Lower Mississippi River basin. During high flow conditions the range for total bioavailable phosphorus was 34% (Des Moines River, Cedar River, Missouri River, and Lake Superior basins) to 54% (Minnesota River basin). At average flow conditions the statewide bioavailable fraction was estimated at 45%.

Table 7: Summary of estimated annual basin discharge for low, average and high flow conditions.

	Estimat	ed Annual E	Basin Discl	harge (met	ric tons/yea	r)			
Basin	Area (sq. mi.)	Suspended Sediment	Total Phosphorus	Total Dissolved Phosphorus	Total Particulate Phosphorus	Total Bioavailable Phosphorus	Fraction Bioavailable		
			Low Flow			•			
Minnesota River	14,939	321,201	475	151	324	210	44%		
Upper Mississippi River	20,100	85,110	508	179	329	238	47%		
Lower Mississippi River	6,317	48,612	238	102	135	127	53%		
Des Moines River	1,535	4,566	20	2.2	18	5	27%		
Cedar River*	1,028	3,058	14	1.4	12	4	27%		
Missouri River*	1,782	5,300	24	2.5	21	6	27%		
St. Croix River	3,528	6,355	85	29	56	39	46%		
Lake Superior	6,149	13,537	42	8	33	14	35%		
Rainy River	11,236	132,422	223	85	137	110	49%		
Red River	17,741	151,146	188	66	122	88	47%		
Statewide	84,355	771,306	1,816	627	1,188	841	46%		
Average Flow Year									
Minnesota River	14,939	958,291	1,254	458	796	601	48%		
Upper Mississippi River	20,100	212,614	997	365	632	478	48%		
Lower Mississippi River	6,317	342,383	789	237	552	336	43%		
Des Moines River	1,535	36,052	161	26	135	50	31%		
Cedar River*	1,028	24,144	108	17	90	34	31%		
Missouri River*	1,782	41,853	187	30	157	58	31%		
St. Croix River	3,528	12,426	155	52	103	70	45%		
Lake Superior	6,149	27,768	78	15	62	26	34%		
Rainy River	11,236	217,316	346	129	217	168	49%		
Red River	17,741	683,510	884	287	597	395	45%		
Statewide	84,355	2,556,355	4,957	1,616	3,341	2,217	45%		
			High Flow	/ear					
Minnesota River	14,939	2,110,290	2,330	1,030	1,299	1,264	54%		
Upper Mississippi River	20,100	409,504	1,545	584	961	757	49%		
Lower Mississippi River	6,317	971,031	1,940	573	1,368	819	42%		
Des Moines River	1,535	77,843	347	66	281	116	34%		
Cedar River*	1,028	52,132	233	44	188	78	34%		
Missouri River*	1,782	90,369	403	76	327	135	34%		
St. Croix River	3,528	28,605	254	78	176	110	43%		
Lake Superior	6,149	37,152	100	19	81	34	34%		
Rainy River	11,236	467,087	528	176	352	239	45%		
Red River	17,741	1,038,447	1,359	420	938	589	43%		
Statewide	84,355	5,282,460	9,038	3,067	5,971	4,142	46%		

^{*}Based on water quality data for the Des Moines River basin.

Date: Page:

28

Table 8: Summary of estimated annual basin yields for low, average and high flow conditions.

		Estimated Annual Basin Yield (lbs/acre/yr)									
	Suspended	Total	Total Dissolved	Total	Total Bioavailable						
Basin	Sediment				Phosphorus						
Dasili	Sediment	Low Flow Yea		Filospilorus	Filospilorus						
Minnesota River	73.9	0.109	0.035	0.074	0.048						
Upper Mississippi River	14.6	0.109	0.033	0.074	0.048						
Lower Mississippi River	26.5	0.129	0.051	0.030	0.041						
Des Moines River	10.2	0.046	0.005	0.074	0.009						
Cedar River*	10.2	0.046	0.005	0.041	0.012						
Missouri River*	10.2	0.046	0.005	0.041	0.012						
St. Croix River	6.2	0.043	0.003	0.054	0.038						
Lake Superior	7.6	0.083	0.029	0.034	0.038						
Rainy River	40.5	0.068	0.003	0.013	0.034						
Red River	29.3	0.036	0.013	0.042	0.017						
Statewide	31.4	0.030	0.013	0.024	0.034						
Statewide 31.4 0.074 0.026 0.048 0.034 Average Flow Year											
Minnesota River	221	0.288	0.105	0.183	0.138						
Upper Mississippi River	36	0.170	0.062	0.108	0.082						
Lower Mississippi River	186	0.430	0.129	0.301	0.183						
Des Moines River	81	0.360	0.058	0.302	0.112						
Cedar River*	81	0.360	0.058	0.302	0.112						
Missouri River*	81	0.360	0.058	0.302	0.112						
St. Croix River	12	0.151	0.050	0.100	0.068						
Lake Superior	16	0.043	0.008	0.035	0.015						
Rainy River	66	0.106	0.040	0.066	0.051						
Red River	132	0.171	0.056	0.116	0.076						
Statewide	104	0.202	0.066	0.136	0.090						
		High Flow Ye		01100	0.000						
Minnesota River	486	0.536	0.237	0.299	0.291						
Upper Mississippi River	70	0.264	0.100	0.164	0.130						
Lower Mississippi River	528	1.056	0.312	0.744	0.446						
Des Moines River	174	0.778	0.147	0.630	0.261						
Cedar River*	174	0.778	0.147	0.630	0.261						
Missouri River*	174	0.778	0.147	0.630	0.261						
St. Croix River	28	0.247	0.076	0.171	0.107						
Lake Superior	21	0.056	0.011	0.045	0.019						
Rainy River	143	0.162	0.054	0.108	0.073						
Red River	201	0.263	0.081	0.182	0.114						
Statewide	215	0.368	0.125	0.243	0.169						

^{*}Based on water quality data for the Des Moines River basin.

Table 9. Summary of estimated annual flow weighted mean concentrations for low, average and high flow conditions.

Estimated A	nnual Flow	Weighted N	lean Conc	entration (ı	mg/l)
Basin	Suspended Sediment	Total Phosphorus	Total Dissolved Phosphorus		Total Bioavailable Phosphorus
		Low Flow Yea	ar	-	_
Minnesota River	152.7	0.226	0.072	0.154	0.100
Upper Mississippi River	14.3	0.085	0.030	0.055	0.040
Lower Mississippi River	24.9	0.100	0.038	0.063	0.049
Des Moines River	66.7	0.298	0.031	0.266	0.079
Cedar River*	66.7	0.298	0.031	0.266	0.079
Missouri River*	66.7	0.298	0.031	0.266	0.079
St. Croix River	4.4	0.068	0.024	0.045	0.032
Lake Superior	10.6	0.030	0.011	0.019	0.014
Rainy River	28.3	0.047	0.018	0.029	0.023
Red River	77.0	0.095	0.036	0.058	0.047
		verage Flow Y	'ear		
Minnesota River	187	0.245	0.089	0.155	0.117
Upper Mississippi River	21	0.100	0.037	0.064	0.048
Lower Mississippi River	81	0.186	0.055	0.131	0.079
Des Moines River	67	0.298	0.048	0.249	0.093
Cedar River*	67	0.298	0.048	0.249	0.093
Missouri River*	67	0.298	0.048	0.249	0.093
St. Croix River	5	0.071	0.024	0.047	0.032
Lake Superior	14	0.033	0.011	0.022	0.015
Rainy River	30	0.048	0.018	0.030	0.023
Red River	104	0.133	0.044	0.089	0.060
		High Flow Ye	ar		
Minnesota River	244	0.270	0.119	0.150	0.146
Upper Mississippi River	30	0.114	0.043	0.071	0.056
Lower Mississippi River	150	0.286	0.079	0.207	0.116
Des Moines River	67	0.298	0.056	0.242	0.099
Cedar River*	67	0.298	0.056	0.242	0.099
Missouri River*	67	0.298	0.056	0.242	0.099
St. Croix River	8	0.075	0.024	0.052	0.033
Lake Superior	15	0.035	0.011	0.023	0.015
Rainy River	47	0.054	0.018	0.036	0.024
Red River	124	0.164	0.051	0.113	0.071

^{*}Based on water quality data for the Des Moines River basin.

Date: January 16, 2004

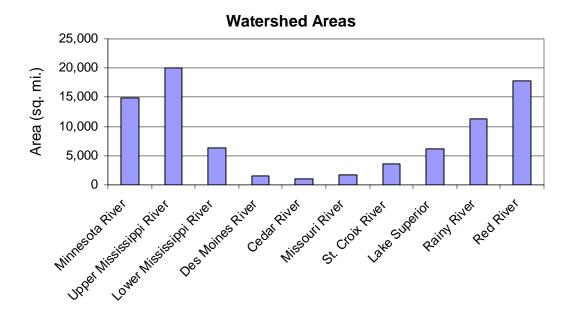


Figure 1: Watershed areas for each of the ten major watersheds.

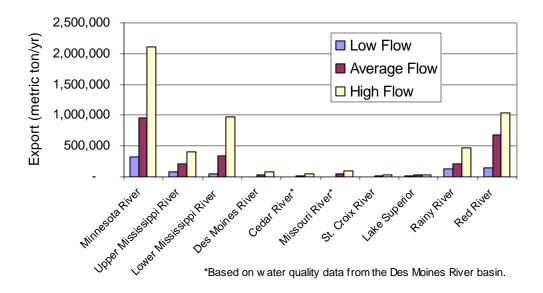


Figure 2: Estimated annual suspended sediment discharge for each of the ten major basins.

Date: January 16, 2004

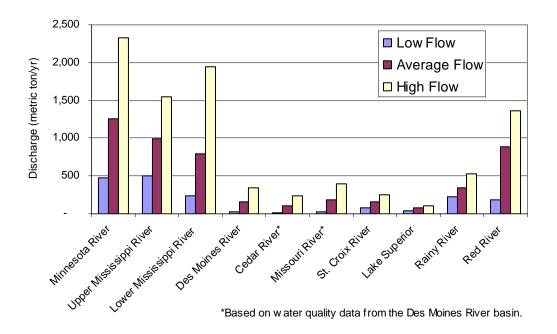


Figure 3: Estimated annual total phosphorus discharge for each of the ten major basins.

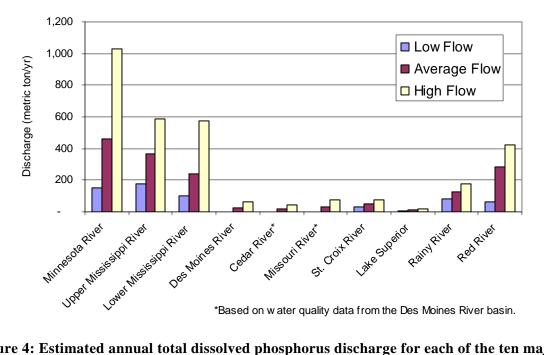


Figure 4: Estimated annual total dissolved phosphorus discharge for each of the ten major basins.

Date: January 16, 2004

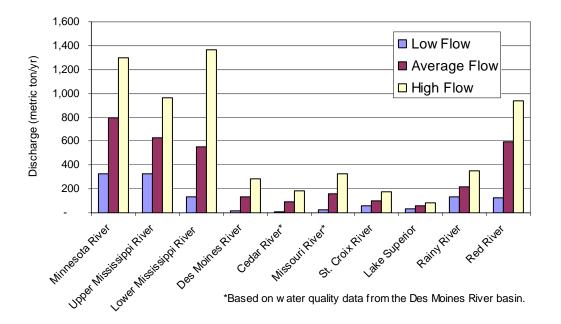


Figure 5: Estimated annual total particulate phosphorus discharge for each of the ten major basins.

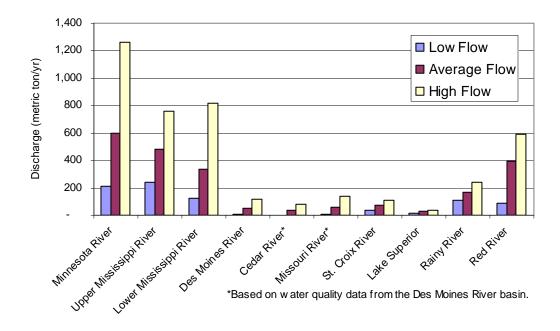


Figure 6: Estimated annual bioavailable phosphorus discharge for each of the ten major basins.

Date: January 16, 2004

Figure 7: Estimated annual bioavailable phosphorus fractions for each of the ten major basins.

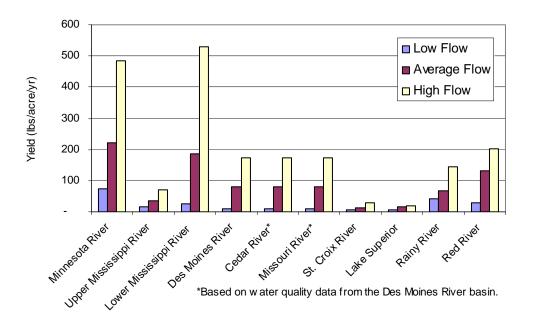


Figure 8: Estimated annual suspended sediment yields for each of the ten major basins.

Date: January 16, 2004

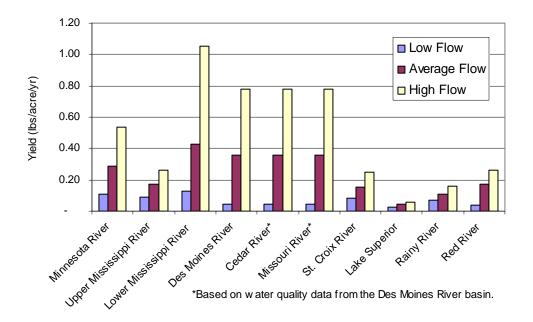


Figure 9: Estimated annual total phosphorus yields for each of the ten major basins.

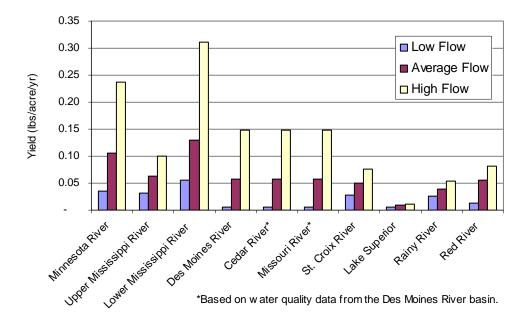


Figure 10: Estiamted annual total dissolved phosphorus yields for each of the ten major basins.

Date: January 16, 2004

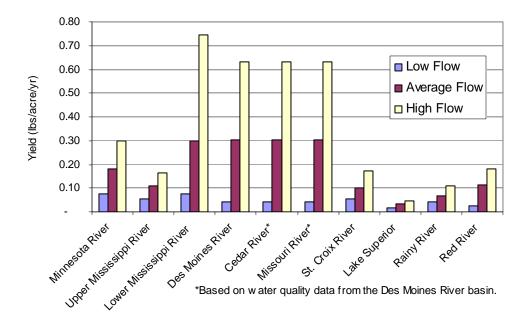


Figure 11: Estimated annual total particulate phosphorus yields for each of the ten major basins.

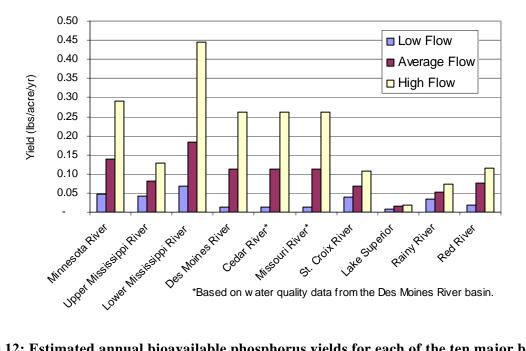


Figure 12: Estimated annual bioavailable phosphorus yields for each of the ten major basins.

Date: January 16, 2004

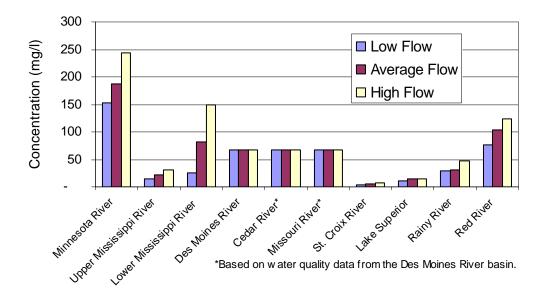


Figure 13: Estimated annual flow weighted mean concentration for suspended sediment for each of the ten major basins.

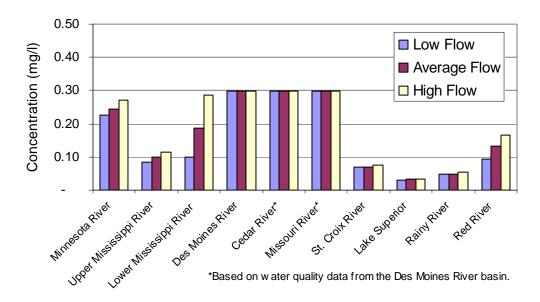


Figure 14: Estimated annual flow weighted mean concentration for total phosphorus for each of the ten major basins.

Date: January 16, 2004

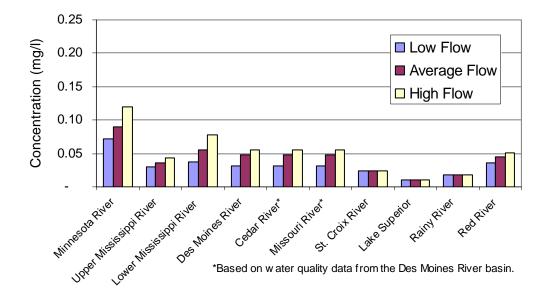


Figure 15: Estimated annual flow weighted mean concentration for total dissolved phosphorus for each of the ten major basins.

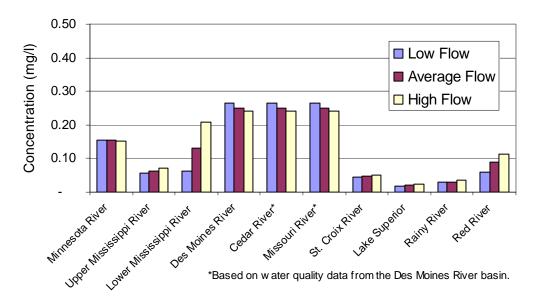


Figure 16: Estimated annual flow weighted mean concentration for total particulate phosphorus for each of the ten major basins.

Date: January 16, 2004

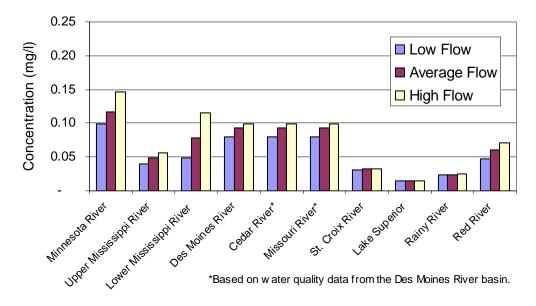


Figure 17: Estimated annual flow weighted mean concentration for total bioavailable phosphorus for each of the ten major basins.

Date: January 16, 2004

Page: 39

Bioavailable Phosphorus Variability and Uncertainty

The uncertainty associated with the basin scale export estimates was not quantified, but is expected to be significant. Results from USGS studies of the St. Croix River Basin (Lenz *et al.*, 2001 and Lenz and Robertson, 2002) were compared to the results of this study as a check on the accuracy of the methods applied. In the USGS studies, more complex methods were applied in the development of suspended sediment and total phosphorus loads at the Snake and Kettle River gauging stations for the 1999 water year. Comparisons of the results are presented in Table 10. The results of this study generally fall within the 95th percent confidence interval as calculated and reported in the USGS study. Also, as is typical with the simple approach to the development of rating curves used in this study, the results are generally lower. Note that even with the more complex methods applied in the USGS study, the range associated with the 95th percent confidence interval is approximately ±40% for the sediment load estimates and ±20% on the total phosphorus estimates for this single year.

Table 10. Comparison of annual loads from USGS St. Croix River study and this study.

	Annual load, water year 1999 (metric tons/yr)						
Gauging Station	Sediment		Total Phosphorus				
	USGS	Results of this Study	USGS	Results of this Study			
Snake River	3,050 (95 th -percent confidence interval = 1,780 to 4,320)	2,017	37.4 (95 th -percent confidence interval = 29.5 to 45.4)	38			
Kettle River	Kettle River 5,970 (95 th -percent confidence interval = 3,660 to 8,290)		43.4 (95 th -percent confidence interval = 34.94 to 51.8)	34			

Date: January 16, 2004

Page: 40

As part of the USGS Long Term Resource Monitoring Program (LTRMP), the USGS has also calculated annual loads for suspended sediment, total phosphorus, and dissolved phosphorus at locations on the Minnesota River and the Mississippi River. Results of loading estimates are presented on the USGS Upper Midwest Environmental Sciences Center (http://www.umesc.usgs.gov/data_library/sediment_nutrients/streams/streams.html). These estimates are compared to the results of this study in Table 11. The comparison shows the results of this study again being generally less than the USGS results.

While there is significant uncertainty associated with the basin discharge calculations, the estimates presented are useful in assessing the relative discharge of the different forms of phosphorus from the basins and at different flow conditions, but care should be taken in using these estimates as predictors of absolute magnitudes of phosphorus loads.

Table 11. Comparison of annual loads from USGS LTRMP study and this study.

			An	nual load (m	etric tons/	yr)	
Monitoring	Water	Sedin	nent	Total Phos	sphorus	Dissolved F	Phosphorus
Location	year	USGS	Results of this Study	USGS	Results of this Study	USGS	Results of this Study
	Low Flow (1981)	472,868- 500,863	300,858	584-589	465	194-211	141
Minnesota River near Jordan	Average Flow (1985)	1,185,567- 1,215,541	1,014,532	1,232- 1,290	1,334	588-730	485
	High Flow (1986)	2,486,545- 2,592,112	2,077,906	2,223- 2,353	2,478	1,211- 1,613	1,004
	Low Flow (1989)	102,286- 105,213	77,347	651-673	448	322-330	158
Mississippi River near Anoka	Average Flow (1995)	195,394- 204,458	188,759	1,253- 1,273	935	757-794	339
	High Flow (1986)	517,356- 549,192	486,458	2,521- 2,586	1,850	1,255- 1,373	701

Date: January 16, 2004

Page: 42

Point Sources Not Accounted for in Basin Discharge Calculations

The method used for calculating basin discharge depended on an assumption that the gauge(s) chosen represented the discharge for the entire basin, including both point and non-point source contributions. This assumption is likely adequate for representation of the non-point sources as they are spread out over large areas. But because of the specific placement of point source discharges and the potential for relatively large phosphorus contributions, this assumption may not hold true. To evaluate this concern, point sources were located when latitude and longitude data were readily available. A determination was then made whether or not the point source discharged within the drainage area of the representative gauge(s). Unfortunately, of the 820 point sources identified in this study, only 480 had readily available latitude and longitude information. Of these 480, 252 were within the drainage areas of the representative gauges and 228 discharged outside. The estimated annual phosphorus loads for the point sources in each basin were tabulated to assess the magnitude of the loads represented by the gauges, those not represented by the gauges, and those of unknown location. This information is presented in Table 12. The results show the significance of both the point sources outside of the discharge calculation and those with unknown location.

The calculated basin discharges include upstream point sources, and to some extent account for point source loads below the representative gauge as the discharge at the gauge is multiplied by a drainage ratio factor. But the point sources below the gauge are adequately represented only to the degree that the point sources below a gauge discharge a similar load per area as those above the gauge. Where they are different, care needs to be taken in how the basin discharge estimates are used.

Date: January 16, 2004

Page: 43

Table 12. Point source phosphorus loads inside and outside of gauged drainage areas.

	Annual total phosphorus load (metric ton/year)			
Basin	Total point source load	Located within discharge calculation	Located outside of discharge calculation	Unknown
Minnesota River	372	117.9	45.4	208.4
Upper Mississippi River	1,180 ¹	194.9	897.1 ¹	88.1
Lower Mississippi River	267	83.3	129.8	54.2
Des Moines River	56	42.4	-	13.1
Cedar River	57	19.3	-	37.5
Missouri River	13	6.7	-	6.4
St. Croix River	22	4.6	16.0	1.5
Lake Superior	35	9.1	23.4	2.5
Rainy River	44	2.7	0.7	40.8
Red River	63	17.5	35.6	9.6
Statewide	2,109	499	1,148	462

¹ Includes 868 metric tons/yr from the MCES Metro WWTF. This load is expected to be reduced by approximately 581 metric tons/yr associated with a 1 mg P/l effluent discharge limit effective 12/31/05.

Recommendations for Future Refinements of Basin Discharge Calculations

Phosphorus discharge estimates on a basin scale may be improved by application of more complex rating curve estimation techniques, for example including flow and seasonal stratification. Also, additional assessment of the portion of discharge at each gauge that can be attributed to POTW discharges would help understanding the observed differences. The assessment conducted focused on gauges and data at the downstream reaches of the watershed, therefore quantifying the cumulative impacts of all sources within the watershed, both point and non-point and from the various land cover types. Assessment of gauges and data representing small drainage areas with a homogeneous land cover might prove useful in isolating the phosphorus loadings from a particular land cover.

Date: January 16, 2004

Page: 44

Literature Cited

- Andraski, B.J., Mueller, D.H., and Daniel, T.C. 1985. Phosphorus losses in runoff as affected by tillage. *Soil Sci. Soc. Am. J.* 49:1523-1527.
- Asselman, N.E.W. 2000. Fitting and interpretation of sediment rating curves. *Journal of Hydrology*, 234; 228-248.
- Bannerman, R.T., Armstrong, D.E., Harris, R.F., and Holdren, C.C. 1975. Phosphorus release and uptake by Lake Ontario sediments. Ecol. Res. Ser. USEPA Rep. 660/3-750-066. U.S. Gov. Print. Office, Washington, DC.
- Breeuwsma A. and Silva, S. 1992. Phosphorus fertilization and environmental effects in the Netherlands and the Po region (Italy). Rep. 57. Agric. Res. Dep. The Winand Staring Center for Integrated Land, soil and Water Res., Wageningen, the Netherlands.
- Bierman, V.J. Jr., Dolan, D.M., Stoermer, E.F., Gannon, J.E., and Smith, V.E. 1980. The development and calibration of a spatially simplified multi-class phytoplankton model for Saginaw Bay, Lake Huron. Great Lakes Environmental Planning Study, Contribution No. 33.
- Caraco, N.F. 1995. Chapter 14: Influence Of Human Populations On Phosphorus Transfers To Aquatic Systems: A Regional Scale Study Using Large Rivers. In SCOPE 54: Phosphorus in the Global Environment Transfers, Cycles and Management. H. Tiessen (ed.), 1995, 480 pp, Wiley, U.K.
- Carignan, R. and Kalff, J. 1980. Phosphorus sources for aquatic weeds: Water or sediments? *Science*. 207:987-989.
- Carlisle, A., Brown, A.H.F. and White, E.J. 1966. The organic matter and nutrient elements in precipitation beneath sessile oak (Quercus petraea) canopy. *J. Ecol.* 54:87-98.
- Cowen, W.F. and Lee, G.F. 1976. Phosphorus available in particulate materials transported by urban runoff. *J. Wat. Pollu. Control. Fed.* 48:580-591.
- DePinto, J.V., Young, T.C., Martin. S.C. 1981. Algal-Availability of Phosphorus in Suspended Sediments from Lower Great Lakes Tributaries. *J. Great Lakes Res.* 7(3):311-325.
- DePinto, J.V., Young, T.C. and Salisbury, D.K. 1986. Impact of phosphorus availability on modeling phytoplankton dynamics. *Dutch Hydrobiological Bulletin* 20(1/2):225-243.
- DePinto, J.V., Young, T.C., Bonner, J.S., Rodgers, P.W. 1986. Microbial recycle of phytoplankton phosphorus. Can. *J. Fish. Aquat. Sci.* 43(2):336-342.
- Dolan, D.M., Yui, A.K., and Geist, R.D. 1981. Evaluation of River Load Estimation Methods for Total Phosphorus. *J. Great Lakes Res.* 7(3):207-214.
- Dorich, R.A., Nelson, D.W., and Sommers, L.E. 1980. Algal bioavailability of sediment phosphorus in drainage water of the Black creek watershed. *J. Environ. Qual.* 9:557-563.
- Dorich, R.A., Nelson, D.W., and Sommers, L.E. 1984. Algal availability of phosphorus in suspended stream sediments of varying particle size. *J. Environ. Qual.* 13:82-86.
- Dorich, R.A., Nelson, D.W., and Sommers, L.E. 1985. Estimating algal available phosphorus in suspended sediments by chemical extraction. *J. Environ. Qual.* 14:400-405.
- Engle, D.L. and Sarnelle, O. 1990. Algal use of sedimentary phosphorus from an Amazon floodplain lake: Implications for total phosphorus analysis in turbid waters. *Limnol. Oceanogr.* 35:483-490.

Date: January 16, 2004

- Ekholm P. and Krogerus, K. 2003. Determining algal-available phosphorus of differing origin: routine phosphorus analyses versus algal assays. *Hydrobiolgia* 492: 29-42.
- Gaynor, J.D. and W.I. and Findlay. 1995. Soil and phosphorus loss from conservation and conventional tillage in corn production. *J. Environ. Qual.* 24:734-741.
- Golterman, H.L. 1977. Sediments as a source of phosphate for algal growth. In: Golterman, H.L. (Ed.) *Interactions Between Sediments and Fresh Water*. Symposium at Amsterdam, The Netherlands, 1976, pp. 286-293.
- Hanna, M. 1989. Biologically available phosphorus: Estimation and prediction using an anion-exchange resin. *Can. J. Fish. Aquat. Sci.* 46:638-643.
- Haygarth, P.M. and Jarvis, S.C. 1997. Soil derived phosphorus in surface runoff from grazed grassland lysimeters. *Water Res.* 11:140-148.
- Haygarth, P.M., Hepworth, L. and Jarvis, S.C. 1998. Forms of phosphorus transfer in hydrological pathways from soil under grazed pasture. *European J. Soil Sci.* 49:65-72.
- Haygarth, P.M. and Sharpley, A.N. 2000. Terminology for phosphorus transfer. *J. Environ. Qual.* 29:10-15.
- Hedley, M.J., Mortvedt, J.J., Bolan, N.S., and Syer, J.K. 1995. Chapter 5: Phosphorus Fertility Management in Agroecosystems. In SCOPE 54: Phosphorus in the Global Environment Transfers, Cycles and Management. H. Tiessen ed., 1995, 480 pp, Wiley, U.K.
- Horowitz, A.J. 2002. The use of rating (transport) curves to predict suspended sediment concentration: A matter of temporal resolution. Turbidity and Other Sediment Surrogates Workshop, April 30-May 2, 2002, Reno, Nevada.
- Huettl, P.J., Wendt, R.C. and Corey, R.B. 1979. Prediction of algal-available phosphorus in runoff suspensions. *J. Environ. Qual.* 8:130-132.
- Jacoby, J.M., Lynch, D.D., Welch, E.B., and Perkins, M.S. 1982. Internal phosphorus loading in a shallow eutrophic lake. *Water Res.* 16:911-919.
- James, W.F., Barko, J.W., and Eakin, H.L. 2002. Labile and refractory forms of phosphorus in runoff of the Redwood River basin, Minnesota. *J. Freshwater Ecology*. 17(2):297-304.
- Kamprath, E.J. 1991. Appropriate measurements of phosphorus availability in soils of the semi-arid tropics. In: Johansen, C., Lee, K.K. and Saharwat, KL (Eds.) Phosphorus nutrition of grain legumines in the semi arid tropics. ICRISAT, India. pp. 23-31.
- Klapwijk, S.P., Kroon, J.M.W. and Meijer, M.L. 1982. Available phosphorus in lake sediments in the Netherlands. *Hydrobiologia*. 92:491-500.
- Larsen. D.P., Shults, D.W. and Malueg, K.W. 1981. Summer internal phosphorus supplies in Shagawa Lake, Minnesota. *Limnol. Oceanogr.* 26:740-753.
- Lee, G.F. 1973. Role of phosphorus in eutrophication and diffuse source control. Water Res. 7: 111-128.
- Lee, G.F., Jones, R.A., and Rast, W. 1980. Availability of phosphorus to phytoplankton and its implications for phosphorus management strategies, pp. 259-308. In Phosphorus Management Strategies for Lakes, R. C. Loehr, C. S. Martin, W. Rast (eds.), Ann Arbor Science Publ., Inc.

Date: January 16, 2004

- Lennox, S.D., Foy, R.H., Smith, R.V. and Jordan, C. 1997. Estimating the contribution from agriculture to the phosphorus load in surface water. P. 55-75. In H. Tunney, O.T. Carton, P.C. Brookes, and A.E. Johnston (ed.) Phosphorus loss from soil to water. CAB Int. Press, Cambridge, UK.
- Lenz, B.N. 2001. Nutrient and Suspended-Sediment Concentrations and Loads, and Benthic-Invertebrate Data for Tributaries to the St. Croix River, Wisconsin and Minnesota, 1997-99. USGS Water-Resources Investigations Report 01-4162.
- Lenz, B.N. and Robertson, D.M. 2002. Response of the St. Croix River Pools, Wisconsin and Minnesota, to Various Phoshorus-Loading Scenarios. USGS Water-Resources Investigations Report 02-4181.
- Li, W.C., Armstrong, D.E., Williams, J.D., Harris, R.F. and Syers, J.K. (1972). Rate and extent of phosphate exchange in lake sediments. *Soil Sci. Soc. Am. Proc.* 36:279-285.
- Logan, T.J. 1977. Levels of plant available phosphorus in agricultural soils in the Lake Erie Drainage Basin. Lake Erie Wastewater Management Study Report. U.S. Army Engineer District, Buffalo.
- Logan, T.J. 1978. Chemical extraction as an index of bioavailability of phosphorus in Lake Erie basin suspended sediments. Lake Erie Wastewater Management Study Report. U.S. Army Engineer District, Buffalo.
- Logan, T.J., Oloya, T.O., and Yaksich, S.M. 1979. Phosphate characteristics and bioavailability of suspended sediments from streams draining into Lake Erie. *J. Great Lakes Res.* 5:112-123.
- Logan, T.J., Verhoff, F.H., and DePinto, J.V. 1979a. Biological availability of total phosphorus. Lake Erie Wastewater Management Study, U. S. Army Engineer District, Buffalo.
- Martin, Scott C., 1983. Bioavailability of Sediment Phosphorus Inputs to the Lower Great Lakes, Ph.D., Department of Civil and Environmental Engineering, Clarkson College of Technology (December, 1983).
- McDowell, R.W., Sharpley, A.N., Kleinman, P.J.A., and Gburek, W.J. 2001. Hydrological and source management of pollutants at the soil profile scale. In P.M. Haygarth and S.C. Jarvis (ed.) Agriculture, hydrology and water quality. CAB Int. Press, Oxon, England.
- McDowell, L.L., and McGregor, K.C. 1980. Nitrogen and phosphorus losses in runoff from no-till soybeans. *Trans. ASAE* 23:643-648.
- Miller, R.B. 1961. Chemical composition of rainwater at Taita, New Zealand, 1956-1958. *N.Z. J. Sci.* 4:844-853.
- Mueller, D.H., Wendt, R.C., and Daniel, T.C. 1984. Phosphorus losses as affected by tillage and manure application. *Soil Sci. Am. J.* 48:901-905.
- Murphy, T.J. and Doskey, P.V. 1975. Inputs of phosphorus from precipitation to Lake Michigan. U.S. EPA Report No. 600/3-75-005. Duluth, Minnesota.
- Murphy, J. and Riley, J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. *Anal. Chim. Acta.* 27:31-36.
- Nurnberg, G.K., Dillon, P.J. and McQueen, D.J. 1986. Internal phosphorus load in an oligotrophic precambrian shield lake with an anoxic hypolimnion. *Can. J. Fish. Aquat. Sci.*, 43:574-580.
- Nurnberg, G. and Peters, R.H. 1984. Biological availability of soluble reactive phosphorus in anoxic and oxic freshwaters. *Can. J. Fish. Aquat. Sci.* 41:757-765.

Date: January 16, 2004

- O'Connor, G.A., Sarkar, D., Graetz, D.A., and Elliott, H.A. 2002. Characterizing forms, solubility, bioavailabilities, and mineralization rates of phosphorous in biosolids, commercial fertilizers, and manures (Phase I). Water Environment Research Federation.
- Omerink, J.M. 1976. The influence of land use on stream nutrient levels. USEPA Ecological Research Series, EPA-600/3-76-014.
- Peters, R.H. 1977. Availability of atmospheric orthophosphate. J. Fish. Res. Bd. Can. 34:918-924.
- Pietilainen, O.P. and Rekolainen, S. 1991. Dissolved reactive and total phosphorus load from agricultural and forested basins to surface waters in Finland. *Agua Fennica* 21, 127-136.
- Porcella, D.B., Kumazar, J.S. and Middlebrooks, E.J. 1970. Biological effects on sediment-water nutrient interchange. J. Sanit. Eng. Div., *Proc. Am. Soc. Civil Eng.* 96:911-926.
- Pote, D.H., Danile, T.C., Sharpley, A.N., Moore, P.A., Edwards, D.R., and Nichols, D.J. 1996. Relating extractable phosphorus to phosphorus losses in runoff. *Soil Sc. Sco. Am. J.* 60:855-859.
- Rigler, F.H. 1966. Radiobiological analysis of inorganic phosphorus in lake water. *Tech. Internat. Verein. Limnol.* 16:456-470.
- Rigler, F.H. 1968. Further observations inconsistent with the hypothesis that the molybdenum blue method measures orthophosphate in lake waters. *Limnol. Oceanogr.* 13:7-13.
- Ryszkowski, L. and Bartoszewicz, A. 1989. Impact of agricultural landscape structure on cycling of inorganic nutrients. In: Clarholm, M. and Bergstrom, L. (Eds.) Ecology of arable land. Kluwer Academic Publ., Dordrecht. pp. 241-246.
- Sagher, A., Harris, R.F., and Armstrong, D.E. 1975. Availability of sediment phosphorus to microorganisms. Water Res. Cent. Tech. Rep. WIS WRC 74-01. Univ. of Wisconsin, Madison.
- Sagher, A. 1976. Availability of soil runoff phosphorus to algae. Ph.D. dissertation, University of Wisc. Madison.
- Schindler, D.W. and Nighswander, J.E. 1970. Nutrient supply and primary production in Clear Lake, eastern Ontario. *J. Fish. Res. Board Can.* 27:260-262.
- Sharpley, A.N., Menzel, R.G., Smith, S.J., Rhoades, E.D., and Olness, A.E. 1981. The sorption of soluble phosphorus by soil material during transport in runoff from cropped and grassed watersheds. *J. Environ. Qual.* 10:211-215.
- Sharpley, A.N., Jones, C.A., Grey, C. and Cole, C.V. 1984. A simplified soil and plant phosphorus model II: Predication of labile, organic and sorbed phosphorus. *Soil Sci. Soc. Am. J.* 48:805-809.
- Sharpley, A.N., Smith, S.J., Menzel, R.G. and Westerman, R.L. 1985. The chemical composition of rain in the Southern Plains and its impact on soil and water quality. Oklahoma State Univ. Agric. Expt. Station Tech. Bull. T162.
- Sharpley, A.N., Smith, S.J., Jones, O.R., Berg, W.A., and Coleman, G.A. 1992. The transport of bioavailable phosphorus in agricultural runoff. *J. Environ. Qual.* 21:30-35.
- Sharpley, A.N., Hedley, M.J., Sibbesen, E., Hillbricht-Ilkowska, A., House, W.A., and Ryszkowski, L. 1995. Chapter 11: Phosphorus Transfers From Terrestrial To Aquatic Ecosystems. In SCOPE 54: Phosphorus in the Global Environment Transfers, Cycles and Management. H. Tiessen ed., 1995, 480 pp, Wiley, U.K.

Date: January 16, 2004

- Sharpley, A.N., T.C. Daniel, J.T. Sims, and D.H. Pote. 1996. Determining environmentally sound soil phosphorus levels. *J. Soil Wat. Conserv.* 51:160-165.
- Sharpley, A.N., Beegle, D.G., Gburek., W.J., Weld, J. and Folmar, G. 1998. Modification and application of the phosphorus index screening tool it identify critical sources of phosphorus in the Upper Chesapeake Bay Watershed. Final Rep. To the Scientific and Technical Advisory Committee to the Chesapeake Bay Program. Chesapeake Bay Program. Annapolis, MD.
- Sharpley, A.N. and Tunney, H. 2000. Phosphorus research strategies to meet agricultural and environmental challenges of the 21st century. *J. Environ Qual.* 29:176-181.
- Simrad, R.R., Beauchemin, S. and Haygarth, P.M. 2000. Potential for preferential pathways for phosphorus transport. *J. Environ. Qual.* 29:97-105.
- Sonzogni, W.C., Chesters, G., Coote, D.R., Jeffs, D.N., Konard, J.C., Ostrry, R.C., and Robinson, J.B. 1980. Pollution from land runoff. *Environ. Sci. Technol.* 14:148-153.
- Syers, J.K., Harris, R.F., and Armstrong, D.E. 1973. Phosphate chemistry in lake sediments. *J. Environ. Qual.* 2:1-14.
- Szpakowska, B. and Zyczynska-Baloniak, I. 1989. The effect of environmental pollution on the migration of chemical compounds in water in a agricultural landscape. *Ecology International Bulletin*. 17:41-52.
- Tarapchak. S.J. and Rubitschum, C. 1981. Comparisons of soluble reactive phosphorus and orthophosphorus concentrations at an offshore station in southern Lake Michigan. *J. Great Lakes Res.* 7:290-298.
- Theis, T.L. and McCabe, P.J. 1978. Phosphorus dynamics in hypereutrophic lake sediments. *Water Res.*, 12:677-685.
- Vaithiyanathan, P. and Correll, D.L. 1992. The Rhode River watershed: Phosphorus distribution and export in forest and agricultural soils. *J. Environ. Qual.* 21:280-288.
- Walton, C.P. and Lee, G.F. 1972. A biological evaluation of the molybdenum blue method for orthophosphate analysis. *Tech. Int. Ver. Limnol.* 18:676-684.
- Wendt, R.C. and Corey, R.B. 1980. Phosphorus variations in surface runoff from agricultural lands as a function of land use. *J. Environ. Qual.* 9:130-136.
- Williams, J.D.H., Syers, J.K., Harris, R.F., and Armstrong, D.E. 1971. Fractionation of inorganic phosphate in calcareous lake sediments. *Soil Sci. Soc. Amer. Proc.* 35:250-255.
- Williams, J.D.H., Shear, H., and Thomas, R.L. 1980. Availability to Scenedesmus quadricanda of different forms of phosphorus in sedimentary materials in the Great Lakes. *Limnol. Oceanogr.* 25:1-11.
- Withers, P.J.A., R.M. Dils, and R.A. Hodginson. 1999. Transfer of phosphorus from small agricultural basins with variable soil types and land use. P. 20-29. In Impact of land-use change on nutrient loads from diffuse sources. International Association of Hydrological Sciences Symp., Birmingham, England. 19-20 July 1999. IAHS, Wallingford, UK.
- Young, T.C., J.V. DePinto, Flint, S.E., Switzenbaum, M.S., and Edzwald, J.K. 1982. Algal Availability of Phosphorus in Municipal Wastewaters. *Jour. Water Pollut. Control Fed.* 54, 1505-1516.

Date: January 16, 2004

- Young, T.C. and DePinto., J.V. 1981. Algal-Availability of Particulate Phosphorus from Diffuse and Point Sources in the Lower Great Lakes Basin," in Sediment/Freshwater Interaction, Proceedings of 2nd International Symposium on the Interactions Between Sediments and Freshwater, Kingston, Ontario. Developments in Hydrobiology, V. 9, P.G. Sly (ed.), 111-119 (1982).
- Young, T.C., DePinto, J.V., and Hughes, B.J. 1988. Comparative study of methods for estimating bioavailable particulate phosphorus. Chemical and Biological characterization of sludges, sediments, dredge spoils, and drilling muds. ASTM STP 976. J.J. Lichtenberg, J.A. Winter, C.I. Weber, and L. Fradkin (ed.). American Society for Testing and Materials, Philadelphia, 1988, pp. 69-80.
- Young, T.C., DePinto, J.V., Martin, S.C., Bonner, J.S. 1995. Algal-available Particulate Phosphorus in the Great Lakes Basin. *J. Great Lakes Res.* 111(5):434-446.

Date: January 16, 2004

Page: A-1

Attachment A

Methods for Bioavailable Phosphorus Analysis

Two approaches are generally used to estimate bioavailable phosphorus fractions in the aquatic environment, bioassay and chemical extraction. These two methodologies are briefly discussed. Methods for measuring the bioavailability of phosphorus in soils are also presented.

Bioassay

A bioassay can be used to measure the bioavailable phosphorus content of water samples. A bioassay quantifies either growth (assuming constant phosphorus stoichiometry) or uptake of phosphorus by the test organism, usually a phosphorus-starved planktonic alga, to estimate bioavailability. The bioassay technique provides a direct measurement of phosphorus taken up by the test algal species (DePinto *et al.*, 1981). This method has been used for estimating the bioavailability of phosphorus in Lake Ontario tributary and urban runoff samples (Cowan and Lee, 1976), soil runoff suspensions (Sagher, 1976), Lake Ontario sediment samples (Williams *et al.*, 1980), and sediment samples from other lakes (Golterman *et al.*, 1977).

Young *et al.* (1982) conducted bioassays on the particulate phosphorus in wastewater samples collected from four municipal treatment plants. They used a two-chamber device, with one side lighted (assay side) for the test algae and one darkened (decay side) for the wastewater particulates and 1-1 glass bottles for the dissolved phosphorus bioassays.

To separate the dissolved and the particulate phases of phosphorus, the sample is filtered generally using a 0.45 µm pore diameter membrane filter. The filtering process separates the filtrate from the residual remaining on the filter. The filtrate contains the dissolved phosphorus, most of which is immediately or ultimately bioavailable. The residual contains the particulate phosphorus, none of which is immediately bioavailable, but a portion of it may ultimately become bioavailable. For samples collected from streams and lakes this would include phosphorus contained in the algae collected in the original sample. The residual is placed in the dark chamber. Following decay and/or desorption, phosphorus may be released and pass through the filter separating the two chambers. Once in the lighted chamber it is available for uptake by the phosphorus-starved test algae.

Date: January 16, 2004

Page: A-2

However, some fine colloidal materials less than 0.45 µm may pass through the filter and be hydrolyzed or dissolved by the strong acid medium of the colorimetric procedure of Murphy and Riley (1962). Thus, bioavailable phosphorus in the filtrate may be overestimated, particularly at low orthophosphate concentrations (Rigler, 1966; Tarapchak and Rubitschun, 1981). Although Walton and Lee (1972) found that orthophosphate was essentially entirely bioavailable using standard bioassay procedures, several investigators have reported that only 50 to 95% of orthophosphate was actually bioavailable (Nurnberg and Peters, 1984; Rigler 1968) in surface runoff.

Chemical Extraction

Chemical extraction is a methodology used to estimate the bioavailability of particulate phosphorus in a water sample. This methodology was developed originally for agricultural crops and soils. Chemically defined bioavailability is a sequence of extractions of phosphorus from particulate matter in an increasing order of extractions rigor that yields phosphorus fractions in a sequence of decreasing bioavailability. This method has been applied to suspended sediments in Great lakes tributaries (Logan, 1978; Logan *et al.*, 1979; Martin, 1983), urban runoff (Cowan and Lee, 1976), and a variety of lake sediments (Williams *et al.*, 1971).

Chemical extractions that have been used to measure the bioavailable particulate phosphorus content of eroded soil material are NaOH (Logan *et al.*, 1979; Sagher *et al.* 1975), NH4F (Dorich *et al.*, 1980; Porcella *et al.*, 1970), ion exchange resins (Hanna, 1989; Huettl *et al.*, 1979), and citrate-dithionite-bicarbonate (CDB) (Logan *et al.*, 1979). The weaker extractants and short-term resin extractions may represent phosphorus available to algae in the photic zone of lakes under aerobic conditions. Once sediment settles to the bottom of the lake, sediment phosphorus bioavailability will be increased by development of reducing conditions at the sediment-water interface (Li *et al.*, 1972; Nurnberg *et al.*, 1986). Under these conditions, NaOH-extractable phosphorus may underestimate phosphorus bioavailability and CDB (Logan *et al.*, 1979) may be more appropriate as it removes a greater proportion of Fe- and Al-bound P. Thus, CDB should more accurately reflect long-term bioavailability (>30 d) of sediment phosphorus under reducing conditions found in the anoxic hypolimnion of stratified lakes (Sharpley *et al.*, 1995). For example, in a study of the phosphorus dynamics of two shallow hypereutrophic lakes in Indiana, Theis and McCabe (1978) found that the dissolved phosphorus concentration of lake water was reduced by sorption during oxic periods and increased by release of sediment phosphorus during anoxic periods. This release of phosphorus from

Date: January 16, 2004

Page: A-3

sediment can supply bioavailable phosphorus for several years after deposition (Jacoby *et al.*, 1982; Larsen *et al.*, 1981). Consequently, bioavailable phosphorus estimates should be used in conjunction with information on the physicochemical properties of source sediment (e.g., degree of aggregation, texture, settling velocity, clay mineralogy) and receiving lake (e.g., depth of photic zone, degree of surface mixing, development of reducing conditions, water residence time).

Often, the chemical extraction methods have been applied in parallel with bioassay methods to chemically characterize bioavailable phosphorus. As a result, some chemically-determined fractions of particulate phosphorus have been shown to be directly related with bioassay results on bioavailable phosphorus (Golterman, 1977; Dorich *et al.*, 1980; Williams *et al.*, 1980; Martin, 1983).

Chemical extraction methods for measurement of particulate phosphorus bioavailability are relatively rapid and inexpensive; however, a bioassay can represent a more realistic measure of the amount of particulate phosphorus that is available for algal uptake (Young *et al.*, 1995). Bioassays, on the other hand, are time-consuming, tedious, relatively expensive, and imprecise.

Soil Test Methods

Soil test methods that estimate plant availability of soil phosphorus are generally used for relating phosphorus in runoff to soil phosphorus content. Alternative approaches that reflect soil phosphorus release to surface and subsurface runoff include water extractable phosphorus, Fe-oxide phosphorus, and phosphorus sorption saturation of the surface 5 cm of soil (Breeuwsma and Silva, 1992; Sharpley et al., 1998). Hedley et al. (1995) presented various tests that have been developed in different countries to suit the forms of phosphorus present in their agricultural soils. Those include Mehlich, Olsen, Bray 1, and Bray 2 tests. The form of soil phosphorus extracted by each test is determined by its solution pH and the reaction of the ions present in the extractant with sorbed or mineral phosphorus. For instance, the HCO3- and OH- in the bicarbonate extract promote desorption of phosphorus from CaCO3 and Fe and Al hydrous oxide surfaces. Bray 1 extractable phosphorus are highly correlated to Al- and Fe-P in such soils (Hedley et al., 1995). Where data on soil phosphorus depletion by plants are not available, Sharpley et al. (1984) have used resin extraction results from calcareous, weakly weathered and strongly weathered soils to rank the suitability of different soil phosphorus tests. Kamprath (1991) summarizes their results as: The Olsen extraction is suitable for calcareous and weakly weathered acid soils and less suitable on strongly weathered soils where Bray 1 and Mehlich tests are more appropriate.

Date: January 16, 2004

Page: B-1

Attachment B

Bioavailable Phosphorus in Suspended and Deposited Sediments

Previous studies have indicated three major factors determining a stream's total and bioavailable phosphorus loads: basin geochemistry (Logan, 1978); land use activities (Omerink, 1976) and agricultural practices (Logan, 1977). DePinto, *et al.* (1981) chemically analyzed suspended sediments collected from five tributaries (Maumee, Sandusky, and Cuyahoga in Ohio and Cattaraugus and Genesee Rivers in New York) for several forms of phosphorus and bioassayed these sediments under aerobic conditions to measure the release of algal-available phosphorus. The bioassay data for all samples, interpreted through a first order model of available phosphorus release, showed an average of 21.8 percent of the total particulate phosphorus available to *Selenastrum capricornutum* and available phosphorus was released at an average rate of 0.154 grams per gram of total phosphorus in the sample per day (0.154/day). Amounts of available phosphorus varied considerably between tributaries of Ohio and New York. Table 1 presents the extractable phosphorus fractions in tributary suspended sediment samples (NaOH-P = sodium hydroxide extractable P, CDB-P= citrate-dithionite-biocarbonate extractable P, HCL-P = hydrochloric acid extractable P, Residual-P = total Particulate P not extracted with above sequence).

Acid-extractable (apatite) fractions are suggested to be low availability (Logan *et al.*, 1979a). Apatite is a family of phosphates containing calcium, iron, chlorine, and several other elements in varying quantities. The only common mineral of phosphorus is apatite, Ca₅F(PO₄)₃. Non-apatite fractions of inorganic phosphorus (base- and reductant-extractable) correlated well with levels of bioassayed algal-available phosphorus in the suspended sediment samples; however, the first-order release coefficients showed little dependency on the particulate phosphorus characteristics. Among the tributaries in Ohio, the non-apatite fractions of inorganic phosphorus (reactive NaOH- and CDB-extractable) are considered to be of high biological availability (Logan *et al.*, 1979a).

In summary, the tributaries may be classified into two distinct groups with respect to the distribution of phosphorus fractions: the Ohio rivers, which had suspended sediments which were relatively rich in non-apatite forms of phosphorus; and the New York rivers, wherein the sediments were impoverished of non-apatite forms, especially those which were base-extractable, but were enriched in apatite forms of phosphorus. The Ohio tributary sediments originated from generally low relief,

Date: January 16, 2004

Page: B-2

cropland-pasture watersheds, on the other hand the NY tributary sediments arose from steep slope, forest pasture watersheds and so had relatively low levels of available phosphorus.

Table 1: The extractable phosphorus fractions in tributary suspended sediment samples (NaOH-P = sodium hydroxide extractable P, CDB-P= citrate-dithionite-biocarbonate extractable P, HCL-P = hydrochloric acid extractable P, Residual-P = total Particulate P not extracted with above sequence).

				cactable Fractions of total Sediment P)			
		Na(OH-P		-		
River	Total Sediment P (µgP/mg dry wt)	Total	Reactive	CDB-P	HCl-P	Residual P	
Maumee River, Ohio	1.16	30.1	20.3	20.6	8.8	10.6	
Sandusky River, Ohio	1.06	34.2	22.4	22.6	5.4	10.2	
Cuyahoga River, Ohio	1.25	43.4	32.1	23.6	15.3	5.1	
Cattaraugus River (South Branch), NY	0.60	12.7	7.7	13.7	50.8	8.0	
Genesee River, NY	0.99	24.2	17.2	18.9	27.6	7.8	

Other studies describe the bioavailable phosphorus fractions from different systems. Fluvial sediments from two streams in Ontario were estimated to contain bioavailable phosphorus in amounts equal to 24 and 37% of the total particulate phosphorus (Williams *et al.*, 1980). Urban runoff, mainly from residential areas of Madison, Wisconsin, contained bioavailable particulate phosphorus that averaged 30% of the total particulate phosphorus for 13 samples (Cowan and Lee, 1976). The authors also determined that up to 23% of the particulate phosphorus in snow samples, from the Madison area, was bioavailable. These results and the studies conducted by Sonzogni *et al.* 1980 suggest that generally less than 40% of the particulate phosphorus in diffuse tributary sources to the Great Lakes is biologically available.

The bioavailability of particulate phosphorus in deposited sediments is generally greater than that of suspended sediments, possibly due to the incorporation of phosphorus rich detrital material in the deposits. Release of bioavailable phosphorus from suspended sediment occurs mostly by chemical desorption, whereas bioavailable phosphorus associated with deposited sediments is released more slowly because the dominant process is microbial mineralization. A summary of bioavailable phosphorus study results for suspended and bedded sediments is presented in Table 2.

Date: January 16, 2004

Page: B-3

Table 2: Percent bioavailability of Particulate Phosphorus transported in several lake tributaries draining agricultural watersheds and in deposited lake sediments (Sharpley et al. 1995).

Location	Procedure	Bioavailable %	Total P g kg-1	Reference					
Suspended Sediment in Tributaries									
Indiana	Bioassay	21	0.2-0.7	Dorich <i>et al.</i> (1985)					
	NaOH	8							
Great Lakes	Bioassay	0-47	0.5-1.4	DePinto et al. (1981)					
	NaOH	4-38							
Lake Erie	NaOH	14-42	0.6-1.5	Logan et al. (1979)					
Amazon R.	NaOH	21-38	0.4-1.1	Engle & Sarnelle (1990)					
Deposited Sedime	ents								
Quebec	Resin	8-25	0.8-1.2	Carignan & Kalff (1980)					
Netherlands	Bioassay	0-41	0.4-4.8	Klapwijk <i>et al.</i> (1982)					
Wisconsin	NaOH	60-95	0.6-3.9	Sagher et al. (1975)					
Lake Ontario	NaOH	2-60		Bannerman et al. 1975					
Great Lakes	NaOH	27	0.4-1.4	Williams et al. (1980)					

Young and DePinto (1982) developed a relationship between the reactive NaOH-extractable phosphorus and ultimate bioavailable phosphorus for tributary suspended solids as:

$$UAAP = 1.08 \ NaOH \ extractable P - 0.008$$

where: *UAAP* is the ultimate bioavailable phosphorus.

Solids in natural waters have two primary origins. The solids produced by the photosynthesis process are termed as autochthonous and the solids originating in the drainage basin are termed as allochthonous. DePinto *et al.* (1986) have explored the difference between the bioavailability of allochthonous and autochthonous particulate phosphorus to estimate the form and reactivity of phosphorus loadings to the Lower Laurentian Great Lakes. The comparison and analysis of parallel bioassay and chemical fraction results on suspended sediments collected from 6 different lower Great Lakes tributaries revealed that the most reasonable surrogate measure of biologically available particulate phosphorus is the reactive NaOH-extractable phosphorus (R-NaOH-P) fraction (DePinto *et al.*, 1986). They found a very good correlation (r =0.7790, p<0.001) between R-NaOH-P and the bioassay-determined values of bioavailable phosphorus. The CDB-P and the sum of R-NaOH-P and

Date: January 16, 2004

Page: B-4

CDB-P (considered to be measure of non-apatite inorganic phosphorus in sediments) also correlated well with the ultimately bioavailable phosphorus. However, the decision to rely on the R-NaOH-P alone for estimation of bioavailable phosphorus was based on data from 17 of the 40 samples for which the distribution of phosphorus among the chemically defined fractions was determined before and after the bioassays. The authors also found an excellent correlation between the decrease in R-NaOH-P and algal uptake of phosphorus during bioassays on individual samples. This provided very strong evidence in favor of using the R-NaOH-P/ultimately-bioavailable phosphorus correlation to extrapolate their results to basin-wide data sets.

Page: C-1

Attachment C

Basin Discharge Summary Sheets

Date: January 16, 2004

Page: C-2

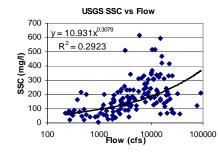
Minnesota River

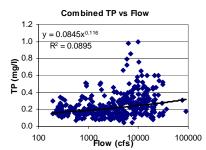
Basin Specific Total Phosphorus and Bioavailable Phosphorus Summary

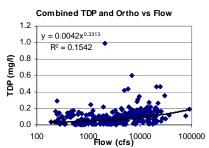
Approximate basin area (sq. mi.): 14,939 (in Minnesota)

Representative USGS Gauge: #05330000 Minnesota River near Jordan, MN

Representative USGS Gauge: #05330000 Minnesota River near Jordan, MN
Representative MPCA EDA Site: MWCC040 Minn River near Jordan at Co 9 bridge


Approximate drainage area at gauge (sq. mi.): 16,200


Total basin to gauged area multiplier: 0.922 (<1 because only interested in area within Minnesota)


Compiled Water Quality Data

USGS (Water Years 1979-1998)		Count (n)
Suspended sediment concentration (SSC) mg/l:	•	134
Phosphorus, water, unfiltered (TP) (mg/l):	•	171
Phosphorus, water, filtered (TDP) (mg/l):	•	166
MPCA EDA Data Extraction (1985-1992)		
Phosphorus, total (TP) (mg/l as P):		214
Phosphorus, dissolved orthophosphate (mg/l P):		135

Rating Curves

Estimated Annual Basin Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representa	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1981	277,391	429	130	299	184	43%
Low Flow Year	1990	329,196	472	156	316	213	45%
LOW Flow Teal	2000	357,016	525	168	356	232	44%
	Average	321,201	475	151	324	210	44%
	1985	935,399	1,230	447	783	588	48%
Average Flow	1998	890,220	1,161	426	735	558	48%
Year	1999	1,049,252	1,370	501	869	658	48%
	Average	958,291	1,254	458	796	601	48%
	1986	1,915,830	2,280	926	1,354	1,170	51%
High Flow Year	1997	2,016,096	2,275	982	1,294	1,215	53%
Tilgit flow i ear	2001	2,398,943	2,433	1,183	1,250	1,408	58%
	Average	2,110,290	2,330	1,030	1,299	1,264	54%

Estimated Annual Basin Yield (lbs/acre/yr)

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	74	0.11	0.03	0.07	0.05
Average Flow Year	221	0.29	0.11	0.18	0.14
High Flow Year	486	0.54	0.24	0.30	0.29

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	152.7	0.226	0.072	0.154	0.100
Average Flow Year	186.9	0.245	0.089	0.155	0.117
High Flow Year	244.4	0.270	0.119	0.150	0.146

Date: January 16, 2004

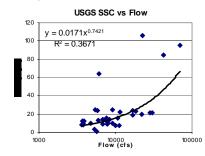
Page: C-3

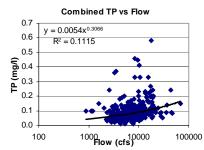
Upper Mississippi River

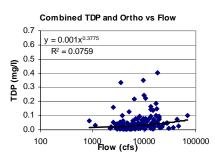
Basin Specific Total Phosphorus and Bioavailable Phosphorus Summary

Approximate basin area (sq. mi.): 20,100

Representative USGS Gauge: #05288500 Mississippi River Near Anoka, MN


MWCC006 MISSISSIPPI R UPST L&D 1, 0.2MI DS FORD PKWY Representative MPCA EDA Site: Representative MPCA STORET Site: S000-024 MISSISSIPPI R MPLS WATERWORKS INTAKE AT FRIDLEY


Approximate drainage area at gauge (sq. mi.): 19,100 Total watershed to gauged area multiplier: 1.052


Compiled Water Quality Data

USGS (Water Years 1984-1998)	Count (n)
Suspended sediment concentration (SSC) mg/l:	35
Phosphorus, water, unfiltered (TP) (mg/l):	25
Phosphorus, water, filtered (TDP) (mg/l):	25
MPCA EDA Data Extraction (1985-1992)	
Phosphorus, total (TP) (mg/l as P):	220
Phosphorus, orthophosphate as P (mg/l P):	133
MPCA New STORET Data (1999-2002)	
Phosphorus as P (mg/l):	15

Rating Curves

Estimated Annual Basin Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	ive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1989	81,369	471	166	305	221	47%
Low Flow Year	1990	90,080	520	184	336	244	47%
LOW Flow Feat	2000	83,881	534	186	347	249	47%
	Average	85, 110	508	179	329	238	47%
	1982	241,673	1,045	387	658	505	48%
Average Flow	1995	198,574	984	357	627	470	48%
Year	2002	197,596	961	350	611	460	48%
	Average	212,614	997	365	632	478	48%
	1986	511,754	1,946	737	1,209	954	49%
High Flow Year	1997	319,259	1,273	476	797	620	49%
Tilgit How Teal	2001	397,499	1,418	540	877	698	49%
	Average	409,504	1,545	584	961	757	49%

Estimated Annual Basin Yield (lbs/acre/yr)

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	15	0.087	0.031	0.056	0.041
Average Flow Year	36	0.170	0.062	0.108	0.082
High Flow Year	70	0.264	0.100	0.164	0.130

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	14.3	0.085	0.030	0.055	0.040
Average Flow Year	21.4	0.100	0.037	0.064	0.048
High Flow Year	30.3	0.114	0.043	0.071	0.056

Date: January 16, 2004

Page: C-4

Lower Mississippi River

Basin Specific Total Phosphorus and Bioavailable Phosphorus Summary

Approximate basin area (sq. mi.): 6,317 (in Minnesota)

Representative USGS Gauge: #05355200 Cannon River at Welch, MN

Representative MPCA STORET Site: S001-784 CANNON R, BRG AT 9TH ST N IN CITY OF CANNON FALLS

Approximate drainage area at gauge (sq. mi.): 1,340

Representative USGS Gauge: #05385000 Root River Near Houston, MN

Representative LTRMP Site: RO00.1M Root River near confluence with Mississippi River

Approximate drainage area at LTRMP site (sq.mi.) 1,660

Total basin to gauged area multiplier: 2.998 (assume Root River represents the remainder of the Lower

Mississippi Basin in Minnesota)

Compiled Water Quality Data

See Summary information on separate sheets for the Cannon and Root Rivers

Rating Curves

See Summary information on separate sheets for the Cannon and Root Rivers

Estimated Annual Basin Load (metric tons/year)

				lotal	lotai	
	Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
Low Flow Year	48,612	238	102	135	127	53%
Average Flow Year	342,383	789	237	552	336	43%
High Flow Year	971,031	1,940	573	1,368	819	42%

Estimated Annual Basin Yield (lbs/acre/yr)

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	26.5	0.129	0.056	0.074	0.069
Average Flow Year	186	0.430	0.129	0.301	0.183
High Flow Year	528	1.056	0.312	0.744	0.446

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	25	0.100	0.038	0.063	0.049
Average Flow Year	81	0.186	0.055	0.131	0.079
High Flow Year	150	0.286	0.079	0.207	0.116

Date: January 16, 2004

Page: C-5

Lower Mississippi River - Cannon River

Watershed Specific Total Phosphorus and Bioavailable Phosphorus Summary

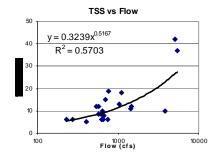
Count (n)

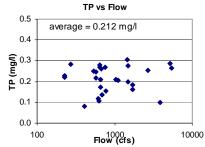
22

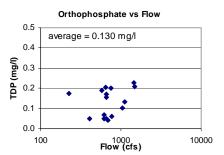
Approximate waterhsed area (sq. mi.): 1,340

Representative USGS Gauge: #05355200 Cannon River at Welch, MN

Representative MPCA STORET Site: S001-784 CANNON R, BRG AT 9TH ST N IN CITY OF CANNON FALLS


Approximate drainage area at gauge (sq. mi.): 1,340
Total watershed to gauged area multiplier: 1.000


Compiled Water Quality Data


No useful USGS water quality data available
No useful MPCA EDA Data available
MPCA New STORET Data (2001-2002)
Total Suspended Sediment (TSS) (mg/l):

Phosphorus as P (mg/l): 28
Phosphorus, orthophosphate as P (mg/l): 16

Rating Curves

Estimated Annual Watershed Load (metric tons/year)

					lotal	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1996	8,092	145	89	56	99	68%
Low Flow Year	2002	6,775	127	78	49	86	68%
	Average	7,433	136	83	53	93	68%
Average Flow	1994	9,711	171	105	66	117	68%
Year	1998	19,624	229	140	89	156	68%
i eai	Average	14,668	200	123	77	137	68%
	1973	No flow data	No flow data	No flow data	No flow data	No flow data	No flow data
High Flow Year	1974	No flow data	No flow data	No flow data	No flow data	No flow data	No flow data
riigii riow reai	1993	41,890	404	247	156	276	68%
	Average	41,890	404	247	156	276	68%

Estimated Annual Watershed Yield (lbs/acre/yr)

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	19	0.35	0.21	0.13	0.24
Average Flow Year	38	0.51	0.31	0.20	0.35
High Flow Year	107	1.04	0.63	0.40	0.71

ū		()		Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	11.6	0.212	0.130	0.082	0.145
Average Flow Year	15.1	0.212	0.130	0.082	0.145
High Flow Year	22.0	0.212	0.130	0.082	0.145

Date: January 16, 2004

Page: C-6

Lower Mississippi River - Root River

Watershed Specific Total Phosphorus and Bioavailable Phosphorus Summary

Approximate watershed area (sq. mi.): 1,660

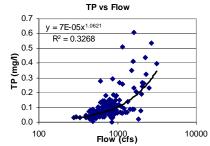
Representative USGS Gauge: #05385000 Root River Near Houston, MN

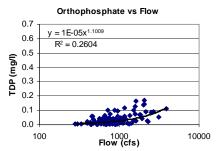
Representative LTRMP Site: RO00.1M Root River near confluence with Mississippi River

Approximate drainage area at gauge (sq. mi.): 1,270
Approximate drainage area at LTRMP site (sq.mi.): 1,660
Total watershed to gauged area multiplier: 1.307

Compiled Water Quality Data


 LTRMP Data (1991-1998)
 Count (n)


 Total Suspended Sediment (TSS) (mg/l):
 149


 Phosphorus as P (mg/l):
 140

 Phosphorus, orthophosphate as P (mg/l):
 151

Rating Curves

Estimated Annual Watershed Load (metric tons/year)

		•	,		Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1977	13,734	34	6	28	11	33%
Low Flow Year	2002	No flow data	No flow data	No flow data	No flow data	No flow data	No flow data
	Average	13,734	34	6	28	11	33%
Average Flow	1994	89,145	170	33	137	57	34%
Year	1998	129,464	224	44	180	76	34%
i cai	Average	109,304	197	38	158	67	34%
	1973	282,818	476	101	375	168	35%
High Flow Year	1974	251,219	425	90	336	150	35%
riigiri iow real	1993	395,664	636	135	501	225	35%
	Average	309,900	513	108	404	181	35%

Estimated Annual Watershed Yield (lbs/acre/yr)

					Total	Total
		Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition		Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year		28	0.07	0.01	0.06	0.02
Average Flow Yea	ar	226	0.41	0.08	0.33	0.14
High Flow Year		642	1.06	0.22	0.84	0.38

_				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	28.5	0.070	0.013	0.057	0.023
Average Flow Year	99.4	0.179	0.035	0.144	0.061
High Flow Year	184.4	0.306	0.065	0.241	0.108

Date: January 16, 2004

Page: C-7

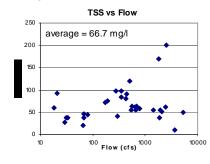
Des Moines River

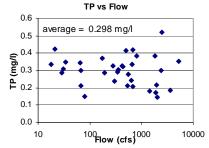
Basin Specific Total Phosphorus and Bioavailable Phosphorus Summary

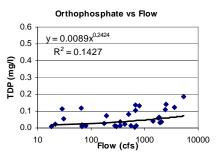
Approximate basin area (sq. mi.): 1,535 (in Minnesota)

Representative USGS Gauge: #05476000 Des Moines River at Jackson, MN
Representative MPCA STORET Site: \$000-027 DES MOINES R.-W FORK AT JACKSON

Approximate drainage area at gauge (sq. mi.): 1,250
Total basin to gauged area multiplier: 1.228


Compiled Water Quality Data


Count (n)


No useful USGS water quality data available No useful MPCA EDA Data available MPCA New STORET Data (2001-2002) Total Suspended Sediment (TSS) (mg/l):

Total Suspended Sediment (TSS) (mg/l): 34
Phosphorus as P (mg/l): 34
Phosphorus, orthophosphate as P (mg/l): 31

Rating Curves

Estimated Annual Basin Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1989	3,609	16	1.6	14	4.2	26%
Low Flow Year	1990	4,192	19	1.9	17	4.9	26%
LOW HOW Teal	2000	5,896	26	2.9	23	7.1	27%
	Average	4,566	20	2.2	18	5.4	27%
	1987	36,628	163	26	138	50	31%
Average Flow	1991	31,848	142	25	117	46	32%
Year	1999	39,678	177	27	150	54	31%
	Average	36,052	161	26	135	50	31%
	1983	87,662	391	74	317	131	33%
High Flow Year	1984	81,950	366	76	290	128	35%
I light low real	1994	63,917	285	48	237	91	32%
	Average	77,843	347	66	281	116	34%

Estimated Annual Basin Yield (lbs/acre/yr)

				lotal	Iotal
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	10	0.046	0.005	0.041	0.012
Average Flow Year	81	0.360	0.058	0.302	0.112
High Flow Year	174	0.778	0.147	0.630	0.261

					lotal	lotal
		Suspended	Total	Total Dissolved	Particulate	Bioavailable
	Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
ſ	Low Flow Year	66.7	0.298	0.031	0.266	0.079
I	Average Flow Year	66.7	0.298	0.048	0.249	0.093
ſ	High Flow Year	66.7	0.298	0.056	0.242	0.099

Date: January 16, 2004

Page: C-8

Cedar River

Basin Specific Total Phosphorus and Bioavailable Phosphorus Summary

Approximate basin area (sq. mi.): 1,028 (in Minnesota)

Representative USGS Gauge: #05457000 Cedar River near Austin, MN

Representative MPCA STORET Site:S000-136 CEDAR RIVER AT CSAH-4, 3 MILES SOUTH OF AUSTIN Representative MPCA STORET Site:
S000-137 CEDAR RIVER AT CSAH-2, 0.5 MILES EAST OF LANSING

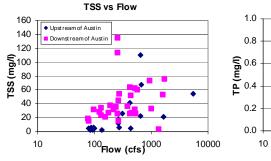
Approximate drainage area at gauge (sq. mi.): 399
Total basin to gauged area multiplier: 2.576

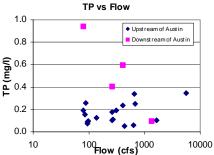
Compiled Water Quality Data

Count (n)

No useful USGS water quality data available

No MPCA EDA Data Available


MPCA New STORET Data (1999-2002)


Total suspended solids (TSS) (mg/l):

Phosphorus as P (mg/l):

50 22

Rating Curves

The apparent impact of the Austin WWTP at the USGS gauge and insufficient data restrict the use of rating curves for developing annual load estimations and bioavailable fractions for the Cedar River basin.

Estimated Annual Basin Load (metric tons/year)

Using annual loads for the Des Moines River Basin based on similar land use characteristics, adjusted for drainage area

· ·				Total	Total	
	Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
Low Flow Year	3,058	14	1.4	12	3.6	27%
Average Flow Year	24,144	108	17	90	34	31%
High Flow Year	52,132	233	44	188	78	34%

Estimated Annual Basin Yield (lb/acre/yr)

Using annual yields for the Des Moines River Basin based on similar land use characteristics

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	10	0.046	0.005	0.041	0.012
Average Flow Year	81	0.360	0.058	0.302	0.112
High Flow Year	174	0.778	0.147	0.630	0.261

Estimated Annual Flow Weighted Mean Concentration (mg/l)

Using flow weighted mean concentrations for the Des Moines River Basin based on similar land use characteristics

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	66.7	0.298	0.031	0.266	0.079
Average Flow Year	66.7	0.298	0.048	0.249	0.093
High Flow Year	66.7	0.298	0.056	0.242	0.099

Date: January 16, 2004

Page: C-9

Missouri River

Basin Specific Total Phosphorus and Bioavailable Phosphorus Summary

Approximate basin area (sq. mi.): 1,782 (in Minnesota)

Representative USGS Gauge: #06483270 Rock River at Rock Rapids, IA

Approximate drainage area at gauge (sq. mi.): 788
Total basin to gauged area multiplier: 2.261

Compiled Water Quality Data

Count (n)

No useful USGS water quality data available No MPCA EDA Data available No MPCA New STORET Data available

Rating Curves

Insufficient data restrict the use of rating curves for developing annual load estimations and bioavailable fractions for the Rock River watershed, and therefore, the Missouri Basin in Minnesota.

Estimated Annual Basin Load (metric tons/year)

Using annual loads for the Des Moines River Basin based on similar land use characteristics, adjusted for drainage area

				Total	Total	
	Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
Low Flow Year	5,300	24	2.5	21	6.3	27%
Average Flow Year	41,853	187	30	157	58	31%
High Flow Year	90,369	403	76	327	135	34%

Estimated Annual Basin Yield (lbs/acre/yr)

Using annual yields for the Des Moines River Basin based on similar land use characteristics

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	10	0.046	0.005	0.041	0.012
Average Flow Year	81	0.360	0.058	0.302	0.112
High Flow Year	174	0.778	0.147	0.630	0.261

Estimated Annual Flow Weighted Mean Concentration (mg/l)

Using flow weighted mean concentrations for the Des Moines River Basin based on similar land use characteristics

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	66.7	0.298	0.031	0.266	0.079
Average Flow Year	66.7	0.298	0.048	0.249	0.093
High Flow Year	66.7	0.298	0.056	0.242	0.099

Date: January 16, 2004

Page: C-10

St. Croix River

Basin Specific Total Phosphorus and Bioavailable Phosphorus Summary

Approximate basin area (sq. mi.): 3,528 (in Minnesota)

Representative USGS Gauge: #05338500 Snake River near Pine City, MN

Representative MPCA STORET Site: S000-198 SNAKE R BRIDGE AT CSAH-9, 2 MI NE OF PINE CITY

Approximate drainage area at gauge (sq. mi.): 958

Representative USGS Gauge: #05336700 Kettle River below Sandstone, MN

Representative MPCA STORET Site: S000-121 KETTLE R BRIDGE ON MN-48, 4.5 MI E OF HINCKLEY

Approximate drainage area at gauge (sq. mi.): 868

Total basin to gauged area multiplier: 1.932 (assume Snake and Kettle Rivers equally represent the

remainder of the St. Croix Basin in Minnesota)

Compiled Water Quality Data

See Summary information on separate sheets for the Snake and Kettle Rivers

Rating Curves

See Summary information on separate sheets for the Snake and Kettle Rivers

Estimated Annual Basin Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1987	No flow data	No flow data	No flow data	No flow data	No flow data	No flow data
Low Flow Year	1988	No flow data	No flow data	No flow data	No flow data	No flow data	No flow data
LOW Flow Teal	1998	6,355	85	29	56	39	46%
	Average	6,355	85	29	56	39	46%
	1994	12,068	145	48	97	66	45%
Average Flow	1995	14,100	181	60	120	82	45%
Year	1999	11,108	139	46	92	63	46%
	Average	12, <i>4</i> 26	155	52	103	70	45%
	1986	No flow data	No flow data	No flow data	No flow data	No flow data	No flow data
High Flow Year	2001	28,605	254	78	176	110	43%
	Average	28,605	254	78	176	110	43%

Estimated Annual Basin Yield (lbs/acre/yr)

				lotal	lotal
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	6.2	0.083	0.029	0.054	0.038
Average Flow Year	12	0.151	0.050	0.100	0.068
High Flow Year	28	0.247	0.076	0.171	0.107

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	4	0.068	0.024	0.045	0.032
Average Flow Year	5	0.071	0.024	0.047	0.032
High Flow Year	8	0.075	0.024	0.052	0.033

Date: January 16, 2004

Page: C-11

St. Croix River - Snake River

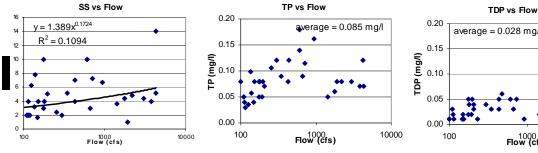
Watershed Specific Total Phosphorus and Bioavailable Phosphorus Summary

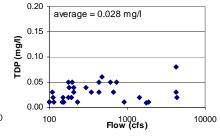
Approximate watershed area (sq. mi.): 958

#05338500 Representative USGS Gauge: Snake River near Pine City, MN

SNAKE R BRIDGE AT CSAH-9, 2 MI NE OF PINE CITY Representative MPCA STORET Site: S000-198

Approximate drainage area at gauge (sq. mi.): 958 Total watershed to gauged area multiplier: 1.000


Compiled Water Quality Data


USGS (Water Years 1979-1998)	Count (n)	
Suspended sediment concentration (SSC) mg/l:	13	
Phosphorus, water, unfiltered (TP) (mg/l):	15	
Phosphorus, water, filtered (TDP) (mg/l):	12	(excluded one outlier)
Orthophosphate, water, filtered, as P (mg/l):	10	
No MPCA EDA data available		
MPCA New STORET Data (1999-2002)		
Total suspended solids (TSS) (mg/l):	20	(excluded one outlier)

luded one outlier) Phosphorus as P (mg/l): 21

Phosphorus, orthophosphate as P (mg/l): 10

Rating Curves

Estimated Annual Watershed Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representa	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1987	No flow data	No flow data	No flow data	No flow data	No flow data	No flow data
Low Flow Year	1988	No flow data	No flow data	No flow data	No flow data	No flow data	No flow data
LOW Flow Teal	1998	1,117	23	8	15	11	45%
	Average	1,117	23	8	15	11	45%
	1994	2,325	43	14	28	19	45%
Average Flow	1995	3,335	59	20	39	27	45%
Year	1999	2,017	38	13	25	17	45%
	Average	2,559	47	16	31	21	45%
	1986	No flow data	No flow data	No flow data	No flow data	No flow data	No flow data
High Flow Year	2001	4,968	74	25	50	34	45%
	Average	4,968	74	25	50	34	45%

Estimated Annual Watershed Yield (lbs/acre/yr)

				lotai	Iotal
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	4.0	0.083	0.028	0.055	0.038
Average Flow Year	9	0.168	0.056	0.112	0.076
High Flow Year	18	0.267	0.089	0.178	0.121

					Total	Total
		Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Con	dition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow	Year	4.1	0.085	0.028	0.057	0.039
Average Flo	w Year	4.6	0.085	0.028	0.057	0.039
High Flow	/ Year	5.7	0.085	0.028	0.057	0.039

Date: January 16, 2004

Page: C-12

St. Croix River - Kettle River

Watershed Specific Total Phosphorus and Bioavailable Phosphorus Summary

Approximate watershed area (sq. mi.): 868

Representative USGS Gauge: #05336700 Kettle River below Sandstone, MN

Representative MPCA STORET Site: S000-121 KETTLE R BRIDGE ON MN-48, 4.5 MI E OF HINCKLEY

Approximate drainage area at gauge (sq. mi.): 868
Total watershed to gauged area multiplier: 1.000

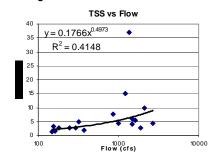
Compiled Water Quality Data

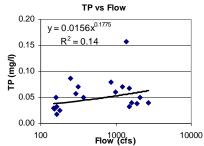
Count (n)

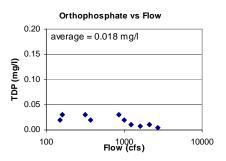
19

No useful USGS water quality data available

No MPCA EDA data available


MPCA New STORET Data (1999-2002)


Total suspended solids (TSS) (mg/l):


Phosphorus as P (mg/l):

Phosphorus as P (mg/l): 20 Phosphorus, orthophosphate as P (mg/l): 10

Rating Curves

Estimated Annual Watershed Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1987	1,443	17	6.4	10.2	8.2	50%
Low Flow Year	1988	1,408	14	5.2	8.9	6.8	48%
LOW Flow Teal	1998	2,172	21	7.4	13.5	9.8	47%
	Average	1,674	17	6.3	10.9	8.3	48%
	1994	3,921	33	11	22	15	45%
Average Flow	1995	3,963	34	11	23	15	45%
Year	1999	3,732	34	11	22	15	46%
	Average	3,872	33	11	22	15	45%
	1986	11,476	76	22	54	32	42%
High Flow Year	2001	9,837	57	16	41	23	40%
	Average	10,657	67	19	48	27	41%

Estimated Annual Watershed Yield (lbs/acre/yr)

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	6.6	0.068	0.025	0.043	0.033
Average Flow Year	15	0.132	0.044	0.088	0.060
High Flow Year	42	0.264	0.074	0.189	0.108

				lotai	Iotal
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	4.8	0.049	0.018	0.031	0.024
Average Flow Year	6.3	0.055	0.018	0.036	0.025
High Flow Year	10.5	0.065	0.018	0.047	0.027

Date: January 16, 2004

Page: C-13

Lake Superior

Basin Specific Total Phosphorus and Bioavailable Phosphorus Summary

Approximate basin area (sq. mi.): 6,149 (in Minnesota)

Representative USGS Gauge: #04024000 St. Louis River at Scanlon, MN
Representative MPCA EDA Site: SL 297 ST. LOUIS RIVER AT USH-61 BRIDGE
Representative MPCA STORET Site: S000-046 ST LOUIS R. OLD USH-61 AT SCANLON

Approximate drainage area at gauge (sq. mi.): 3,430

Total St. Louis River watershed area (sq. mi.): 3,634 (includes a small portion in Wisconsin)

Total watershed to gauged area multiplier: 1.059

Representative USGS Gauge: #04014500 Baptism River near Beaver Bay, MN

Representative MPCA EDA Site: 110 BAPTISM RIVER

Approximate drainage area at gauge (sq. mi.): 140

Lake Superior drainage area outside of St. Louis River (sq. mi.): 2,515
Assume Baptism represents this area, gauged area multiplier: 17.964

Compiled Water Quality Data

See Summary information on separate sheets for the St. Louis and Baptism Rivers

Rating Curves

See Summary information on separate sheets for the St. Louis and Baptism Rivers

Estimated Annual Basin Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representa	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1980	12,231	40	8	33	13	33%
Low Flow Year	1988	12,461	40	7	32	13	33%
LOW HOW Teal	1990	15,918	45	10	35	17	37%
	Average	13,537	42	8	33	14	35%
	1981	24,474	70	13	58	23	33%
Average Flow	1992	27,885	80	16	63	28	35%
Year	1993	30,945	83	17	66	29	35%
	Average	27,768	78	15	62	26	34%
	1983	39,490	104	20	84	35	34%
High Flow Year	1984	34,813	95	18	77	32	34%
	Average	37, 152	100	19	81	34	34%

Estimated Annual Basin Yield (lbs/acre/year)

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	7.6	0.023	0.005	0.019	0.008
Average Flow Year	15.5	0.043	0.008	0.035	0.015
High Flow Year	20.8	0.056	0.011	0.045	0.019

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	11	0.030	0.011	0.019	0.014
Average Flow Year	14	0.033	0.011	0.022	0.015
High Flow Year	15	0.035	0.011	0.023	0.015

Date: January 16, 2004

Page: C-14

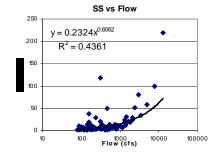
Lake Superior - St. Louis River

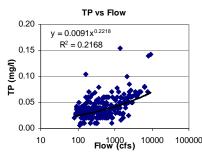
Watershed Specific Total Phosphorus and Bioavailable Phosphorus Summary

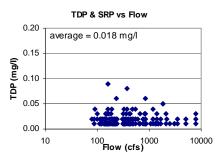
Approximate watershed area (sq. mi.): 3,430

Representative USGS Gauge: #04024000 St. Louis River at Scanlon, MN ST. LOUIS RIVER AT USH-61 BRIDGE Representative MPCA EDA Site: SL 297 Representative MPCA STORET Site: S000-046 ST LOUIS R. OLD USH-61 AT SCANLON

Approximate drainage area at gauge (sq. mi.): 3,430 Total watershed to gauged area multiplier: 1.000


Compiled Water Quality Data


USGS (Water Years 1979-1994) Count (n) Suspended sediment concentration (SSC) mg/l: Phosphorus, water, unfiltered (TP) (mg/l): 99 Phosphorus, water, filtered (TDP) (mg/l): 99 Orthophosphate, water, filtered, as P (SRP) (mg/l): 80 MPCA EDA (Water Year 1979-1996) Phosphorus, Total (mg/l as P): 158 MPCA New STORET Data (2001) 8


(excluded one outlier) (excluded one outlier)

Phosphorus as P (mg/l):

Rating Curves

Estimated Annual Watershed Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1980	3,796	11.3	5.4	5.9	6.5	57%
Low Flow Year	1988	3,993	11.0	5.1	5.9	6.2	56%
LOW Flow Feat	1990	8,203	19.9	8.4	11.4	10.5	53%
	Average	5,331	14.1	6.3	7.7	7.7	55%
	1981	9,847	22.4	9.2	13.3	11.6	52%
Average Flow	1992	13,091	30.9	12.6	18.3	15.9	52%
Year	1993	15,885	33.7	13.1	20.6	16.8	50%
	Average	12,941	29.0	11.6	17.4	14.8	51%
	1983	19,877	41.6	15.9	25.7	20.5	49%
High Flow Year	1984	16,025	35.1	13.9	21.3	17.7	50%
	Average	17,951	38.3	14.9	23.5	19.1	50%

Estimated Annual Watershed Yield (lbs/acre/year)

				rotai	rotai
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	5.3	0.014	0.006	0.008	0.008
Average Flow Year	13.0	0.029	0.012	0.017	0.015
High Flow Year	18.0	0.038	0.015	0.024	0.019

· ·		(0 /		Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	14.7	0.040	0.018	0.022	0.022
Average Flow Year	19.9	0.045	0.018	0.027	0.023
High Flow Year	21.7	0.046	0.018	0.028	0.023

Date: January 16, 2004

Page: C-15

Lake Superior - Baptism River

Watershed Specific Total Phosphorus and Bioavailable Phosphorus Summary

Approximate watershed area (sq. mi.): 140

Representative USGS Gauge: #04014500 Baptism River near Beaver Bay, MN

Representative MPCA EDA Site: 110 BAPTISM RIVER

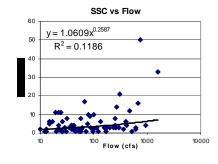
Approximate drainage area at gauge (sq. mi.): 140
Total watershed to gauged area multiplier: 1.000

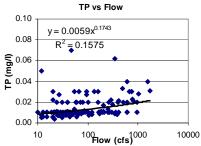
Compiled Water Quality Data

USGS (Water Years 1979-1993)
Suspended sediment concentration (SSC) mg/l:
Phosphorus, water, unfiltered (TP) (mg/l):

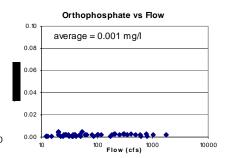
Count (n)
75
71

MPCA EDA (Water Year 1979-1983)
Phosphorus as P (mg/l):


* 59 (excluded one outlier)


Phosphorus, orthophosphate as P (mg/l):

48 (adjusted non-detects to 1/2 the detection limit)


No MPCA New STORET data available

Rating Curves

(excluded three outliers)

Estimated Annual Watershed Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representa	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1980	457	1.56	0.10	1.46	0.36	23%
Low Flow Year	1988	458	1.56	0.10	1.46	0.36	23%
LOW Flow Teal	1990	402	1.34	0.08	1.26	0.31	23%
	Average	439	1.49	0.09	1.39	0.34	23%
	1981	782	2.60	0.16	2.44	0.60	23%
Average Flow	1992	780	2.61	0.16	2.45	0.60	23%
Year	1993	786	2.61	0.16	2.45	0.60	23%
	Average	783	2.61	0.16	2.45	0.60	23%
	1983	1,026	3.35	0.19	3.16	0.76	23%
High Flow Year	1984	993	3.23	0.19	3.05	0.73	23%
	Average	1,009	3.29	0.19	3.10	0.75	23%

Estimated Annual Watershed Yield (lb/acre/year)

				lotal	Iotal
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	11	0.037	0.002	0.034	0.008
Average Flow Year	19	0.064	0.004	0.060	0.015
High Flow Year	25	0.081	0.005	0.076	0.018

				lotai	Iotal
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	4.7	0.016	0.001	0.015	0.004
Average Flow Year	5.0	0.017	0.001	0.016	0.004
High Flow Year	5.3	0.017	0.001	0.016	0.004

Date: January 16, 2004

Page: C-16

Rainy River Basin Specific Total Phosphorus and Bioavailable Phosphorus Summary

Approximate basin area (sq. mi.): 11,236 (in Minnesota)

 Representative USGS Gauge:
 #05133500
 Rainy River at Manitou Rapids, MN

 Approximate drainage area at gauge (sq. mi.):
 19,400
 (includes drainage from Canada)

 Weighting factor for Rainy River
 0.290
 (assume drainage area at this gauge is representative of half of the Rainy River basin in Minnesota)

Representative USGS Gauge: #05131500 Little Fork River at Littlefork, MN

Approximate drainage area at gauge (sq. mi.): 1,680

Weighting factor for Rainy River basin: 3.344 (assume Little Fork is representative of half of

the Rainy River basin in Minnesota)

Compiled Water Quality Data

See Summary information on separate sheets for the Rainy and Little Fork Rivers

Rating Curves

See Summary information on separate sheets for the Rainy and Little Fork Rivers

Estimated Annual Basin Load (metric tons/year)

			•		Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	ive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1977	134,285	183	64	118	86	47%
Low Flow Year	1980	89,597	176	70	106	89	50%
LOW Flow Teal	2002	173,386	309	121	188	155	50%
	Average	132,422	223	85	137	110	49%
	1992	145,574	286	114	172	145	51%
Average Flow	1993	204,907	341	128	213	167	49%
Year	1997	301,469	411	146	266	193	47%
	Average	217,316	346	129	217	168	49%
	1975	437,618	470	154	316	210	45%
High Flow Year	1996	421,768	514	176	338	237	46%
nigh riow real	2001	541,876	600	198	402	270	45%
	Average	467,087	528	176	352	239	45%

Estimated Annual Basin Yield (lbs/acre/yr)

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	41	0.068	0.026	0.042	0.034
Average Flow Year	66	0.106	0.040	0.066	0.051
High Flow Year	143	0.162	0.054	0.108	0.073

J	Total	Total			
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	28	0.047	0.018	0.029	0.023
Average Flow Year	30	0.048	0.018	0.030	0.023
High Flow Year	47	0.054	0.018	0.036	0.024

Date: January 16, 2004

Page: C-17

Rainy River - Rainy River

Watershed Specific Total Phosphorus and Bioavailable Phosphorus Summary

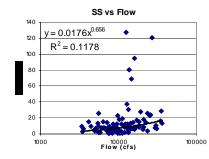
Approximate watershed area (sq. mi.): 11,236 (in Minnesota)

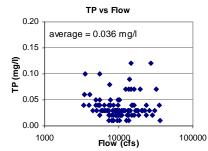
#05133500 Representative USGS Gauge: Rainy River at Manitou Rapids, MN

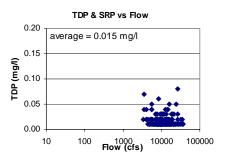
Approximate drainage area at gauge (sq. mi.): 19,400 Total watershed to gauged area multiplier: 1.000

Compiled Water Quality Data

USGS (Water Years 1979-1994) Count (n) Suspended sediment concentration (SSC) mg/l: 104


Phosphorus, water, unfiltered (TP) (mg/l): 102 (excluded 2 outliers)


Phosphorus, water, filtered (TDP) (mg/l): 104 (non-detects set to 1/2 the D.L.) Orthophosphate, water, filtered, as P (SRP) (mg/l): 79


No MPCA EDA data available

MPCA New STORET data available

Rating Curves

Estimated Annual Watershed Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1977	43,177	186	78	108	98	53%
Low Flow Year	1980	43,513	232	98	134	122	53%
LOW HOW Teal	2002	175,498	488	206	283	257	53%
	Average	87,396	302	127	175	159	53%
	1992	134,443	452	190	262	238	53%
Average Flow	1993	136,157	462	195	267	243	53%
Year	1997	149,444	475	200	275	250	53%
	Average	140,015	463	195	268	243	53%
	1975	150,691	476	200	275	250	53%
High Flow Year	1996	237,705	629	265	364	330	53%
High Flow Teal	2001	270,482	653	275	378	343	53%
	Average	219,626	586	247	339	308	53%

Estimated Annual Watershed Yield (lbs/acre/yr)

				rotai	rotai
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	27	0.092	0.039	0.054	0.049
Average Flow Year	43	0.142	0.060	0.082	0.074
High Flow Year	67	0.179	0.076	0.104	0.094

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	9.2	0.036	0.015	0.021	0.019
Average Flow Year	10.8	0.036	0.015	0.021	0.019
High Flow Year	13.2	0.036	0.015	0.021	0.019

Date: January 16, 2004

Page: C-18

Rainy River - Little Fork River

Watershed Specific Total Phosphorus and Bioavailable Phosphorus Summary

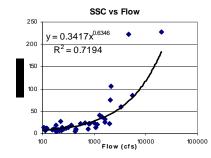
Approximate watershed area (sq. mi.): 1,680

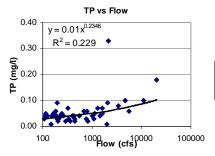
Representative USGS Gauge: #05131500 Little Fork River at Littlefork, MN

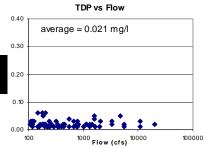
Approximate drainage area at gauge (sq. mi.): 1,680
Total watershed to gauged area multiplier: 1.000

Compiled Water Quality Data

USGS (Water Years 1979-1986)
Suspended sediment concentration (SSC) mg/l:
Phosphorus, water, unfiltered (TP) (mg/l):


48
Phosphorus water floand (TPD) (mg/l):
47


Phosphorus, water, filtered (TDP) (mg/l): 47 (excluded one outlier)
Orthophosphate, water, filtered, as P (SRP) (mg/l): 22 (excluded one outlier)


No MPCA EDA data available

No MPCA New STORET data available

Rating Curves

Estimated Annual Watershed Load (metric tons/year)

		•	•		Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1977	36,417	39	12	26	17	45%
Low Flow Year	1980	23,025	33	12	20	16	49%
Low How Teal	2002	36,651	50	18	32	24	48%
	Average	32,031	40	14	26	19	47%
	1992	31,890	46	17	29	23	49%
Average Flow	1993	49,484	62	22	40	29	46%
Year	1997	77,209	82	26	56	36	44%
	Average	52,861	63	22	42	29	46%
	1975	117,815	99	29	71	41	42%
High Flow Year	1996	105,540	99	30	70	42	43%
nigh Flow feat	2001	138,619	123	35	87	51	42%
	Average	120,658	107	31	76	45	42%

Estimated Annual Watershed Yield (lbs/acre/yr)

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	66	0.083	0.030	0.053	0.039
Average Flow Year	108	0.130	0.044	0.085	0.060
High Flow Year	247	0.219	0.064	0.155	0.092

					Total	Total
		Suspended	Total	Total Dissolved	Particulate	Bioavailable
	Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
ſ	Low Flow Year	47.4	0.059	0.021	0.038	0.028
I	Average Flow Year	49.5	0.061	0.021	0.040	0.028
I	High Flow Year	81.1	0.072	0.021	0.051	0.030

Date: January 16, 2004

Page: C-19

Red River

Basin Specific Total Phosphorus and Bioavailable Phosphorus Summary

Approximate basin area (sq. mi.): 17,741 (in Minnesota)

Representative USGS Gauge: #05046000 Otter Tail River Below Orwell Dam near Fergus Falls, MN

Representative MPCA STORET Site: S002-003 OTTERTAIL R BLW ORWELL DAM, CSAH-15, 8 MI SW OF FERGUS FALLS

Approximate drainage area at gauge (sq. mi.): 1.740

Approximate drainage area at gauge (sq. mi.): 1,740 Weighting factor for Red River Basin: 1.00

eighting factor for Red River Basin:

1.00 (assume Otter Tail watershed is not representative of other portions of the Red River Basin)

 Representative USGS Gauge:
 #05064000
 Wild Rice River at Hendrum, MN

 Representative MPCA STORET Site:
 \$000-216
 WILD RICE R. USH-75 N OF HENDRUM

Approximate drainage area at gauge (sq. mi.): 1,560

Weighting factor for Red River Basin: 6.88 (assume Wild Rice watershed is representative of the Red River Basin

outside of the Otter Tail and Red Lake watersheds)

Representative USGS Gauge: #05079000 Red Lake River at Crookston, MN

Representative MPCA STORET Site: \$000-031 RED LAKE RIVER AT BRIDGE ON CSAH-15 AT FISHER

Approximate drainage area at gauge (sq. mi.): 5,270

Weighting factor for Red River Basin: 1.00 (assume Red Lake River watershed is not representative of

other portions of the Red River Basin)

Compiled Water Quality Data

See Summary information on separate sheets for the Otter Tail, Wild Rice, and Red Lake Rivers

Rating Curves

See Summary information on separate sheets for the Otter Tail, Wild Rice, and Red Lake Rivers

Estimated Annual Basin Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representa	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1989	308,644	388	127	261	174	45%
Low Flow Year	1990	73,542	87	35	52	45	51%
LOW Flow Feat	1991	71,252	89	36	53	45	51%
	A verage	151,146	188	66	122	88	47%
	1994	365,516	461	164	298	217	47%
Average Flow	1995	495,399	615	213	401	286	46%
Year	2002	1,189,614	1,576	485	1,091	681	43%
	A verage	683,510	884	287	597	395	45%
	1997	1,122,144	1,499	446	1,053	636	42%
High Flow Year	1998	941,478	1,206	387	819	534	44%
night Flow feat	2001	1,051,717	1,371	428	943	598	44%
	A verage	1,038,447	1,359	4 20	938	589	43%

Estimated Annual Basin Yield (lbs/acre/yr)

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	29	0.036	0.013	0.024	0.017
Average Flow Year	132	0.171	0.056	0.116	0.076
High Flow Year	201	0.263	0.081	0.182	0.114

					Total	Total
		Suspended	Total	Total Dissolved	Particulate	Bioavailable
	Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
	Low Flow Year	77	0.095	0.036	0.058	0.047
	Average Flow Year	104	0.133	0.044	0.089	0.060
Г	High Flow Year	124	0.164	0.051	0.113	0.071

Date: January 16, 2004

Page: C-20

Red River - Otter Tail River

Watershed Specific Total Phosphorus and Bioavailable Phosphorus Summary

16

Approximate watershed area (sq. mi.): 1,740

Representative USGS Gauge: #05046000 Otter Tail River Below Orwell Dam near Fergus Falls, MN

Representative MPCA STORET Site: S002-003 OTTERTAIL R BLW ORWELL DAM, CSAH-15, 8 MI SW OF FERGUS FALLS

(non-detects adjusted to 1/2 the D.L.)

Approximate drainage area at gauge (sq. mi.): 1,740
Total watershed to gauged area multiplier: 1.000

Compiled Water Quality Data

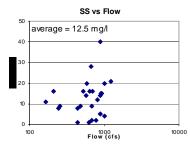
USGS (Water Years 1985-1995)
Suspended sediment concentration (SSC) mg/l:
Phosphorus, water, unfiltered (TP) (mg/l):
Phosphorus, water, filtered (TDP) (mg/l):
Orthophosphate, water, filtered, as P (mg/l):
No MPCA EDA data available

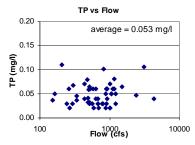
Count (n)

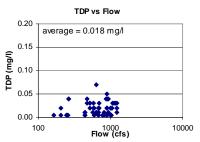
7

38

44


7


29


MPCA New STORET Data (2001-2002)

Phosphorus as P (mg/l):

Rating Curves

Estimated Annual Watershed Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1989	3,019	13	4	8	6	46%
Low Flow Year	1990	2,989	13	4	8	6	46%
LOW Flow Fear	1991	3,800	16	5	11	7	46%
	A verage	3,269	14	5	9	6	46%
	1994	7,544	32	11	21	15	46%
Average Flow	1995	5,549	24	8	16	11	46%
Year	2002	12,925	55	19	36	25	46%
	A verage	8,673	37	12	24	17	46%
	1997	7,747	33	11	22	15	46%
High Flow Year	1998	7,713	33	11	22	15	46%
Triigit Flow Teal	2001	8,874	38	13	25	17	46%
	Average	8,111	34	12	23	16	46%

Estimated Annual Watershed Yield (lbs/acre/yr)

					Total	Total
		Suspended	Total	Total Dissolved	Particulate	Bioavailable
	Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Г	Low Flow Year	6.5	0.027	0.009	0.018	0.013
Г	Average Flow Year	17	0.073	0.025	0.048	0.033
Г	High Flow Year	16	0.068	0.023	0.045	0.031

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	12.5	0.053	0.018	0.035	0.024
Average Flow Year	12.5	0.053	0.018	0.035	0.024
High Flow Year	12.5	0.053	0.018	0.035	0.024

Date: January 16, 2004

Page: C-21

Red River - Wild Rice

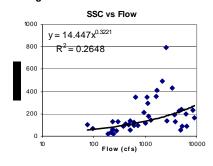
Watershed Specific Total Phosphorus and Bioavailable Phosphorus Summary

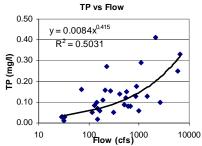
Approximate watershed area (sq. mi.): 1,560

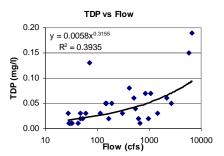
Representative USGS Gauge:#05064000Wild Rice River at Hendrum, MNRepresentative MPCA STORET Site:\$000-216WILD RICE R. USH-75 N OF HENDRUM

Approximate drainage area at gauge (sq. mi.): 1,560
Total watershed to gauged area multiplier: 1.000

Compiled Water Quality Data


USGS (Water Years 1979-2001)	Count (n)
Suspended sediment concentration (SSC) mg/l:	40
Phosphorus, water, unfiltered (TP) (mg/l):	24
Phosphorus, water, filtered (TDP) (mg/l):	30
N. ADDA EDA 11. "11.	


No MPCA EDA data available


MPCA New STORET Data (1999-2002)

Phosphorus as P (mg/l):

Rating Curves

Estimated Annual Watershed Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1989	41,501	49	16	33	22	44%
Low Flow Year	1990	9,831	10	4	6	5	50%
LOW Flow Teal	1991	9,174	9	4	6	5	50%
	Average	20,169	23	8	15	10	Bioavailable 2
	1994	44,486	49	17	31	23	47%
Average Flow	1995	61,659	68	24	45	32	0 46% 23 47% 32 46% 34 43%
Year	2002	156,355	195	59	135	84	43%
	Average	87,500	104	33	71	46	44%
	1997	137,353	172	52	119	74	43%
High Flow Year	1998	123,828	149	47	102	66	44%
night Flow feat	2001	134,530	164	51	113	72	44%
	Average	131,904	161	50	111	70	44%

Estimated Annual Watershed Yield (lbs/acre/yr)

					Total	Total
		Suspended	Total	Total Dissolved	Particulate	Bioavailable
	Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Г	Low Flow Year	44	0.050	0.017	0.033	0.023
Г	Average Flow Year	193	0.229	0.074	0.156	0.102
	High Flow Year	291	0.356	0.111	0.245	0.155

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	112.1	0.122	0.043	0.079	0.057
Average Flow Year	146.5	0.170	0.056	0.114	0.077
High Flow Year	176.2	0.216	0.067	0.149	0.094

Date: January 16, 2004

Page: C-22

Red River - Red Lake River

Watershed Specific Total Phosphorus and Bioavailable Phosphorus Summary

Approximate watershed area (sq. mi.): 5,270

Representative USGS Gauge: #05079000 Red Lake River at Crookston, MN

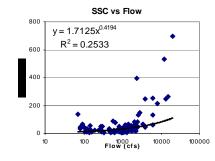
S000-031 RED LAKE RIVER AT BRIDGE ON CSAH-15 AT FISHER Representative MPCA STORET Site:

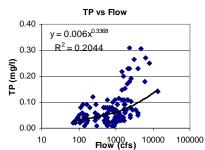
5,270 Approximate drainage area at gauge (sq. mi.): Total watershed to gauged area multiplier: 1.000

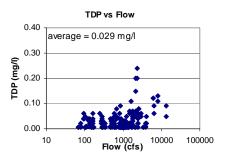
Compiled Water Quality Data

USGS (Water Years 1979-2001) Count (n) Suspended sediment concentration (SSC) mg/l: 120 Phosphorus, water, unfiltered (TP) (mg/l): 119 Phosphorus, water, filtered (TDP) (mg/l): 118

(excluded 2 outliers) (non-detects set to 1/2 the D.L.)


Orthophosphate, water, filtered, (mg/l): (non-detects set to 1/2 the D.L.) 102


No MPCA EDA data available


MPCA New STORET Data (2000-2002)

Phosphorus as P (mg/l): 16

Rating Curves

Estimated Annual Watershed Load (metric tons/year)

					Total	Total	
		Suspended	Total	Total Dissolved	Particulate	Bioavailable	Fraction
Representat	tive Years	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus	Bioavailable
	1989	20,143	37	14	23	18	49%
Low Flow Year	1990	2,924	6	5	2	5	79%
LOW Flow Teal	1991	4,345	9	6	3	7	72%
	Average	9, 138	17	8	9	10	S Bioavailable 18 49% 5 79% 7 72% 10 57% 46 48% 57 47% 79 44% 61 46% 13 40% 69 46% 89 43%
	1994	51,961	96	35	60	46	48%
Average Flow	1995	65,704	120	43	77	57	Bioavailable 8
Year	2002	101,143	180	57	123	79	44%
	Average	72,936	132	45	87	61	46%
	1997	169,565	286	76	210	113	40%
High Flow Year	1998	81,973	149	51	98	69	46%
I flight flow feat	2001	117,430	206	63	144	89	43%
	Average	122,989	214	63	151	90	42%

Estimated Annual Watershed Yield (lbs/acre/yr)

				lotai	lotai
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	6.0	0.011	0.005	0.006	0.006
Average Flow Year	47.6	0.086	0.029	0.057	0.040
High Flow Year	80.2	0.139	0.041	0.098	0.059

				Total	Total
	Suspended	Total	Total Dissolved	Particulate	Bioavailable
Flow Condition	Sediment	Phosphorus	Phosphorus	Phosphorus	Phosphorus
Low Flow Year	26.7	0.053	0.029	0.024	0.033
Average Flow Year	46.2	0.084	0.029	0.055	0.039
High Flow Year	55.3	0.097	0.029	0.068	0.041

Technical Memorandum

To: Marvin Hora, Minnesota Pollution Control Agency

Doug Hall, Minnesota Pollution Control Agency

Mark Tomasek, Minnesota Pollution Control Agency

From: Jamie Bankston and Patrick Hirl

Subject: Effluent Total Phosphorus Reduction Efforts by Wastewater Treatment Plants

Date: November 24, 2003

Project: 23/62-853 CMPL 001

c: Greg Wilson

Henry Runke

The purpose of this memorandum is to provide the Minnesota Pollution Control Agency (MPCA) with information on current practices of cities to reduce the phosphorus concentration in their wastewater treatment plant (WWTP) effluent through such approaches as reduction in the influent phosphorus loading, chemical phosphorus precipitation, and enhanced biological phosphorus removal (EBPR). Information was collected from six Minnesota cities and two Oregon cities on their programs to reduce their effluent phosphorus loading. A small sampling of Minnesota cities was used due to the limited number of cities that had data available on phosphorus reduction and its costs. The two Oregon cities were included because of their ability to meet a very stringent effluent phosphorus limit of 0.07 mg/L.

This memorandum provides a review of the efforts of each of the cities to reduce the phosphorus in their effluent. Where available, costs for the specific phosphorus reduction efforts are provided. Finally, conclusions are drawn on the effectiveness of effluent phosphorus reduction efforts based on the data provided.

Effluent Phosphorus Reduction Approaches

As mentioned above, three approaches were used either separately or in combination by the communities surveyed to reduce their effluent phosphorus concentrations: source reduction, chemical precipitation, and EBPR. Source reduction efforts varied significantly between cities in the survey.

From: Jamie Bankston and Pat Hirl

Subject: Wastewater Treatment Plants and Phosphorus

Date: November 24, 2003

Page: 2

The simplest approach was a public education campaign to promote reductions in the use of household products with high concentrations of phosphorus. The more aggressive cities implemented fees based on the phosphorus content of the sewered discharge for their significant industrial users (SIU). Pretreatment was also required in one city if a SIU exceeded a pre-defined phosphorus loading threshold. The specifics of each effort are described below.

Chemical phosphorus precipitation is the use of metal salts to promote the precipitation of metal phosphates. Iron or aluminum are the most commonly used metals. The metal salt can be added at many different points in the WWTP treatment train. The most common point of application is immediately prior to secondary clarification. The chemical used and point of application are identified for each plant surveyed. The equipment required for chemical precipitation is minimal with systems adding metal salts prior to secondary clarification needing only a bulk storage tank and a chemical dosing pump. The largest cost for chemical precipitation phosphorus treatment is operations, which includes chemical cost and the cost of additional sludge disposal. The chemical costs are provided for all WWTPs surveyed using chemical precipitation.

EBPR is achieved in the activated sludge system by promoting the growth of bacteria that can hyper-accumulate phosphorus. This is achieved by creating an initial anaerobic zone in the activated sludge system followed by the traditional aerobic zone. In addition, low molecular weight organic acids must be present in the anaerobic zone to achieve EBPR. These acids can be produced in the sewer system, in the primary clarifier, or in a separate sludge fermenter. EBPR can be implemented using a wide range of approaches. The simplest approach can be to adjust air flow within the activated sludge basins to create the anaerobic zone. The more sophisticated approaches can require separate anaerobic basins and separate sludge digestion tanks. Phosphorus is ultimately removed from the EBPR system when the bacteria, which have hyper-accumulated phosphorus, are wasted from the activated sludge system.

It should be noted that reductions in the influent phosphorus concentrations to a WWTP may or may not reduce the effluent phosphorus concentration. The effect of influent phosphorus concentration reduction on effluent phosphorus concentration is dependent on the operation of the WWTP. WWTPs that have not implemented phosphorus treatment (i.e., either chemical phosphorus precipitation or EBPR) will likely see a reduction in the effluent phosphorus concentration proportional to the reduction in influent phosphorus concentration. WWTPs using chemical precipitation to meet effluent phosphorus limits will not likely experience a reduction in effluent phosphorus concentration

From: Jamie Bankston and Pat Hirl

Subject: Wastewater Treatment Plants and Phosphorus

Date: November 24, 2003

Page: 3

if the influent phosphorus concentration is reduced because chemical precipitation will continue to be required to meet the effluent phosphorus limit. A reduction in influent phosphorus (soluble) concentration will reduce the amount of chemical required to achieve the effluent phosphorus limit, which will ultimately result in a reduction in chemical cost for phosphorus treatment. However, if the influent phosphorus was not soluble, which is precipitated chemically, but was particulate phosphorus, which is precipitated by flocculation, there may not be a direct reduction in chemical costs. Finally, WWTPs using EBPR will not likely experience a reduction in effluent phosphorus concentration if the influent phosphorus concentration is reduced because of the limits of this technology. The cost for operating EBPR will not be affected by the reductions in the influent phosphorus concentration.

Survey of Wastewater Treatment Plants for Phosphorus Removal

Several WWTPs were contacted by Barr Engineering regarding phosphorus treatment methods at their plant. The WWTPs were asked to identify the total flow into the plant, unit operations at the plant, phosphorus treatment method, influent and effluent phosphorus concentrations, estimated costs for phosphorus treatment, and methods used for limiting phosphorus input to the WWTPs. The WWTPs ranged in size (0.7 to 24 million gallons per day), treatment methods (chemical and/or biological), and phosphorus discharge requirements (0.07 mg/L to 2.41 mg/L). All of the WWTPs surveyed were activated sludge plants. This section summarizes the findings of the WWTP surveys, for a more detailed description of each WWTP see Attachment A. Phosphorus removal performance data for each of the WWTPs surveyed are presented in Table 1. Average wet weather design flow (AWWDF) and additional information concerning significant industrial users (SIUs) are included in Table 1 and Attachment A, respectively.

Wastewater Treatment Plants that Chemically Treat for Phosphorus

Four of the eight WWTPs that responded to our survey used chemical treatment only for phosphorus removal. The chemicals used were either alum or ferric chloride. Listed below is a brief description of the WWTPs that used chemical phosphorus removal. The WWTPs are described below in order from the lowest total phosphorus discharge requirement (0.3 mg/L, Bemidji, MN) to the highest (2.41 mg/L, Mankato, MN). Pond systems were not evaluated for this study, but it should be noted that pond systems are capable of removing phosphorus by batch chemical treatment prior to their controlled discharges.

From: Jamie Bankston and Pat Hirl

Subject: Wastewater Treatment Plants and Phosphorus

Date: November 24, 2003

Page: 4

Bemidji, Minnesota

This WWTP is the first WWTP discharge into the Mississippi River, just upstream of Lake Bemidji. A phosphorus discharge requirement of 0.3 mg/L total phosphorus or less is required as part of the NPDES permit. To meet the NPDES requirements, the WWTP uses alum for phosphorus precipitation and polymer for suspended solids precipitation. The alum and polymer are added after the activated sludge aeration basin but before the secondary clarifier. The average total phosphorus concentration entering the plant is 7 mg/L and the average total phosphorus concentration discharging from the plant is 0.15 mg/L. Bemidji does not have any significant industrial users, so the phosphorus entering the plant is primarily from domestic sources. This system has an average flow of 1.15 MGD. Costs for chemical treatment were based solely on alum costs. A treatment cost of \$3.25 per pound of total phosphorus removed was calculated using the average influent and effluent total phosphorus concentrations, the average flow, and alum costs for a year.

St. Croix Valley, Minnesota

This WWTP discharges into the St. Croix River/Lake St. Croix at Oak Park Heights, Minnesota and is one of the WWTPs operated by the Metropolitan Council. A phosphorus discharge requirement of 0.8 mg/L total phosphorus or less is required as part of the NPDES permit. To reach the NPDES requirements, the WWTP uses alum for phosphorus precipitation. The alum is added at the inlet to the primary clarifier. The average total phosphorus concentration entering the plant is 4.8 mg/L and the average total phosphorus concentration discharging from the plant is 0.45 mg/L. This system has an average flow of 3.4 MGD. Costs for chemical treatment were based solely on alum costs. A treatment cost of \$0.96 per pound of total phosphorus removed was calculated using the average influent and effluent total phosphorus concentrations, the average flow, and alum costs for a year.

Rochester, Minnesota

This WWTP discharges into the Zumbro River upstream of Lake Zumbro. A phosphorus discharge requirement of 1 mg/L total phosphorus or less is required as part of the NPDES permit. To reach the NPDES requirements, the WWTP uses ferric chloride and alum for phosphorus precipitation and polymer for suspended solids precipitation. The ferric chloride is added to the primary clarifier and alum and polymer are added to the secondary clarifier. The average total phosphorus concentration entering the plant is 7.5 mg/L and the average total phosphorus concentration discharging from the plant is 0.7 mg/L. Rochester has several significant industrial users that discharge to the WWTP. Daily maximum and monthly average total phosphorus limits are set for significant industrial users to

From: Jamie Bankston and Pat Hirl

Subject: Wastewater Treatment Plants and Phosphorus

Date: November 24, 2003

Page: 5

limit the phosphorus discharged to the WWTP by industry. This system has an average flow of 14 MGD. A treatment cost of \$1.76 per pound of phosphorus removed was given by the Rochester Environmental Coordinator. It should be noted that no further description of the treatment costs was given, so it was assumed that treatment costs were based solely on chemical costs.

Mankato, Minnesota

This WWTP discharges into the Minnesota River. A phosphorus discharge cap of 20,000 kg/yr (2.41 mg/L at 6 MGD) of total phosphorus is required as part of the NPDES permit, with a phosphorus discharge goal of 15,700 kg/yr (1.89 mg/L at 6 MGD). To reach the NPDES requirements, the WWTP uses ferric chloride for phosphorus precipitation and polymer for suspended solids precipitation. The ferric chloride is added at the influent of the WWTP and is settled out in the primary clarifier. Polymer is added to the secondary clarifier for solids precipitation. The average total phosphorus concentration entering the plant is 8.0 mg/L and the average total phosphorus concentration discharging from the plant is 1.88 mg/L. This system has an average flow of 6 MGD.

Mankato has several significant industrial users (SIUs) that discharge to the WWTP. SIUs are allowed to discharge 1 kg/day of total phosphorus, which is averaged on an annual basis. Any discharge above this loading is charged a fee. The fee is based on the treatment costs and phosphorus treatment efficiency for the year and includes chemical costs, biosolids disposal, maintenance, utilities, and lab analysis. The all inclusive treatment cost, which does not include capital costs, is approximately \$1.70 per pound of phosphorus removed (\$3.75 per kg). In comparison, the cost for phosphorus removal using chemical costs alone was \$0.70 per pound of phosphorus removed. The all-inclusive costs are 2.3 times greater than the chemical only costs. This was the only facility in the survey that provided all-inclusive costs for chemical phosphorus removal.

Wastewater Treatment Plants that use Enhanced Biological Phosphorus Removal

Four of the eight WWTPs that responded to our survey used enhanced biological phosphorus removal (EBPR). In addition to EBPR, three of the four plants surveyed also use chemical treatment to meet total phosphorus discharge requirements below 1 mg/L. Listed below is a brief description of the WWTPs that used EBPR. The WWTPs are described in order from the lowest total phosphorus discharge requirement (0.07 mg/L, Durham and Rock Creek WWTPs, Oregon) to the greatest (monitoring only, St. Cloud).

From: Jamie Bankston and Pat Hirl

Subject: Wastewater Treatment Plants and Phosphorus

Date: November 24, 2003

Page: 6

Rock Creek and Durham WWTPs - Portland, Oregon

The Rock Creek and Durham WWTPs are located just west of Portland, Oregon in the Tualatin Watershed and have one of the lowest phosphorus discharge requirements in the United States of approximately 0.07 mg/L total phosphorus. These WWTPs are two of four WWTPs operated by Clean Water Services in urban Washington County, who serves approximately 455,000 customers with an average daily flow rate of 72 million gallons. The average flow for the Durham WWTP is approximately 20 MGD and the Rock Creek WWTP is 24 MGD. The average total phosphorus influent concentration is 7 mg/L for both plants. The WWTPs discharge to the Tualatin River and their combined flow comprises approximately one-third of the flow in the Tualatin River. These WWTPs are located in the Tualatin Watershed Sub-basin of the Willamette Watershed Basin. Each WWTP has a mass-based monthly median total phosphorus discharge of 9 lb/day (0.07 mg/L total phosphorus based on the average flow rate for each plant) during the summer (May – October). The total phosphorus discharge concentration is based on a TMDL for the Tualatin Watershed Sub-basin. The total phosphorus discharge requirements are subject to change when the TMDLs are re-evaluated for this watershed (effluent levels may be increased).

The Rock Creek and Durham WWTPs use EBPR and two-point alum addition to meet the stringent 0.07 mg/L total phosphorus discharge requirement. Pilot testing and full scale system modifications were required to reach the high level of phosphorus removal achieved by these plants. Alum is added to the primary clarifier prior to EBPR, total phosphorus concentrations after alum treatment in the primary clarifier and EBPR are approximately 0.5 mg/L. After the first alum treatment and EBPR, alum is added to the secondary clarifier; the effluent from the secondary clarifier is then filtered for an average total phosphorus effluent concentration of 0.05 mg/L. Prior to implementing EBPR, the Durham facility only used chemical treatment (alum) for phosphorus removal. Significant cost savings were observed once enhanced biological phosphorus removal was implemented at the Durham facility (i.e., the chemical costs for alum were cut by one third). Chemical costs for the facility are now approximately \$0.47 per pound of total phosphorus removed. The pilot test and plant modifications to achieve EBPR at the Durham facility cost approximately \$900,000.

The city of Portland implemented a phosphorus ban for non-industrial dischargers, which was soon followed by a state-wide ban. A 22% reduction in total phosphorus was observed in the influent to the WWTPs after the ban (9 mg/L pre-ban to 7 mg/L post-ban). Industrial users are not required to

From: Jamie Bankston and Pat Hirl

Subject: Wastewater Treatment Plants and Phosphorus

Date: November 24, 2003

Page: 7

limit phosphorus discharge. Because of the public awareness of phosphorus discharge into this sensitive watershed, industries have voluntarily reduced phosphorus discharges.

Ely, Minnesota

The Ely WWTP discharges into Shagawa Lake. The NPDES discharge requirement is 0.3 mg/L total phosphorus. EBPR and chemical addition of alum are used to meet the NPDES discharge requirements. The average annual flow into the WWTP is approximately 0.7 MGD. Lime had originally been used at the Ely plant for chemical precipitation, but because of the high cost associated with lime treatment, the plant switched to alum.

When EBPR does not meet the discharge requirement alum is added to the mixing zone of the secondary clarifier. The secondary clarifier effluent is then passed through sand filters; the final total phosphorus average effluent discharge concentration is 0.2 mg/L. For short periods of time, the WWTP has been able to achieve 0.05 mg/L total phosphorus discharge concentrations. It was estimated by the WWTP superintendent that the costs associated with phosphorus removal are approximately 25% of the annual operating budget. Therefore, the estimated cost for phosphorus treatment is approximately \$20 per pound of phosphorus removed. It should be noted that raw cost data was not immediately available for this WWTP and that the phosphorus treatment costs were based on verbal estimates given by the WWTP superintendent, therefore, the estimated costs presented here may be greater than the actual treatment costs.

This WWTP does not have any significant industrial users discharging to the WWTP; therefore, the phosphorus source is primarily from domestic dischargers. Phosphorus influent to the plant was significantly reduced in the early 1980's by educating the public on limiting the use of phosphorus in detergents. As estimated by the WWTP superintendent, the total phosphorus influent to the WWTP was reduced from 12 to 15 mg/L prior to public education to approximately 5 mg/L after public education.

St. Cloud, Minnesota

The St. Cloud WWTP uses EBPR for phosphorus removal. The discharge from this WWTP is into the Upper Mississippi River. This WWTP was not initially designed for EBPR. In 1996 the City of St. Cloud modified the existing wastewater treatment plant to improve energy efficiency by replacing the coarse air diffusers in the aeration basin with fine air diffusers. In addition to the energy

From: Jamie Bankston and Pat Hirl

Subject: Wastewater Treatment Plants and Phosphorus

Date: November 24, 2003

Page: 8

efficiency improvements, the WWTP was modified for EBPR by installing an anaerobic zone in the first pass of each aeration tank. The average flow into the WWTP in 2002 was 10.6 MGD and the average total phosphorus influent in 2002 was 5.03 mg/L; after EBPR the average effluent total phosphorus is 0.93 mg/L. The St. Cloud WWTP NPDES discharge permit requires monitoring of effluent total phosphorus and development and implementation of a phosphorus management plan.

The City of St. Cloud has a Phosphorus Management Plan (PMP) that was implemented in 2001, the major goal of this PMP is to limit the amount of phosphorus coming into the facility by means of pretreatment and public outreach. The goal of the pretreatment program is to assist non-domestic nutrient contributors (NDNC) in developing phosphorus reduction strategies that will reduce the amount of phosphorus that enters the wastewater collection system and eliminate phosphorus slug loads. The city works with industrial users to keep phosphorus discharges to the WWTP below 6 mg/L. This method is effective at reducing spike loads and the average influent phosphorus concentrations. Comparing the 95% confidence limits of the average influent phosphorus concentrations prior to implementation of the PMP (7.72 mg/L ± 1.22 mg/L, 2000) to the 95% confidence limits of the average influent phosphorus concentrations after implementation of the PMP (5.03 mg/L ± 0.14 mg/L, 2002), there has been a significant reduction and less variability in the average phosphorus influent concentration. The lowering and stabilization of the influent total phosphorus concentration has also resulted in a decreased average total phosphorus effluent concentration from 2.01 mg/L± 0.64 mg/L in 2000 to 0.93 mg/L ± 0.11 mg/L in 2002.

Conclusions

Phosphorus Reduction Methods

- The cities implementing source reduction programs all achieved significant reduction in phosphorus loading on their WWTPs using a variety of methods: public outreach, phosphorus bans, surcharges for phosphorus treatment, and maximum limits on SIU phosphorus discharges.
- The St. Cloud WWTP showed that a reduction in influent phosphorus loading and phosphorus slug loads lead to a reduction in effluent phosphorus concentration.

Chemical Treatment of Phosphorus

• Chemical treatment is capable of reaching the lowest phosphorus effluent concentrations.

From: Jamie Bankston and Pat Hirl

Subject: Wastewater Treatment Plants and Phosphorus

Date: November 24, 2003

Page: 9

• The cost per unit of total phosphorus removed varied from \$0.96 to \$20.00 per pound of total phosphorus removed. The cost of treating phosphorus chemically appeared to show an economy of scale.

 The cost for chemical treatment was lower for those WWTPs that used a combination of EBPR and chemical treatment.

Biological Treatment of Phosphorus

- EBPR alone is generally effective at achieving 0.5 mg/L to 1 mg/L effluent phosphorus concentrations. Chemical addition is necessary to achieve effluent phosphorus concentrations less than 0.5 mg/L. One of the best available bio/chemical treatment facilities (Durham WWTP, OR) was able to achieve an average effluent phosphorus concentration of 0.05 mg/L. To reach this low effluent concentration, significant pilot testing was required and phosphorus removal efficiency was dependent upon wastewater characteristics.
- Once the initial capital improvements are made there are no additional costs associated with phosphorus removal using EBPR.
- EBPR can be implemented with simple process modifications (e.g., St Cloud aeration modifications) that achieve reductions in effluent phosphorus concentrations. St Cloud was able to achieve an effluent phosphorus concentration of 2 mg/L with this approach.

Table 1 MPCA Phosphorus Study Wastewater Treatment Plant Summary Phosphorus Removal

Treatment Plant	Treatment Method	Average WWDF (MGD)	Average Flow (MGD)	TP Influent (mg/L)	Average TP Effluent (mg/L)	Treatment Cost	Total Phosphorus NPDES Requirement
Ely	EBPR and alum after activated sludge and before secondary clarifier when						
	necessary and sand filtration	3	0.7	5	0.2	\$20/lb All inclusive	0.3 mg/L
Bemidji	Alum & polymer after activated sludge and before secondary clarifier	2.5	1.15	7	0.15	\$3.25/lb TP Chemical only	0.3 mg/L
St. Croix Valley	Alum in primary clarifier inlet	5.8	3.4	4.8	0.45	\$0.96/lb TP Chemical only	0.8 mg/L
Mankato	Ferric chloride at influent and polymer at belt filter for sludge dewatering	11.25	6	8	1.88	\$1.70/lb TP all inclusive \$0.74/lb Chemical only	20,000 kg/yr (cap) = 2.41 mg/L TP at 6 MGD and 15,700 kg/yr (goal) = 1.89 mg/L at 6 MGD
St. Cloud	EBPR	26	10.6	5.03	0.93	NA	ND
Rochester	Ferric chloride in primary; alum & polymer in secondary	19.1	14	7.5	0.7	\$1.76/lb TP Chemical only	1 mg/L
Durham WWTP (Tigard, OR)	Alum in primary, EBPR, alum in tertiary, and filtration	NA	20	7	0.05	\$0.47/lb TP Chemical only	9 lb/day monthly median = approx. 0.07 mg/L at current flow
Rock Creek (Hillsboro, OR)	Alum in primary, EBPR, alum in tertiary, and filtration	NA	24	7	0.05	\$0.47/lb TP Chemical only	9 lb/day monthly median = approx. 0.07 mg/L at current flow

Key:

EBPR = Enhanced Biological Phosphorus Removal

NA = Not Available

MGD = Million Gallons per Day

TP = Total Phosphorus

ND = Not Determined

Bemidji WWTP

Contacts: Brian Freeberg (218) 759-3590 and Tim Whiting (WWTP Superintendent – (218) 751-2894)

Unit Operations: Bar racks \rightarrow Screens \rightarrow Primary Clarification \rightarrow Activated Sludge \rightarrow Alum/Polymer Addition \rightarrow Secondary Clarification \rightarrow Gravity Sand Filter \rightarrow UV disinfection and an anaerobic digester for sludge. Note that the system was originally designed for dissolved air flotation thickening (DAF) but did not work well. Sends sludge from clarifiers directly to digester.

Phosphorus Treatment: Chemical treatment: Alum and polymer added after activated sludge and before secondary clarifier.

SIUs: None

Phosphorus Input: Because there are no significant industrial users and the phosphorus input is primarily from domestic sources, there is no phosphorus reduction plan or phosphorus bans in the city of Bemidji.

Additional Notes: Annual phosphorus treatment budget is \$78,000. Annual laboratory and O&M costs are approximately \$10,000. The plant was constructed in 1985, the capital costs for chemical holding tanks and pumps was \$80,000 in 1985. Alum is wasted with sludge. The actual alum concentrations added to the system were derived from alum dosing/alum costs given by Tim Whiting and ranged from 220 mg/L to 400 mg/L.

Qin (MGD)	AWWDF (MGD)	Treatment Method	TPin (mg/L)	TPout (mg/L)	Chemical Conc.	Treatment Cost (chem.)	NPDES TP Effluent Limit
1.15	2.5	Alum & Polymer	7	0.15	400 mg/L Alum (estimated by cost)	\$3.25/lb TP	0.3 mg/L

Ely WWTP

Contacts: Micky Schusta (WWTP Operator (218) 365-3247) and Terry Jackson (WWTP Superintendent (218) 365-2695)

Unit Operations: Screens \rightarrow Degritter \rightarrow Activated Sludge (for both BOD and P by tweaking aeration zones) \rightarrow Alum/Polymer Addition \rightarrow Secondary Clarification \rightarrow Overflow Basin \rightarrow Continuous Flow Sand Filter \rightarrow Chlorine disinfection with sulfur dioxide for chlorine residual removal. Dissolved air flotation (DAF) for sludge thickening.

Phosphorus Treatment: Biological phosphorus removal with chemical addition when necessary; Alum and polymer added after activated sludge and before secondary clarifier. Acetic acid is added to the activated sludge for volatile fatty acids (VFAs).

SIUs: None

Phosphorus Input: There was a public education outreach (early 1980s) on using non-phosphate/low-phosphate containing detergents. Prior to public education total phosphorus influent was estimated by Terry Jackson to be 12-15 mg/L, after education total phosphorus influent was 5 mg/L.

Additional Notes: Because there was not any itemized cost data available, Terry Jackson estimated that approximately 25% of annual operating budget goes toward phosphorus treatment, which includes: sampling, maintenance, labor, etc. The estimated annual costs are \$200,000. TPout average is approximately 0.2 mg/L, but the plant has achieved effluent concentrations of 0.05 mg/L TP.

Qin (MGD)	AWWDF (MGD)	Treatment Method	TPin (mg/L)	TPout (mg/L)	Chemical Conc.	Treatment Cost (Total)	NPDES TP Effluent Limit
0.7	3	Bio P w/ Alum & Polymer	5	0.2	Not Available	\$20/lb TP	0.3 mg/L

Rochester WWTP

Contacts: David Lane (Environmental Coordinator (507) 281-6190 ext 3006)

Unit Operations: Bar Screens → Aerated Grit Tanks → Primary Clarification → Two-Stage
 High Purity Oxygen Activated Sludge → Intermediate/Secondary Clarification → Chlorine
 Disinfection → Sodium Bisulfite De-Chlorination.

Phosphorus Treatment: Chemical treatment with ferric chloride in the primary clarifiers and alum and polymer in the secondary clarifiers.

SIUs: Yes. AMPI, Marigold S., Marigold N., Pace, Quest, and Seneca are sampled 5 days a week. Crenlo has a significant phosphorus load, but is only sampled 3 times per year. Their phosphorus load was calculated from the concentration times the total flow for the month divided by 30. Their flow is also only measured monthly as opposed to daily for the other industries.

Phosphorus Input: Methods in place for limiting phosphorous input to WWTP include daily maximum and monthly average total phosphorus limits for large industrial users.

Additional Notes: None

Qin (MGD)	AWWDF (MGD)	Treatment Method	TPin (mg/L)	TPout (mg/L)	Chemical Conc.	Treatment Cost (Chem.)	NPDES TP Effluent Limit
14	19.1	Ferric Chloride in Primary and Alum/polymer in Secondary	7.5	0.7	Not Available	\$1.76/lb TP	1 mg/L TP

St. Croix Valley WWTP (Metropolitan Council Plant)

Contacts: Kathy Larson (651) 602-1275 (Met Council point of contact for MPCA study) and Dennis Lindeke (Hastings WWTP (651) 437-4212)

Unit Operations: Bar screen \rightarrow Grit Removal \rightarrow Primary Clarification (Alum added to primary inlet) \rightarrow Plug Flow Activated Sludge \rightarrow Final Clarification \rightarrow Effluent Ultraviolet Disinfection. Solids are co-thickened in a gravity thickener and hauled off site for disposal.

Phosphorus Treatment: Chemical treatment with alum addition to the primary clarifier inlet.

SIUs: Not Available.

Phosphorus Input: Not Available.

Additional Notes: Annual phosphorus treatment budget is \$43,000. The actual alum concentrations added to the system were derived from alum dosing/alum costs.

Qin (MGD)	AWWDF (MGD)	Treatment Method	TPin (mg/L)	TPout (mg/L)	Chemical Conc.	Treatment Cost	NPDES TP Effluent
3.4	5.8	Alum in primary	4.8	0.45	76 mg/l Alum (est. by cost)	(Chem) \$0.96/lb TP	0.8 mg/L

St. Cloud WWTP

Contacts: Tracy Hodel (Water Quality Coordinator (320) 255-7226)

Unit Operations: Bar Screen \rightarrow 2 Grit Tanks \rightarrow Aerated Influent Channel to Primaries \rightarrow 4 Primary Settling Tanks \rightarrow 3 Aeration Tanks \rightarrow 3 Final Clarifiers \rightarrow 2 Chlorine Contact Tanks

2 Primary and 1 Secondary Anaerobic Digester and 5 MG Biosolids Holding Tanks

Phosphorus Treatment: Biological, modified the preexisting WWTP. The City of St. Cloud did an energy improvement project in 1996 where the diffusers were changed from coarse air to fine air and an anoxic zone was placed in the first pass of each aeration tank for phosphorus removal. The city has also changed the way decant from the biosolids storage cells returns to the plant to prevent foaming in the aeration tanks.

SIUs: Electrolux Home Products, Northern Wire Products, Precision Optics, AmeriPride Linen & Apparel Services, G&K Services, Grede Foundaries Landfill, International Paper Landfill, Dezurik Landfill, X-Cel Optical Company, Rapid Plating, DBL Labs, Essilor Coating Center, and New Flyer. SIUs do not get charged for phosphorus treatment, SIUs need to follow Phosphorus Management Plan (PMP).

Phosphorus Input: The City of St. Cloud has an extensive Phosphorus Management Plan (PMP), the major goal of this PMP is to limit the amount of phosphorus coming into the facility by means of pretreatment and education outreach. The Phosphorus Management Plan sets operational guidelines for the following: slug loads, laboratory testing, phosphorus reporting, chlorine practices, and plant improvements, etc. The goal of the pretreatment program is to assist non-domestic nutrient contributors (NDNC) in developing phosphorus reduction strategies that will reduce the amount of phosphorus that enters the wastewater collection system and eliminate phosphorus slug loads.

1. Permitted Industries:

All permitted industries are required to test for phosphorus in their discharge. Industrial discharges that exceed 6.0 mg/L require daily testing for three months or a specified time period as determined by the Director. If any sample exceeds 6.0 mg/L a phosphorus reduction strategy (PRS) is required.

• Commercial Laundry:

PRS: Requires daily testing for phosphorus to develop loading information. Any test result greater than 6.0 mg/L will require elimination of phosphorus-based chemicals, pretreatment, and/or other phosphorus reduction measures.

• Metal Finishers:

PRS: Requires daily testing for phosphorus to develop loading information. Any test result greater than 6.0 mg/L will require pretreatment, elimination of phosphorous-based chemicals, and/or other phosphorus reduction measures.

2. NDNC's Categories

• Car Washes:

PRS: The use of phosphorus-based chemicals is prohibited. All car washes must annually submit MSDS information to the POTW.

• Other Large Laundry Services:

PRS: The use of phosphorus-based chemicals is prohibited without written consent from the Director and adequate pretreatment and/or other phosphorus reduction methods to achieve phosphorus levels below the domestic level of 6.0 mg/L.

Additional Notes: The PMP went into effect in 2001. The PMP was effective at reducing spike loads and the average influent phosphorus concentrations. Comparing the 95% confidence limits of the average influent phosphorus concentrations prior to implementation of the PMP (7.72 mg/L \pm 1.22 mg/L, 2000) to the 95% confidence limits of the average influent phosphorus concentrations after implementation of the PMP (5.03 mg/L \pm 0.14 mg/L, 2002), there has been a significant reduction and less variability in the average phosphorus influent concentration. The lowering and stabilization of the influent total phosphorus concentration has also resulted in a decreased average total phosphorus effluent concentration from 2.01 mg/L \pm 0.64 mg/L in 2000 to 0.93 mg/L \pm 0.11 mg/L in 2002.

Qin (MGD)	AWWDF (MGD)	Treatment Method	TPin 2002 Avg (mg/L)	TPout 2002 Avg (mg/L)	Chemical Conc.	Cost (Bio)	NPDES TP Effluent Limit
10.6	26	Biological	5.03 mg/L	0.93 mg/L	NA	NA	ND

Mankato WWTP

Contacts: Mary Fralish (Utility Supervisor Wastewater Treatment Plant (507) 387-8665)

Unit Operations: (Assuming Bar Racks and Screens even though not listed) → Equalization
 Basins (assuming here location not listed) → Primary Clarifiers → Aeration Basins → Secondary
 Clarifiers → Primary Digesters → Secondary Digesters → Disinfection Tank → Dechlorination
 Tank

Phosphorus Treatment: Ferric chloride is added to the influent and is settled out in the primary clarifier. Polymer is used in the operation of the belt filter press for biosolids dewatering. Polymer is added to the phosphorus removal costs, because phosphorus removal increases biosolids by 20%.

SIUs: Honeymead, ADM, WISPAK, Ameripride, Associated Finishing, Jones Metal, Viessman, Hiniker, and Coloplast. SIUs are allowed 1 kg/day TP discharge limit. TP above this limit are charged a fee which is based on the quantity of TP that exceeds the 1 kg/d of TP allowed for the year. Charges to these users are based on the treatment costs for TP treatment for the year; this includes chemical costs, biosolids, maintenance, utilities, and lab analyses. The final fee is based on the phosphorus removal efficiency for the plant (70%). The PMP went into effect when the plant upgrade was completed. Although several industries decreased their phosphorus output, there is one soybean processor who increased their phosphorus output considerably, overshadowing gains from the others. The amount of phoshorus in their effluent is directly related to the uptake of phosphorus in the bean during the growing season. The city of Mankato has told them that they have to reduce the amount of phosphorus in their effluent and we have entered into a joint study to determine whether it should be done at their facility or at the Mankato WWTP through EBPR.

Phosphorus Input: PMP plan and working with industries to reduce TP loading. Several SIUs have reduced TP loading, however a soybean processor has significantly increased TP loading. The city and industry are currently doing a joint study to determine if phosphorus pretreatment should occur at the facility or at the WWTP using biological phosphorus removal.

Additional Notes: The PMP plan went into effect in 2001 when the WWTP upgrade was completed.

Qin	AWWDF	Treatment	TPin-	TPout-	Chemical	Treatment Cost	NPDES TP
(MGD)	(MGD)	Method	2002	2002	Conc.	(2002)	Effluent
			(mg/L)	(mg/L)			Limit
6	11.25	Ferric	8.0	1.88	Not	\$1.70/lb TP	20,000
		Chloride			Available	\$3.75/kg TP	kg/yr (cap)
		and				(all inclusive)	= 2.41 mg/L
		Polymer					@ 6 MGD
						\$0.74/lb TP	
						\$1.62/kg TP	15,700
						(chem. only)	kg/yr (goal)
							= 1.89 mg/L
						2.3	@ 6 MGD
						(all incl/chem.) ^a	

a) all inclusive cost for phosphorus removal ÷ the cost for phosphorus precipitation chemicals only

Durham WWTP (Oregon – 0.07 mg/L TP discharge)

Contacts: Rob Baur (R&D for Cleanwater Services (503) 846-4617) and Mark Pohling (Director of WWTP)

Unit Operations: Not completely specified. Summary or partial description: Bar Screen → Primary Clarifier (30 mg/L alum addition) → Activated Sludge with Bio P → Secondary Clarifier → Filters (30 mg/L alum addition) → Tertiary Clarifier → Hypochlorite Disinfection with Persulfite for Dechlorination → Fermenter with VFA addition.

Phosphorus Treatment: Chemical (alum) and Biological. Alum addition to primary and bio P gets TP concentrations to approximately 0.5 mg/L. Alum addition at filter followed by tertiary clarification reduces TP to 0.05 mg/L. NPDES permit is based on a monthly median of 9 lbs TP/day (0.07 mg/L for current flows) for discharges from May to October. The plant was originally designed for lime treatment but was modified for alum treatment. Alum use was cut in 1/3 once EBPR was implemented.

SIUs: There are no TP discharge limits for industries. There have been voluntary reductions, the major reduction was by Intel who spent \$200,000 to not discharge from phosphate acid bath to WWTP. Instead waste was used for making fertilizer.

Phosphorus Input: Initially, the phosphorus ban in the city resulted in a 22% TP influent reduction. After city implementation, the phosphorus ban went to the entire state of Oregon. Currently TMDL is being re-evaluated, so TP discharge from WWTP may be increased after further study.

Additional Notes: First TMDL in nation of 0.07 mg/L TP discharge. Discharge is to the Tualatin River. The Durham and Rock Creek WWTP are required to discharge to river in the summer, because they provide approximately 1/3 of the rivers total flow. Rob Baur stated that 90% of the TP discharged from the WWTP is tied up with the alum and that only 10% is bioavailable.

Qin	AWWDF	Treatment	TPin -	TPout	Chemical	Treatment	NPDES TP
(MGD)	(MGD)	Method	2002	-2002	Conc.	Cost (2002)	Effluent Limit
			(mg/L)	(mg/L)			
20	NA	Alum and	7	0.05	60 mg/L Alum	\$0.47/lb TP	9 lb TP per day
		Bio P			Total	Alum	(0.07 mg/L
					(30 mg/L in		based on
					primary and 30		current flow -
					mg/L at filters)		required May -
							October)

Rock Creek WWTP (Oregon – 0.07 mg/L TP discharge)

Contacts: Rob Baur (R&D for Cleanwater Services (503) 846-4617) and Mark Pohling (Director of WWTP)

Unit Operations: Not specified. Claricones are used for contact clarification of the wastewater; this is considered an innovative unit operation because it is generally used for drinking water clarification. The claricone process uses tangential flow and gravity precipitation to remove suspended solids.

Phosphorus Treatment: Chemical (alum) and Biological. Alum added to the primary (20 mg/L) and the tertiary clarifier (40 mg/L).

SIUs: See Durham WWTP

Phosphorus Input: Initially phosphorus ban in city resulted in 22% TP influent reduction. Then phosphorus ban went to entire state of Oregon. Currently TMDL is being evaluated, so TP discharge from WWTP may be increased.

Additional Notes: First TMDL in nation of 0.07 mg/L TP discharge. Discharge is to the Tualatin River. The Durham and Rock Creek WWTP are required to discharge to river in the summer, because they provide approximately 1/3 of the rivers total flow. Rob Baur stated that 90% of the TP discharged from the WWTP is tied up with the alum and that only 10% is bioavailable.

Qin (MGD)	AWWDF (MGD)	Treatment Method	TPin -2002 (mg/L)	TPout - 2002	Chemical Conc.	Treatment Cost (2002)	NPDES TP Effluent
				(mg/L)			Limit
24	NA	Alum and	7	0.05	60 mg/L	\$0.47/lb TP	9 lb TP per
		Bio-P			Alum Total	Alum	day
					(20 mg/L in		(0.07 mg/L
					primary		based on
					and 40		current flow
					mg/L at		required
					tertiary)		May -
							October)