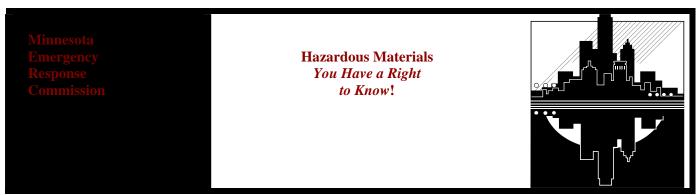

State of Minnesota

A Summary of Toxic Release Inventory and Pollution Prevention Reports

Total Pounds: 309,774,392

Department of Public Safety November 2003

Table of Contents


	<u>Page</u>
Preface	2
User's Guide to the 2002 Right-to-Know Chemical Information Report	3
Perface	5
Preface. User's Guide to the 2002 Right-to-Know Chemical Information Report	7
III. Summary of Chemical Information Reported Under SARA Title III	9
Figure 2: Total Releases and Transfers by Medium (Sections 5 & 6 of Form R)	10
Figure 3: Environmental Releases and Chemical Management (Section 8, Form R)	11
Figure 4: Facilities filing Toxic Release Inventory Reports by County	12
· · · · · · · · · · · · · · · · · · ·	
	25
$\boldsymbol{\mathcal{U}}$	
· · · · · · · · · · · · · · · · · · ·	
V. Overview of the Pollution Prevention Progress Reports	48
VI. Minnesota Indexing System	57
VII. Common Uses of Toxic Chemicals and Their Potential Hazards	63
Appendix A: Section 313 Chemical List	71
Appendix B: Glossary of Terms	87

Preface

This report, covering calendar year 2002, is the annual summary of chemical management reports submitted by facilities in the State of Minnesota.

The Minnesota Emergency Response Commission prepared this report to enhance accessibility to the data and to facilitate citizen awareness about toxic chemicals in their communities. The Commission hopes that emergency planners and responders, health and environmental agencies, citizens, and business and industry can all benefit from this information.

For additional information about the chemicals reported under the "Emergency Planning and Community Right-to-Know Act," contact the Minnesota Emergency Response Commission at (651) 297-7372 or visit our website at www.erc.state.mn.us. In addition, contact the U.S. Environmental Protection Agency's Title III Call Center at 1-800-424-9346 or visit their website at www.epa.gov/tri.

444 Cedar Street, Suite 223, Saint Paul, MN 55101

(651)297-7372 TDD: (651)296-6555

User's Guide to the 2002 Right-to-Know Chemical Information Report

What is this report about?

This report summarizes chemical management activities for 425 of the largest manufacturing and select non-manufacturing facilities in Minnesota. Chemical management includes:

- * Chemicals released into the environment
- * Chemicals used for energy recovery, both at the facility and off-site
- * Chemicals recycled, both on and off-site
- * Chemicals treated, both on and off-site

In addition, summary information on pollution prevention activities for the above mentioned facilities includes:

- * Numeric/non-numeric objectives established for each chemical
- * Processes and source reduction activities for each chemical
- * Date(s) of implementation of source reduction activities
- * Barriers to meeting numeric/non-numeric objectives

How can I use this report?

For a written or graphic summary, please see pages 7 to 13.

For information about the Commission and SARA Title III, see pages 5 to 18.

For a sample of the type of information available for your community, turn to page 33. A complete listing is available from the Emergency Response Commission (651-297-7372 or www.erc.state.mn.us).

For a ranking of facilities by environmental releases, see pages 19-20.

For a ranking of facilities by pounds of chemicals managed, see pages 21-22.

For a ranking of facilities by total air releases, see page 23.

For a statewide ranking of facilities reporting Dioxin and Dioxin-like Compounds, see page 24.

For a statewide ranking of facilities reporting Mercury and Mercury Compounds, see page 25.

For a statewide ranking of facilities reporting Lead and Lead Compounds, see pages 26-31.

For a statewide ranking of the number of facilities in each county reporting environmental releases, off-site transfers, and total chemicals managed, see page 32.

For a statewide ranking of chemical air releases in pounds, see pages 59-60.

For a statewide ranking of air releases by hazard potential, see pages 61-62.

For an overview and explanation of the "core" set of chemicals reported from 1988-2002 see pages 40-47.

For information on pollution prevention activities at facilities and a sample of information available for your community, turn to pages 48-55. A complete listing is available from the Emergency Response Commission (651-297-7372).

Is this information new?

No, the Toxic Release Inventory has been included in annual TRI reports since 1988 and the Pollution Prevention Progress Reports since 1995.

Who wrote this report?

All of the information in this report is collected by the Minnesota Emergency Response Commission (ERC) in accord with the facility reporting requirements of SARA Title III, Section 313, and the requirements of the Minnesota Toxic Pollution Prevention Act.

Why is this report important?

- 1. It gives a <u>facility</u> a reason to review and evaluate its operations: Each facility that completes the reporting process has the opportunity to compare this year's chemical management processes to those of previous years. The facility may be able to determine if they have a chance to prevent pollution and reduce waste.
- 2. It gives a <u>community</u> a reason to discuss chemical issues: The information alerts citizens and facilities to chemical management activities in their communities and provides a forum to discuss chemicals and their risks.

Can this report tell me if I'm being harmed by chemicals?

No, this report is an annual summary of chemical management. Chemical risk depends on the toxicity of a chemical, the amount of a chemical to which you are exposed, and the length of the exposure. An annual summary cannot be used to determine chemical risk.

Does this report catalogue all toxic chemical management in the state?

No, this report only contains information on 425 facilities. These facilities are from select industrial classifications, have more than ten employees and use more than a specific amount of a reported chemical each year.

How were the reporting facilities selected?

The federal law designated the facilities. Minnesota slightly expanded state reporting requirements in 1993.

Who should I contact if I want more information on a particular facility?

We recommend that you call our office at 651-297-7372 or visit our website at www.erc.state.mn.us. We can provide information on chemical storage, management, releases and transfers, and pollution prevention. In addition, we can provide the names of contact persons at a facility.

I. Introduction

A. SARA Title III

On October 17, 1986, the federal "Superfund Amendments and Reauthorization Act (SARA)," was enacted into law. This statute, commonly referred to as SARA Title III, or the "Emergency Planning and Community Right-to-Know Act," is designed to help communities deal safely and effectively with the numerous hazardous chemicals used in our society. The law imposes a number of requirements on business and government intended to improve emergency planning for hazardous chemicals in their community. Although Title III has a number of provisions, the law has the following primary objectives.

- Identify the storage, use, and release of chemicals in communities.
- Foster communication between facilities that handle hazardous chemicals and their local communities.
- Expand emergency planning for hazardous chemical incidents.
- Enhance emergency response capabilities for hazardous chemical incidents.

An integral part of Title III is the requirement that local governments prepare an emergency plan. Under the law, this plan must identify the sources of the hazard, the community's susceptibility to damages should a hazardous chemical release occur, and the probability of damage taking place in a community. The emergency plan must also assess the preparedness and response capabilities of the community and describe the personnel, equipment, and procedures to be used in case of a hazardous chemical release. In Minnesota, the required Title III information is incorporated in the community's all-hazard emergency operations plan.

To enable communities to focus on chemicals and facilities of immediate concern, the U.S. Environmental Protection Agency has compiled a list of 356 "extremely" hazardous chemicals. Some common chemicals on this list are chlorine, ammonia, sulfuric acid, nitric acid, formaldehyde, hydroquinone, and many agricultural insecticides. Any facility (business, farm, public institution, municipality, individual, etc.) that stores any extremely hazardous chemical beyond a threshold amount must contact the Emergency Response Commission and cooperate in the planning process. A list of these facilities is sent to counties and municipalities and is available for public inspection. Emergency plans focus on these facilities and on the routes likely to be used for the transportation of extremely hazardous chemicals.

Under the community right-to-know reporting requirements of Title III, facilities may be required to identify what hazardous chemicals are present on-site and in some cases what toxic chemicals are released into the environment. Facilities must submit inventories of the hazardous chemicals stored above specified amounts to the Emergency Response Commission and local fire departments. Facilities also submit annual reports on the types, quantities, and location of hazardous chemicals. This information provides a basis for emergency planning and response and is accessible to the public.

Section 313 of the law deals with toxic chemical release reporting. Facilities which manufacture,

process, or use certain toxic chemicals in excess of a specified amount, must submit annual reports on the amounts of toxic chemicals released into the air, water, and land or transferred off-site. This is the only multi-media data now being collected on toxic chemical releases and transfers. This toxic chemical release information is the focus of this report.

B. Minnesota Emergency Response Commission and Regional Review Committees

Title III is unique in that its effective implementation depends on the involvement of local and state government, business and industry, broadcast and news media, community groups, and citizens. The federal law requires each state to establish an Emergency Response Commission. The Commission was established in Minnesota Statutes through the enactment of the Minnesota Emergency Planning and Community Right-to-Know Act in July, 1989.

The Emergency Response Commission is a 22-member organization which includes representatives of fire departments, law enforcement, medical services, emergency management, business and industry, labor, community groups, elected officials, and four state agencies (For a listing of the members, please visit the ERC website at www.erc.state.mn.us.) The Office of the Emergency Response Commission is part of the Minnesota Department of Public Safety, Division of Homeland Security and Emergency Management. A broad perspective is crucial to the oversight role of the Commission, because information available under Title III involves a number of environmental and public safety programs.

The Commission's duties include the following:

- Coordinate the Title III emergency planning process within the state.
- Appoint Regional Review Committees and Local Emergency Planning Committees for assuring the preparation of effective emergency plans.
- Provide information about particular chemicals or facilities necessary for the planning activities of political subdivisions.
- Establish procedures for receiving and processing public requests for information collected under Title III.

Within the state, the Commission has created seven Regional Review Committees to review and evaluate the Title III emergency planning information prepared by political subdivisions within each of their districts. A Regional Review Committee has nine members representing emergency response organizations, facilities regulated under the law, and the public (For a listing of the members, please visit the ERC website at www.erc.state.mn.us.)

II. Chair's Report: A Summary of the 2002 Right-to-Know Chemical Information Report

Since 1987, manufacturing facilities that have 10 or more full-time employees and using quantities of listed chemicals above specified thresholds, have been required to file annual Toxic Release Inventory (TRI) reports on routine and accidental releases into the environment, and on chemical management activities. This information is submitted on an annual basis to both the Minnesota Emergency Response Commission (ERC) and the U.S. Environmental Protection Agency (EPA) using the EPA Form R. In addition, the Minnesota Legislature required additional facilities in 14 non-manufacturing sectors to begin reporting in 1994. Lastly, the U.S. Environmental Protection Agency finalized a rule adding seven industry groups to the list of facilities subject to the TRI reporting requirements. Facilities in these groups began reporting in 1998.

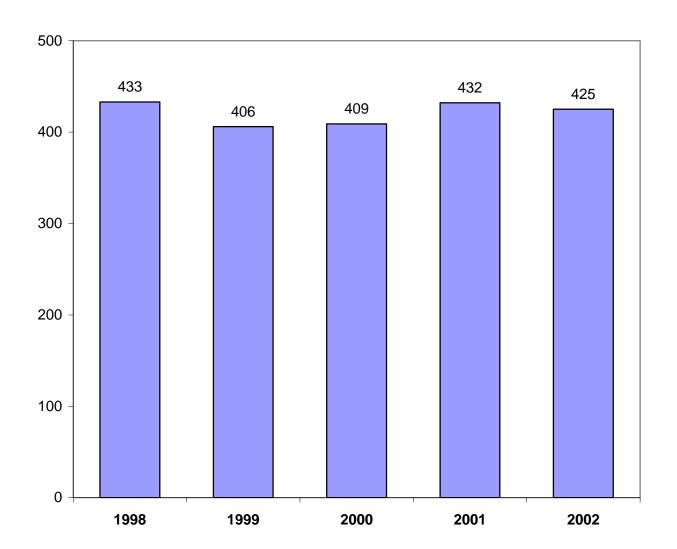
In 1990, the Minnesota Legislature enacted the Minnesota Toxic Pollution Prevention Act. The Act requires each TRI facility reporting toxic chemical releases and transfers on EPA Form R to develop a toxic pollution prevention plan. The plan is used by facilities to establish goals for reducing or eliminating releases and transfers of these chemicals. In addition, these facilities must submit annual progress reports to the ERC.

The ERC maintains a Toxic Release Inventory and pollution prevention database. Information from the database is available to the public and is used to compile this report. The following is a summary of Toxic Release Inventory and pollution prevention progress report information reported to the ERC for calendar year 2002:

In 2002, 425 facilities reported releases of 31 million pounds to the environment, while the total amount of chemicals managed was 309.8 million pounds. This compares to 432 facilities reporting 32.6 million pounds of environmental releases in 2001 with 321.4 million pounds of chemicals being managed. In 2000, 409 facilities reported 34.5 million pounds of environmental releases and 346.6 million pounds of chemicals managed (Figures 1 & 3). For the 2002 reporting year, 118 facilities have made use of the "Alternate Threshold Option". This allows facilities to submit a Certification Statement instead of the EPA Form R for those chemicals with minimal amounts of releases, transfers, and/or total chemicals managed.

Based on the ranking in Part IV, Attachment 1, the top twenty facilities account for approximately 70% of <u>total environmental releases</u>. Based on the ranking in Part IV, Attachment 2, the top twenty facilities account for 88% of <u>total chemicals managed</u>. The chemicals most commonly *managed* were Lead Compounds, Methanol, Methyl Ethyl Ketone, Ammonia and Copper Compounds. The chemicals most commonly *released* to the environment were Barium Compounds, Copper Compounds, Zinc Compounds, Manganese Compounds and Methanol.

377 facilities filed 1104 Pollution Prevention Progress Reports for 2002. Each Progress Report represents a pollution prevention objective for a chemical. Of the reports filed, 46% established a numerical objective and 54% established non-numeric objectives. 67% of the Progress Reports indicated the objectives have been met and 33% of the reports indicated the objectives have not been met or it was not possible to determine if the objectives have been met. The most commonly listed barriers to pollution prevention were; technical limitations of the production process, concerns that product quality may decline as a result of source reduction, and that pollution prevention was previously implemented, therefore, additional reduction does not appear to be technically feasible.


The top three chemicals in terms of total pounds of air releases were Methanol, n-Hexane and Ammonia. The top three chemicals in terms of hazard potential were Mercury, Lead and Copper.

Respectfully submitted to the citizens of Minnesota on behalf of the Minnesota Emergency Response Commission,

E. Roscoe Evavold Chair

III. Summary of Chemical Information Reported Under SARA Title III

Figure 1: Number of Facilities reporting under SARA Title III, Section 313

2002 Right-To-Know Chemical Information Report

Figure 2: Total Releases and Transfers by Medium (Sections 5 & 6 of Form R)

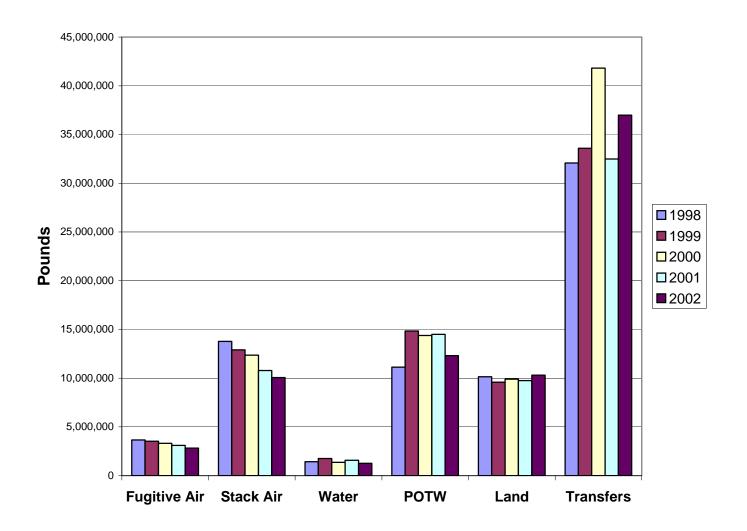
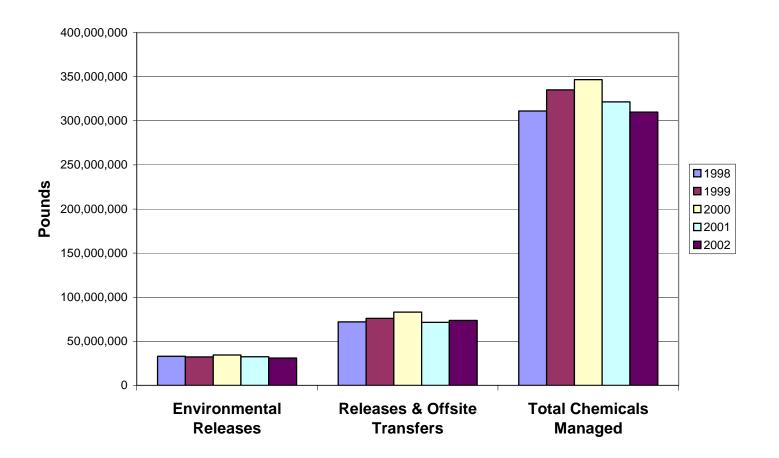



Figure 3: Environmental Releases and Chemical Management (Section 8, Form R)

50 12

Figure 4: Facilities Filing Toxic Release Inventory (TRI) Reports by County

13 [43 F 352 141°

Figure 5: Facilities Filing Chemical Storage Reports (Tier II) by County

IV. Overview of the Toxic Chemical Release Inventory (TRI)

The annual Toxic Chemical Release Inventory (TRI) contains the amounts of toxic chemicals reported by facilities as being released into the environment, transferred off-site for treatment, recycling, energy recovery, and disposal, and managed on-site at the facility. Section 313 of Title III requires these annual reports for over 600 chemicals. The TRI data in this summary covers submittals for 2002. Reports from manufacturing facilities are submitted to both the Emergency Response Commission and the U.S. Environmental Protection Agency using the EPA Form R. Facilities included in the Minnesota TRI expansion are only required to submit the Form R to the Commission.

The data reported is not necessarily derived from actual monitoring or measurements, but may be estimated from engineering calculations, material balance calculations, or published emission factors. The following sections describe the reporting and facilities required to report.

- <u>Section 5</u> of the Form R is used to report releases to air, land, and water.
- <u>Section 6</u> is used to report transfers to Publicly Owned Treatment Works and other off-site treatment, recycling, energy recovery, and disposal locations. In reporting years prior to 1991, the amount of a chemical sent off-site for recycling or energy recovery did not have to be reported on the Form R.
- <u>Section 7</u> of the Form R is used to report on-site waste treatment methods and efficiency, on-site energy recovery processes, and on-site recycling processes.
- <u>Section 8</u> of the Form R includes the amount of a toxic chemical released, recycled, treated, and used for energy recovery at the facility, and the amount sent to off-site locations.

The summary figures in this report contain information from Sections 5, 6 and 8 of the Form R. The facility listings in this report contain information from Section 8 only.

A. Facilities Covered

A plant, factory, or other facility must report to EPA and ERC under Section 313 if it meets the following requirements:

- 1) if it conducts manufacturing operations (that is, if it is included in the following Standard Industrial Classification (SIC) codes 20 through 39);
 - 20XX Food and Kindred Products
 - 21XX Tobacco Manufacturers
 - 22XX Textile Mill Products
 - 23XX Apparel and other Textile Products
 - 24XX Lumber and Wood Products
 - 25XX Furniture and Fixtures
 - 26XX Paper and Allied Products
 - 27XX Printing and Publishing
 - 28XX Chemicals and Allied Products
 - 29XX Petroleum Refining

30XX Rubber and Miscellaneous Plastic Products

31XX Leather and Leather Products

32XX Stone, Clay, and Glass Products

33XX Primary Metal Industries

34XX Fabricated Metal Products

35XX Industrial, Commercial Machinery and Computers

36XX Electronic Equipment and Components

37XX Transportation Equipment

38XX Instruments and Related Products

39XX Miscellaneous Manufacturing Industries

The U.S. Environmental Protection Agency (EPA) finalized a rule adding seven industry groups to the list of facilities subject to the TRI reporting requirements. Facilities in the following SIC Codes, which meet the employee and chemical usage criteria, and are not eligible for specific exemptions available under the federal Act, must report chemical releases and transfers to the EPA and ERC. Reports from these facilities were first received by July 1, 1999, covering releases and transfers for the 1998 reporting year:

SIC Code 10 (except 1011, 1081, and 1094)	Industry Metal mining
12 (except 1241)	Coal mining
4911, 4931 and 4939 (each limited to facilities that combust coal and/or oil for the purpose of generating electricity for distribution in commerce)	Electric utilities
4953 (limited to facilities regulated under subtitle C of RCRA)	Commercial hazardous waste treatment
5169	Chemical and allied products-wholesale
5171	Petroleum bulk terminals and plants-wholesale
7389 (limited to facilities primarily engaged in solvent recovery services on a contract or fee basis)	Solvent recovery services

- 2) if, in addition, it has 10 or more full-time equivalent employees; and
- 3) if, in addition to the above, it manufactures, imports, processes, or in any other way uses any of the toxic chemicals listed on pages 71 to 86 in amounts greater than the "threshold" quantities. Threshold quantities have been established at 25,000 pounds or 10,000 pounds per chemical per year, depending on how the chemical is used at the facility. Persistent, bioaccumulative and toxic (PBT) chemicals have lower thresholds.

B. State TRI Expansion

The 1993 Minnesota Legislature amended the Minnesota Emergency Planning and Community Right-to-Know Act to expand the toxic chemical release reporting requirements. Facilities in the following SIC Codes, which meet the employee and chemical usage criteria, and are not eligible for specific exemptions available under the federal Act, must report chemical releases and transfers to the Emergency Response Commission. Reports for the expanded group of facilities were first received by July 1, 1994, covering releases and transfers for the 1993 reporting year:

SIC Code	Industry
10	Metal Mining
40	Rail Transport
45	Air Transport
49	Utilities
5161/5169	Chemical and Allied Products
5162	Basic Shapes
806	Hospitals
807	Medical and Dental Laboratories
822	Colleges and Universities
7384	Photo Finishing
7389	Solvent Recovery Facilities only
8734	Testing Laboratories
9223	Correctional Institutions

Section 313 of the Act was written primarily for the manufacturing sector. In order to effectively implement the new legislation, the Emergency Response Commission had to make certain interpretations of the federal Act as it applied to the Minnesota expansion. For example, the Commission has not received any reports from SIC Codes 807 and 8734 because of the exemption of these types of laboratories under the federal Act.

The legislation does have some differences when compared to the federal Act as follows:

- The state Act does not apply to substances that are associated with or incidental to the
 combustion of fossil fuels or other fuels for the generation of electricity or the production of
 steam.
- A person may petition the Commission to exempt all facilities included in one of the 14 Standard Industrial Classifications listed above, or a sub-class within one of the listed classifications, from the reporting requirements. Commission Item 93-3 defines the process by which a petition will be evaluated and acted upon.

The Commission received a petition from SIC Code 1011 (Iron Ore Mining) requesting an exemption from Toxic Release Inventory reporting. Commission staff recognized that the mining techniques practiced by the Minnesota facilities within SIC 1011 do not meet the reporting requirements as established in the federal Act. The Commission accepted the petition based on the recommendation from Commission staff. Based on the Commission's findings, EPA did not include SIC Code 1011 in the federal TRI expansion. In addition, the Commission received and approved a petition from the University of Minnesota submitted on behalf of all colleges and universities. The petition requested a

limited exemption from TRI reporting at those university facilities using Ammonia as an agricultural nutrient.

A facility meeting all of the reporting requirements under the Minnesota expansion, but reporting no releases or transfers, may submit a written certification to the Commission exempting itself from the reporting requirements.

C. Limits on Application of TRI Data

The TRI data does provide important information about the industrial sources of environmental releases of toxic chemicals. However, users of the TRI data should understand the limitations of the data. The TRI data covers only a portion of toxic chemical emissions, and the amounts reported are estimated with unknown accuracy.

Toxic chemicals are generated from a variety of sources, including manufacturing and non-manufacturing processes, agricultural and urban uses of chemicals, use and disposal of consumer products, and mobile sources such as automobiles. The TRI does not require facilities to measure or otherwise verify the data they submit. Thus, much of the quantitative data reported were estimated.

The TRI data has useful applications. The Minnesota Pollution Control Agency can crosscheck the TRI data with environmental discharge permits and hazardous waste disclosure reports. The data can also provide additional information in prioritizing environmental regulatory efforts. Again, it is important to realize that a release of a TRI toxic chemical does not indicate a violation of federal, state, or local environmental laws.

Another application is to use the data to promote pollution prevention and waste reduction. The data can assist in targeting technical assistance toward facilities that have the most significant emissions and promote transfer of prevention technology among industries. In addition, the data provide a baseline measurement to assess future reductions.

Finally, the data can be used as a risk screening tool to delineate "hot spot" areas where additional health assessments may be necessary.

D. Exposure and Risk

The 31 million pounds of chemical releases directly to the air, water, and land and the 309 million pounds of chemicals managed in 2002 are not necessarily an indicator of human and environmental exposure to these chemicals. Several factors determine the impact of releases and transfers on public health and the environment. A chemical risk involves the toxicity of a substance and the exposure to it.

In all cases, more information than the TRI can provide is needed to assess potential exposure and risk concerns. The magnitude, duration, and frequency of exposure to a toxic chemical is necessary to assess the human response to the exposure. The TRI data are in amounts or volumes of annual emissions. These numbers do not address the quantities emitted per day or whether releases are continuous or intermittent. Therefore, the TRI can only indicate toxic chemicals that may be of concern and which require further attention and analysis.

For additional information about toxic chemicals reported under the TRI and Pollution Prevention Progress Reports, contact the Minnesota Emergency Response Commission at (651) 297-7372.

E. Minnesota Toxic Pollution Prevention Act

The 1990 Minnesota Legislature passed the Minnesota Toxic Pollution Prevention Act. The legislation includes these major features:

- 1. Establishes state policy encouraging the prevention of toxic pollution.
- 2. Provides technical assistance to help companies prevent toxic pollution by expanding the responsibilities and staff of the Minnesota Technical Assistance Program (MnTAP).
- 3. Provides matching grants to help companies study or demonstrate the feasibility of applying specific technologies and methods to prevent pollution.
- 4. Requires each facility reporting toxic chemical releases to develop a toxic pollution prevention plan establishing goals for reducing or eliminating these releases. In addition, these facilities must submit annual progress reports to the Minnesota Emergency Response Commission. A sample of the information available from these progress reports is included in this report on page 55. A complete listing is available from the Emergency Response Commission (651-297-7372).

While citizens throughout the nation have a right to know what chemicals are stored and released from a facility, Minnesota citizens also have a right to know what steps facilities are taking to reduce or eliminate the release of toxic pollutants.

For more information on the Minnesota Toxic Pollution Prevention Act, contact the Office of Environmental Assistance at (651) 296-3417. For more information on the progress reports, contact the Minnesota Emergency Response Commission at 651-297-7372.

F. Public Access to TRI Data

The Toxic Release Inventory is updated annually. TRI reports filed for 1987-2002 are available from a number of sources. The Minnesota Emergency Response Commission will make data from individual facilities in Minnesota available at its office located at: 444 Cedar Street, Suite 223, St. Paul, MN 55101, through its website at www.erc.state.mn.us or by calling 651-297-7372. For TRI information covering all fifty states, please contact the U.S. Environmental Protection Agency through its "Emergency Planning and Community Right-to-Know Call Center" at 1-800-424-9346 or visit their website at www.epa.gov/tri.

Attachment 1: Top 20 Facilities Ranked By Total Chemicals Released (Section 8.1) for Calendar Year 2002

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, of EPA Form "R"

State of Minnesota Department of Public Safety Emergency Response Commission

	County	Facility	Quantity Released (8.1)	Recovery On-site (8.2)	Recovery Off-site (8.3)	Recycled On-site (8.4)	Recycled Off-site (8.5)	Treated On-site (8.6)	Treated Off-site (8.7)	Total Chemicals <u>Managed</u>
	Sherburne	XCEL ENERGY - SHERCO PLANT 13999 INDUSTRIAL BLVD BECKER, MN	<u>6,892,492</u>	0	0	0	0	660,900	0	7,553,392
	Ramsey	NORTH STAR RECYCLING-MINNESOTA 1678 RED ROCK RD ST. PAUL, MN	2,910,011	0	0	306,523	20	0	0	3,216,554
	Itasca	MINNESOTA POWER - BOSWELL ENERGY CEN 1210 NW 3RD ST COHASSET, MN		0	0	0	0	131,000	0	2,220,641
	Dakota	FLINT HILLS RESOURCES, LP JUNCTION OF HWY 52 & 55 INVER GROVE HEIGHTS, MN	1,107,684	0	1,704	240,336	56,794	12,630,974	1,430	14,038,923
- 19 -	Washington	XCEL ENERGY - A.S. KING GENERATING 1103 KING PLANT RD BAYPORT, MN	1,097,998	0	0	0	0	124,000	0	1,221,998
	Sherburne	XCEL ENERGY - BECKER RDF ASH LANDFILL 13700 SHERBURNE AVE. SOUTH BECKER, MN	796,534	0	0	0	0	0	58	796,592
	Carlton	SAPPI CLOQUET LLC 2201 AVE B CLOQUET, MN	<u>662,695</u>	547,326	0	0	0	5,450,691	5,832,736	12,493,448
	Stearns	ELECTROLUX HOME PRODUCTS 701 N 33RD AVE ST. CLOUD, MN	<u>662,000</u>	0	0	0	25,000	0	0	687,000
	Ramsey	FORD - TWIN CITIES ASSEMBLY PLANT 966 S MISSISSIPPI RIVER BLVD ST. PAUL, MN	<u>654,961</u>	0	10,187	0	639,040	437,300	21,015	1,762,503
	Washington	3M - COTTAGE GROVE CENTER 10746 INNOVATION RD COTTAGE GROVE, MN	<u>571,905</u>	24,786	32,130	0	1,547,935	17,852,404	15,157	20,044,317

Attachment 1: Top 20 Facilities Ranked By Total Chemicals Released (Section 8.1) for Calendar Year 2002

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, of EPA Form "R"

State of Minnesota Department of Public Safety Emergency Response Commission

County	Facility	Quantity Released (8.1)	Recovery On-site (8.2)	Recovery Off-site (8.3)	Recycled On-site (8.4)	Recycled Off-site (8.5)	Treated On-site (8.6)	Treated Off-site (8.7)	Total Chemicals <u>Managed</u>
Koochiching	BOISE CASCADE CORP. 400 2ND ST INTERNATIONAL FALLS, MN	<u>571,750</u>	360,000	0	0	0	8,419,700	0	9,351,450
Blue Earth	CENEX HARVEST STATES 2020 S RIVERFRONT DR MANKATO, MN	<u>560,000</u>	0	0	0	18,200	0	600	578,800
McLeod	3M - HUTCHINSON 915 ADAMS ST SE HUTCHINSON, MN	<u>520,436</u>	0	3,855	10,480,800	14	3,375,900	1,860,024	16,241,029
Ramsey	US FILTER RECOVERY SERVICES INC. 2430 ROSE PLACE ROSEVILLE, MN	<u>482,410</u>	0	0	7,186	7,200	0	0	496,796
Hennepin	XCEL ENERGY - RIVERSIDE PLANT 3100 MARSHALL ST NE MINNEAPOLIS, MN	<u>458,325</u>	0	0	0	0	97,000	0	555,325
Steele	CROWN CORK & SEAL CO., INC. 2929 W BRIDGE ST OWATONNA, MN	<u>452,000</u>	0	0	0	0	0	0	452,000
Morrison	LARSON GLASTRON BOATS, INC. 700 PAUL LARSON MEMORIAL DR LITTLE FALLS, MN	<u>398,168</u>	0	0	0	0	0	0	398,168
Ramsey	REXAM BEVERAGE CAN COMPANY 139 EVA ST ST. PAUL, MN	296,997	0	991	0	0	11,277	0	309,265
Blue Earth	ADM CO. 2019 3RD AVE MANKATO, MN	<u> 284,095</u>	0	0	0	20,809	0	553	305,457
Renville	SOUTHERN MN BEET SUGAR COOP 83550 CO RD 21 RENVILLE, MN	<u>247,329</u>	0	0	0	0	20,968	0	268,297

Attachment 2: Top 20 Facilities Ranked By Total Chemicals Managed (Sections 8.1-8.7) for Calendar Year 2002

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, of EPA Form "R"

State of Minnesota Department of Public Safety Emergency Response Commission (Amount in Pounds)

County	Facility	Quantity Released (8.1)	Recovery On-site (8.2)	Recovery Off-site (8.3)	Recycled On-site (8.4)	Recycled Off-site (8.5)	Treated On-site (8.6)	Treated Off-site (8.7)	Total Chemicals Managed
Dakota	GOPHER RESOURCE CORP. 3385 S HWY 149 EAGAN, MN	243,600	0	0	161,920,000	0	0	0	162,163,600
Washington	3M - COTTAGE GROVE CENTER 10746 INNOVATION RD COTTAGE GROVE, MN	571,905	24,786	32,130	0	1,547,935	17,852,404	15,157	20,044,317
McLeod	3M - HUTCHINSON 915 ADAMS ST SE HUTCHINSON, MN	520,436	0	3,855	10,480,800	14	3,375,900	1,860,024	<u>16,241,029</u>
Dakota	FLINT HILLS RESOURCES, LP JUNCTION OF HWY 52 & 55 INVER GROVE HEIGHTS, MN	1,107,684	0	1,704	240,336	56,794	12,630,974	1,430	14,038,923
Carlton	SAPPI CLOQUET LLC 2201 AVE B CLOQUET, MN	662,695	547,326	0	0	0	5,450,691	5,832,736	12,493,448
Koochiching	BOISE CASCADE CORP. 400 2ND ST INTERNATIONAL FALLS, MN	571,750	360,000	0	0	0	8,419,700	0	9,351,450
Sherburne	XCEL ENERGY - SHERCO PLANT 13999 INDUSTRIAL BLVD BECKER, MN	6,892,492	0	0	0	0	660,900	0	7,553,392
Anoka	FEDERAL CARTRIDGE COMPANY 900 EHLEN DR ANOKA, MN	82,298	0	0	350,000	5,716,302	0	381,166	6,529,766
Ramsey	NORTH STAR STEEL-MINNESOTA 1678 RED ROCK RD ST. PAUL, MN	183,512	0	0	63,259	5,079,656	0	0	5,326,427
Ramsey	NORTH STAR RECYCLING-MINNESOTA 1678 RED ROCK RD								
	ST. PAUL, MN	2,910,011	0	0	306,523	20	0	0	<u>3,216,554</u>

- 21

Attachment 2: Top 20 Facilities Ranked By Total Chemicals Managed (Sections 8.1-8.7) for Calendar Year 2002

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, of EPA Form "R"

State of Minnesota Department of Public Safety Emergency Response Commission (Amount in Pounds)

County	Facility	Quantity Released (8.1)	Recovery On-site (8.2)	Recovery Off-site (8.3)	Recycled On-site (8.4)	Recycled Off-site (8.5)	Treated On-site (8.6)	Treated Off-site (8.7)	Total Chemicals <u>Managed</u>
Ramsey	WATER GREMLIN CO. 1610 WHITAKER AVE WHITE BEAR LAKE, MN	88,992	0	0	31,020	2,970,422	0	0	3,090,434
Hennepin	FILMTEC CORP. 7200 OHMS LANE EDINA, MN	11,241	0	0	0	0	0	2,900,456	2,911,697
Itasca	MINNESOTA POWER - BOSWELL ENERGY CI 1210 NW 3RD ST	ENTER							
Ramsey	COHASSET, MN FORD - TWIN CITIES ASSEMBLY PLANT 966 S MISSISSIPPI RIVER BLVD	2,089,641	0	0	0	0	131,000	0	<u>2,220,641</u>
Rice	ST. PAUL, MN NORTHFIELD ACQUISION CO. – EAST FACIL	654,961 TTY	0	10,187	0	639,040	437,300	21,015	<u>1,762,503</u>
	805 HWY 3 N NORTHFIELD, MN	54,916	0	138,110	0	132,492	865,702	35,638	1,226,858
Ramsey	3M COMPANY 900 BUSH AVE ST. PAUL, MN	188,560	34,600	189	0	5,748	902,700	94,550	1,226,347
Washington	XCEL ENERGY - A.S. KING GENERATING PLA 1103 KING PLANT RD BAYPORT, MN	ANT 1,097,998	0	0	0	0	124,000	0	1,221,998
Le Sueur	DAVISCO LE SUEUR CHEESE DIVISION 719 N MAIN ST								
Washington	LE SUEUR, MN MARATHON ASHLAND PETROLEUM, LLC 100 W 3RD AVE	0	0	0	535,193	0	648,227	31,487	<u>1,214,907</u>
Winona	ST. PAUL PARK, MN TRW AUTOMOTIVE	195,755	0	5,282	615,380	15	396,820	85	1,213,336
	5752 INDUSTRIAL PARK RD WINONA, MN	83	0	0	0	1,160,776	0	0	<u>1,160,859</u>

- 22 -

Attachment 3: Top 20 Facilities Ranked by Total Air Releases for Calendar Year 2002 Sections 5.1 and 5.2 of EPA Form "R"

State of Minnesota Department of Public Safety Emergency Response Commission

	(Amount in Pound	s)		Total
County	Facility	Fugitive Air	Stack Air	Total Air Releases
Ramsey	FORD - TWIN CITIES ASSEMBLY PLANT 966 S MISSISSIPPI RIVER BLVD, ST. PAUL, MN	28,115	607,911	<u>636,026</u>
Stearns	ELECTROLUX HOME PRODUCTS 701 N 33RD AVE, ST. CLOUD, MN	63,000	570,015	633,015
Blue Earth	CENEX HARVEST STATES 2020 S RIVERFRONT DR, MANKATO, MN	504,000	56,000	<u>560,000</u>
Koochiching	BOISE CASCADE CORP. 400 2ND ST, INTL FALLS, MN	36,105	491,363	<u>527,468</u>
McLeod	3M - HUTCHINSON 915 ADAMS ST SE, HUTCHINSON, MN	74,702	438,419	<u>513,121</u>
Steele	CROWN CORK & SEAL CO., INC. 2929 W BRIDGE ST, OWATONNA, MN	113,000	338,000	<u>451,000</u>
Carlton	SAPPI CLOQUET LLC 2201 AVE B, CLOQUET, MN	10,173	418,463	428,636
Morrison	LARSON GLASTRON BOATS, INC. 700 PAUL LARSON MEMORIAL DRV, LITTLE FALLS	398,168 S, MN	0	<u>398,168</u>
Ramsey	REXAM BEVERAGE CAN COMPANY 139 EVA ST, ST. PAUL, MN	41,730	255,208	<u>296,938</u>
Dakota	FLINT HILLS RESOURCES, LP JUNCTION OF HWY 52 & 55, INVER GROVE HEIGHT	151,504 TS, MN	142,044	<u>293,548</u>
Blue Earth	ADM CO. 2019 3RD AVE, MANKATO, MN	19,768	262,720	<u>282,488</u>
Washington	3M - COTTAGE GROVE CENTER 10746 INNOVATION RD, COTTAGE GROVE, MN	35,376	209,339	<u>244,715</u>
Pipestone	US MARINE/BAYLINER 918 SIOUX DR, PIPESTONE, MN	0	239,767	239,767
Goodhue	ADM CO. 118 MAIN ST, RED WING, MN	11,982	227,665	239,647
Lac Qui Parle	AG PROCESSING, INC. 800 DIAGONAL ST, DAWSON, MN	17,000	222,000	<u>239,000</u>
Renville	SOUTHERN MN BEET SUGAR COOP 83550 CO RD 21, RENVILLE, MN	2,824	217,905	220,729
Beltrami	NORTHWOOD PANELBOARD CO. 4409 NORTHWOOD ROAD NW, SOLWAY, MN	0	212,424	212,424
Todd	CENTRAL BI-PRODUCTS HWY 71 N BOX 359, LONG PRAIRIE, MN	196,000	1,005	<u>197,005</u>
Hubbard	POTLATCH CORP OSB 29647 U.S. HWY 2, BEMIDJI, MN	163	188,072	<u>188,235</u>
Ramsey	3M COMPANY 900 BUSH AVE, ST. PAUL, MN	8,370	170,500	<u>178,870</u>

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA Form "R" (Amount in Grams)

Sorted by County, City, Facility Chemical		Quantity Released (8.1)	Recovery On-site (8.2)	Recovery Off-site (8.3)	Recycled On-site (8.4)	Recycled Off-site (8.5)	Treated On-site (8.6)	Treated Off-site (8.7)	Total Managed
Beltrami County, City of SOLWAY DIOXIN AND DIOXIN-LIKE COMPOUNDS	NORTHWOO	D PANELBO 0.14	OARD CO	4409 NOF 0	RTHWOOD 0	ROAD NW	0	0	0.14
Benton County, City of SARTELL DIOXIN AND DIOXIN-LIKE COMPOUNDS	INTERNATIO	NAL PAPEI 0.098	R CO 10	00 E SARTEI 0	LL ST 0	0.034	0	0	0.132
Carlton County, City of CLOQUET DIOXIN AND DIOXIN-LIKE COMPOUNDS	SAPPI CLOQU	UET LLC 3.063	- 2201 AVE	B 0	0	0	0	0.241	3.304
Carver County, City of CHASKA DIOXIN AND DIOXIN-LIKE COMPOUNDS	QUALI TECH	, INC. (DIVI 0.22	SION 1) 0	318 LAKE I 0	HAZELTINE 0	E DR 0	0	0	0.22
Chisago County, City of NORTH BRANCH DIOXIN AND DIOXIN-LIKE COMPOUNDS	ZINPRO COR	PORATION 0.0077	6375 41 0	5TH ST 0	0.0037	0	0	0	0.0114
Clay County, City of MOORHEAD DIOXIN AND DIOXIN-LIKE COMPOUNDS	AMERICAN (CRYSTAL S 0.107	UGAR CO	- MOORHEA 0	D 2500 0	N 11TH ST 0	0	0	0.107
Crow Wing County, City of DEERWOOD DIOXIN AND DIOXIN-LIKE COMPOUNDS	TRUS JOIST -	A WEYERI 0.372	HAEUSER E 0	BUSINESS	CO RD 10	0.111	0	0	0.483
<u>Dakota County, City of BURNSVILLE</u> DIOXIN AND DIOXIN-LIKE COMPOUNDS	XCEL ENERO	GY – BLACK 0.11	DOG PLAI	NT 1400 0	E BLACK D	OOG RD	0	0	0.11
<u>Dakota County, City of EAGAN</u> DIOXIN AND DIOXIN-LIKE COMPOUNDS	GOPHER RES	OURCE CO 0.36	RP 338	5 S HWY 149 0	9 0	0	0	0	0.36
<u>Dakota County, City of INVER GROVE HEIGHTS</u> DIOXIN AND DIOXIN-LIKE COMPOUNDS	FLINT HILLS	RESOURCE 0.0215	ES, LP J 0	UNCTION O 0	F HWY 52 & 0	& 55 0	0	0	0.0215
<u>Dakota County, City of ROSEMOUNT</u> DIOXIN AND DIOXIN-LIKE COMPOUNDS	SPECTRO AL	LOYS CORI 24.797	P 13220 0	DOYLE PA'	TH 0	0	0	0	24.797
Hennepin County, City of MINNEAPOLIS DIOXIN AND DIOXIN-LIKE COMPOUNDS	XCEL ENERO	GY - RIVERS 0.2	SIDE PLAN' 0	Γ 3100 M 0	IARSHALL 0	ST NE 0	0	0	0.2
Hubbard County, City of BEMIDJI DIOXIN AND DIOXIN-LIKE COMPOUNDS	POTLATCH C	ORP OSB 0.332	29647 I	U.S. HWY. 2 0	0	0	0	0	0.332
Itasca County, City of COHASSET DIOXIN AND DIOXIN-LIKE COMPOUNDS	MINNESOTA	POWER - B 0.57	OSWELL E 0	NERGY CEN 0	NTER 12 0	210 NW 3RI 0	D ST 0	0	0.57
Itasca County, City of GRAND RAPIDS DIOXIN AND DIOXIN-LIKE COMPOUNDS	BLANDIN PA	PER 115 0	5 1ST ST SV 0	0	0	0	0	18.8	18.8
Itasca County, City of GRAND RAPIDS DIOXIN AND DIOXIN-LIKE COMPOUNDS	POTLATCH C	ORP 50 0.0107	02 CO RD 63 0	0	0	0	0.099	0	0.1097
Koochiching County, City of BIG FALLS DIOXIN AND DIOXIN-LIKE COMPOUNDS	PAGE & HILI	0.0017	RODUCTS,	INC 755	66 CTY RD 3 0	0	0	0	0.0017
Koochiching County, City of INTL FALLS DIOXIN AND DIOXIN-LIKE COMPOUNDS	BOISE CASC	ADE CORP. 0.34	400 2NI	D ST 0	0	0	121	0	121.34
Polk County, City of CROOKSTON DIOXIN AND DIOXIN-LIKE COMPOUNDS	AMERICAN (0.104	UGAR CO.	- CROOKSTO	ON HWY	Y 75 S BOX 0	X 600 0	0	0.104
Polk County, City of EAST GRAND FORKS DIOXIN AND DIOXIN-LIKE COMPOUNDS	AMERICAN (O.221	UGAR CO	- EAST GRA	ND FORKS 0	BUSIN	IESS HWY	7 2 E 0	0.221
Ramsey County, City of NEW BRIGHTON DIOXIN AND DIOXIN-LIKE COMPOUNDS	BELL LUMBI	ER & POLE 0	CO 778 0	1ST ST NW 390.592	0	0	10.0578	23.5983	424.248
Ramsey County, City of ST. PAUL DIOXIN AND DIOXIN-LIKE COMPOUNDS	XCEL ENERG	GY - HIGH B 0.13	RIDGE PLA 0	ANT 501 0	SHEPARD I	RD 0	0	0	0.13
Renville County, City of RENVILLE DIOXIN AND DIOXIN-LIKE COMPOUNDS	SOUTHERN N	MN BEET SU 0.27	JGAR COO	P 83550 0	CO RD 21 0	0	0	0	0.27
Sherburne County, City of BECKER DIOXIN AND DIOXIN-LIKE COMPOUNDS	XCEL ENERG	GY - BECKE 797.94	R RDF ASH 0	LANDFILL 0	13700 S	HERBURN 0	NE AVE. SO	OUTH 0	797.94
Sherburne County, City of BECKER DIOXIN AND DIOXIN-LIKE COMPOUNDS	XCEL ENERO	GY - SHERC 1.77	O PLANT -	13999 IND 0	OUSTRIAL F	BLVD 0	0	0	1.77
St Louis County, City of COOK DIOXIN AND DIOXIN-LIKE COMPOUNDS	POTLATCH C	ORP 93 0.2085	358 HWY 53 0	3 S 0	0	0	0	0	0.2085
Washington County, City of BAYPORT DIOXIN AND DIOXIN-LIKE COMPOUNDS	XCEL ENERO	GY - A.S. KII 0.22	NG GENERA 0	ATING PLAN 0	NT 1103 0	KING PLA	ANT RD	0	0.22
Washington County, City of COTTAGE GROVE DIOXIN AND DIOXIN-LIKE COMPOUNDS	3M - COTTAC	GE GROVE 0 0.153	CENTER	- 10746 INNO 0	OVATION R 0	RD 0	0	0	0.153
Gra	and Totals:	831.77	0.00	459.19	0.00	0.15	131.16	42.64	1,464.91

Attachment 5: Statewide Listing of Amount of Releases, Transfers and Total Mercury and Mercury Compounds Managed for Calendar Year 2002

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA Form "R"

State of Minnesota Department of Public Safety Emergency Response Commission

Sorted by County, City, Facility Chemical	illi K	Quantity Released (8.1)	Recovery On-site (8.2)	`	Recycled On-site (8.4)	Recycled Off-site (8.5)	Treated On-site (8.6)	Treated Off-site (8.7)	Total Managed
Becker County, City of DETROIT LAKES MERCURY	S. J. ELECTR	O SYSTEMS 43.2	, INC 2 0	22650 COUN 0	ΓΥ HIGHWA 0	AY 6 0	0	0	43.2
Benton County, City of SARTELL MERCURY COMPOUNDS	INTERNATIO	ONAL PAPER 17.7	CO 1	00 E SARTEI 0	L ST	1.88	0	0	19.58
Blue Earth County, City of MANKATO MERCURY COMPOUNDS	ADM CO	- 2019 3RD A 6.08	VE 0	0	0	0	0	0	6.08
Cook County, City of SCHROEDER MERCURY COMPOUNDS	TACONITE I	HARBOR ENI 49	ERGY CEN 0	TER 812	4 WEST HW 0	VY 61 0	0	0	49
Dakota County, City of BURNSVILLE MERCURY COMPOUNDS	XCEL ENER	GY - BLACK 53	DOG PLAI	NT 1400 I	E BLACK D 0	OG RD	0	0	53
Dakota County, City of INVER GROVE HEIGHT MERCURY COMPOUNDS	S FLINT HILLS	S RESOURCE 7.92	S, LP J 0	UNCTION O	F HWY 52 & 16.33	& 55 0.021	0	0	24.271
Hennepin County, City of MINNEAPOLIS MERCURY COMPOUNDS	XCEL ENER	GY - RIVERS 108.5	IDE PLAN	T 3100 M	ARSHALL 0	ST NE	0	0	108.5
Itasca County, City of COHASSET MERCURY COMPOUNDS	MINNESOTA	A POWER - BO 371.17	OSWELL E	ENERGY CEN 0	VTER 12 0	210 NW 3R 0	D ST	0	371.17
Itasca County, City of GRAND RAPIDS MERCURY	BLANDIN PA	APER 115 3.7	1ST ST SV 0	V 0	0	0	0	0	3.7
Mower County, City of AUSTIN MERCURY COMPOUNDS	AUSTIN UTI	LITIES - NE I 7.4	POWER ST	ATION 3	511 11TH S 0	T NE 0	0	0	7.4
Otter Tail County, City of FERGUS FALLS MERCURY COMPOUNDS	OTTER TAIL	POWER CO. 41	(HOOT LA	AKE) 101 0	2 WATER P 0	PLANT RO. 0	AD 0	0	41
Ramsey County, City of ROSEVILLE MERCURY COMPOUNDS	MERCURY V	WASTE SOLU 6.41	TIONS, IN	IC 2007 V	W. CO. RD.	C-2 152.8	0	0	159.21
Ramsey County, City of ST. PAUL MERCURY COMPOUNDS	NORTH STA	R RECYCLIN 204	IG-MINNE 0	SOTA 16 0	78 RED RO	CK RD 20	0	0	224
Ramsey County, City of ST. PAUL MERCURY COMPOUNDS	NORTH STA	R STEEL-MII 157	NNESOTA 0	1678 REI	O ROCK RD 0) 57	0	0	214
Ramsey County, City of ST. PAUL MERCURY	WALDORF (CORP. (A ROC 3.36	CK-TENN (COMPANY)	2250 WA	ABASH AV 0	νΕ 0	0	3.36
Ramsey County, City of ST. PAUL MERCURY COMPOUNDS	XCEL ENER	GY - HIGH B 69	RIDGE PLA 0	ANT 501 0	SHEPARD I 0	RD 0	0	0	69
Renville County, City of RENVILLE MERCURY	SOUTHERN	MN BEET SU 23.8	GAR COO	P 83550 0	CO RD 21 0	0	0	0	23.8
Sherburne County, City of BECKER MERCURY COMPOUNDS	XCEL ENER	GY - BECKEI 673.8	R RDF ASE 0	I LANDFILL 0	13700 S	SHERBURN 0	NE AVE. SO 0	OUTH 0	673.8
Sherburne County, City of BECKER MERCURY COMPOUNDS	XCEL ENER	GY - SHERCO 961.8	O PLANT - 0	13999 INE 0	OUSTRIAL I	BLVD 0	0	0	961.8
St Louis County, City of AURORA MERCURY COMPOUNDS	MINNESOTA	A POWER - La 23	ASKIN ENI 0	ERGY CENT	ER 5699 0	COLBY L	AKE RD 0	0	23
St Louis County, City of COOK MERCURY COMPOUNDS	POTLATCH (3.4	0	0	0	0	0	0	3.4
MERCURY St Louis County, City of DULUTH	STORA ENS					0	0	0	0.35
MERCURY COMPOUNDS <u>St Louis County, City of HIBBING</u>	HIBBING PU				0	0	0	0	2.7
MERCURY Washington County, City of BAYPORT	XCEL ENER							0	14.2
MERCURY COMPOUNDS Washington County, City of COTTAGE GROVE	3M - COTTA						0	0	136.6
MERCURY COMPOUNDS Washington County, City of ST. PAUL PARK	MARATHON						0	0	210.1
MERCURY COMPOUNDS Winona County, City of WINONA	MILLER WA	· · · · · · · · · · · · · · · · · · ·				0	0	0	14.2
MERCURY COMPOUNDS Winona County, City of WINONA	WATLOW W					0	0	0	0.09
MERCURY	Grand Totals:	3,112.91	0.00	0.00	16.90	1.225 331.93	0.00	0.00	1.225 3,461.74

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA Form "R"

4 mount		

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA F	Form "R"			(Amount in	Pounds)			
Sorted by County, City, Facility Chemical	Quantity Released (8.1)	•	Recovery Off-site (8.3)	Recycled On-site (8.4)	Recycled Off-site (8.5)	Treated On-site (8.6)	Treated Off-site (8.7)	Total Managed
Anoka County, City of ANOKA	BALLANTINE, INC			(0.4)	(0.5)	(8.0)	(0.7)	Manageu
LEAD	0	0 0	0	0	104	0	0	104
Anoka County, City of ANOKA LEAD COMPOUNDS	FEDERAL CARTRIDGI 58,036	E COMPAN 0	Y 900 EH	HLEN DRV 350,000	712,228	0	0	1,120,264
Anoka County, City of ANOKA LEAD COMPOUNDS	PROFESSIONAL PLAT 1.9	ING 262 0	25 9TH AVE 1 0	N 0	21.3	0	0	23.2
Anoka County, City of BLAINE LEAD	PARKER MOBIL CYLI 1	NDER DIV 0	BLAINE	1460 93RD I 0	LANE NE 1,883	0	0	1,884
Anoka County, City of BLAINE LEAD	SAFETY-KLEEN SYST 0	EMS, INC.	9261 ISA	NTI ST NE 0	602	0	0	602
Anoka County, City of COON RAPIDS LEAD COMPOUNDS	HONEYWELL, INC C	CAP 8840 0	0 EVERGREI 0	EN BLVD 0	5,976	0	0	5,976
Anoka County, City of FRIDLEY LEAD	CUMMINS POWER GE 0.5	NERATION 0	ONAN COR	RP 1400 7	3RD AVE NE 1,994	0	0	1,994.5
Anoka County, City of FRIDLEY LEAD	KURT MANUFACTUR 15	ING DIE CA	ST 7585 0	HWY 65 1,795	164	0	0	1,974
Anoka County, City of FRIDLEY LEAD COMPOUNDS	MICRO CONTROL CO.	7956 M 0	IAIN ST. NE	0	0	0	0	0
Anoka County, City of FRIDLEY LEAD	STYLMARK, INC 0	6536 MAIN 0	ST. NE 0	2,465.4	0	0	0	2,465.4
Anoka County, City of ST. FRANCIS LEAD	ALLIANT INTEGRATE 1.2	ED DEFENSI 0	E CO. LLC	23100 SUG	AR BUSH RI 6	O NW 0	0	7.2
Becker County, City of DETROIT LAKES LEAD	S. J. ELECTRO SYSTEM	MS, INC	22650 COU 0	NTY HIGHW	AY 6	0	0	0
Beltrami County, City of SOLWAY LEAD	NORTHWOOD PANEL 405.55	BOARD CO	4409 No	ORTHWOOD 0	ROAD NW	0	0	405.55
Benton County, City of FOLEY LEAD	GORECKI MFG., INC.	51 2ND 0	AVE W	0	357	0	0	357
Benton County, City of SARTELL LEAD COMPOUNDS	INTERNATIONAL PAR 107.3	PER CO	100 E SART 0	ELL ST 0	192.3	0	0	299.6
Benton County, City of SAUK RAPIDS LEAD COMPOUNDS	X-CEL OPTICAL CO0	806 S BE	NTON DRV 0	0	10,154	0	0	10,154
Blue Earth County, City of MANKATO LEAD COMPOUNDS	ADM CO 2019 3RI 20.04	O AVE 0	0	0	0	0	0	20.04
Blue Earth County, City of MANKATO LEAD COMPOUNDS	ATLAS ALCHEM PLAS	STICS, INC.	480 IND 0	USTRIAL RC 280	OAD 0	0	0	283
Blue Earth County, City of MANKATO LEAD	THE DOTSON COMPA 0	NY, INC	- 200 W ROO	CK ST 0	53	0	0	53
Blue Earth County, City of MANKATO LEAD	WINLAND ELECTRON 3.13	VICS, INC	1950 EXC	EL DRIVE 0	468	0	0	471.13
Brown County, City of NEW ULM LEAD COMPOUNDS	3M – NEW ULM 17 1,200	00 NORTH	MINNESOTA 0	A STREET 750	7,400	0	0	9,350
Carlton County, City of CLOQUET LEAD COMPOUNDS	SAPPI CLOQUET LLC 3,242	2201 AV	/E B 0	0	0	0	0	3,242
Carlton County, City of CLOQUET LEAD	USG INTERIORS, INC.	35 ARC	H ST 0	0	0	0	0	0
Carver County, City of CHANHASSEN LEAD	PARKER HANNIFAN O	CORP 28	860 WATER 0	TOWER PLA	.CE 907	0	0	907
Carver County, City of CHANHASSEN LEAD	ROBERTS AUTOMATI	C PRODUC	TS 880 L	AKE DRV 0	9,821	0	0	9,821
Carver County, City of CHANHASSEN LEAD COMPOUNDS	ROSEMOUNT, INC 41.66	- 8200 MAR 0	KET BLVD 0	0	1,039.6	0	0	1,081.26
Carver County, City of CHASKA LEAD	PRO-TECH, INC 43	300 PEAVEY 0	Y RD 0	0	873	0	0	874

Hennepin County, City of MAPLE GROVE LEAD COMPOUNDS

State of Minnesota Department of Public Safety Emergency Response Commission

Compounds Managed for Calendar Year 2002		Emergency Response Commission								
Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA Form	"R"			(Amount in P	ounds)					
Sorted by County, City, Facility	Quantity	•	Recovery	Recycled	Recycled	Treated				
Chemical	Released (8.1)	On-site (8.2)	Off-site (8.3)	On-site (8.4)	Off-site (8.5)	(8.6)	Off-site (8.7)	Total <u>Managed</u>		
Chippewa County, City of MONTEVIDEO LEAD	MICRO DYNAMICS CO	ORP 164	46 N. 9TH ST 0	0	1,373	0	0	1,373		
Clay County, City of MOORHEAD LEAD COMPOUNDS	AMERICAN CRYSTAL 299.28	SUGAR CC	0 2500 N	11TH ST 0	0	0	0	299.28		
Cook County, City of SCHROEDER LEAD COMPOUNDS	TACONITE HARBOR E 1,009	NERGY CE	NTER 81	124 WEST HW 0	Y 61	0	0	1,009		
Crow Wing County, City of BRAINERD LEAD	ACROMETAL 210 N	NE 10TH AV 0	'E 0	0	225	0	0	225		
Crow Wing County, City of BRAINERD LEAD COMPOUNDS	MINNESOTA PAPER C 332.5	OMPANY -	1801 MIL	L AVE NE 0	0	0	0	332.5		
Crow Wing County, City of DEERWOOD LEAD	PARKER-HANNIFIN CO	ORP 32	5 FRONT ST	0	8,852	0	0	8,853		
Crow Wing County, City of DEERWOOD LEAD COMPOUNDS	TRUS JOIST - A WEYE 91.6	RHAEUSER 0	BUSINESS 0	CO RD 10	130	0	0	221.6		
Dakota County, City of BURNSVILLE LEAD	ROSEMOUNT AEROSP 16.97	PACE INC	14300 JUI 0	DICIAL RD 0	687.83	0	0	704.8		
Dakota County, City of BURNSVILLE LEAD COMPOUNDS	XCEL ENERGY - BLAC 2,452.5	CK DOG PLA	ANT 140 0	0 E BLACK DO	OG RD 0	0	0	2,452.5		
Dakota County, City of EAGAN LEAD COMPOUNDS	GOPHER RESOURCE C 210,000	CORP 3:		149 58,000,000	0	0	0	158,210,000		
Dakota County, City of EAGAN LEAD	MATERIALS PROCESS 0	ING CORP. 0	2805 W 0	SERVICE RD 0	3,543	0	0	3,543		
Dakota County, City of EAGAN LEAD	SAFETY-KLEEN SYST 0	EMS, INC.	3227 TER 0	RMINAL DRV 0	501	0	0	501		
Dakota County, City of INVER GROVE HEIGHTS LEAD COMPOUNDS	FLINT HILLS RESOUR 205.71	CES, LP	JUNCTION 0	OF HWY 52 & 682	z 55 11.27	0	0	898.98		
Dakota County, City of ROSEMOUNT LEAD	SPECTRO ALLOYS CO 3,243	RP 132	20 DOYLE P 0	ATH 0	0	0	0	3,243		
Fillmore County, City of RUSHFORD LEAD COMPOUNDS	TRW AUTOMOTIVE 4.54	- HWY 43 I	N PO BOX	708	432.9	0	0	437.44		
Freeborn County, City of ALBERT LEA LEAD COMPOUNDS	ALBERT LEA ELECTR 102.72	OPLATING 0	, INC 80 0	8 12TH ST BO 0	X 89	0	0	102.72		
Goodhue County, City of CANNON FALLS LEAD COMPOUNDS	AMESBURY GROUP, II				0	0	0	0		
Hennepin County, City of BLOOMINGTON LEAD	ADDED VALUE TECHI 4	NOLOGY L 0	LC 9401 0	JAMES AVE	S SUITE 100 1,986	0	0	1,990		
Hennepin County, City of BLOOMINGTON LEAD	GENERAL DYNAMICS 30.9	ADVANCI 0	ED INFORM 0	ATION SYSTE 0	EMS 310 986	01 E 80TH 0	ST 0	1,016.9		
Hennepin County, City of BLOOMINGTON LEAD COMPOUNDS	PRINTED CIRCUITS, IN 143	NC 1200 0	0 W 96TH ST 0	0	0	0	0	143		
Hennepin County, City of BROOKLYN PARK LEAD	TECHNICAL PLATING 10.9	, INC 8 0	760 XYLON 0	AVE N 0	0	0	0	10.9		
Hennepin County, City of CRYSTAL LEAD	TRC CIRCUITS, INC 2.9	3300 WIN 0	PARK DRV 0	0	127.3	0	0	130.2		
Hennepin County, City of EDEN PRAIRIE LEAD	EMERSON CONTROL 7 0.7	TECHNIQUE 0	ES 12005 0	TECHNOLOG 0	GY DRIVE 296	0	0	296.7		
Hennepin County, City of EDEN PRAIRIE LEAD	MICRO DYNAMICS CO	0	0	0	153	0	0	153		
Hennepin County, City of EDEN PRAIRIE LEAD	PHILLIPS & TEMRO IN 0	0	0	0	1.63	0	0	1.63		
Hennepin County, City of GOLDEN VALLEY LEAD	HONEYWELL INC 9.01	1985 DOUG 0	GLAS DRV N 0	0	6,495	0	0	6,504.01		

SILENT KNIGHT --- 7550 MERIDIAN CIRCLE

0

296

0

0

312

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA Form "R"

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA Fo									
Sorted by County, City, Facility	Quantity Release	d On-site	Recovery Off-site	Recycled On-site	Recycled Off-site	On-site	Treated Off-site	Total	
Chemical Hennepin County, City of MAPLE GROVE	(8.1) UNIVERSAL CIRCUI	(8.2)	(8.3) 8860 7 A CH A	(8.4)	(8.5)	(8.6)	(8.7)	Managed	
LEAD	5		0	0	2,555	0	0	2,560	
Hennepin County, City of MINNEAPOLIS LEAD	BOKER'S, INC 31		G AVE S	0	425	0	0	425	
Hennepin County, City of MINNEAPOLIS LEAD COMPOUNDS	G.A.F. BUILDING MA 45.1932		ORP 50 I	OWRY AVE 1	N 0	0	0	45.1932	
Hennepin County, City of MINNEAPOLIS LEAD	GAYTEE STAINED G		2744 LYN	DALE AVE S	130	0	0	130	
Hennepin County, City of MINNEAPOLIS LEAD	GRACO, INC 60 1		E BOX 1441 0	0	1,000	0	0	1,008	
Hennepin County, City of MINNEAPOLIS LEAD COMPOUNDS	HARD CHROME, INC		ND ST NE 0	0	112	0	0	113	
Hennepin County, City of MINNEAPOLIS LEAD COMPOUNDS	HONEYWELL, INC		000 RIDGWA	Y PKWY 0	1,012	0	0	1,012	
Hennepin County, City of MINNEAPOLIS LEAD	PARKER-HANNIFIN (EN HYDR. D	IV 600 HO	OOVER ST 1,402	0	0	1,402	
Hennepin County, City of MINNEAPOLIS LEAD COMPOUNDS	SUPERIOR PLATING 315	*	5 1ST AVE N 0	E 0	0	0	0	315	
Hennepin County, City of MINNEAPOLIS LEAD COMPOUNDS	THE BUREAU ELECT 36.46		OUP 331	1 BROADWAY	Y NE 93.4	0	0	129.86	
Hennepin County, City of MINNEAPOLIS LEAD COMPOUNDS	XCEL ENERGY - RIV 3,215.1		NT 3100 0	MARSHALL S	ST NE 0	0	0	3,215.1	
Hennepin County, City of MINNEAPOLIS LEAD	ZALK STEEL & SUPP 13		446 ST. ANTI 0	HONY PKWY 0	0	0	0	13	
Hennepin County, City of MINNETONKA LEAD	HOLADAY CIRCUITS 1,605		1126 BREN R 0	D W	6,364	0	0	7,969	
Hennepin County, City of MINNETONKA LEAD	IFLEX, INC 1510 130		NKA INDUST 0	RIAL RD 0	1,009	0	0	1,139	
Hennepin County, City of NEW HOPE LEAD COMPOUNDS	ALPHA CERAMICS, I 21.5		WINNETKA 0	A AVE 0	11,284	0	0	11,305.5	
Hennepin County, City of NEW HOPE LEAD COMPOUNDS	CLARIANT 9101 1		ONAL PKWY 0	0	0	0	0	139	
Hennepin County, City of PLYMOUTH LEAD COMPOUNDS	BANNER ENGINEER 75		15755 32N	D AVE. N.	0	0	0	75	
Hennepin County, City of PLYMOUTH LEAD	CIRCUIT SCIENCE, II		1 HWY 55 0	0	1,096	0	0	1,096	
Hennepin County, City of ROGERS LEAD	GRACO-KOCH CENT 1		0 DAVID KO	CH AVE 0	2,000	0	0	2,001	
Hennepin County, City of ST. LOUIS PARK LEAD COMPOUNDS	DOUGLAS CORP Pl		TISION 35 0	20 XENWOOI 0	O AVE S	0	0	14	
Hennepin County, City of ST. LOUIS PARK LEAD	LIND ELECTRONICS	*	14 CAMBRIE 0	OGE ST 0	3.1	0	0	3.1	
Hennepin County, City of ST. LOUIS PARK LEAD COMPOUNDS	NORTHLAND ALUM 3,708		UCTS, INC.	5005 COUI	NTY ROAD 0	25	0	3,708	
Hennepin County, City of ST. PAUL LEAD	NORTHWEST AIRLIN 1,044.8	*	5101 NORT	HWEST DR 0	620.3	0	0	1,665.1	
<u>Hubbard County, City of BEMIDJI</u> LEAD	POTLATCH CORP 0		17 U.S. HWY 0	0	0	0	0	6	
Itasca County, City of COHASSET LEAD COMPOUNDS	MINNESOTA POWER 7,267		L ENERGY C	ENTER 12 0	210 NW 3RE 0	O ST 0	0	7,267	
Itasca County, City of GRAND RAPIDS LEAD	BLANDIN PAPER 715		SW 0	0	0	0	0	715	
<u>Itasca County, City of GRAND RAPIDS</u> LEAD	POTLATCH CORP 708		0 63	0	0	0	0	708	

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA Form "R"

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA For	rm "R"	"R" (Amount in Pounds)						
Sorted by County, City, Facility	Quantity Released	On-site	Recovery Off-site	Recycled On-site	Recycled Off-site	On-site	Treated Off-site	Total
Chemical Lyon County, City of COTTONWOOD	(8.1) NORCRAFT COMPANI	(8.2)	(8.3)	(8.4) T N	(8.5)	(8.6)	(8.7)	Managed
LEAD	0.4	0	0	0	122.5	0	0	122.9
Lyon County, City of MARSHALL LEAD COMPOUNDS	ARCHER DANIELS MI 374	DLAND	400 W ERIE 0	ROAD 0	0	0	0	374
Lyon County, City of MINNEOTA LEAD	SCHOTT CORP MINI 0	NEOTA	218 N. JEFFE 0	ERSON 0	243	0	0	243
Martin County, City of FAIRMONT LEAD	WEIGH-TRONIX INC. 0.4	1000 AR	RMSTRONG I	ORIVE 0	350	0	0	350.4
McLeod County, City of HUTCHINSON LEAD COMPOUNDS	3M - HUTCHINSON 3.1	915 ADAN 0	AS ST SE	0	0	0	0	3.1
McLeod County, City of HUTCHINSON LEAD	HUTCHINSON MFG. IN 2.22	NC 720 0	HWY. 7 WES	5T 0	378.37	0	0	380.59
McLeod County, City of HUTCHINSON LEAD	HUTCHINSON TECHN 41	OLOGY, IN	C 40 W I	HIGHLAND P	PARK 1	0	0	42
Mower County, City of AUSTIN LEAD COMPOUNDS	AUSTIN UTILITIES – N 200	NE POWER	STATION 0	3511 11TH S	ST NE 0	0	0	200
Nicollet County, City of NORTH MANKATO LEAD	CARLSON CRAFT SOC 25.39	CIAL (TAYL 0	OR CORP.)	1750 TOW 0	/ER BLVD 1,288.6	0	0	1,313.99
Nicollet County, City of NORTH MANKATO LEAD COMPOUNDS	KATO ENGINEERING 0.55	- PLANT 3	2075 HOV	VARD DRV 0	695	0	0	695.55
Nicollet County, City of ST. PETER LEAD	TAYTRONICS 430 1.1695	RITT ST.	0	0	1,315	0	0	1,316.1695
Olmsted County, City of ROCHESTER LEAD	CELESTICA CORPORA 23	ATION 3 0	3050 SUPERIO 0	OR DR NW 0	10,077	0	0	10,100
Olmsted County, City of ROCHESTER LEAD	PEMSTAR, INC 35 750	35 TECHNO 0	DLOGY DR N 0	W 0	1,906	0	0	2,656
Olmsted County, City of ROCHESTER LEAD COMPOUNDS	ROCHESTER PUBLIC 365	UTILITIES -	SILVER LAI	KE 425 W	SILVER LA	AKE DRV 0	NE 0	365
Otter Tail County, City of FERGUS FALLS LEAD COMPOUNDS	BANNER ENGINEERIN 153.7	NG CORP	1010 WEY 0	RENS RD.	0	0	0	153.7
Otter Tail County, City of FERGUS FALLS LEAD COMPOUNDS	OTTER TAIL POWER (510	CO. (HOOT)	LAKE) 10 0	012 WATER P	PLANT ROA 0	.D 0	0	510
Otter Tail County, City of FERGUS FALLS LEAD	QUALITY CIRCUITS II 1	NC 1100 0	2 PROGRESS 0	DRIVE 0	1,749	0	0	1,750
Polk County, City of CROOKSTON LEAD COMPOUNDS	AMERICAN CRYSTAL 289.3	SUGAR CO	O CROOKS'	TON HW	Y 75 S BOX 0	600	0	289.3
Polk County, City of EAST GRAND FORKS LEAD COMPOUNDS	AMERICAN CRYSTAL 614.75	SUGAR CO	O EAST GR	AND FORKS 0	BUSINI	ESS HWY 0	2 E 0	614.75
Ramsey County, City of ARDEN HILLS LEAD	ALLIANT AMMUNITIO 67.2	ONS SYSTE 0	MS CO. LLC	TC ARM	Y AMMUNI 100.9	TION PLA	ANT 0	168.1
Ramsey County, City of ARDEN HILLS LEAD COMPOUNDS	CARDIAC PACEMAKE 0.5	ERS INC., DI	BA GUIDAN' 0	Γ 4100 HA	AMLINE AV 215	E N 0	0	215.5
Ramsey County, City of ARDEN HILLS LEAD COMPOUNDS	MANUFACTURERS' SI 243	ERVICES 0	- 4300 W. RO	OUND LAKE	RD. 21,620	0	0	21,863
Ramsey County, City of MAPLEWOOD LEAD	MODINE NORTH CEN' 1	TRAL, INC.	2055 WH	IITE BEAR A	VE 1,105	0	0	1,106
Ramsey County, City of NEW BRIGHTON LEAD	MICOM CORP 475	OLD HWY	8 NW 0	0	126	0	0	135
Ramsey County, City of ROSEVILLE LEAD COMPOUNDS	HONEYWELL ELECTR 62.37	RONIC MAT 0	TERIALS, INC	C 1633 TE 0	ERRACE DR 2,895	.V 0	0	2,957.37
Ramsey County, City of ROSEVILLE LEAD COMPOUNDS	LUBRICATION TECHN 0	0	0	0	0	0	0	0
Ramsey County, City of ROSEVILLE LEAD COMPOUNDS	UNICIRCUIT ROSEVII 15	LE, INC 0	- 2520 TERM 0	IINAL RD 0	2,775	0	0	2,790

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA Form "R"

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA For	rm "R" (Amount in Pounds)							
Sorted by County, City, Facility Chemical	Quantity Released (8.1)	•	Recovery Off-site (8.3)	Recycled On-site (8.4)	Recycled Off-site (8.5)		Treated Off-site (8.7)	
Ramsey County, City of ROSEVILLE	US FILTER RECOVER		, ,			(0.0)	(0.7)	Manageu
LEAD COMPOUNDS	9,687.7	0	0	0	0	0	0	9,687.7
Ramsey County, City of ST. PAUL LEAD COMPOUNDS	3M COMPANY 900 160	BUSH AVE 0	0	0	28	0	0	188
Ramsey County, City of ST. PAUL LEAD	CENTURY CIRCUITS & 5.7	& ELECTRO 0	ONICS, INC	155 EATO	ON ST 4,922	0	0	4,927.7
Ramsey County, City of ST. PAUL LEAD COMPOUNDS	FORD - TWIN CITIES A	ASSEMBLY 0	PLANT	- 966 S MISSIS 0	SIPPI RIVEF 0	R BLVD 0	0	9
Ramsey County, City of ST. PAUL LEAD	GE INTERLOGIX 2 2.48	266 2ND ST 0	'. N. 0	0	796	0	0	798.48
Ramsey County, City of ST. PAUL LEAD COMPOUNDS	MIXON, INC 2286 114.787	CAPP RD 0	0	0	571,425	0	0	571,539.787
Ramsey County, City of ST. PAUL LEAD COMPOUNDS	NORTH STAR RECYCI 132,089	LING-MINN 0	ESOTA	- 1678 RED RO 117,722.7	CK RD 0	0	0	249,811.7
Ramsey County, City of ST. PAUL LEAD COMPOUNDS	NORTH STAR STEEL-1 2,160	MINNESOT.	A 1678 0	RED ROCK RI 682	252,462	0	0	255,304
Ramsey County, City of ST. PAUL LEAD	VERSA IRON & MACH 570.81	IINE 867	FOREST S	ST 0	0	0	0	570.81
Ramsey County, City of ST. PAUL LEAD	WALDORF CORP. (A F 248	ROCK-TENN 0	COMPAN 0	YY) 2250 W	ABASH AVI	0	0	248
Ramsey County, City of ST. PAUL LEAD COMPOUNDS	XCEL ENERGY - HIGH 955.5	I BRIDGE P	LANT : 0	501 SHEPARD	RD 0	0	0	955.5
Ramsey County, City of WHITE BEAR LAKE LEAD COMPOUNDS	QUALITY WOOD TRE.	ATING CO.	4141 H	OFFMAN RD	0	0	0	0
Ramsey County, City of WHITE BEAR LAKE LEAD COMPOUNDS	TRANE 4833 WHIT 0.1	E BEAR PK	WY.	0	833	0	0	833.1
Ramsey County, City of WHITE BEAR LAKE LEAD COMPOUNDS	WATER GREMLIN CO 0.5	1610 W	HITAKER 0	AVE 0	2,961,908	0	0	2,961,908.5
Renville County, City of RENVILLE LEAD	SOUTHERN MN BEET 1,130.7	SUGAR CO	OP 835	550 CO RD 21 0	0	0	0	1,130.7
Rice County, City of NORTHFIELD LEAD COMPOUNDS	NORTHFIELD ACQUIS 1,631.5	SION CO E	EAST FACI 0	LITY 805 H	IWY 3 N 659	0	0	2,290.5
Scott County, City of NEW PRAGUE LEAD	CHART, INC NEW PI 17.4	RAGUE FAC	CILITY	407 7TH ST NV 0	W 0	0	0	17.4
Sherburne County, City of BECKER LEAD COMPOUNDS	XCEL ENERGY - BECK 143,921.8	KER RDF AS	SH LANDF	ILL 13700 S	SHERBURN 0	E AVE. SO	OUTH 0	143,921.8
Sherburne County, City of BECKER LEAD COMPOUNDS	XCEL ENERGY - SHER 53,624.2	RCO PLANT 0	13999 0	INDUSTRIAL 1	BLVD 0	0	0	53,624.2
St Louis County, City of AURORA LEAD COMPOUNDS	MINNESOTA POWER - 520	- LASKIN EI 0	NERGY CE 0	ENTER 5699 0	O COLBY LA	KE RD 0	0	520
St Louis County, City of COOK LEAD	POTLATCH CORP 0	9358 HWY 0	53 S 0	0	0	0	0	0
St Louis County, City of DULUTH LEAD	GEORGIA-PACIFIC CO 16.1	ORP 122 0	0 RAILRO	AD STREET 0	0	0	0	16.1
St Louis County, City of DULUTH LEAD COMPOUNDS	ME GLOBAL INC 240	200 E CART 0	ERETT ST 0	2,600	0	0	0	2,840
St Louis County, City of DULUTH LEAD COMPOUNDS	NORTH STAR STEEL N 517	MINNESOTA 0	A – DULUT 0	TH DIV 800) GARFIELD 0	AVE 0	0	517
St Louis County, City of DULUTH LEAD COMPOUNDS	STORA ENSO DULUTE 2,129.6	H MILL 0	100 N CEN 0	TRAL AVE	0	0	0	2,129.6
St Louis County, City of HIBBING LEAD	HIBBING PUC 1832 471.6	2 SIXTH AV 0	ENUE EAS	ST 0	8.1	0	0	479.7
St Louis County, City of HIBBING LEAD	L & M RADIATOR, INC 13	C 1414 I	E 37TH ST 0	0	0	0	0	13

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA Form "R"

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 of EPA Form "R"		(Amount in Pounds)							
Sorted by County, City, Facility		Quantity Released	On-site	Recovery Off-site	Recycled On-site	Recycled Off-site		Off-site	Total
Chemical		(8.1)	(8.2)	(8.3)	(8.4)	(8.5)	(8.6)	(8.7)	Managed
St Louis County, City of HIBBING LEAD	NOBLE INI	DUSTRIES, L 2.6	TD 34	30 E 13TH A 0	AVE 0	2,005.8	0	0	2,008.4
St Louis County, City of HIBBING LEAD COMPOUNDS	NORTHER	N CASTINGS 687	CORP	555 W 25T	TH ST	11	0	0	698
			_	Ü	_		U	U	098
St Louis County, City of HIBBING LEAD	REPTRON	MANUFACT 28	URING SE	RVICES 0	3125 14TH AV 0	/E E 3,407.6	0	0	3,435.6
Stearns County, City of ST. CLOUD LEAD	GREDE - S'	Г. CLOUD 270	- 5200 FOU 0	JNDRY CIR 0	CLE 0	288	0	0	558
Steele County, City of OWATONNA LEAD COMPOUNDS	BLOUNT, I	NC 3249 0.14	CO RD 45	SOUTH 0	0	432	0	0	432.14
Steele County, City of OWATONNA LEAD	TRUTH HA	RDWARE	- 700 W B	RIDGE ST	0	22	0	0	23
Swift County, City of BENSON	CNH RENS	ON 260 H	HGHWAY	12 S F					
LEAD	CIVII BEIVS	0.52	0	0	0	705	0	0	705.53
Wabasha County, City of LAKE CITY	FEDERAL-				520 N 8TH				
LEAD COMPOUNDS		290.38	0	0	0	0	0	0	290.38
Waseca County, City of WASECA	JOHNSON				SON AVE SW				
LEAD		0	0	0	0	377	0	0	377
Washington County, City of BAYPORT LEAD COMPOUNDS	XCEL ENE	RGY - A.S. K 8,859.5	ING GENE 0	RATING PI 0	ANT 1103 0	KING PLAN	NT RD 0	0	8,859.5
Washington County, City of COTTAGE GROY LEAD COMPOUNDS	<u>VE</u> 3M - COTT	AGE GROVE 20,417	CENTER 0	10746 IN	NNOVATION R 0	2,087	0	0	22,504
Washington County, City of HUGO LEAD COMPOUNDS	AD GRAPH	IICS 2300 2.088	MAIN ST.	0	0	909.73	0	0	911.818
Washington County, City of ST. PAUL PARK LEAD COMPOUNDS	MARATHO	N ASHLAND 3,009.5	PETROLI 0	EUM, LLC -	100 W 3RD . 1,849	AVE 0	0	0	4,858.5
Watonwan County, City of ST. JAMES LEAD COMPOUNDS	WESTIN A	UTOMOTIVE 7.8	E PRODUC' 0	TS, INC	240 S 15TH ST 0	Г 1,677	0	0	1,684.8
Winona County, City of LEWISTON LEAD	RIVERSIDE	E ELECTRON	IICS LTD.	1 RIVEF	RSIDE DRV 0	3,077	0	0	3,077
Winona County, City of WINONA	BADGER F	OUNDRY CO				ŕ			,
LEAD		55.8	0	0	53.9	0.2	0	0	109.9
Winona County, City of WINONA LEAD	BENCHMA	RK ELECTR 8.3	ONICS WII	NONA DIV. 0	4065 THEU	JRER BLVI 14,126	0	0	14,134.3
Winona County, City of WINONA LEAD	HAUSER A	RT GLASS C	O., INC	- 1685 WIL	KIE DRIVE 0	2,625	0	0	2,625
Winona County, City of WINONA LEAD COMPOUNDS	MILLER W	ASTE MILLS 2.7	, INC RT 0	P 580 E	FRONT ST	0	0	0	2.7
Winona County, City of WINONA LEAD COMPOUNDS	TRW AUTO	OMOTIVE	5752 IND 0	USTRIAL P	ARK RD	19,534	0	0	19,597
Winona County, City of WINONA LEAD COMPOUNDS	WATLOW	WINONA, IN 12.181	C 124	I BUNDY B		3,412.158	0	0	3,424.339
Wright County, City of BUFFALO LEAD	HONEYWE				IC 200 CEN			0	68.13
	gonore o			U	U	07.13	U	Ü	00.13
Yellow Medicine County, City of CANBY LEAD	SCHOLLC	ORP 104 1	0 0	0	0	454	0	0	455
	Grand Totals:	687,838	0	0	158,478,880	4,704,667	0	0	163,871,385

State of Minnesota Department of Public Safety Emergency Response Commission (Amount in Pounds)

Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, of EPA Form "R"

County	Number of Facilities	Environmental Releases (8.1)	Off-site Releases and Transfers (8.1,3,5,7)	Total Chemicals Managed (8.1,2,3,4,5,6,7)
Anoka	22	234,500	6,865,765	7,561,994
Becker	1	43	43	43
Beltrami	1	212,791	212,791	212,791
Benton	4	68,353	89,658	363,294
Blue Earth	7	848,742	1,037,528	1,073,977
Brown	2	27,930	852,952	876,412
Carlton	3	675,695	6,508,431	12,506,448
Carver	12	296,252	518,218	897,118
Cass	1	7,785	7,785	7,785
Chippewa	1	0	1,373	1,373
Chisago	2	18,346	18,346	19,189
Clay	2	94,213	94,213	136,066
Cook	1	211,059	211,059	211,059
Cottonwood	1	35,837	35,837	54,277
Crow Wing	7	50,492	120,666	120,746
_	25	1,962,206	2,449,320	177,483,595
Dakota				
Dodge	1	55,039	365,839	400,839
Douglas	3	71,990	199,583	322,400
Faribault	2	10,595	10,595	10,595
Fillmore	3	150,595	183,139	194,203
Freeborn	4	106,552	173,668	177,196
Goodhue	11	424,577	744,520	2,031,327
Hennepin	88	1,287,790	7,479,211	9,129,993
Hubbard	2	225,583	225,583	225,583
Isanti	1	0	1,200	1,200
Itasca	3	2,253,706	2,287,706	2,496,863
Jackson	1	3,600	63,000	63,000
Kanabec	1	17,865	18,305	18,305
Koochiching	3	587,251	587,251	9,366,951
Lac Qui Parle	2	424,538	424,823	707,537
Lake	2	19,336	49,748	65,652
Lake of the Woods	1	75,871	80,164	80,164
Le Sueur	3	30,686	107,522	1,290,942
Lyon	5	175,661	179,410	179,411
Marshall	1	39,098	39,098	39,098
Martin	4	188,591	196,353	196,353
McLeod	5	522,271	2,712,799	16,858,751
Meeker	5	52,165	437,507	782,030
Morrison	1			
		398,168	398,168	398,168
Mower	2	182,216	217,576	217,576
Nicollet	5	29,532	44,521	44,521
Nobles	1	11,995	35,595	35,595
Olmsted	10	258,567	1,290,606	1,518,264
Otter Tail	6	270,301	464,024	924,244
Pipestone	1	239,767	239,767	239,767
Polk	4	331,565	377,617	475,448
Ramsey	50	5,200,411	15,633,201	17,689,667
Redwood	1	162,250	211,510	240,500
Renville	1	247,329	247,329	268,297
Rice	6	173,506	1,149,279	2,226,981
Rock	1	22,689	22,689	25,670
Roseau	1	44,000	61,070	61,070
Scott	8	55,511	471,342	930,342
Sherburne	3	7,768,331	7,862,845	8,523,745
Sibley	1	0	0	85,658
St Louis	18	503,935	678,679	777,861
Stearns	12	734,397	1,696,133	2,298,237
Steele	10	470,658	979,847	1,006,082
Swift	1	111	84,116	84,116
Todd	3	206,519	275,382	318,397
Wabasha	3	49,587	54,520	54,520
Wadena	1	6,609	6,609	6,609
Waseca	3	19,037		
	12		130,488	158,605
Washington		2,063,591	3,784,680	22,962,374
Watonwan	1	17	24,741	24,741
Winona	11	84,417	1,560,455	1,900,296
Wright Yellow Medicine	4	14,493	93,286	112,026
	1	1	455	455

Totals

425

73,687,538

31,017,112

Attachment 8: Sample Statewide Listing of Amount of Releases, Transfers, and Total Chemicals Managed for Calendar Year 2002 Sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, of EPA Form "R"

State of Minnesota Department of Public Safety Emergency Response Commission

Sorted by County, City, Facility

(/	Amo	ount	in	Pour	ıds)
1-		,			

		`	(Minount in 1 oun	us)					
Chemical		Quantity Released (8.1)	Recovery On-site (8.2)	Recovery Off-site (8.3)	Recycled On-site (8.4)	Recycled Off-site (8.5)	Treated On-site (8.6)	Treated Off-site (8.7)	Chemicals
Anoka County, City of ANOKA BALLANTINE, IN	IC. – 840 MCKINLEY								
ZINC COMPOUNDS		0	0	0	0	1,889	0	0	1,889
CHROMIUM		0	0	0	0	1,407	0	0	1,407
LEAD		0	0	0	0	104	0	0	104
Anoka County, City of ANOKA FEDERAL CARTE	Totals RIDGE COMPANY	0 900 EHLEN DRV	0	0	0	3,400	0	0	3,400
LEAD COMPOUNDS		58,036	0	0	350,000	712, 228	0	0	1,120,264
ETHYLENE GLYCOL		38	0	0	0	0	0	334,880	334,918
NITRATE COMPOUNDS (WATER DISSOCIABLE)		0	0	0	0	0	0	46,286	46,286
BARIUM COMPOUNDS		10,073	0	0	0	0	0	0	10,073
COPPER COMPOUNDS		14,151	0	0	0	5,004,074	0	0	5,018,225
Anoka County, City of ANOKA HOFFMAN ENCE	Totals OSURES INC MAIN	82,298 N PLANT 2100 HOF	FMAN WAY	0	350,000	5,716,302	0	381,166	6,529,766
N-BUTYL ALCOHOL		10,022	0	1,114	0	0	0	0	11,136
XYLENE (MIXED ISOMERS)	/ 1	9,453	0	1,050	0	0	0	0	10,503
TOLUENE		17,060	0	4,743	0	0	0	0	21,803
GLYCOL ETHERS		10,448	0	1,304	0	306	0	438	12,496
METHYL ETHYL KETONE		9,960	0	3,292	0	0	0	0	13,252
eri.	Totals	56,943	0	11,503	0	306	0	438	69,190
Anoka County, City of ANOKA MATE PRECISION	N TOOLING CO 12								
CHROMIUM		0	0	0	0	28,472	0	0	28,472
	Totals	0	0	0	0	28,472	0	0	28,472
Anoka County, City of ANOKA PROFESSIONAL I	PLATING 2625 9TH					24.2			
LEAD COMPOUNDS		1.9	0	0	0	21.3	0	0	23.2
	Totals	1.9	0	0	0	21.3	0	0	23.2
Anoka County, City of BLAINE PARKER MOBIL	CYLINDER DIVBL								
MANGANESE		7	0	0	0	32,341	0	0	32,348
NICKEL		8	0	0	0	37,600	0	0	37,608
CHROMIUM		6	0	0	0	26,355	0	0	26,361
LEAD		1	0	0	0	1,883	0	0	1,884
	Totals	22	0	0	0	98,179	0	0	98,201

Attachment 9: Facilities Filing a Certification Statement (Alternate Threshold Option) instead of an EPA Form R

Starting with the 1995 reporting year, EPA granted a reporting modification entitled *TRI Alternate Thresholds for Facilities with Low Annual Reportable Amounts*. A facility that does not exceed 500 pounds of on-site and off-site releases and transfers (total of Sections 8.1 through 8.7 of the EPA Form R) is eligible to apply the alternate manufacture, process, or otherwise use threshold of one million pounds to determine if a Form R is required to be submitted for a listed chemical. If a facility does not meet the 500 pound threshold, and uses less than one million pounds of the listed chemical, the facility may file a two page Certification Statement instead of the Form R for that chemical.

The owner or operator must retain records substantiating the alternate threshold determination for a period of three years from the date of the submission of the certification statement. The certification statement must be submitted on an annual basis for each eligible chemical.

The Minnesota Emergency Response Commission follows EPA's guidelines for facilities filing a Certification Statement and is granting those facilities an exemption from preparing Pollution Prevention Plans, submitting annual Pollution Prevention Progress Reports, and paying state related fees.

In 2002, 118 facilities filed 257 Certification Statements including 57 who filed both a Form R and Certification Statement(s), and 61 who filed only a Certification Statement(s).

The following facilities filed a Certification Statement(s) for the 2002 reporting year:

FACILITY NAME	ERC ID NUMBER	CHEMICAL NAME
IMI Cornelius Inc.	02-005-0003	Nickel, Copper, Chromium
Federal-Cartridge Co.	02-005-0004	Nitroglycerin, Nitric Acid, Antimony Compounds Dibutyl Phthalate
Airgas North Central, Inc.	02-005-0029	Propylene
Hoffman Enclosures, Inc.	02-005-0053	Diisocyanates, Manganese
Hoffman Enclosures, Inc.	02-005-0060	Nickel, Manganese, Chromium
Onan Mfg.	02-055-0009	Ethylene Glycol
H.B. Fuller Co.	02-055-0018	Zinc Compounds
Land O'Lakes - Detroit Lakes	03-055-0001	Copper Compounds, Zinc Compounds, Manganese Compounds
Land O'Lakes Wood Preserving	04-215-0001	Copper Compounds, Arsenic Compounds, Chromium Compounds
Gold'n Plump Farms	05-073-0015	Copper Compounds, Zinc Compounds, Manganese Compounds
Cenex Harvest States	07-100-0005	Chlorine
Big Gain Inc.	07-160-0004	Zinc Compounds, Manganese Compounds, Copper Compounds
McLaughlin Gormley King	10-035-0008	Permethrin, Piperonyl Butoxide, Maleic Anhydride, Dipropyl Isocinchomeronate, Phenothrin, Tetramethrin, Dicyclopentadiene
Mammoth, Inc.	10-035-0041	Chlorodifluoromethane
Ethanol 2000	17-020-0002	Ammonia, Benzene, Cyclohexane, N-Hexane, Ethylbenzene 1,2,4 -Trimethylbenzene, Toluene, Xylene
Chart Industries, Inc.	19-006-0077	Nickel, Manganese, Chromium
Water Heater Innovations, Inc.	19-025-0027	Diisocyanates

FACILITY NAME	ERC ID NUMBER	CHEMICAL NAME
W.R. Grace & Co.	19-025-0095	Nitrate Compounds
ConAgra Grain Processing Co.	19-060-0001	Chlorine
Land O'Lakes - Inver Grove Hts.	19-071-0001	Copper Compounds, Manganese Compounds, Zinc Compounds
ChemCentral/Minnesota	19-080-0001	Ethylene Glycol, Ethylbenzene, Di(2-ethylhexyl)Phthalate, Methyl Isobutyl Ketone, 1,2,4-Trimethylbenzene, N-Hexane, Glycol Ethers, Trichloroethylene, N-Butyl Alcohol, Styrene
Spectro Alloys Corp.	19-145-0009	Nickel
DPC Industries, Inc.	19-145-0018	Hydrogen Fluoride
Al-Corn Clean Fuel	20-014-0016	Ammonia, Benzene, N-Hexane, 1,2,4-Trimethylbenzene, Ethylbenzene, Toluene, Xylene
Hubbard Feeds, Inc.	21-005-0002	Zinc Compounds, Manganese Compounds, Copper Compounds
Standard Iron & Wire Works, Inc.	21-005-0064	Nickel, Manganese, Chromium
Crown Fixtures Corp.	22-110-0014	Trichlorofluoromethane, Dichlorodifluoromethane, Diisocyanates
Airgas North Central, Inc.	24-005-0040	Propylene
Agra Resources Coop	24-005-0081	Benzene, Cyclohexane, N-Hexane, Xylene, Toluene Zinc (fume or dust), Ethylbenzene
Degussa Construction, Inc.	27-005-0008	Diisocyanates, Toluene Diisocyanate (mixed isomers)
FMS Corporation	27-005-0092	Ammonia
Caterpillar Paving Products, Inc.	27-015-0053	Ethylene Glycol
Bodycote Thermal Processing	27-056-0070	Ammonia
Douglas Corp.	27-056-0076	Diisocyanates
Filmtec Corporation	27-060-0002	Diisocyanates
Honeywell, Inc.	27-070-0001	Diisocyanates
Lubrication Technologies, Inc.	27-070-0041	Ethylene Glycol
Electrochemicals, Inc.	27-120-0010	Ethylene Glycol, Formaldehyde
Hawkins, Inc.	27-135-0030	Formic Acid
Purina Mills LLC	27-135-0062	Copper Compounds, Manganese Compounds, Zinc Compounds
Diamond Vogel – North Inc.	27-135-0079	Diisocyanates, Toluene Diisocyanate (mixed isomers)
Davis-Frost, Inc.	27-135-0098	Maleic Anhydride
Aggregate Industries	27-135-0130	Nitrate Compounds
Kohl & Madden Printing Ink Corp	. 27-135-0222	Barium Compounds
Hauenstein & Burmeister, Inc.	27-135-0281	Nickel
GE Osmonics, Inc.	27-140-0006	Nitrogen Bearing Cross Linker (Trade Secret Pending)
Ceram-Traz Corporation	27-175-0002	Diethanolamine

FACILITY NAME	ERC ID NUMBER	CHEMICAL NAME
Foam Enterprises, Inc.	27-180-0069	1,1-Dichloro-1-fluoroethane, Chlorodifluoromethane
Hutchinson Technology, Inc.	27-180-0078	Ammonia
Lamb-Weston/RDO Frozen	29-120-0003	Chlorine
Jennie-O Turkey Store	34-010-0002	Formaldehyde
Trouw Nutrition USA	34-175-0007	Zinc Compounds, Copper Compounds, Manganese Compounds
Willmar Poultry Farms	34-175-0079	Formaldehyde
Land O'Lakes - Willmar	34-175-0080	Copper Compounds, Manganese Compounds, Zinc Compounds
Ag Processing, Inc.	37-045-0012	Chlorine
Koch Materials Co.	42-095-0003	1,2,4-Trimethylbenzene, Ethylbenzene, Toluene
ADM	42-095-0048	Benzene, Chlorine
Seneca Foods	43-030-0001	Peracetic Acid
ADM Alliance Nutrition	43-030-0017	Zinc Compounds, Manganese Compounds
Hutchinson Mfg., Inc.	43-055-0029	Chromium, Manganese, Nickel
Haugen Furniture Co.	43-055-0037	Glycol Ethers
Weigh-Tronix, Inc.	46-035-0041	Chromium, Nickel
Innovex, Inc.	47-100-0002	Chlorine, Hydrochloric Acid (aerosol), Sodium Dimethyldithiocarbamate
Larson-Glastron Boats,Inc.	49-120-0003	Diisocyanates, Dimethyl Phthalate
Crestliner, Inc.	49-120-0025	Diisocyanates
Central MN Ethanol Coop	49-120-0048	Ammonia, Benzene, n-Hexane, 1,2,4-Trimethylbenzene, Ethylbenzene, Toluene, Xylene
Land O'Lakes - Adams	50-004-0016	Zinc Compounds
Hormel Foods Corporation	50-015-0002	Sodium Nitrite, Chlorine
Carlson Craft Social	52-065-0002	Antimony
Alumacraft Boat Co.	52-080-0001	Diisocyanates
Hubbard Feeds, Inc.	53-150-0007	Zinc Compounds, Copper Compounds, Manganese Compounds
Hubbard Feeds, Inc.	53-150-0043	Copper Compounds, Manganese Compounds, Zinc Compounds
Quest International	55-095-0017	Nitric Acid, Ammonia, Peracetic Acid
Lund Boat Company	56-251-0003	Diisocyanates
Arctic Cat, Inc.	57-115-0042	Diisocyanates, Ethylene Glycol
Honeywell Electronic Materials	62-060-0001	Hydrochloric Acid (aerosol), Sulfuric Acid (aerosol)
C&H Chemical	62-070-0010	Sodium Nitrite

FACILITY NAME	ERC ID NUMBER	CHEMICAL NAME
Gopher State Ethanol	62-070-0029	Cyclohexane, N-Hexane, Ammonia
Harcros Chemicals, Inc.	62-070-0070	Ethylene Glycol
Ashland Distribution Company	62-070-0077	Cyclohexane, Trichloroethylene, Methyl Isobutyl Ketone, 1,2,4-Trimethylbenzene, N-Butyl Alcohol
Vopak USA, Inc.	62-070-0079	Toluene, Tetrachloroethylene, Xylene, Nitric Acid, Ammonia
Brenntag Great Lakes LLC	62-070-0082	Ethylene Glycol, 1,2,4-Trimethylbenzene, Methyl Isobutyl Ketone
Gross-Given Mfg. Co.	62-070-0108	Diisocyanates
Versa Iron & Machine	62-070-0230	Copper
Schwing America, Inc.	62-092-0001	Propylene
Quality Wood Treating Co., Inc.	62-095-0001	Copper Compounds, Arsenic Compounds, Chromium Compounds
Aspen Research Corp.	62-095-0043	Chromium Compounds
Central Bi-Products	64-110-0002	Chlorine, Chlorine Dioxide
HBOS Mfg. LP Schult Homes	64-110-0038	Diisocyanates
Minnesota Energy	65-040-0008	Benzene, Ammonia
K-Bar Industries	66-030-0086	Diisocyanates
Malt-O-Meal Co.	66-060-0041	Zinc Compounds
Agri-Energy, LLC	67-055-0022	Ammonia, Benzene, Cyclohexane, N-Hexane
Staver Foundry Co.	69-440-0020	Chromium, Nickel
Chaska Chemical Co., Inc.	70-082-0002	Nitric Acid, Glycol Ethers
Conklin Company, Inc.	70-085-0006	Ammonia, Zinc Compounds
Fremont Industries, Inc.	70-085-0008	Sodium Nitrite, Glycol Ethers, Ethylene Glycol, N-Methyl-2-Pyrrolidone
Cargill, Inc.	71-019-0012	Manganese Compounds
Heartland Corn Products	72-120-0010	Ammonia, Benzene, Cyclohexane, N-Hexane
Gold'N Plump Poultry, Inc.	73-040-0001	Chlorine
Wiman Corp.	73-073-0031	Di(2-ethylhexyl)Phthalate
Melrose Dairy Proteins LLC	73-150-0003	Methyl Tert-Butyl Ether, Toluene, Xylene
Grede-St. Cloud Foundry, Inc.	73-230-0084	Diisocyanates
New Flyer USA	73-230-0097	Ethylene Glycol
Standard Iron & Wire Works, Inc.	73-265-0028	Manganese
Tandem Products, Inc.	74-014-0039	Copper, Nitrate Compounds
Truth Hardware	74-070-0002	Chromium, Nickel
Diversified Energy Co.	75-070-0014	Ammonia, Benzene, 1,2,4-Trimethylbenzene, N-Hexane, Ethylbenzene, Toluene, Xylene
CNH Benson	76-015-0028	Ethylene Glycol
Chippewa Valley Ethanol Co.	76-015-0036	Ammonia, Benzene, Methanol, N-Hexane, Toluene
Central Bi-Products	77-124-0002	Chlorine, Chlorine Dioxide

FACILITY NAME	ERC ID NUMBER	CHEMICAL NAME
Andersen Corporation	82-015-0002	Diisocyanates
Nor-Lakes Services Midwest	82-070-0009	Zinc Compounds
Badger Foundry Co.	85-145-0005	Diisocyanates
United Machine and Foundry	85-145-0066	Chromium, Nickel
Miller Felpax Corp.	85-145-0069	Diisocyanates, Proprietary Glycol
Honeywell Electronic Materials	86-019-0025	Hydrochloric Acid (aerosol),
Land O'Lakes – Howard Lake	86-085-0010	Copper Compounds

Attachment 10: Facilities which submitted an EPA Form R in 2001 but are not subject to reporting in 2002

Facility Name & Location	County	ERC ID Number
IMI Cornelius, Inc., Anoka	Anoka	02-005-0003
Mentor Corp., Anoka	Anoka	02-005-0055
Plasti Dip International, Circle Pines	Anoka	02-020-0005
Plexus Corp., Blaine	Anoka	02-020-0076
H.B. Fuller Co., Fridley	Anoka	02-055-0018
Kurt Mfg. Co., Fridley	Anoka	02-055-0071
Life Fitness, Ramsey	Anoka	02-095-0023
Coleman Powermate, Inc., Springfield	Brown	08-105-0012
Parker Hannifin Corp., Chanhassen	Carver	10-030-0024
Chart Industries, Inc., Burnsville	Dakota	19-006-0077
Finishing Equipment, Inc., Eagan	Dakota	19-025-0111
Progress Casting Group, Albert Lea	Freeborn	24-005-0044
Farmland Foods, Albert Lea	Freeborn	24-005-0050
Onyx Special Services, Inc., Bloomington	Hennepin	27-005-0134
General Mills, Inc., Eden Prairie	Hennepin	27-056-0054
Honeywell Advanced Circuits, Inc., Hopkins	Hennepin	27-095-0001
Pechiney Plastic Pkg., Minneapolis	Hennepin	27-135-0003
Valmont Applied Coating Tech., Minneapolis	Hennepin	27-135-0104
General Mills Purity Oats, Minneapolis	Hennepin	27-135-0249
Oldcastle Glass, Inc., Minneapolis	Hennepin	27-135-0620
Honeywell Advanced Circuits, Inc., Minnetonka	Hennepin	27-140-0008
Precision Diversified Industries, Plymouth	Hennepin	27-180-0029
Honeywell Advanced Circuits, Inc., St. Louis Park	Hennepin	27-215-0003
American Marine, Mora	Kanabec	33-065-0005
ADC Telecommunications, Le Sueur	Le Sueur	40-070-0039
Haugen Furniture Co., Hutchinson	McLeod	43-055-0037
Onan Power Electronics, St. Peter	Nicollet	52-080-0003
Marigold Foods, Rochester	Olmsted	55-095-0010
Kaneb Pipeline, Roseville	Ramsey	62-060-0002
Brenntag Great Lakes, Roseville	Ramsey	62-060-0003
Gopher State Ethanol, St. Paul	Ramsey	62-070-0029
SCI Enclosures, St. Paul	Ramsey	62-070-0105
Advance Corp., St. Paul	Ramsey	62-070-0356
Aspen Research Corp., White Bear Lake	Ramsey	62-095-0043
Protient, Inc., Faribault	Rice	66-030-0003
Lakeside Foods, Brooten	Stearns	73-035-0008
Vision Ease Lens, Inc., St. Cloud	Stearns	73-230-0020
Mustang Mfg. Co., Owatonna	Steele	74-070-0057
Dura Supreme, Howard Lake	Wright	86-085-0007

Attachment 11: "Core" Set of Reported Chemicals (1988-2002)

The Environmental Protection Agency (EPA) has the authority to add chemicals to the Section 313 Toxic Chemical List (see Appendix A on page 71.) if they meet the statutory toxicity criteria. Conversely, EPA may delete chemicals if these chemicals do not meet the toxicity criteria. Since 1987, EPA has deleted a number of chemicals from the list, added others, and modified the reporting requirements for others. Year-to-year chemical release/transfer comparisons must be based on the same set of chemicals to ensure that changes are not simply the result of the addition, deletion, or change in definition of reportable chemicals from one year to another. Consequently, in order to make a meaningful comparison, we have identified a "core" set of chemicals for which there was a requirement to report every year from 1988 through the most current reporting year (2002). Pages 42 to 45 include a listing of these core chemicals, and the quantity of them that was released/transferred in 1988 versus the quantity that was released/transferred in 2002. This information is intended to provide at least a gross indication of the upward/downward release/transfer trend for each of the core chemicals during the 1988-2002 time period.

To facilitate a full understanding of the release/transfer data provided, two basic clarifications are needed. First, if 1988 or 2002 data are not included for a particular chemical, it is because that chemical was not reported by any facility in that year. Second, the total number of facilities indicated at the end of the listing represents the total *that reported core chemicals*, not the total number of facilities reporting in that particular year.

By way of summary, from 1988-2002, 543 facilities that met the reporting criteria for one or more years notified the ERC that they were no longer required to file. Several factors are responsible for this development, including pollution prevention initiatives, chemical substitution or elimination, regulatory changes, and facilities moving to another state or going out of business. For these reasons, it appears that there have been reductions in chemical releases into the environment, especially into the air. However, the following factors should be considered before drawing any conclusion relative to the upward/downward release/transfer trends:

- 1. Manufacture and process thresholds began at 75,000 pounds for the 1987 reporting year, dropped to 50,000 pounds for 1988, and dropped to 25,000 pounds for 1989 and thereafter. Therefore, some facilities may have been required to report in 1989, but not 1988.
- 2. Effective with the 1995 reporting year, facilities whose "total annual reportable amount" does not exceed 500 pounds, and that do not manufacture, process, or otherwise use more than one million pounds of a TRI chemical, were permitted to submit a certification statement (EPA Form A) instead of the EPA Form R. Form A's do not include any release or transfer amount information.
- 3. Prior to the 1991 reporting year, facilities were required to report only transfers to Publicly Owned Treatment Works (POTW) and other off-site locations for the purposes of treatment and disposal. The federal Pollution Prevention Act of 1990 added to the TRI the collection of data for energy recovery and recycling. Because this data was not collected until 1991, comparisons can only be drawn between 1988-2002 using data reported for off-site transfers for treatment and disposal.
- 4. Beginning with the 1997 reporting year, metals and metal compounds reported as being transferred off-site to a POTW or for solidification/stabilization or wastewater treatment, must be reported as a transfer for disposal. Prior to 1997, facilities were allowed to report these amounts as a transfer for treatment off-site.

5. Dramatic increases and/or decreases in releases/transfers as indicated in Figures 6-11 on pages 46-47 can often be attributed to a single facility. For example:

a. Fugitive Air

IBM in Rochester reported releases of 770,000 pounds of Freon 113 as fugitive air emissions in 1988 but are no longer required to report this chemical. Freon 113 is being phased out because of its potential to deplete the earth's ozone layer. Numerous other large and small facilities contributed to the remaining reductions in fugitive air emissions.

b. Stack Air

The 3M facility in Hutchinson reduced their total stack air emissions from 15,926,247 pounds in 1988 to 309,244 pounds in 2001. Numerous other large and small facilities contributed to the remaining reductions in stack air emissions.

c. Water

Northwest Airlines at the Twin Cities International Airport reported a discharge of 1,995,424 pounds of Ethylene Glycol to water in 1993, but through chemical substitution was able to replace Ethylene Glycol with a non-reportable chemical.

d. Land

The Xcel Energy (formerly NSP) facility in Becker reported 7,468,285 pounds of primarily metal compounds to on-site Land in 1998. The 1998 reporting year was the first year that electric utilities were required to report under the federal TRI expansion.

e. Publicly Owned Treatment Works (POTW)

Sappi (formerly Potlatch) at their Cloquet facility reported 2,200,000 pounds of Methanol being transferred to the POTW in 1988, 4,482,658 pounds in 1998, and 5,787,312 pounds in 2002.

f. Off-site Transfers (Treatment and Disposal only)

- The 3M facility in Hutchinson reported total off-site transfers of Methyl Ethyl Ketone and Toluene for treatment of 3,003,000 pounds in 1989, 577,571 pounds in 1990 and 331,000 pounds in 1998.
- The 3M facility in Cottage Grove reported total off-site transfers for treatment of Methyl Ethyl Ketone, Toluene, Xylene, and Ethylene Glycol of 4,630,000 pounds in 1989 but only 10,000 pounds of these same four chemicals in 1990.
- As indicated under the POTW heading above, Sappi (formerly Potlatch) at their Cloquet facility reported 2,200,000 pounds of Methanol being transferred off-site to the POTW for treatment in 1988 and 5,787,312 pounds in 2002.
- Numerous facilities, as part of an EPA enforcement initiative, reported for the first time in the year 2000 the off-site transfers of Nitrate Compounds for treatment for reporting years 1995-1999.

"Core" Set of Reported Chemicals (1988 - 2002)

State of Minnesota Department of Public Safety Emergency Response Commission

gency Response Commission
(Amount in Pounds) Offsite

		(Amount in Pounds) # of						Offsite (Disposal and
Chemical	Year		Fugitive Air	Stack Air	Water	Land	POTW	Treatment)
1,1,1-Trichloroethane	1988	74	1,078,094	2,079,144	0	0	3,397	293,477
1,1,2,2-Tetrachloroethane	1988	1	250	50,000	0	0	0	0
1,1,2-Trichloroethane	1988	1	120	16,000	0	0	0	3,400
1,2,4-Trimethylbenzene	1988 2002	8 11	17,840 45,714	201,061 71,681	30 13	210 0	8 4	31,030 172
1,2-Butylene oxide	1988	1	1,300	0	0	0	0	0
1,2-Dibromoethane	1988 2002	1 1	0	5 18	0	0	0	0 87
1,2-Dichloroethane	1988 2001	2 1	83 7	12,009 24	0	0	0	9,400 22
1,3-Butadiene	1988 2002	1 1	0 910	13,000 692	30 2	0	0	30 0
1,4-Dioxane	1988	3	1,879	23,584	0	0	45,985	421
2,4-D	1988	1	0	0	0	0	0	245
2,4-Dimethylphenol	1988	1	0	0	0	1	0	0
2-Ethoxyethanol	1988 2002	4 2	20,702 579	485,577 11,102	120 1	0	12,250 12	39,000 68
2-Methoxyethanol	1988	1	0	9,800	0	0	0	0
4,4'-Isopropylidenediphenol	2002	2	0	1,404	0	0	0	0
4,4'-Methylenedianiline	1988 2002	2 1	0	0	0 0	0	0	8,145 0
Acetaldehyde	2002	9	1,585	273,873	690	5	8,669	0
Acetonitrile	2002	1	0	0	0	0	0	0
Acrolein	2002	1	0	20,545	0	0	0	0
Acrylic acid	1988 2002	1 2	4 1,254	120 12,847	0 0	0	0	0 31,136
Acrylonitrile	1988	1	0	0	0	0	0	0
Aluminum (fume or dust)	1988 2002	4 5	0 33,395	27,688 1,657	4,100 0	0	63 0	109,842 925
Anthracene	2002	1	19	4	0	0	0	0
Antimony	1988 2002	2 1	130 12	140 10	0 0	19,098 0	68 250	0
Antimony compounds	1988 2002	3 9	5 10	63 211	6 1,553	18 42,510	28 1	6,405 4,473
Arsenic	1988 2002	2 1	65 6	74 5	160 0	5,981 0	6 38	0
Arsenic compounds	1988	2	0	250	0	0	0	1,350
Barium	1988 2002	4 4	0 46	21,870 118,958	1,000 5	84,900 0	0 1,944	267 255
Barium compounds	1988 2002	3 21	250 1,331	250 65,709	0 3,436	0 7,284,841	250 5,219	2,135 151,217
Benzene	1988 2002	4 6	14,180 16,492	300,310 9,098	30 2,826	970 0	0	715 16
Benzoyl chloride	1988	1	250	250	0	0	0	0
Beryllium	1988	1	0	1	0	0	0	0
Biphenyl	1988 2002	2 1	1,080 170	0 8	3 0	0	0	91 0

State of Minnesota Department of Public Safety Emergency Response Commission (Amount in Pounds)

	Emergency Response Commission							
				(Amount	in Pounds)			Offsite
Chemical	Year	# of Facilities	Fugitive Air	Stack Air	Water	Land	POTW	(Disposal and Treatment)
Bromomethane	2002	1	12,744	0	0	0	0	0
Butyl acrylate	2002	1	42	1,660	0	0	0	0
C.I. Basic Green 4	1988	1	0	0	0	0	0	0
Cadmium	1988	4	0	5	63	14	8	254
Cadmium compounds	1988	1	0	0	0	0	0	1,050
Carbon disulfide	1988 2002	2 2	0	7,600 21	0	0	0	0
Carbon tetrachloride	1988	1	0	0	0	0	0	0
Carbonyl sulfide	2002	3	2	1,320	0	0	0	0
Catechol	1988 2002	1 2	0	0	0	0 5	14,000 1,071	0
Chlorine	1988 2002	40 8	14,906 6,715	469,794 1,029	26,804 0	0	42,724 13	62,000 0
Chlorine dioxide	1988 2002	3 2	500 10	19,250 25,171	0	0	0	0
Chloroform	1988	2	102,000	161,000	79,000	430	17,000	0
Chloromethane	1988	1	143,000	0	0	0	0	0
Chromium	1988 2002	11 29	757 240	1,558 949	1,313 0	12,250 584	1,258 127	25,734 3,002
Chromium compounds	1988 2002	11 21	1,300 469	1,496 2,726	0 182	12,056 103,020	46,593 23,923	36,042 52,723
Cobalt	1988 2002	2 2	250 0	65 5	200 0	290 0	0	2 0
Cobalt compounds	1988 2002	2 3	3 12	649 102	0	0	0	9,686 8,431
Copper	1988 2002	27 47	2,540 10,534	3,013 10,276	57 1	0 1,139	3,672 995	30,474 3,562
Copper compounds	1988 2002	15 28	511 69	1,009 8,388	5 907	1,283 280,020	9,695 2,989	190,419 213,863
Cresol (mixed isomers)	1988 2002	1 2	0 60	0 1,070	0	24 5	0 1,755	0 4
Cumene	1988 2002	1 1	91 810	0 160	30 0	0	0	30 36
Cyanide compounds	1988 2002	8 5	1,250 0	750 1,644	0	0	27,882 155	7,700 26,591
Cyclohexane	1988 2002	3 7	5,004 6,821	67,240 24,909	150 6	0	0	30 3,814
Decabromodiphenyl oxide	2002	3	0	0	0	0	0	4,135
Di(2-ethylhexyl) phthalate	1988 2002	3 4	0 33	4,100 0	0	3	1 501	4,860 2,685
Dibenzofuran	2002	1	0	0	0	0	0	0
Dichloromethane	1988 2002	40 8	594,104 8,088	2,176,785 96,970	1,800 0	0	1,839 492	188,395 1,996
Diethanolamine	1988	3	0	250	0	0	13,362	250
Dimethyl phthalate	1988 2002	1 1	25,500 0	0 165	0	0	0	0
Epichlorohydrin	2002	1	3	27	0	0	0	0

"Core" Set of Reported Chemicals (1988 - 2002)

State of Minnesota Department of Public Safety Emergency Response Commission (Amount in Pounds)

	Emergency Response Commission					0.00 **		
				(Amount	in Pounds)		Offsite
Chemical	Year	# of Facilities	Fugitive Air	Stack Air	Water	Land	POTW	(Disposal and Treatment)
Ethyl acrylate	1988	1	2,400	960	0	0	0	0
	2002	1	1,438	1,227	13	0	0	0
Ethylbenzene	1988	11	20,790	443,063	30	1,800	500	28,143
	2002	16	23,972	104,551	12	0	0	75
Ethylene	1988 2002	2 2	23,700 13,785	310 1,541	30 3	0	0	30 0
Ethylene glycol	1988	20	33,394	64,116	1,493	0	303,604	392,057
	2002	16	8,752	989	55	0	362,699	556
Ethylene oxide	2002	1	92	185	0	0	0	0
Formaldehyde	1988	18	4,700	749,359	3,900	0	8,197	8,385
	2002	13	2,169	223,127	1	5	19,846	418
Freon 113	1988 2002	50 1	2,446,227 10,695	953,886 0	0	$0 \\ 0$	4,295 0	55,796 0
Glycol ethers	1988	31	322,763	837,357	0	0	306,809	59,832
Giyeor emers	2002	26	125,433	481,067	0	0	93,546	2,085
Hexachlorobenzene	2002	1	0	0	0	0	0	0
Hydrogen cyanide	1988	1	0	95	800	0	0	0
Hydrogen fluoride	1988	3	1,550	96,500	0	0	0	0
	2002	12	229	211,487	0	0	111	0
Lead	1988 2002	6 81	6,760 712	7,530 1,958	1,510 0	142,955 10	493 598	69,388 4,215
Lead compounds	1988	8	12,250	5,043	0	370,747	1,505	18,291
	2002	77	1,088	7,578	1,198	207,891	410	78,841
m-Xylene	2002	1	516	0	0	0	0	0
Maleic anhydride	1988 2002	5 3	317 27	663 682	0	0	0	42 13
Manganese	1988	9	510	1,330	360	0	250	16,694
	2002	22	509	2,455	0	6	113	297
Manganese compounds	1988 2002	10 18	13,000 3,379	2,910 11,581	5 28,030	130,000 1,437,753	4,810 95,729	1,050 40,642
Mercury	1988	1	2	130	0	18	0	0
•	2002	7	43	20	0	0	13	10
Mercury compounds	2002	22	7	1,767	0	853	0	24
Methanol	1988 2002	32 30	128,628 77,953	2,199,194 1,453,012	0 367	280,000 0	2,245,700 5,930,024	289,959 82,170
Methyl acrylate	1988	1	70	1,300	0	0	0	0
	2002	1	901	273	0	0	0	0
Methyl ethyl ketone	1988 2002	44 30	450,882 114,314	12,859,36 406,619	240 61	730 5	1,250 8,290	668,447 1,424,351
Methyl isobutyl ketone	1988	23	31,057	572,202	0	0	500	57,660
	2002	8	14,218	120,676	0	0	0	2,021
Methyl methacrylate	1988 2002	1 6	1,500 34,253	660 28,097	73 22	0	0	0
Molybdenum trioxide	1988 2002	2 7	250 15	0 285	0 19	0 20,810	0	0 2,913
n-Butyl alcohol	1988	20	48,999	807,983	0	0	100	85,270
•	2002	11	95,627	470,259	0	0	0	0
Naphthalene	1988	3	13,704	2,094	3	1,500	0	51
	2002	4	4,908	461	0	2	0	160

"Core" Set of Reported Chemicals (1988 - 2002)

State of Minnesota Department of Public Safety Emergency Response Commission (Amount in Pounds)

Figure 6: "Core" Set of Chemicals - Fugitive Air

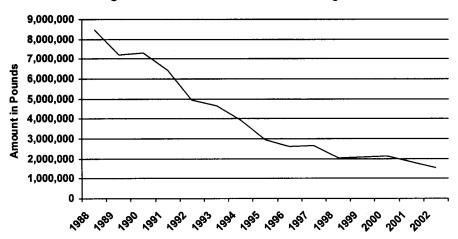


Figure 7: "Core" Set of Chemicals - Stack Air

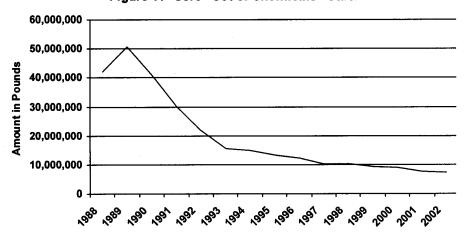


Figure 8: "Core" Set of Chemicals - Water

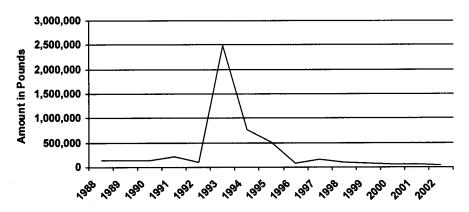


Figure 9: "Core" Set of Chemicals - Land

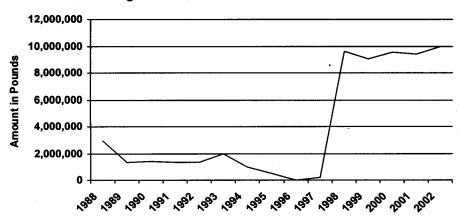


Figure 10: "Core" Set of Chemicals - POTW

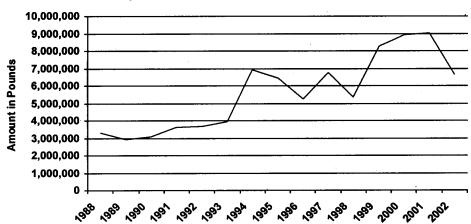
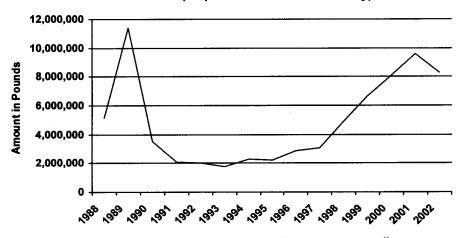



Figure 11: "Core" Set of Chemicals - Offsite Transfers (Disposal and Treatment Only)

V. Pollution Prevention Progress Reports

The Minnesota Toxic Pollution Prevention Act (TPPA) of 1990 requires facilities that report toxic chemical releases and/or transfers under Section 313 of SARA Title III to prepare a Pollution Prevention Plan and submit annual Progress Reports. This section is a summary of the Progress Report information for each reporting facility.

Definition of Pollution Prevention

Pollution Prevention means eliminating or reducing at the source the use, generation, or release of toxic pollutants, hazardous substances, and hazardous wastes. Pollution Prevention in Minnesota includes the following activities:

Input change:

Replacing a toxic material with a non-toxic or less toxic material.

Product reformulation:

Changing the design or composition of an existing end product to reduce the need for toxic materials.

Production process redesign:

Developing or using production units of a different design or upgrading/renovating equipment to reduce the need for toxic materials.

Operational improvements:

Improved housekeeping practices, product and process inspections, and the use of production unit control equipment or methods.

In-process, in-line, or closed-loop recycling:

Recycling, reuse, or extended use of toxic materials.

Pollution prevention emphasizes a multi-media waste reduction approach. Multi-media means the air, water, land, and workplace surroundings into which chemicals are released or transferred. The goal is to find waste solutions that do not transfer a chemical to a different media. The end result is a reduction in the quantity of toxic materials used or environmental wastes created in the first place.

Pollution Prevention Plans and Progress Reports

The Pollution Prevention Plan is a non-public document, which is updated every two years based on the addition and/or deletion of chemicals and includes:

- a policy statement by management in support of eliminating or reducing the generation or release of toxic pollutants at the facility;
- a description of current processes generating or releasing toxic pollutants;
- a description and evaluation of current and past practices used to reduce or eliminate the generation or release of toxic pollutants;
- an assessment of options available to reduce or eliminate toxic pollutant release or generation;
- a statement of (reduction/elimination) objectives and a schedule for achieving the objectives. The objectives may be numerical or non-numerical;
- an explanation of the rationale for each objective;
- a list of considered options that were rejected as economically or technically impracticable;
- a certification attesting to the accuracy of the plan.

The Progress Report is a public document submitted annually. It indicates a facility's progress toward meeting the objectives as stated in the Plan. The Progress Report includes:

- a summary of each objective (from the Plan) and a schedule for meeting the objective;
- a summary of progress made during the past year;
- a statement of methods used to reduce or eliminate generation or release of toxic pollutants;
- an explanation of reasons for not meeting objectives including technical, economic, or other barriers;
- a certification attesting to the existence of the Plan and the accuracy of the Progress Report.

The Minnesota Emergency Response Commission (ERC) receives the annual Progress Reports and reviews them for completeness. If a Progress Report does not fulfill pollution prevention planning requirements, the TPPA provides a mechanism for the ERC and Office of Environmental Assistance (OEA) to review the Plan and, potentially, hold a public meeting on the Plan. Citizens may also request that the Commission formally review a Plan, based on a petition which identifies deficiencies in the Progress Report.

Progress Reports for reporting years 1995-2002 are available for review at the ERC office. Progress Reports for years prior to 1995 are available for review at the Minnesota Pollution Control Agency's Pollution Prevention and Sustainability Office.

Progress Report Issues

Approximately fifty-four percent of the reporting facilities have chosen to define non-numeric pollution prevention objectives. Discussions between the ERC, OEA, MPCA, MNTAP, and regulated facilities have defined a number of factors which make it difficult for a facility to state numeric goals including:

- Rapid changes in the production processes and/or market demand makes quantitative prediction of future production difficult if not impossible.
- Some facilities have established facility-wide pollution prevention goals that do not lend themselves to the process by process reporting requirements of the TPPA.
- Some facilities have made significant reductions in the amounts of toxic chemicals generated or released in years prior to the TPPA requiring reporting. These efforts are not reflected in the current Progress Reports and further reductions are extremely difficult and expensive.
- Some chemicals are double counted because they are shipped from site to site for treatment, recovery, or recycling. This double counting reduces the ability of a facility to select a numeric goal because, if they receive chemicals for treatment, recovery or recycling from other facilities, then any reductions in releases at the other facilities appear as increased chemical management activities at the receiving facility.
- A number of facilities have upgraded their process technology to minimize releases of chemicals. This leaves accidental or unintentional releases as the primary chemical releases of concern; such releases are not predictable.
- Minnesota requires pollution prevention planning for the chemicals reported under Section 313 of SARA Title III. A number of facilities have found pollution prevention opportunities for non-Section 313 reported chemicals. This activity is not reflected in the Progress Reports.

Definitions

A sample of a statewide listing found on page 55 summarizes 2002 Progress Report information. A complete listing is available from the Emergency Response Commission (651-297-7372). The following definitions will help to explain the information in the list:

Barriers to Pollution Prevention - the facility's pollution prevention efforts were hindered by certain factors (see page 54 for F code descriptions)

Baseline Quantity - quantity of releases and/or transfers associated with this chemical during the baseline year

Baseline Year - the year the facility chose to measure pollution prevention progress

Chemical - target chemicals for pollution prevention

ERC ID - number assigned to facilities by the Emergency Response Commission

Facility Name - provided by the facility

Met Objective - pollution prevention success as reported by the facility

Numeric Objective / Releases and Transfers - the facility set an objective(s) to reduce the amount of the chemical generated or released that can be quantified. These numbers are obtained directly from the Pollution Prevention Plan. If no numbers are entered, the facility has elected to use the same numbers as reported in Sections 8.1 - 8.7 of their EPA Form R.

Non-numeric Objective - the facility set an objective(s) to reduce chemical release and/or transfer quantities that cannot be quantified

Process - process code(s) that generate the releases and/or transfers of this chemical (see page 52 for process (P) code descriptions)

P.R. - facility production ratio; that is the change in the level of business or production activity as compared to the previous year

Quantity Reported in 2001 & 2002 - actual quantity of this chemical reported on the EPA Form R (Sections 8.1 - 8.7) in 2001 and 2002

Source Reduction - describes the reduction activity code(s) that was used to meet pollution prevention objective (see pages 53-54 for source reduction (W) code descriptions)

P CODES PROCESS DESCRIPTIONS

P01	Casting any material
P02	Chemical mixing (denaturing, formulating, blending, etc.)
P03	Chemical transferring (packaging, metering, etc.)
P04	Chemical milling (etching)
P05	Cleaning any material (degreasing, washing, etc.)
P06	Combustion
P07	De-icing De-icing
P08	Developing (non-photographic)
P09	Drying
P10	Electroless/Immersion coating
P11	Electroplating
P12	Extruding any material
P13	Fiberglass product manufacturing
P14	Foam blowing
P15	Food processing (human and animal)
P16	Heat treating
P17	Laminating/Pressing any material
P18	Lens grinding
P19	Machining any material (polishing, routing, drilling, etc.)
P20	Metal melting
P21	Metal shredding
P22	Metal treating (anodizing, phosphating, pickling, etc.)
P23	Molding any material (bending, forming, shaping, etc.)
P24	Organic coating (painting, varnishing, adhesive, etc.)
P25	Paper manufacturing
P26	Photographic processing
P27	Printing
P28	Refining
P29	Refrigerating/Freezing
P30	Regenerating resin
P31	Smelting
P32	Sterilizing (fumigating, disinfecting, etc.)
P33	Stripping any coating
P34	Tanning
P35	Vacuum depositing (vapor, ion, epitaxy, etc.)
P36	Water treating (neutralizing, evaporating, etc.)
P37	Weatherizing (wood treating, corrosion inhibiting, etc.)
P38	Welding any material (soldering, brazing, joining, etc.)
P39	Other

W CODES SOURCE REDUCTION ACTIVITIES

Cleaning	and Degreasing
W59	Modified stripping / cleaning equipment
W60	Changed to mechanical stripping / cleaning devices (from solvents or other materials)
W61	Changed to aqueous cleaners (from solvents or other materials)
W63	Modified containment procedures for cleaning units
W64	Improved draining procedures
W65	Redesigned parts racks to reduce dragout
W66	Modified or installed rinse systems
W67	Improved rinse equipment design
W68	Improved rinse equipment operation
W71	Other cleaning and degreasing modifications (Please explain)
	erating Practices
W13	Improved maintenance scheduling, recordkeeping, or procedures
W14	Change production schedule to maximize equipment and feedstock changeovers
W19	Other changes in operating practices (Please explain)
Inventory	<u>Control</u>
W21	Instituted procedures to ensure that materials do not stay in inventory beyond shelf-life
W22	Began to test outdated material - continue to use if still effective
W23	Eliminated shelf-life requirements for stable materials
W24	Instituted better labeling procedures
W25	Instituted clearinghouse to exchange materials that would otherwise be discarded
W29	Other changes in inventory control (Please explain)
Process M	<u>Iodifications</u>
W51	Instituted recirculation within a process
W52	Modified equipment, layout, or piping
W53	Use of a different process catalyst
W54	Instituted better controls on operating bulk containers to minimize discarding of empty containers
W55	Changed from small volume containers to bulk containers to minimize discarding or empty containers
W58	Other process modifications (Please explain)
Product 1	Modifications
W81	Changed product specifications
W82	Modified design or composition
W83	Modified packaging
W89	Other product modifications (Please explain)

W CODES SOURCE REDUCTION ACTIVITIES (CONTINUED)

Raw Material Modifications

- W41 Increased purity of raw materials
- W42 Substituted raw materials
- W49 Other raw material modifications (Please explain)

Spill and Leak Prevention

- W31 Improved storage or stacking procedures
- W32 Improved procedures for loading, unloading, and transfer operations
- W33 Installed overflow alarms or automatic shutoff valves
- W35 Installed vapor recovery systems
- W36 Implemented inspection or monitoring program of potential spill or leak sources
- W39 Other spill and leak prevention (Please explain)

Surface Preparation and Finishing

- W72 Modified spray systems or equipment
- W73 Substituted coating materials used
- W74 Improved application techniques
- W75 Changed from spray to other system
- W78 Other surface preparation and finishing modifications (Please explain)

F CODES BARRIERS TO POLLUTION PREVENTION

- F01 Insufficient capital to install new source reduction equipment or implement new source reduction activities/initiatives
- F02 Lack of technical information on pollution prevention techniques applicable to the specific production process
- F03 Pollution prevention / source reduction is not economically feasible
- F04 Concern that product quality may decline as a result of source reduction
- F05 Technical limitations of the production process
- F06 Specific regulatory / permit burdens
- F07 Pollution prevention previously implemented additional reduction does not appear to be technically feasible
- F08 Pollution prevention previously implemented additional reduction does not appear to be economically feasible
- F09 Pollution prevention previously implemented additional reduction does not appear to be feasible due to permitting requirements
- F10 Other

State of Minnesota Department of Public Safety Emergency Response Commission

Sorted by County, City, Facility

2002

10.073

Anoka County, City of ANOKA -- FEDERAL CARTRIDGE COMPANY -- 900 EHLEN DRV

Baseline Numeric Objective, If Applicable / Releases and Transfers (#)

 Chemical Name
 Year Park
 Quantity
 2001
 2002
 2003
 2004
 Reported
 P.R. Met Objective

 Barium Compounds
 1991
 100
 2001
 4,724
 2002 / 2000 = 1.25
 Yes

Process P02 CHEMICAL MIXING (DENATURING, FORMULATING, BLENDING, ETC.)

Intended Activity

W42 SUBSTITUTED RAW MATERIALS

Employed Activity

W42 SUBSTITUTED RAW MATERIALS

Non Numeric Objective: EVALUATE NEW PRIMING MIXTURE FORMULATIONS THAT REPLACE OR REDUCE THE AMOUNT OF BARIUM REQUIRED.

Non Numeric Progress: PRODUCED LIMITED AMOUNTS OF TOTAL METAL FREE PRIMING MIX WHICH IS BARIUM FREE.

Baseline Numeric Objective, If Applicable / Releases and Transfers (#)

 Chemical Name
 Year Quantity
 2001
 2002
 2003
 2004
 Reported
 P.R. Met Objective

 Copper Compounds
 1991
 8,900
 2001
 31,149
 2002 / 2001 = 1.25
 No

2002 5.018.225

Process P05 CLEANING ANY MATERIAL (DEGREASING, WASHING, ETC.)

Intended Activity

W64 IMPROVED DRAINING PROCEDURES W67 IMPROVED RINSE EQUIPMENT DESIGN

W71 REPLACEMENT OF THE PRESENT ATMOSPHERIC ANNEALERS WITH AN OXYGEN FREE UNIT TO REDUCE THE AMOUNT OF OXIDE REMOVAL REQUIRING

POST ANNEALING.

Employed Activity

W52

W42 SUBSTITUTED RAW MATERIALS

MODIFIED EQUIPMENT, LAYOUT, OR PIPING

Process P22 METAL TREATING (ANODIZING, PHOSPHATING, PICKLING, ETC.)

Intended Activity

W71 REPLACEMENT OF THE PRESENT ATMOSPHERIC ANNEALERS WITH AN OXYGEN FREE UNIT TO REDUCE THE AMOUNT OF OXIDE REMOVAL REQUIRING

POST ANNEALING.

Employed Activity

W82 MODIFIED DESIGN OR COMPOSITION

Non Numeric Objective: INSTALL CONTROLLED ATMOSPHERE ANNEALER TO REDUCE OR ELIMINATE THE AMOUNT OF COPPER OXIDE REMOVAL REQUIRED AFTER ANNEALING.

EVALUATE ALTERNATE METALS AND COATING COMPOSITION. REDUCE THE AMOUNT OF COPPER PLATED SHOT PRODUCED.

Non Numeric Progress: INCREASED PRODUCTION OF NON-COPPER BASED COMPONENTS AND PLATED SHOT. CONTINUED EVALUATION OF LESS AGGRESSIVE CLEANERS.

Barriers to P2: F01 INSUFFICIENT CAPITAL TO INSTALL NEW SOURCE REDUCTION EQUIPMENT OR IMPLEMENT NEW SOURCE REDUCTION ACTIVITIES/INITIATIVES.

Baseline Numeric Objective, If Applicable / Releases and Transfers (#)

 Chemical Name
 Year
 Quantity
 2001
 2002
 2003
 2004
 Reported
 P.R.
 Met Objective

 Ethylene Glycol
 1991
 200,000
 2001
 271,345
 2002 / 2001 = 1.25
 No

2002 334.918

2002 334,91

Process P12 EXTRUDING ANY MATERIAL

Attachment 13: Facilities not subject to Pollution Prevention Progress reporting in 2002

Facility Name and Location	County	ERC ID#
Alliant Integrated Defense Co. LLC, St. Francis	Anoka	02-106-0001
Ballantine, Inc., Anoka	Anoka	02-005-0062
Pro-Tech Interconnect Solutions LLC, Chaska	Carver	10-035-0012
Busch Agricultural Resources, Inc., Moorhead	Clay	14-145-0010
Taconite Harbor Energy Center, Schroeder	Cook	16-999-0001
Image Rotomolding Enterprises, Inc, Brainerd	Crow Wing	18-015-0081
Crown Cork & Seal Co. (USA), Inc., Lakeville	Dakota	19-080-0011
Dole Explosives, Inc., Rosemount	Dakota	19-145-0014
Ecolab, Inc., Eagan	Dakota	19-025-0004
Intek Weatherseal Products, Inc., Hastings	Dakota	19-060-0013
Materials Processing Corp., Eagan	Dakota	19-025-0091
Pro-Corn LLC, Preston	Fillmore	23-134-0019
Amesbury Group, Inc., Cannon Falls	Goodhue	25-025-0029
934th Airlift Wing Reserve Stn., IAP, Minneapolis	Hennepin	27-999-0021
Applied Coating Technology, Inc., Eden Prairie	Hennepin	27-056-0004
Foam Enterprises, Inc., Plymouth	Hennepin	27-180-0069
Gaytee Stained Glass Inc., Minneapolis	Hennepin	27-135-0636
Hanson Spancrete Midwest Inc., Maple Grove	Hennepin	27-115-0036
James Ford Bell Research (General Mills), Golden Valley	Hennepin	27-070-0003
Lind Electronics, Inc., St. Louis Park	Hennepin	27-215-0085
Spicer Off-Highway Products Division, Plymouth	Hennepin	27-180-0012
Technical Plating, Inc., Brooklyn Park	Hennepin	27-015-0036
Technical Resin Packaging, Inc., Brooklyn Park	Hennepin	27-015-0094
The Bureau Electronics Group, Minneapolis	Hennepin	27-135-0011
Anderson Chemical Co., Litchfield	Meeker	47-100-0005
Custom Products, Inc., Litchfield	Meeker	47-100-0028
Pemstar, Inc., Rochester	Olmsted	55-095-0006
Dairy Farmers of America, Fergus Falls	Otter Tail	56-165-0005
C & H Chemical Company, St. Paul	Ramsey	62-070-0010
GE Interlogix, St. Paul	Ramsey	62-070-0417
Honeywell Electronic Materials, Inc., Roseville	Ramsey	62-060-0001
Lubrication Technologies, Inc, Roseville	Ramsey	62-060-0080
Mercury Waste Solutions, Inc., Roseville	Ramsey	62-060-0092
North Star Recycling-Minnesota, St. Paul	Ramsey	62-070-0334
Quality Wood Treating Co., White Bear Lake	Ramsey	62-095-0001
Schroeder Milk Co., Inc., Maplewood	Ramsey	62-035-0013
Northfield Acquisition Co East Facility, Northfield	Rice	66-060-0002
Telamco, Inc., Lonsdale	Rice	66-040-0007
ADC Telecommunications, Shakopee	Scott	70-085-0065
Xcel Energy - Becker RDF Ash Landfill, Becker	Sherburne	71-009-0018
U.S. DOD USAF Duluth ANG AFB, Minnesota, Duluth	St Louis	69-125-0230
SPX Valves and Controls, Sartell	Stearns	73-262-0002
Viking Waterbeds Inc., St. Joseph	Stearns	73-239-0013
Northern Food and Dairy Inc, Bertha	Todd	77-009-0005
Birds Eye Foods, Inc., Waseca	Waseca	81-070-0001
Dean Foods North Central, Inc., Woodbury	Washington	82-191-0001
Honeywell Electronic Materials, Inc., Buffalo	Wright	86-019-0025
Sunny Fresh Foods, Monticello	Wright	86-109-0004

VI. MINNESOTA'S INDEXING SYSTEM

The following information is republished from the Minnesota Pollution Control Agency's (MPCA) "Air Pollutants-Strategy Update and Facility Emission Profile," January 1995, and from the article "An Indexing System For Comparing Toxic Air Pollutants Based Upon Their Potential Environmental Impacts," by Pratt et al **, 1993, used with permission.

In response to the need for a procedure to evaluate the potential environmental impacts of chemicals released to the air and to help prioritize regulatory work involving the toxic air pollutants, the MPCA has developed a method for comparing toxic air emissions. This method is referred to as the Indexing System and it incorporates information about the environmental fate and the toxicity (to humans and other species) of chemicals emitted into the air. The environmental fate of a substance depends upon its physical and chemical characteristics and encompasses phenomena such as transport, persistence, partitioning among environmental compartments (water, air, land, biota), and bioaccumulation. Toxicity is the potential of a substance to cause an adverse effect on the health of a human or other organism.

The Indexing System does not predict whether an effect will occur; it compares chemicals in terms of their potential to be hazardous. The Indexing System assigns numerical values to substances according to the hazard potential of the substance in any of several environmental compartments following emission into the air. The numerical value assigned to a chemical is the result of a standardized modeling scenario that predicts the potential exposure of humans or other organisms to the chemical. Depending upon the chemical, any one of a set of possible routes of uptake is evaluated in the modeling process to determine the highest potential impact from the chemical.

The environmental exposure is estimated for a number of environmental compartments using a level 3 fugacity model developed for Minnesota by Professor Don Mackay of the University of Toronto. Human intake values are taken from standard U.S. Environmental Protection Agency (EPA) values, and human toxicity is estimated using values from EPA's Integrated Risk Information System (IRIS) and Health Effects Assessment Summary Tables (Threshold Limit Values (TLVs) are used if no other values are available). Ecological toxicity is estimated for aquatic organisms using MPCA Water Quality Division Final Acute Values, and for fish-eating wildlife using a method developed by the Great Lakes Initiative. The ranking of potential environmental impact of chemicals released into the air is done by combining toxicity and environmental fate information. The quality of environmental fate and toxicity data varies among chemicals. The MPCA has applied the Indexing System to over 183 substances.

Index = Potential exposure = Hazard Potential Toxicity

Discussion of the Indexing System Results

It is important to recognize that the Indexing System does not predict actual concentrations that are expected to occur in the environment. The environmental fate modeling assumed a standard emission of ten kilograms per hour to the air compartment. That amount is much greater than actual emissions of some substances and much less than emissions of others. Thus the modeling results do not represent actual concentrations of pollutant that can be expected to occur. Also, the index results cannot be viewed as indicating whether effects will occur. Instead, the value of the Indexing System is in comparing chemicals to see which is likely to be more hazardous and where in the environment that hazard is most likely to occur.

The MPCA views the modeling of organic substances with greater confidence than the modeling of inorganics or metals. Current models are not able to simulate the intricacies of the speciation process. The present modeling is based on total metal concentration, and the speciated forms were not considered. However, models for speciated forms of mercury and other metals are being evaluated. The acidification caused by inorganic (as well as organic) acidity was not factored into this method.

Despite the many difficulties of compiling this Indexing System, the benefits and potential uses are numerous. The MPCA is using results from the Indexing System to develop air toxics regulations and to assist the MPCA in setting program goals. The Indexing System may be used to assist in:

- Setting thresholds for inventory and registration requirements;
- Setting air emissions fees using hazard-based fee rates (rather than a flat rate);
- Setting thresholds for environmental monitoring and testing requirements;
- Identifying environmentally persistent and bioaccumulating chemicals that require further study;
- Refining environmental monitoring needs;
- Identifying emission reduction goals; and
- Setting priorities for facility review.

To summarize, the Indexing System provides a method for comparing the potential environmental impacts of toxic substances emitted into the air. The system does not predict actual concentrations or toxicity, but rather allows a comparison of substances according to their potential to cause a hazard in the environment. The system also indicates where in the environment a substance is most likely to cause harmful effects. The system is useful in setting priorities and to those involved in developing, manufacturing and regulating toxic pollutants. For more information on this system, please contact Greg Pratt of the MPCA at 651-296-7664.

(** Gregory Pratt, Paul Gerbec, Sherryl Livingston, Fardin Oliaei, George Bollweg, Sally Paterson, and Donald Mackay)

Application of Indexing System to Air Emissions from TRI Data

For this report, the Minnesota Emergency Response Commission applied the Indexing System Values (weighted emissions) to state-wide air emissions from the 2002 Minnesota Toxic Release Inventory. The next four pages rank emissions by mass and hazard potential, and includes the following information:

- Chemical (Substance) name
- Rank: State-wide ranking by hazard potential
- Total Amount of Air Emissions: Total pounds of air emissions reported on 2002 Form R(s)
- Index Value: Index of hazard potential; the larger the index value, the greater the hazard potential
- Index Weighted Emissions: Product of application of index value to total air emissions
- Basis for the Index: Primary environmental area of concern (including human exposure)

Attachment 14: Chemicals released for the year 2002 in order from the largest to the

smallest total air releases

Sections: 5.1, 5.2 of EPA Form "R"

State of Minnesota Department of Public Safety

Emergency Response Commission

(Amount in pounds)

Chemical	Fugitive Air	Stack Air	Total Air Releases
Methanol	77,953	1,453,012	1,530,965
N-Hexane	673,946	848,414	1,522,360
Ammonia	447,717	799,290	1,247,007
Styrene	461,131	718,371	1,179,502
Toluene	179,213	869,090	1,048,303
Xylene (Mixed Isomers)	148,626	762,813	911,439
1,1-Dichloro-1-Fluoroethane	67,400	570,000	637,400
Glycol Ethers	125,433	481,067	606,500
N-Butyl Alcohol	95,627	470,259	565,886
Methyl Ethyl Ketone	114,314	406,619	520,933
Hydrochloric Acid (Aerosol Forms Only)	1,416	448,782	450,198
Trichloroethylene	37,455	251,236	288,691
Acetaldehyde	1,585	273,873	275,458
Formaldehyde	2,169	223,127	225,296
Hydrogen Fluoride	229	211,487	211,716
Sulfuric Acid (Aerosol Forms Only)	268	188,372	188,640
Methyl Isobutyl Ketone	14,218	120,676	134,894
Ethylbenzene	23,972	104,551	128,523
Barium	46	118,958	119,004
1,2,4-Trimethylbenzene	45,714	71,681	117,395
Tetrachloroethylene	11,591	94,277	105,868
Dichloromethane	8,088	96,970	105,058
Phenol	5,375	74,592	79,967
Barium Compounds	1,331	65,709	67,040
Methyl Methacrylate	34,253	28,097	62,350
1-Chloro-1,1-Difluoroethane	45,304	0	45,304
Propylene	35,899	6,246	42,145
Aluminum (Fume or Dust)	33,395	1,657	35,052
N-Methyl-2-Pyrrolidone	369	31,992	32,361
Nitric Acid	3,546	28,464	32,010
Cyclohexane	6,821	24,909	31,730
Benzene	16,492	9,098	25,590
Chlorine Dioxide	10	25,171	25,181
Copper	10,534	10,276	20,810
Acrolein	0	20,545	20,545
Zinc Compounds	4,683	13,144	16,771
Ethylene	13,785	1,541	15,326
Manganese Compounds	3,379	11,581	14,960
Nickel Compounds	758	14,037	14,795
Acrylic Acid	1,254	12,847	14,101
Formic Acid	6,771	7,095	13,866
Bromomethane	12,744	0	12,744
2-Ethoxyethanol	579	11,102	11,681
N,N-Dimethylformamide	55	10,760	10,815
Freon 113	10,695	0	10,695
Ethylene Glycol	8,752	989	9,741
Lead Compounds	1,088	7,578	8,667
Copper Compounds	69	8,388	8,457
Chlorine	6,715	1,029	7,744
Vanadium Compounds	275	7,075	7,350
Flammable Organic Solvent 1 (Trade Secret Pending)	680	6,120	6,800
Flammable Organic Solvent 2 (Trade Secret Pending)	644	5,796	6,440
Naphthalene	4,908	461	5,369
2-Chloro-1,1,1,2-Tetrafluoroethane	0	3,393	3,393
Chromium Compounds	469	2,726	3,195
Manganese	509	2,455	2,964

Attachment 14: Chemicals released for the year 2002 in order from the largest to the smallest total air releases

Sections: 5.1, 5.2 of EPA Form "R"

State of Minnesota Department of Public Safety Emergency Response Commission

(Amount in pounds)

Chemical	Fugitive Air	Stack Air	Total Air Releases
Polycyclic Aromatic Compounds	2,093	810	2,903
Diisocyanates	1,617	1,086	2,703
Lead	712	1,958	2,670
Ethyl Acrylate	1,438	1,227	2,665
Chlorodifluoromethane	2,570	0	2,570
Flammable Organic Solvent 3 (Trade Secret Pending)		2,196	2,440
Mercury Compounds	7	1,767	1,774
Butyl Acrylate	42	1,660	1,702
Cyanide Compounds	0	1,644	1,644
1,3-Butadiene	910	692	1,602
4,4'-Isopropylidenediphenol	0	1,404	1,404
Carbonyl Sulfide	2	1,320	1,322
Dicyclopentadiene	227	1,074	1,322
Chromium	240	949	1,189
Methyl Acrylate	901	273	1,174
	60		
Cresol (Mixed Isomers)		1,070	1,130
Phthalic Anhydride	52	1,017	1,069
Cumene	810	160	970
Tert-Butyl Alcohol	1	820	821
Toluene Diisocyanate (Mixed Isomers)	170	540	710
Maleic Anhydride	27	682	709
Peracetic Acid	35	633	668
Nickel	263	398	661
M-Xylene	516	0	516
Nitrate Compounds (Water Dissociable)	1	513	514
Sodium Dimethyldithiocarbamate	255	255	510
Propylene Oxide	5	395	400
Chlorotrifluoromethane	327	0	327
Molybdenum Trioxide	15	285	300
Ethylene Oxide	92	185	277
Zinc (Fume or Dust)	51	198	249
Antimony Compounds	10	211	221
Biphenyl	170	8	178
Dimethyl Phthalate	0	165	165
Cobalt Compounds	12	102	114
Benzo(g,h,i)perylene	14	53	67
Mercury	43	20	63
Phenanthrene	3	51	54
Di(2-Ethylhexyl) Phthalate	33	0	33
1,2-Dichloroethane	7	24	31
Selenium Compounds	2	29	31
Epichlorohydrin	3	27	30
Anthracene	19	4	23
Carbon Disulfide	1	21	22
Antimony	12	10	22
1,2-Dibromoethane	0	18	18
Arsenic	6	5	11
Pentachlorophenol	7	2	9
•			
Cobalt	0	5	5
Triethylamine Vinyl Acetete	0	4	4
Vinyl Acetate	1	0	1
Totals	2,824,280	10,063,769	12,888,048

Attachment 15: Air Toxics Indexing System

	10.00	Emissions	Index
mercury 1 1,837	19.80	23.06	water
lead (Pb) 2 11,337	15.55	19.60	water
copper 3 29,267	15.06	19.53	water
dioxins (total 2,3,7,8 congeners) 4 0.022670	21.09	19.45	terr flora
chromium (VI)* 5 4,384	15.63	19.27	water
nickel 6 15,456	14.96	19.14	aq biota
aluminum 7 35,052	13.96	18.50	water
zinc 8 17,020	14.03	18.26	water
barium 9 186,044	12.69	17.96	water
antimony 10 243	15.53	17.91	aq biota
manganese 11 17,924	13.38	17.64	water
bromomethane (methybromide) 12 12,744	13.50	17.61	air
acrolein 13 20,545	13.24	17.55	air
dichloromethane (methylene chloride) 14 105,058	12.32	17.35	air
tetrachloroethylene 15 105,868	12.30	17.32	air
selenium 16 31	15.35	16.84	water
trichloroethylene 17 288,691	11.09	16.55	air
acetaldehyde 18 275,458		16.40	air
formaldehyde 19 225,296		16.26	air
arsenic 20 11		16.12	aq biota
1,2-dibromoethane 21 18	14.75	16.01	air/UR
acrylic acid 22 14,101	11.74	15.89	air
chromium (III)* 23 4,384		15.76	water
hexane (n-) 24 1,522,360		15.75	air
styrene 25 1,179,502		15.71	air
benzene 26 25,590		15.57	air
butadiene (1,3-) 27 1,602		15.56	air
ammonia 28 1,247,007		15.49	air
methyl ethyl ketone (MEK) 29 520,933		15.42	air
1,2-dichloroethane 30 31		15.38	air/UR
pentachlorophenol 31 9		15.15	terr flora/SF
chlorine dioxide 32 25,181		15.12	air
hydrogen chloride 33 450,198		15.05	air
methyl isobutyl ketone (MIBK) 34 134,894		14.89	air
propylene oxide 35 400		14.80	air
		14.73	air
		14.73	
		14.43	air air/Rfc
•			
ethylene oxide 39 277		14.11	air
chlorine 40 7,744		14.11	air
ethylbenzene 41 128,523		14.06	air
diethylhexylphthalate (2-) 42 33		13.93	water
toluene 2,4-diisocyanate 43 710		13.73	air/TLV
methanol 44 1,530,965		13.68	water
ethoxyethanol (2-, = "cellosolve") 45 11,681	9.44	13.51	air

Substance	Rank	Total Amount (pounds/yr)	Index Value	Index (pounds/yr)	Basis for the
		of Air Emissions	(log units)	Weighted Emissions	Index
cumene (isopropyl benzene)	46	970	10.44	13.43	air
phenol	47	79,967	8.45	13.36	water
n-butyl alcohol	48	565,886	7.50	13.25	water
trimethylbenzene	49	117,395	8.16	13.23	air/TLV
dimethylformamide (n,n-)	50	10,815	8.74	12.77	air
carbon disulfide	51	22	11.39	12.73	air
ethyl acrylate	52	2,665	9.18	12.61	water
cyclohexane	53	31,730	7.94	12.44	air
sulfuric acid	54	188,640	7.10	12.37	air
tert-butyl alcohol	55	821	9.30	12.21	air
naphthalene	56	5,369	8.48	12.21	water
cresol/cresylic acid	57	1,130	8.82	11.87	air/TLV
ethylene glycol	58	9,741	7.26	11.25	water
trichlorotrifluoroethane (1,1,2-,1,2,2-, = freon 113)	59	10,695	6.93	10.96	air
maleic anhydride	60	709	7.63	10.48	water
triethylamine	61	4	9.82	10.42	air/Rfc
methyl acrylate	62	1,174	7.21	10.28	water
dimethyl phthalate	63	165	7.67	9.89	water
phthalic anhydride	64	1,069	6.03	9.06	terr flora
vinyl acetate	65	1	8.79	8.79	air
methyl methacrylate	66	62,350	3.79	8.59	water
biphenyl (diphenyl)	67	178	3.97	6.22	aq biota
anthracene	68	23	4.05	5.41	water
chromium (total)*	69	4,384	0.00	3.64	air
•					

^{(*} refers to the total amount of chromium and compounds)

VII. Common Uses of Toxic Chemicals and Their Potential Hazards

The following information is presented as a quick-reference summary of information for some of the toxic chemicals that are manufactured/processed or otherwise used by TRI facilities in Minnesota. It is not a detailed discussion on the uses of and/or potential hazards posed by the chemicals. This information is from "Hazardous Substance Fact Sheets" provided by the New Jersey Department of Health and distributed by the United States Environmental Protection Agency (Office of Toxic Substances and Office of Pollution Prevention and Toxics (OPPT) Chemical Fact Sheets), Computer Aided Management of Emergency Operations (CAMEO), and from "A Comprehensive Guide to the Hazardous Properties of Chemical Substances," by Dr. Pradyot Patnaik. The reader should consult chemical or toxicology reference materials if interested in knowing more about any or all of the substances presented in this report.

<u>Acetaldehyde</u>: Used as a liquid in making acetic acid, pyridine, pentaerythritol, peracetic acid and related chemicals. It occurs naturally in ripe fruit, coffee and cigarette smoke. <u>Hazard</u>: inhalation can irritate respiratory system, affect the cardiovascular system; liquid or vapor irritates skin and eyes.

<u>Acrylic Acid</u>: Used as a liquid in making acrylic esters, resins, protective surface coatings, adhesives; oil treatment chemicals, detergent intermediates and water treatment chemicals. It occurs naturally in marine algae and the stomach of sheep. <u>Hazard</u>: inhalation of vapors for short periods of time irritates the respiratory system, direct contact with liquid irritates skin and eyes.

<u>Aluminum (fume or dust)</u>: Used as a powder in paints and protective coatings, as a catalyst and in rocket fuel. <u>Hazard</u>: fine powders form flammable and explosive mixtures in air and with powerful oxidants; moderately flammable/explosive by heat, flame or chemical reaction with powerful oxidizers.

<u>Aluminum Oxide</u>: Used in production of aluminum, abrasives, paint, ceramics, electrical insulators, catalysts and light bulbs. <u>Hazard</u>: dust toxic by inhalation.

<u>Ammonia</u>: Used in making fertilizers, explosives, plastics, dyes, and textiles. <u>Hazard</u>: moderately flammable; inhalation may irritate lungs; can irritate eyes, nose, mouth and throat; exposure to concentrated fumes can be fatal.

<u>Antimony and compounds</u>: Used in manufacture of alloys, enamels, rubber compounds, matches, fireworks; catalysts; a mordant in the dyeing and printing of fabrics or leather. <u>Hazard</u>: Toxic as a fume or dust; most compounds are poisons by ingestion, inhalation and intraperitoneal (injection) routes; can irritate eyes, nose, throat and skin.

<u>Antimony compounds</u>: Used in manufacture of alloys ,white metals and hard lead; bullets, fireworks and for coating metals. <u>Hazard</u>: Low order poison by ingestion, inhalation and intraperitoneal (injection) routes; can irritate eyes, nose, throat and skin.

Barium and compounds: Used in vacuum and x-ray tubes and spark plugs. <u>Hazard</u>: powder is flammable at room temperature; can irritate eyes, nose and throat.

<u>Benzene</u>: Is a liquid used manufacturing other chemicals, solvent and in gasoline. <u>Hazard</u>: Flammable liquid, fire hazard; can affect when breathed in or by passing through the skin.

<u>Biphenyl</u>: Users are though to be textile mills, in past a heat transfer agent, to make polychlorinated biphenyls and a treatment for paper used to pack citrus fruit. <u>Hazard</u>: Exposure for short periods of time can cause nausea, vomiting, irritation of eyes and respiratory tract and bronchitis.

<u>Bromomethane</u>: Used as a pest control, degreasing wool. <u>Hazard</u>: Exposure can cause headache, weakness, nausea, vomiting, pulmonary edema, tremor, convulsions, hypothermia, and coma.

1, 3-Butadiene: Is a gas (above 23 degrees F) or liquid used in making rubber products and chemicals. <u>Hazard</u>: Flammable and reactive; exposure can irritate the eyes, nose, mouth and throat; liquid may irritate the skin and cause frostbite; vapor can cause lightheadedness or pass out.

<u>n-Butyl Alcohol</u>: liquid used as a solvent for fats, waxes, shellac, resins, gums and varnish. <u>Hazard</u>: Flammable liquid and fire hazard; can damage liver, kidneys, hearing and sense of balance; can cause eye irritation and headaches, irritation to nose, throat may occur.

<u>Cadmium Compounds</u>: Used in dyeing and printing textiles, TV phosphors, pigments, enamels; semiconductors and solar cells. <u>Hazard</u>: Exposure can cause nausea, vomiting, diarrhea, headache, abdominal pain, muscular ache, salivation and shock.

<u>Carbon Disulfide</u>: Liquid used to make rayon, agricultural fumigants, rubber chemicals, and cellulose; clean metal surfaces and extract olive oil. <u>Hazard</u>: Adversely effects the nervous system; dizziness, headaches, blurred vision, agitation, convulsions, coma and death; vapor irritates the nose and throat; liquid causes chemical burns, damage to eyes.

<u>Carbon Tetrachloride</u>: is a carcinogen; used as a solvent; in making fire extinguishers, refrigerants and aerosols. <u>Hazard</u>: exposure can cause dizziness and lightheadedness rapidly; also damage to liver and kidneys enough to cause death; can produce poisonous phosgene and hydrogen gases when heated.

<u>Carbonyl Sulfide</u>: Gas used in pesticides. <u>Hazard</u>: Exposure can cause headaches, giddiness, dizziness, confusion, nausea, diarrhea, weakness and muscle cramps; can cause lose of consciousness and stop breathing.

<u>Chlorinated Fluorocarbon (Freon 113</u>): Used to clean metal surfaces, until recently as a coolant in air conditioners, aerosols sprays, high temperature lubricants and resins. <u>Hazard</u>: inhalation adversely affects nervous system, dizziness to incoordination and irregular heart beat. Not likely to occur at levels in environment.

<u>Chlorine</u>: Used as a disinfectant, in purifying water, and in manufacturing of synthetic rubber & plastics. Hazard: Intensely irritating to respiratory tract & can cause damage to tissues.

<u>Chlorothalonil</u>: Used as a pesticide/fungicide. <u>Hazard</u>: Can irritate skin & eyes, Breathing irritates nose, throat & lower air passages, may cause nose bleeds, skin rash, blood in urine or vaginal bleeding.

<u>Chlorine Dioxide</u>: Used for bleaching wood pulp, oils, textiles and flour; and in water treatment. <u>Hazard</u>: Irritation of nose and throat; chest pain, cough, bloody nose and sputum; pulmonary edema; eye irritation can occur.

<u>Chloromethane</u>: Used in low temperature polymerization, a refrigerant, methylating agent in organic synthesis, herbicide. <u>Hazard</u>: Mildly toxic by inhalation; dangerous fire hazard when exposed to heat, flame or powerful oxidizers.

<u>Chloroform</u>: Used as a cleansing agent, manufacture of refrigerant and fire extinguishers. <u>Hazard</u>: dizziness, lightheadedness, dullness, hallucination, nausea, headache, fatigue and anesthesia.

<u>Chromium and Compounds</u>: Use: chrome plating other metals, tanning leather. Hazard: Confirmed as a human carcinogens.

<u>Cobalt</u>: Used in radiation therapy, level gages, steel alloys, jet engines, tools, cemented carbide abrasives. <u>Hazard</u>: can cause coughing, wheezing, chest pains and shortness of breath; irritate eyes, nose, throat and lungs; may cause fluid in the lungs (pulmonary edema).

<u>Copper and Compounds</u>: Used in electrical wiring, plumbing, compounds used in fungicides, pesticides, electroplating, paint pigments, and catalysts. <u>Hazard</u>: irritants; some compounds highly toxic; degree of toxicity dependent on compound, exposure and method of entry into the body.

<u>Cumene</u>: Used in chemical synthesis; a solvent. <u>Hazard</u>: flammable; moderately toxic by ingestion, mildly toxic by inhalation and contact; eye and skin irritant; narcotic in high concentrations.

<u>Cyanide Compounds</u>: Used for electroplating metals; for extracting gold and silver from ores: as a fumigant, and a chelating agent. <u>Hazard</u>: Ingestion of a small quantity could result in immediate collapse and instantaneous death. At a lower dosage it can cause nausea, vomiting, hallucination, headache, and weakness.

<u>Cyclohexane</u>: Used as a solvent for lacquers and resins, paint and varnish remover, in manufacture of adipic acid, benzene, nitrocyclohexane and cyclohexanone.

<u>Hazard</u>: Acute toxicant of low order; irritant to the eyes and respiratory system.

<u>Dichloromethane</u>: Industrial solvent and paint stripper; in aerosol and pesticide products; used in photographic film productions and in food, furniture and plastics processing. <u>Hazard</u>: carcinogen; lung irritant; inhalation can cause headaches, fatigue and "drunk behavior".

<u>Dichlorotetrafluoroethane</u>: Used as a solvent, refrigerant and air conditioner and in fire extinguishers. <u>Hazard</u>: Moderately toxic by inhalation; irritant; an asphyxiant.

Di (2-ethylhexyl) phthalate: Used to make plastics, products found in homes and automobiles, medical and packaging industries. <u>Hazard</u>: Is a carcinogen and teratogen; short term may cause irritation to eyes, nose, and throat; long term cause liver cancer; may damage the testes, affect the kidneys and liver; may cause numbness and tingling in the arms and legs.

<u>Dimethylamine</u>: Used in detergent soaps, tanning & vulcanizing rubber. <u>Hazard</u>: Corrosive to eyes, skin, mucous membranes. Mutation data reported, poison by ingestion, mild toxic by inhalation.

1,4-Dioxane: Used as a solvent, and in textile processing, printing processes and detergent preparations. <u>Hazard</u>: is a carcinogen; can cause lightheadedness, dizzy and pass out, irritation of nose, throat and air passages, high or repeated overexposure can cause upset stomach and serious liver and kidney damage.

Ethyl Benzene: A solvent, intermediate in the production of styrene. <u>Hazard</u>: moderately toxic by inhalation and intraperitoneal routes; an eye and skin irritant.

Ethyl Acrylate: Used in manufacture of acrylic resins, acrylic fibers, textile and paper coatings, adhesives, and leather finish resins; and as a flavoring agent. <u>Hazard</u>: Flammable liquid; flash point is 60 degrees F: strong irritant to eyes, skin and mucous membranes; liquid can produce skin sensitization, toxic by all routes of exposure.

Ethylene: Used in welding and cutting metals; the manufacture of polyethylene, polystyrene, and other plastics; making ethylene oxide; and as an inhalation anesthetic. Hazard: can cause asphyxiation and unconsciousness; flammable gas.

Ethylene Glycol: In anti-freeze, paints, laminates, auto brake fluids, ink, tobacco and wood stains and used to de-ice aircraft wings. <u>Hazard</u>: Teratogen; highly toxic by ingestion or inhalation.

Ethylene Oxide: Used as a sterilizing agent; a fumigant; a propellant; in the production of explosives; in the manufacture of ethylene glycol, polyethylene oxide, glycol ethers, crown ethers, ethanolamines; and other derivatives; and organic synthesis.

<u>Hazard</u>: Severe irritant, toxic and carcinogenic compound; inhalation can cause severe irritation to eyes, respiration tract and skin; delayed symptoms may be nausea, vomiting, headache, dyspnea, pulmonary edema, weakness and drowsiness.

Formaldehyde: Used in manufacture of phenolic resins, cellulose esters, artificial silk, dyes, explosives and organic chemicals; also germicide, fungicide and disinfectant; in tanning, adhesives, waterproofing fabrics, and tonic and chrome printing in photography.

<u>Hazard</u>: can injure eyes, skin and respiratory system; is a mutagen, teratogen, and probably carcinogenic.

<u>Formic Acid</u>: Used in manufacture of esters and salts, dyeing finishing of textiles and papers, electroplating, treatment of leather, coagulating rubber latex and a reducing agent. <u>Hazard</u>: is corrosive to skin, vapors may produce irritation to eyes, skin and mucous membranes and causing respiratory distress.

<u>Glycol Ethers</u>: Solvents. <u>Hazard</u>: Toxic by inhalation, ingestion or skin absorption; irritating to eyes, nose, throat and skin.

<u>Hexachloroethane</u>: Used in explosives, celluloid, rubber vulcanizing, and as a solvent. <u>Hazard</u>: Can irritate the skin, burn the eyes; irritate the eyes, nose, mouth and throat; may cause dizziness, lightheadedness and pass out.

<u>Hexane</u>: chief constituent of petroleum ether, gasoline and rubber solvent; also solvent for adhesives, vegetable oils, in organic analysis; and denaturing alcohol.

<u>Hazard</u>: may produce hallucination, distorted vision, headache, dizziness, nausea and irritation of eyes and throat.

<u>Hydrochloric Acid</u>: Used in metal cleaning and pickling, food processing and general cleaners. Hazard: Very corrosive, toxic by ingestion or inhalation; can irritate mouth, nose and throat.

<u>Hydrogen Fluoride</u>: Used as a catalyst in petroleum industry, fluorination processes in aluminum industry; make fluorides, separation of uranium isotopes; making plastics and production of dyes. <u>Hazard</u>: Is a corrosive chemical; can irritate nose, throat and lungs; causing pulmonary edema; can cause severe burns to skin and eyes; may damage kidneys and liver.

<u>Lead and Compounds</u>: In batteries, gasoline additives, ammunitions, piping and radiation shielding. <u>Hazard</u>: poison by ingestion; can cause brain damage, particularly in children; suspected carcinogen of the lungs and kidneys.

<u>Manganese and compounds</u>: In aluminum production, steel making, metal purification and dry cell batteries. compounds used for varnishes, fertilizers, food additives. <u>Hazard</u>: dust is flammable and moderately explosive; toxic by inhalation.

<u>Methanol</u>: Solvent, cleaner and fuel. <u>Hazard</u>: highly flammable; ingestion can cause blindness; mildly toxic by inhalation.

<u>Methyl Acrylate</u>: Manufacture of plastic films, textiles, paper coatings and other acrylate ester resins; amphoteric surfactants. <u>Hazard</u>: strong irritant, prolonged contact with eyes and skin may cause sever damage; inhalation can cause lacrimation, irritation of respiratory tract, lethargy and convulsions.

<u>Methyl Ethyl Ketone</u>: Solvent in making plastics, textiles, paint and paint removers and adhesives. <u>Hazard</u>: flammable, explosive; toxic by inhalation; a strong irritant; moderately toxic by ingestion.

<u>Methyl Isobutyl Ketone</u>: Solvent for paints, varnishes, nitrocellulose lacquers, gum and resins. <u>Hazard</u>: flammable; poison by intraperitoneal route; moderately toxic by ingestion; mildly toxic by inhalation; very irritating to eyes, skin and mucous membranes; narcotic in high concentrations; dangerous fire hazard when exposed to heat, flame or oxidizers.

<u>Methyl Methacryate</u>: Used to make resins, plastics and specifically plastic dentures. <u>Hazard</u>: Flammable, reactive chemical; fire and explosion hazard; may damage fetus, can cause dizziness, lightheadedness, pass out; irritate eyes, skin, nose and throat.

<u>Methyl Tert-Butyl Ether</u>: Hazard: toxic effects as cellular necrosis, respiratory system. Increased liver & kidney weights, severity of spontaneous renal lesions, prostration & swollen periocular tissue.

<u>Maleic Anhydride</u>: Used for coating automobile bodies; making other chemicals and detergents. <u>Hazard</u>: can cause sever burns to the skin and eyes; dust or vapor may irritate nose, throat and lungs.

<u>Molybdenum Trioxide</u>: Used in agriculture; manufacture of metallic molybdenum, ceramic glazes, enamels, pigments and in analytical chemistry. <u>Hazard</u>: Dust or vapor can irritate nose, throat and bronchial tubes; eye or skin contact can cause irritation.

<u>Naphthalene</u>: Used as a moth repellent; in scintillation counter; in the manufacture of naphthol, phthalic anhydride and halogenated naphthalenes; dyes, explosives and lubricants; in breaking emulsion. <u>Hazard</u>: may cause irritation of eyes, skin, respiratory tract and injury to the cornea; may effect eyes, liver, kidney, blood, skin and central nervous system.

<u>Nickel and Compounds</u>: Used in alloying and electroplating, catalysts, dyes textile printing. <u>Hazard</u>: is a carcinogen and poison; also its compounds.

<u>Nitrate Compounds</u>: Will accelerate the burning of combustible materials; if involved in a fire an explosion may result, may react violently with fuels. <u>Hazard</u>: May cause burns to skin and eyes; may produce irritating or poisonous gasses.

<u>Nitric Acid</u>: Used in making fertilizers, dyes, explosives, metallurgy and etching steel. <u>Hazard</u>: Corrosive, powerful oxidizer; flammable by chemical reaction with reducing agent; produces toxic fumes when heated to decomposition; corrosive to eyes, skin, mucous membranes and teeth; experimental teratogen; human poison; delayed pulmonary edema.

<u>Pentachlorophenol</u>: Used for a termite control, defoliant, preservant of wood and wood products. <u>Hazard</u>: are headache, dizziness, sweating, nausea, vomiting, dyspnea, chest pain, weakness, fever, collapse, convulsions and heart failure.

<u>Peracetic Acid</u>: Used in bleaching textiles, paper, waxes and starch; as a bactericide in food processing; catalyst for epoxy resins. <u>Hazard</u>: Can cause severe irritation and burns to eyes; can irritate skin, nose, throat and lungs and pulmonary edema.

Phenol: Widely used for disinfectants, pharmaceuticals and paints; refine lubricating oils. <u>Hazard</u>: mutagen; poison by ingestion; toxic if inhaled or through skin contact; a sever eye and skin irritant.

<u>Phthalic anhydride</u>: Used to make phthalic plasticizers, Unsaturated polyester resins and alkyd resins; manufacture of dyes, saccharin, flame retardants, phenol-phthalin, pesticides and anthranilic acid. Hazard: may cause sever burns to eye, nose, throat and skin

Propylene: Used in the production of fabricated polymers, fibers, solvents, resins and plastic products. <u>Hazard</u>: Highly flammable; an asphyxiant.

<u>Propylene Oxide</u>: Used as a fumigant for foodstuffs, stabilizer for fuels, heating oils and chlorinated hydrocarbons. <u>Hazard</u>: Vapors can cause irritation to eyes, skin and mucous membranes.

Selenium: Manufacture of colored glass, in photocells, semiconductors, rectifier in radio and TV sets and as a vulcanizing agent in rubber. Hazard: irritating to eyes, nose and respiratory tract.

<u>Sodium Nitrite</u>: Used in solid propellants, explosives, fertilizers & other uses. Hazard: Will accelerate burning materials, if in fire may explode. Toxic oxides produced in fires.

Styrene: Used in the manufacture of polystyrene, resins, protective coatings, plastics, synthetic rubber and an insulator. <u>Hazard</u>: toxic by ingestion and inhalation; can react vigorously with oxidizing agents; emits acrid smoke and irritating fumes when heated to decomposition.

<u>Sulfuric Acid</u>: In fertilizers, chemicals, dyes, rayon and film; widely used by metals industry. <u>Hazard</u>: moderately toxic by ingestion; a severe eye irritant, extremely irritating, corrosive and toxic to tissue.

<u>Tetrachloroethylene</u>: Used as a solvent, in dry-cleaning and metal degreasing. <u>Hazard</u>: can produce headache, dizziness, drowsiness, incoordination, irritation to eyes, nose and throat; flushing of neck and face.

<u>Tert-Butyl Alcohol</u>: Used in manufacture of flavors and perfumes; as a solvent for pharmaceuticals and paint remover. <u>Hazard</u>: Flammable solid or liquid; dangerous fire hazard; can cause headache, dizziness and drowsiness; irritation of eyes, nose and throat may occur.

<u>Toluene</u>: Solvent for perfumes, medicines, dyes, explosives, detergents, aviation gasoline and other chemicals. <u>Hazard</u>: highly flammable and explosive; toxic by ingestion, inhalation and skin contact.

<u>Toluene 2 - 4 - Diisocyanate</u>: Used in production of rigid & flexible urethane foams, elastomers & coatings. Hazard: Highly toxic by inhalation, skin & eye irritant, carcinogenic substance. Vapors can cause tracheobronchitis, pulmonary edema, hemorrhage & death.

<u>1,1,1-Trichloroethane</u>: Solvent for cleaning precision instruments; also in pesticides and textiles. <u>Hazard</u>: Suspected carcinogen, irritating to eyes and skin; moderately toxic by ingestion, inhalation and skin contact.

<u>Trichloroethane</u>: Cleaning electronic parts and diluting paints; also in degreasers and fumigants; aerospace industries use it to flush liquid oxygen. <u>Hazard</u>: Carcinogen; mildly toxic by ingestion and inhalation.

<u>1,2,4-Trimethylbenzene</u>: Used in the manufacture of dyes and pharmaceuticals. <u>Hazard</u>: moderately toxic by intraperitoneal route; mildly toxic by inhalation; can cause central nervous system depression, anemia and bronchitis; flammable when exposed to heat, flame or oxidizers.

<u>Vinyl Acetate</u>: Used in making polyvinyl resins. <u>Hazard</u>: Flammable and reactive; fire and explosive hazard; can cause irritation to eyes, nose and throat; can cause dizziness and lightheadedness; can irritate eyes and skin.

Xylene: used as solvents and in making drugs, dyes, insecticides and gasoline.

<u>Hazard</u>: Flammable; mildly toxic by ingestion and inhalation.

<u>Zinc and compounds</u>: used as a coating on iron and steel, in making brass metal alloys, car parts, electroplating, batteries, electrical products, paints and fungicides. <u>Hazard</u>: zinc dust is flammable and a human skin irritant.

Appendix A: EPA EMERGENCY PLANNING AND COMMUNITY RIGHT-TO-KNOW SECTION 313 List of Toxic Chemicals

Individually listed EPCRA Section 313 chemicals with CAS numbers are arranged alphabetically starting on page II-3. Following the alphabetical list, the EPCRA Section 313 chemicals are arranged in CAS number order. Covered chemical categories follow.

Certain EPCRA Section 313 chemicals listed in Table II have parenthetic "qualifiers." These qualifiers indicate that these EPCRA Section 313 chemicals are subject to the section 313 reporting requirements if manufactured, processed, or otherwise used in a specific form or when a certain activity is performed. The following chemicals are reportable only if they are manufactured, processed, or otherwise used in the specific form(s) listed below:

<u>Chemical</u>	<u>CAS</u> <u>Number</u>	<u>Qualifier</u>
Aluminum (fume or dust)	7429-90-5	Only if it is a fume or dust form.
Aluminum oxide (fibrous forms)	1344-28-1	Only if it is a fibrous form.
Ammonia (includes anhydrous ammonia and aqueous ammonia from water dissociable ammonium salts and other sources; 10 percent of total aqueous ammonia is reportable under this listing)	7664-41-7	Only 10% of aqueous forms. 100% of anhydrous forms.
Asbestos (friable)	1332-21-4	Only if it is a friable form.
Hydrochloric acid (acid aerosols including mists, vapors, gas, fog, and other airborne forms of any particle size)	7647-01-0	Only if it is an aerosol form as defined.
Phosphorus (yellow or white)	7723-14-0	Only if it is a yellow or white form.
Sulfuric acid (acid aerosols including mists, vapors, gas, fog, and other airborne forms of any particle size)	7664-93-9	Only if it is an aerosol form as defined.
Vanadium (except when contained in an alloy)	7440-62-2	Except if it is contained in an alloy.
Zinc (fume or dust)	7440-66-6	Only if it is in a fume or dust form.

The qualifier for the following three chemicals is based on the chemical activity rather than the form of the chemical. These chemicals are subject to EPCRA section 313 reporting requirements only when the indicated activity is performed.

Chemical/ Chemical Category	CAS Number	<u>Qualifier</u>
Dioxin and dioxin-like compounds (manufacturing; and the processing or otherwise use of dioxin and dioxin-like compounds if the dioxin and dioxin-like compounds are present as contaminants in a chemical and if they were created during the manufacture of that chemical.)	NA	Only if they are manufactured at the facility; or are processed or otherwise used when present as contaminants in a chemical but only if they were created during the manufacture of that chemical.
Isopropyl alcohol only (only persons who manufacture by the strong acid process are subject, no supplier notification)	67-63-0	Only if it is being manufactured by the strong acid process. Facilities that process or otherwise use isopropyl alcohol are <u>not</u> covered.
Saccharin only persons who manufacture are subject, no supplier notification)	81-07-2	Only if it is being manufactured.

There are no supplier notification requirements for isopropyl alcohol and saccharin since the processors and users of these chemicals are not required to report. Manufacturers of these chemicals do not need to notify their customers that these are reportable EPCRA section 313 chemicals.

Note: Chemicals may be added to or deleted from the list. The Emergency Planning and Community Right-to-Know Call Center, 800 424-9346, or 703 412-9810, will provide up-to-date information on the status of these changes. See section B.3.c of the instructions for more information on the *de minimis* values listed below. There are no *de minimis* levels for PBT chemicals since the *de minimis* exemption is not available for these chemicals (an asterisk appears where a *de minimis* limit would otherwise appear in Table II). However, for purposes of the supplier notification requirement only, such limits are provided in Appendix D.

Chemical Qualifiers

This table contains the list of individual EPCRA Section 313 chemicals and categories of chemicals subject to 2002 calendar year reporting. Some of the EPCRA Section 313 chemicals listed have parenthetic qualifiers listed next to them. An EPCRA Section 313 chemical that is listed without a qualifier is subject to reporting in all forms in which it is manufactured, processed, and otherwise used.

Fume or dust. Two of the metals on the list (aluminum and zinc) contain the qualifier "fume or dust." Fume or dust refers to dry forms of these metals but does not refer to "wet" forms such as solutions or slurries. As explained in Section B.3.a of these instructions, the term manufacture includes the generation of an EPCRA Section 313 chemical as a byproduct or impurity. In such cases, a facility should determine if, for example, it generated more than 25,000 pounds of aluminum fume or dust in the reporting year as a result of its activities. If so, the facility must report that it manufactures "aluminum (fume or dust)." Similarly, there may be certain technologies in which one of these metals is processed in the form of a fume or dust to make other EPCRA Section 313 chemicals or other products for distribution in commerce. In reporting releases, the facility would only report releases of the fume or dust.

EPA considers dusts to consist of solid particles generated by any mechanical processing of materials including crushing, grinding, rapid impact, handling, detonation, and decrepitation of organic and inorganic materials such as rock, ore, and metal. Dusts do not tend to flocculate, except under electrostatic forces.

EPA considers a fume to be an airborne dispersion consisting of small solid particles created by condensation from a gaseous state, in distinction to a gas or vapor. Fumes arise from the heating of solids such as lead. The condensation is often accompanied by a chemical reaction, such as oxidation. Fumes flocculate and sometimes coalesce.

Manufacturing qualifiers. Two of the entries in the EPCRA Section 313 chemical list contain a qualifier relating to manufacture. For isopropyl alcohol, the qualifier is "only persons

who manufacture by the strong acid process are subject." For saccharin, the qualifier is "only persons who manufacture are subject, no supplier notification." For isopropyl alcohol, the qualifier means that only facilities manufacturing isopropyl alcohol by the strong acid process are required to report. In the case of saccharin, only manufacturers of the EPCRA Section 313 chemical are subject to the reporting requirements. A facility that processes or otherwise uses either EPCRA Section 313 chemical would not be required to report for those EPCRA Section 313 chemicals. In both cases, supplier notification does not apply because only manufacturers, not users, of the EPCRA Section 313 chemical must report.

Ammonia (includes anhydrous ammonia and aqueous ammonia from water dissociable ammonium salts and other sources; 10 percent of total aqueous ammonia is reportable under this listing). The qualifier for ammonia means that anhydrous forms of ammonia are 100% reportable and aqueous forms are limited to 10% of total aqueous ammonia. Therefore when determining threshold and releases and other waste management quantities all anhydrous ammonia is included but only 10% of total aqueous ammonia is included. Any evaporation of ammonia from aqueous ammonia solutions is considered anhydrous ammonia and should be included in threshold determinations and release and other waste management calculations.

Sulfuric acid and Hydrochloric acid (acid aerosols including mists, vapors, gas, fog, and other airborne forms of any particle size). The qualifier for sulfuric acid and hydrochloric acid means that the only forms of these chemicals that are reportable are airborne forms. Aqueous solutions are not covered by this listing but any aerosols generated from aqueous solutions are covered.

Nitrate compounds (water dissociable; reportable only when in aqueous solution). The qualifier for the nitrate compounds category limits the reporting to nitrate compounds that dissociate in water, generating nitrate ion. For the purposes of threshold determinations the entire weight of the nitrate compound must be included in all calculations. For the purposes of reporting releases and other waste management quantities only the weight of the nitrate ion should be included in the calculations of these

quantities.

Phosphorus (yellow or white). The listing for phosphorus is qualified by the term "yellow or white." This means that only manufacturing, processing, or otherwise use of phosphorus in the yellow or white chemical form triggers reporting. Conversely, manufacturing, processing, or otherwise use of "black" or "red" phosphorus does not trigger reporting. Supplier notification also applies only to distribution of yellow or white phosphorus.

Asbestos (friable). The listing for asbestos is qualified by the term "friable," referring to the physical characteristic of being able to be crumbled, pulverized, or reducible to a powder with hand pressure. Only manufacturing, processing, or otherwise use of asbestos in the friable form triggers reporting. Supplier notification applies only to distribution of mixtures or other trade name products containing friable asbestos.

Aluminum Oxide (fibrous forms). The listing for aluminum oxide is qualified by the term "fibrous forms." Fibrous refers to a man-made form of aluminum oxide that is processed to produce strands or filaments which can be cut to various lengths depending on the application. Only manufacturing, processing, or otherwise use of aluminum oxide in the fibrous form triggers reporting. Supplier notification applies only to distribution of mixtures or other trade name products containing fibrous forms of aluminum oxide.

Notes for Sections A and B of following list of TRI chemicals:

"Color Index" indicated by "C.I."

* There are no *de minimis* levels for PBT chemicals, except for supplier notification purposes (see Appendix D)

a. Individually-Listed Toxic Chemicals Arranged Alphabetically

CAS Number	De Mi. Chemical Name	<i>nimis</i> Limit
CAS Nulliber	Chemical Name	
71751-41-2	Abamectin [Avermectin B1]	1.0
30560-19-1	Acephate	1.0
	(Acetylphosphoramidothioic acid O,S-	
	dimethyl ester)	
75-07-0	Acetaldehyde	0.1
60-35-5	Acetamide	0.1
75-05-8	Acetonitrile	1.0
98-86-2	Acetophenone	1.0
53-96-3	2-Acetylaminofluorene	0.1
62476-59-9	Acifluorfen, sodium salt	1.0
	[5-(2-Chloro-4-(trifluoromethyl)phenox	y)-2-
	nitrobenzoic acid, sodium salt]	
107-02-8	Acrolein	1.0
79-06-1	Acrylamide	0.1
79-10-7	Acrylic acid	1.0
107-13-1	Acrylonitrile	0.1
15972-60-8	Alachlor	1.0
116-06-3	Aldicarb	1.0
309-00-2	Aldrin	*
	[1,4:5,8-Dimethanonaphthalene,	
	1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-	
	hexahydro-(1.alpha.,4.alpha.,4a.beta.,	
	5.alpha.,8.alpha.,8a.beta.)-]	
28057-48-9	d-trans-Allethrin	1.0
	[d-trans-Chrysanthemic acid of d-allethr	
107-18-6	Allyl alcohol	1.0
107-11-9	Allylamine	1.0
107-05-1	Allyl chloride	1.0
7429-90-5	Aluminum (fume or dust)	1.0
20859-73-8	Aluminum phosphide	1.0
1344-28-1	Aluminum oxide (fibrous forms)	1.0
834-12-8	Ametryn	1.0
	(N-Ethyl-N'-(1-methylethyl)-6-(methylt	hio)-
	1,3,5,-triazine-2,4-diamine)	•
117-79-3	2-Aminoanthraquinone	0.1
60-09-3	4-Aminoazobenzene	0.1
92-67-1	4-Aminobiphenyl	0.1
82-28-0	1-Amino-2-methylanthraquinone	0.1

CAS Number	Chemical Name	e Minimis Limit	CAS Number	De M Chemical Name	<i>linimis</i> Limit
33089-61-1	Amitraz	1.0	314-40-9	Bromacil	1.0
61-82-5	Amitrole	0.1		(5-Bromo-6-methyl-3-(1-methylpr	opyl)-
7664-41-7	Ammonia	1.0		2,4(1H,3H)-pyrimidinedione)	
	(includes anhydrous ammonia and	aqueous	53404-19-6	Bromacil, lithium salt	1.0
	ammonia from water dissociable ar	nmonium		[2,4(1H,3H)-Pyrimidinedione,5-bro	mo-6-
	salts and other sources; 10 percent	of total		methyl-3-(1-methylpropyl), lithium sal	t]
	aqueous ammonia is reportable und	ler this	7726-95-6	Bromine	1.0
	listing)		35691-65-7	1-Bromo-1-(bromomethyl)-	1.0
101-05-3	Anilazine	1.0		1,3-propanedicarbonitrile	
	[4,6-Dichloro-N-(2-chlorophenyl)-triazin-2-amine]	1,3,5-	353-59-3	Bromochlorodifluoromethane (Halon 1211)	1.0
62-53-3	Aniline	1.0	75-25-2	Bromoform (Tribromomethane)	1.0
90-04-0	o-Anisidine	0.1	74-83-9	Bromomethane	1.0
104-94-9	p-Anisidine	1.0		(Methyl bromide)	
134-29-2	o-Anisidine hydrochloride	0.1	75-63-8	Bromotrifluoromethane	1.0
120-12-7	Anthracene	1.0	•	(Halon 1301)	
7440-36-0	Antimony	1.0	1689-84-5	Bromoxynil	1.0
7440-38-2	Arsenic	0.1		(3,5-Dibromo-4-hydroxybenzonitrile)	
1332-21-4	Asbestos (friable)	0.1	1689-99-2	Bromoxynil octanoate	1.0
1912-24-9	Atrazine	1.0		(Octanoic acid, 2,6-dibromo-4-	
	(6-Chloro-N-ethyl-N'-(1-methyleth	yl)-1,3,5-		cyanophenylester)	
	triazine-2,4-diamine)		357-57-3	Brucine	1.0
7440-39-3	Barium	1.0	106-99-0	1,3-Butadiene	0.1
22781-23-3	Bendiocarb	1.0	141-32-2	Butyl acrylate	1.0
	[2,2-Dimethyl-1,3-benzodioxol-4-o	ol	71-36-3	n-Butyl alcohol	1.0
	methylcarbamate]		78-92-2	sec-Butyl alcohol	1.0
1861-40-1	Benfluralin	1.0	75-65-0	tert-Butyl alcohol	1.0
	(N-Butyl-N-ethyl-2,6-dinitro-4-		106-88-7	1,2-Butylene oxide	0.1
.=	(trifluoromethyl)benzenamine)		123-72-8	Butyraldehyde	1.0
17804-35-2	Benomyl	1.0	7440-43-9	Cadmium	0.1
98-87-3	Benzal chloride	1.0	156-62-7	Calcium cyanamide	1.0
55-21-0 71-43-2	Benzamide	1.0	133-06-2	Captan [1H-Isoindole-1,3(2H)-dione, 3a,4,7,7a	1.0
71-43-2 92-87-5	Benzene Benzidine	0.1		tetrahydro-2-[(trichloromethyl)thio]-]	!-
92-87-3 98-07-7	Benzoic trichloride	0.1 0.1	63-25-2	Carbaryl [1-Naphthalenol,	1.0
70-0 7-7	(Benzotrichloride)	0.1	03-25-2	methylcarbamate]	1.0
191-24-2	Benzo(g,h,i)perylene	*	1563-66-2	Carbofuran	1.0
98-88-4	Benzoyl chloride	1.0	75-15-0	Carbon disulfide	1.0
94-36-0	Benzoyl peroxide	1.0	56-23-5	Carbon tetrachloride	0.1
100-44-7	Benzyl chloride	1.0	463-58-1	Carbonyl sulfide	1.0
7440-41-7	Beryllium	0.1	5234-68-4	Carboxin	1.0
82657-04-3	Bifenthrin	1.0		(5,6-Dihydro-2-methyl-N-	
92-52-4	Biphenyl	1.0		phenyl-1,4-oxathiin-3-carboxamide)	
111-91-1	Bis(2-chloroethoxy) methane	1.0	120-80-9	Catechol	0.1
111-44-4	Bis(2-chloroethyl) ether	1.0	2439-01-2	Chinomethionat	1.0
542-88-1	Bis(chloromethyl) ether	0.1		[6-Methyl-1,3-dithiolo[4,5-b]quinoxali	n-2-
108-60-1	Bis(2-chloro-1-methylethyl)ether	1.0	100.00	one]	
56-35-9	Bis(tributyltin) oxide	1.0	133-90-4	Chloramben	1.0
10294-34-5 7637-07-2	Boron trichloride Boron trifluoride	1.0 1.0	57-74-9	[Benzoic acid, 3-amino-2,5-dichloro-] Chlordane	*
		1.5		[4,7-Methanoindan, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-]	

CAS Number	De Chemical Name	Minimis Limit	CAS Number	Chemical Name	De Minimis Limit
115-28-6	Chlorendic acid	0.1	7440-47-3	Chromium	1.0
90982-32-4	Chlorimuron ethyl	1.0	4680-78-8	C.I. Acid Green 3	1.0
	[Ethyl-2-[[[[(4-chloro-6-methoxypring)	midin-2-	6459-94-5	C.I. Acid Red 114	0.1
	yl)amino]carbonyl]amino]sulfonyl]		569-64-2	C.I. Basic Green 4	1.0
	benzoate]		989-38-8	C.I. Basic Red 1	1.0
7782-50-5	Chlorine	1.0	1937-37-7	C.I. Direct Black 38	0.1
10049-04-4	Chlorine dioxide	1.0	2602-46-2	C.I. Direct Blue 6	0.1
79-11-8	Chloroacetic acid	1.0	28407-37-6	C.I. Direct Blue 218	1.0
532-27-4	2-Chloroacetophenone	1.0	16071-86-6	C.I. Direct Brown 95	0.1
4080-31-3	1-(3-Chloroallyl)-3,5,7-triaza-	1.0	2832-40-8	C.I. Disperse Yellow 3	1.0
	1-azoniaadamantane chloride		3761-53-3	C.I. Food Red 5	0.1
106-47-8	p-Chloroaniline	0.1	81-88-9	C.I. Food Red 15	1.0
108-90-7	Chlorobenzene	1.0	3118-97-6	C.I. Solvent Orange 7	1.0
510-15-6	Chlorobenzilate	1.0	97-56-3	C.I. Solvent Yellow 3	0.1
	[Benzeneacetic acid, 4-chloroalpha		842-07-9	C.I. Solvent Yellow 14	1.0
	chlorophenyl)alphahydroxy-, ethy	l ester]	492-80-8	C.I. Solvent Yellow 34	0.1
75-68-3	1-Chloro-1,1-difluoroethane	1.0		(Auramine)	
	(HCFC-142b)		128-66-5	C.I. Vat Yellow 4	1.0
75-45-6	Chlorodifluoromethane	1.0	7440-48-4	Cobalt	0.1
	(HCFC-22)		7440-50-8	Copper	1.0
75-00-3	Chloroethane (Ethyl chloride)	1.0	8001-58-9	Creosote	0.1
67-66-3	Chloroform	0.1	120-71-8	p-Cresidine	0.1
74-87-3	Chloromethane (Methyl chloride)	1.0	108-39-4	m-Cresol	1.0
107-30-2	Chloromethyl methyl ether	0.1	95-48-7	o-Cresol	1.0
563-47-3	3-Chloro-2-methyl-1-propene	0.1	106-44-5	p-Cresol	1.0
104-12-1	p-Chlorophenyl isocyanate	1.0	1319-77-3	Cresol (mixed isomers)	1.0
76-06-2	Chloropicrin	1.0	4170-30-3	Crotonaldehyde	1.0
126-99-8	Chloroprene	0.1	98-82-8	Cumene	1.0
542-76-7	3-Chloropropionitrile	1.0	80-15-9	Cumene hydroperoxide	1.0
63938-10-3	Chlorotetrafluoroethane	1.0	135-20-6	Cupferron	0.1
354-25-6	1-Chloro-1,1,2,2-	1.0		[Benzeneamine, N-hydroxy-	
	tetrafluoroethane (HCFC-124a)			N-nitroso, ammonium salt]	
2837-89-0	2-Chloro-1,1,1,2-	1.0	21725-46-2	Cyanazine	1.0
	tetrafluoroethane (HCFC-124)		1134-23-2	Cycloate	1.0
1897-45-6	Chlorothalonil	0.1	110-82-7	Cyclohexane	1.0
	[1,3-Benzenedicarbonitrile, 2,4,5,6-		108-93-0	Cyclohexanol	1.0
	tetrachloro-]		68359-37-5	Cyfluthrin	1.0
95-69-2	p-Chloro-o-toluidine	0.1		[3-(2,2-Dichloroethenyl)-2,2-	
75-88-7	2-Chloro-1,1,1-	1.0		dimethylcyclopropanecarboxyl	
	trifluoroethane (HCFC-133a)			cyano(4-fluoro-3-phenoxyphen	yl) methyl
75-72-9	Chlorotrifluoromethane (CFC-13)	1.0		ester]	
460-35-5	3-Chloro-1,1,1-	1.0	68085-85-8	Cyhalothrin	1.0
	trifluoropropane (HCFC-253fb)			[3-(2-Chloro-3,3,3-trifluoro-1-p	
5598-13-0	Chlorpyrifos methyl	1.0		dimethylcyclopropane-carboxy	
	[O,O-Dimethyl-O-(3,5,6-trichloro-2-	,		cyano(3-phenoxyphenyl)methy	
	pyridyl)phosphorothioate]		94-75-7	2,4-D	0.1
64902-72-3	Chlorsulfuron	1.0		[Acetic acid, (2,4-dichlorophen	
	[2-Chloro-N-[[(4-methoxy-6-methyl-	-1,3,5-	533-74-4	Dazomet	1.0
	triazin-2-yl)amino]carbonyl]			(Tetrahydro-3,5-dimethyl-2H-1	,3,5-
	benzenesulfonamide]			thiadiazine-2-thione)	

CAS Number	Chemical Name I	nimis Limit	CAS Number	Chemical Name	inimis Limit
53404-60-7	Dazomet, sodium salt [Tetrahydro-3,5-dimethyl-2H-1,3,5-	1.0	1717-00-6	1,1-Dichloro-1-fluoroethane (HCFC-141b)	1.0
	thiadiazine-2-thione, ion(1-), sodium]		75-43-4	Dichlorofluoromethane (HCFC-21)	1.0
94-82-6	2,4-DB	1.0	75-09-2	Dichloromethane (Methylene	0.1
1929-73-3	2,4-D butoxyethyl ester	0.1		chloride)	
94-80-4	2,4-D butyl ester	0.1	127564-92-5	Dichloropentafluoropropane	1.0
2971-38-2	2,4-D chlorocrotyl ester	0.1	13474-88-9	1,1-Dichloro-1,2,2,3,3-	1.0
1163-19-5	Decabromodiphenyl oxide	1.0		pentafluoropropane (HCFC-225cc)	
13684-56-5	Desmedipham	1.0	111512-56-2	1,1-Dichloro-1,2,3,3,3-	1.0
1928-43-4	2,4-D 2-ethylhexyl ester	0.1		pentafluoropropane (HCFC-225eb)	
53404-37-8	2,4-D 2-ethyl-4-	0.1	422-44-6	1,2-Dichloro-1,1,2,3,3-	1.0
	methylpentyl ester			pentafluoropropane (HCFC-225bb)	
2303-16-4	Diallate	1.0	431-86-7	1,2-Dichloro-1,1,3,3,3-	1.0
	[Carbamothioic acid, bis(1-methylethyl)	-S-	,	pentafluoropropane (HCFC-225da)	
	(2,3-dichloro-2-propenyl) ester]		507-55-1	1,3-Dichloro-1,1,2,2,3-	1.0
615-05-4	2,4-Diaminoanisole	0.1		pentafluoropropane (HCFC-225cb)	
39156-41-7	2,4-Diaminoanisole sulfate	0.1	136013-79-1	1,3-Dichloro-1,1,2,3,3-	1.0
101-80-4	4,4'-Diaminodiphenyl ether	0.1		pentafluoropropane (HCFC-225ea)	
95-80-7	2,4-Diaminotoluene	0.1	128903-21-9	2,2-Dichloro-1,1,1,3,3-	1.0
25376-45-8	Diaminotoluene (mixed isomers)	0.1		pentafluoropropane (HCFC-225aa)	
333-41-5	Diazinon	1.0	422-48-0	2,3-Dichloro-1,1,1,2,3-	1.0
334-88-3	Diazomethane	1.0		pentafluoropropane (HCFC-225ba)	
132-64-9	Dibenzofuran	1.0	422-56-0	3,3-Dichloro-1,1,1,2,2-	1.0
96-12-8	1,2-Dibromo-3-	0.1		pentafluoropropane (HCFC-225ca)	
4	chloropropane (DBCP)		97-23-4	Dichlorophene	1.0
106-93-4	1,2-Dibromoethane	0.1		[2,2'-Methylenebis(4-chlorophenol)]	
	(Ethylene dibromide)		120-83-2	2,4-Dichlorophenol	1.0
124-73-2	Dibromotetrafluoroethane	1.0	78-87-5	1,2-Dichloropropane	1.0
	(Halon 2402)		10061-02-6	trans-1,3-Dichloropropene	0.1
84-74-2	Dibutyl phthalate	1.0	78-88-6	2,3-Dichloropropene	1.0
1918-00-9	Dicamba	1.0	542-75-6	1,3-Dichloropropylene	0.1
	(3,6-Dichloro-2-methoxybenzoic acid)		76-14-2	Dichlorotetrafluoroethane	1.0
99-30-9	Dichloran	1.0		(CFC-114)	
	[2,6-Dichloro-4-nitroaniline]		34077-87-7	Dichlorotrifluoroethane	1.0
95-50-1	1,2-Dichlorobenzene	1.0	90454-18-5	Dichloro-1,1,2-trifluoroethane	1.0
541-73-1	1,3-Dichlorobenzene	1.0	812-04-4	1,1-Dichloro-1,2,2-	1.0
106-46-7	1,4-Dichlorobenzene	0.1		trifluoroethane (HCFC-123b)	
25321-22-6	Dichlorobenzene (mixed isomers)	0.1	354-23-4	1,2-Dichloro-1,1,2-	1.0
91-94-1	3,3'-Dichlorobenzidine	0.1		trifluoroethane (HCFC-123a)	
612-83-9	3,3'-Dichlorobenzidine	0.1	306-83-2	2,2-Dichloro-1,1,1-	1.0
	dihydrochloride			trifluoroethane (HCFC-123)	
64969-34-2	3,3'-Dichlorobenzidine sulfate	0.1	62-73-7	Dichlorvos	0.1
75-27-4	Dichlorobromomethane	0.1		[Phosphoric acid, 2,2-dichloroethenyl	
764-41-0	1,4-Dichloro-2-butene	1.0		dimethyl ester]	
110-57-6	trans-1,4-Dichloro-2-butene	1.0	51338-27-3	Diclofop methyl	1.0
1649-08-7	1,2-Dichloro-1,1-	1.0		[2-[4-(2,4-Dichlorophenoxy)phenoxy]	
	difluoroethane (HCFC-132b)		447.00	propanoic acid, methyl ester]	
75-71-8	Dichlorodifluoromethane (CFC-12)	1.0	115-32-2	Dicofol Spanners A shlare	1.0
107-06-2	1,2-Dichloroethane (Ethylene	. 0.1		[Benzenemethanol, 4-chloro- .alpha(4-chlorophenyl)alpha	
540 50 0	dichloride) 1,2-Dichloroethylene	1.0		(trichloromethyl)-	
540-59-0	1,2-Dictionocuty ieffe	1.0	77-73-6	Dicyclopentadiene	1.0
			77-73-0	Diojoroponumiono	. 1.0

		Minimis			Minimis
CAS Number	Chemical Name	Limit	CAS Number	Chemical Name	Limit
1464-53-5	Diepoxybutane	0.1	122-66-7	1,2-Diphenylhydrazine	0.1
111-42-2	Diethanolamine	1.0	122-00-7	(Hydrazobenzene)	0.1
38727-55-8	Diethatyl ethyl	1.0	2164-07-0	Dipotassium endothall	1.0
117-81-7	Di(2-ethylhexyl) phthalate (DEHP)	0.1	2104-07-0	[7-Oxabicyclo(2.2.1)heptane-2,3-	1.0
64-67-5	Diethyl sulfate	0.1		dicarboxylic acid, dipotassium salt]	
35367-38-5	Diflubenzuron	1.0	136-45-8	Dipropyl isocinchomeronate	1.0
101-90-6	Diglycidyl resorcinol ether	0.1	138-93-2	Disodium	1.0
94-58-6	Dihydrosafrole	0.1	130-93-2	cyanodithioimidocarbonate	1.0
55290-64-7	Dinydrosarroie Dimethipin	1.0	94-11-1	2,4-D isopropyl ester	0.1
33290-04-7	[2,3-Dihydro-5,6-dimethyl-1,4-dithiin		541-53-7	2,4-D isopropyrester 2,4-Dithiobiuret	1.0
		l.	330-54-1	Diuron	1.0
60-51-5	1,1,4,4-tetraoxide]	1.0	2439-10-3		1.0
	Dimethoate	0.1	2439-10-3	Dodine [Dodecylguanidine	1.0
119-90-4	3,3'-Dimethoxybenzidine	0.1	120-36-5	monoacetate]	0.1
20325-40-0	3,3'-Dimethoxybenzidine	0.1		2,4-DP	
	dihydrochloride (o-Dianisidine		1320-18-9	2,4-D propylene glycol	0.1
111004 00 0	dihydrochloride)	0.1	2702 72 0	butyl ether ester	Λ1
111984-09-9	3,3'-Dimethoxybenzidine	0.1	2702-72-9	2,4-D sodium salt	0.1
101 10 0	hydrochloride (o-Dianisidine hydroch		106-89-8	Epichlorohydrin	0.1
124-40-3	Dimethylamine	1.0	13194-48-4	Ethoprop	1.0
2300-66-5	Dimethylamine dicamba	1.0		[Phosphorodithioic acid O-ethyl S,S-	aipropyi
60-11-7	4-Dimethylaminoazobenzene	0.1	110.00.5	ester]	1.0
121-69-7	N,N-Dimethylaniline	1.0	110-80-5	2-Ethoxyethanol	1.0
119-93-7	3,3'-Dimethylbenzidine (o-Tolidine)	0.1	140-88-5	Ethyl acrylate	0.1
612-82-8	3,3'-Dimethylbenzidine	0.1	100-41-4	Ethylbenzene	0.1
	dihydrochloride (o-Tolidine dihydroch		541-41-3	Ethyl chloroformate	1.0
41766-75-0	3,3'-Dimethylbenzidine	0.1	759-94-4	Ethyl dipropylthiocarbamate	1.0
	dihydrofluoride (o-Tolidine dihydrofl	-	54.05.	(EPTC)	1.0
79-44-7	Dimethylcarbamyl chloride	0.1	74-85-1	Ethylene	1.0
2524-03-0	Dimethyl	1.0	107-21-1	Ethylene glycol	1.0
	chlorothiophosphate		151-56-4	Ethyleneimine (Aziridine)	0.1
68-12-2	N,N-Dimethylformamide	1.0	75-21-8	Ethylene oxide	0.1
57-14-7	1,1-Dimethyl hydrazine	0.1	96-45-7	Ethylene thiourea	0.1
105-67-9	2,4-Dimethylphenol	1.0	75-34-3	Ethylidene dichloride	1.0
131-11-3	Dimethyl phthalate	1.0	52-85-7	Famphur	1.0
77-78-1	Dimethyl sulfate	0.1	60168-88-9	Fenarimol	1.0
99-65-0	m-Dinitrobenzene	1.0		[.alpha(2-Chlorophenyl)alpha(4-	
528-29-0	o-Dinitrobenzene	1.0		chlorophenyl)-5-pyrimidinemethanol	
100-25-4	p-Dinitrobenzene	1.0	13356-08-6	Fenbutatin oxide	1.0
88-85-7	Dinitrobutyl phenol (Dinoseb)	1.0		(Hexakis(2-methyl-2-phenylpropyl)	
534-52-1	4,6-Dinitro-o-cresol	1.0		distannoxane)	1.0
51-28-5	2,4-Dinitrophenol	1.0	66441-23-4	Fenoxaprop ethyl	1.0
121-14-2	2,4-Dinitrotoluene	0.1		[2-(4-((6-Chloro-2-	
606-20-2	2,6-Dinitrotoluene	0.1		benzoxazolylen)oxy)phenoxy)propan	101C
25321-14-6	Dinitrotoluene (mixed isomers)	1.0		acid, ethyl ester]	• • •
39300-45-3	Dinocap	1.0	72490-01-8	Fenoxycarb	1.0
123-91-1	1,4-Dioxane	0.1		[[2-(4-Phenoxyphenoxy)ethyl]carban	nic acid
957-51-7	Diphenamid	1.0		ethyl ester]	1.0
122-39-4	Diphenylamine	1.0	39515-41-8	Fenpropathrin	1.0
				[2,2,3,3-Tetramethylcyclopropane ca	
				acid cyano(3-phenoxyphenyl)methyl	ester

CAS Number	Chemical Name	e Minimis Limit	CAS Number	Chemical Name	e Minimis Limit
55-38-9	Fenthion	1.0	7647-01-0	Hydrochloric acid	1.0
	[O,O-Dimethyl O-[3-methyl-4-			(acid aerosols including mists, vapo	ors, gas,
	(methylthio)phenyl] ester, phospho	rothioic		fog, and other airborne forms of an	
£1.620 £0 1	acid]	1.0	74.00.0	size)	1.0
51630-58-1	Fenvalerate	1.0	74-90-8	Hydrogen cyanide	1.0
	[4-Chloro-alpha-(1-methylethyl) benzeneacetic acid cyano (3-pheno:	vrmhanvl\	7664-39-3	Hydrogen fluoride	1.0
	methyl ester]	xypnenyi)	123-31-9 35554-44-0	Hydroquinone Imazalil	1.0 1.0
14484-64-1	Ferbam	1.0	3333 4-44- 0	[1-[2-(2,4-Dichlorophenyl)-2-(2-	1.0
14404-04-1	[Tris(dimethylcarbamodithioato- S,			propenyloxy)ethyl]-1H-imidazole]	
69806-50-4	Fluazifop butyl	1.0	55406-53-6	3-Iodo-2-propynyl	1.0
0,000-30-4	[2-[4-[[5-(Trifluoromethyl)-2-	1.0	33400-33-0	butylcarbamate	1.0
	pyridinyl]oxy]phenoxy]propanoic a	cid. butyl	13463-40-6	Iron pentacarbonyl	1.0
	ester]	,, .	78-84 - 2	Isobutyraldehyde	1.0
2164-17-2	Fluometuron	1.0	465-73-6	Isodrin	*
	[Urea, N,N-dimethyl-N'-[3-	-,,	25311-71-1	Isofenphos[2-[[Ethoxyl[(1-	1.0
	(trifluoromethyl)phenyl]-]			methylethyl)amino]phosphinothioy	
7782-41-4	Fluorine	1.0		benzoic acid 1-methylethyl ester]	.3. 73
51-21-8	Fluorouracil (5-Fluorouracil)	1.0	67-63-0	Isopropyl alcohol	1.0
69409-94-5	Fluvalinate	1.0		(only persons who manufacture by	the strong
	[N-[2-Chloro-4-(trifluoromethyl)ph	enyl]-		acid process are subject, no supplie	
	DL-valine(+)-cyano(3-			notification)	
	phenoxyphenyl)methyl ester]		80-05-7	4,4'-Isopropylidenediphenol	1.0
133-07-3	Folpet	1.0	120-58-1	Isosafrole	1.0
72178-02-0	Fomesafen	1.0	77501-63-4	Lactofen	1.0
	[5-(2-Chloro-4-(trifluoromethyl)ph	enoxy)-N-		[Benzoic acid, 5-[2-Chloro-4-	
,	methylsulfonyl-2-nitrobenzamide]			(trifluoromethyl)phenoxy]-2-nitro-,	, 2-
50-00-0	Formaldehyde	0.1		ethoxy-1-methyl-2-oxoethyl ester]	
64-18-6	Formic acid	1.0	7439-92-1	Lead	*
76-13-1	Freon 113	1.0		(when lead is contained in stainless	
56.44.0	[Ethane, 1,1,2-trichloro-1,2,2,-triflu	ioro-j		brass or bronze alloys the <i>de minim</i>	is level is
76-44-8	Heptachlor		#0.00.0	0.1)	0.1
	[1,4,5,6,7,8,8-Heptachloro-3a, 4,7,		58-89-9	Lindane	0.1
110 74 1	tetrahydro-4,7-methano-1H-indene Hexachlorobenzene	J *		[Cyclohexane, 1,2,3,4,5,6-hexachle	
118-74-1 87-68-3	Hexachloro-1,3-butadiene	1.0		(1.alpha.,2.alpha.,3.beta.,4.alpha.,5	.агрпа.,
319-84-6	alpha-Hexachlorocyclohexane	0.1	330-55-2	6.beta.)-] Linuron	1.0
77-47-4	Hexachlorocyclopentadiene	1.0	554-13-2	Lithium carbonate	1.0
67-72-1	Hexachloroethane	0.1	121-75-5	Malathion	1.0
1335-87-1	Hexachloronaphthalene	1.0	108-31-6	Maleic anhydride	1.0
70-30-4	Hexachlorophene	1.0	109-77-3	Malononitrile	1.0
680-31-9	Hexamethylphosphoramide	0.1	12427-38-2	Maneb	1.0
110-54-3	n-Hexane	1.0	12427-30-2	[Carbamodithioic acid, 1,2-ethaned	
51235-04-2	Hexazinone	1.0		manganese complex]	,1015 ,
67485-29-4	Hydramethylnon	1.0	7439-96-5	Manganese	1.0
	[Tetrahydro-5,5-dimethyl-2(1H)-		93-65-2	Mecoprop	0.1
	pyrimidinone[3-[4-(trifluoromethyl)phenyll-	149-30-4	2-Mercaptobenzothiazole (MBT)	1.0
	1-[2-[4-(trifluoromethyl)phenyl]eth		7439-97-6	Mercury	*
	propenylidene]hydrazone]		150-50-5	Merphos	1.0
302-01-2	Hydrazine	0.1	126-98-7	Methacrylonitrile	1.0
	Hydrazine sulfate	0.1		- ·	

CAS Number	Chemical Name	Minimis Limit	CAS Number	Chemical Name	De Minimis Limit
137-42-8	Metham sodium (Sodium	1.0	505-60-2	Mustard gas	0.1
	methyldithiocarbamate)			[Ethane, 1,1'-thiobis[2-chloro-]	
67-56-1	Methanol	1.0	88671-89-0	Myclobutanil	1.0
20354-26-1	Methazole	1.0		[.alphaButylalpha(4-chloroph	enyl)-1H-
	[2-(3,4-Dichlorophenyl)-4-methyl-1	,2,4-		1,2,4-triazole-1-propanenitrile]	
	oxadiazolidine-3,5-dione]		142-59-6	Nabam	1.0
2032-65-7	Methiocarb	1.0	300-76-5	Naled	1.0
94-74-6	Methoxone	0.1	91-20-3	Naphthalene	1.0
	((4-Chloro-2-methylphenoxy) acetic	acid)	134-32-7	alpha-Naphthylamine	0.1
	(MCPA)		91-59-8	beta-Naphthylamine	0.1
3653-48-3	Methoxone sodium salt	0.1	7440-02-0	Nickel	0.1
	((4-Chloro-2-methylphenoxy) acetat	e	1929-82-4	Nitrapyrin	1.0
	sodium salt)			(2-Chloro-6-(trichloromethyl)pyri	
72-43-5	Methoxychlor	*	7697-37-2	Nitric acid	1.0
	[Benzene, 1,1'-(2,2,2-		139-13-9	Nitrilotriacetic acid	0.1
	trichloroethylidene)bis[4-methoxy-]		100-01-6	p-Nitroaniline	1.0
109-86-4	2-Methoxyethanol	1.0	99-59-2	5-Nitro-o-anisidine	1.0
96-33-3	Methyl acrylate	1.0	98-95-3	Nitrobenzene	0.1
1634-04-4	Methyl tert-butyl ether	1.0	92-93-3	4-Nitrobiphenyl	0.1
79-22-1	Methyl chlorocarbonate	1.0	1836-75-5	Nitrofen	0.1
101-14-4	4,4'-Methylenebis(2-chloroaniline)	0.1		[Benzene, 2,4-dichloro-1-(4-nitro	• • • •
	(MBOCA)		51-75-2	Nitrogen mustard	0.1
101-61-1	4,4'-Methylenebis(N,N-dimethyl)	0.1		[2-Chloro-N-(2-chloroethyl)-N-	
	benzenamine			methylethanamine]	
74-95-3	Methylene bromide	1.0	55-63-0	Nitroglycerin	1.0
101-77-9	4,4'-Methylenedianiline	0.1	88-75-5	2-Nitrophenol	1.0
78-93-3	Methyl ethyl ketone	1.0	100-02-7	4-Nitrophenol	1.0
60-34-4	Methyl hydrazine	1.0	79-46-9	2-Nitropropane	0.1
74-88-4	Methyl iodide	1.0	924-16-3	N-Nitrosodi-n-butylamine	0.1
108-10-1	Methyl isobutyl ketone	1.0	55-18-5	N-Nitrosodiethylamine	0.1
624-83-9	Methyl isocyanate	1.0	62-75-9	N-Nitrosodimethylamine	0.1
556-61-6	Methyl isothiocyanate	1.0	86-30-6	N-Nitrosodiphenylamine	1.0
55.06.5	[Isothiocyanatomethane]	1.0	156-10-5	p-Nitrosodiphenylamine	1.0
75-86-5	2-Methyllactonitrile	1.0	621-64-7	N-Nitrosodi-n-propylamine	0.1
80-62-6	Methyl methacrylate	1.0	759-73-9	N-Nitroso-N-ethylurea	0.1
924-42-5	N-Methylolacrylamide	1.0	684-93-5	N-Nitroso-N-methylurea	0.1
298-00-0	Methyl parathion	1.0	4549-40-0	N-Nitrosomethylvinylamine	0.1
109-06-8	2-Methylpyridine	1.0	59-89-2	N-Nitrosomorpholine N-Nitrosonornicotine	0.1 0.1
872-50-4	N-Methyl-2-pyrrolidone	1.0	16543-55-8 100-75-4	N-Nitrosopiperidine	0.1
9006-42-2	Metiram	1.0		5-Nitro-o-toluidine	
21087-64-9	Metribuzin	1.0	99-55-8 27314-13-2	Norflurazon	1.0 1.0
7786-34-7	Mevinphos	1.0	2/314-13-2	[4-Chloro-5-(methylamino)-2-[3-	1.0
90-94-8	Michler's ketone Molinate	0.1 1.0		(trifluoromethyl)phenyl]-3(2H)-py	midazinanal
2212-67-1			2234-13-1	Octachloronaphthalene	
•	(1H-Azepine-1-carbothioic acid, hex	kanyuru-	29082-74-4	Octachlorostyrene	1.0
1212 27 5	, S-ethyl ester) Molybdenum trioxide	1.0	19044-88-3	Oryzalin	1.0
1313-27-5		1.0	120 14 -00-3	[4-(Dipropylamino)-3,5-dinitrober	
76-15-3	Monochloropentafluoroethane (CFC-115)	1.0		sulfonamide]	iizelie
150-68-5	Monuron	1.0	20816-12-0	Osmium tetroxide	1.0
130-00-3	WORLDIN	1.0	20010-12-0	Osimum witonide	1.0

CAS Number	Chemical Name	De Minimis Limit	CAS Number	Chemical Name	De Minimis Limit
301-12-2	Oxydemeton methyl	1.0	51-03-6	Piperonyl butoxide	1.0
	[S-(2-(Ethylsulfinyl)ethyl) O,O-		29232-93-7	Pirimiphos methyl	1.0
	ester phosphorothioic acid]	•		[O-(2-(Diethylamino)-6-methy	/l-4-
19666-30-9	Oxydiazon	1.0		pyrimidinyl)-O,O-dimethylpho	osphorothioate]
	[3-[2,4-Dichloro-5-(1-		1336-36-3	Polychlorinated biphenyls	*
	methylethoxy)phenyl]- 5-(1,1-			(PCBs)	
	dimethylethyl)-1,3,4-oxadiazol-2	(3H)-one]	7758-01-2	Potassium bromate	0.1
42874-03-3	Oxyfluorfen	1.0	128-03-0	Potassium dimethyldithio-	1.0
10028-15-6	Ozone	1.0		carbamate	
123-63-7	Paraldehyde	1.0	137-41-7	Potassium N-methyldithio-	1.0
1910-42-5	Paraquat dichloride	1.0		carbamate	
56-38-2	Parathion	1.0	41198-08-7	Profenofos	1.0
	[Phosphorothioic acid, O,O-dieth	ıyl-O-(4-		[O-(4-Bromo-2-chlorophenyl)	-O-ethyl-S-
	nitrophenyl)ester]			propyl phosphorothioate]	1.0
1114-71-2	Pebulate	1.0	7287-19-6	Prometryn	1.0
	[Butylethylcarbamothioic acid S-	-propyı		[N,N'-Bis(1-methylethyl)-6-m	etnyitnio-1,3,5-
40407.40.1	ester]	*	22050 50 5	triazine-2,4-diamine]	1.0
40487-42-1	Pendimethalin		23950-58-5	Pronamide	1.0
	[N-(1-Ethylpropyl)-3,4-dimethyl	-2,0-	1918-16-7	Propachlor	1.0
600 02 E	dinitrobenzenamine] Pentachlorobenzene	*		[2-Chloro-N-(1-methylethyl)-lphenylacetamide]	N-
608-93-5 76-01-7			1120-71-4		0.1
	Pentachloroethane	1.0 0.1	709-98-8	Propane sultone Propanil	1.0
87-86-5 57-33-0	Pentachlorophenol (PCP) Pentobarbital sodium	1.0	/09-90-0	[N-(3,4-Dichlorophenyl)propa	
79-21-0	Peracetic acid	1.0	2312-35-8	Propargite	1.0
594-42-3	Perchloromethyl mercaptan	1.0	107-19-7	Propargyl alcohol	1.0
52645-53-1	Permethrin	1.0	31218-83-4	Propetamphos	1.0
J20 4 J-J3-1	[3-(2,2-Dichloroethenyl)-2,2-	1.0	31210-03-4	[3-[(Ethylamino)methoxyphos	
	dimethylcyclopropanecarboxylic	acid (3-		oxy]-2-butenoic acid, 1-methy	
	phenoxyphenyl) methyl ester]	acia, (5-	60207-90-1	Propiconazole	1.0
85-01-8	Phenanthrene	1.0	00207 70 1	[1-[2-(2,4-Dichlorophenyl)-4-]	
108-95-2	Phenol	1.0		dioxolan-2-yl]-methyl-1H-1,2	
26002-80-2	Phenothrin	1.0	57-57-8	beta-Propiolactone	0.1
20002 00 2	[2,2-Dimethyl-3-(2-methyl-1-		123-38-6	Propionaldehyde	1.0
	propenyl)cyclopropanecarboxyli	c acid (3-	114-26-1	Propoxur	1.0
	phenoxyphenyl)methyl ester]	(-		[Phenol, 2-(1-methylethoxy)-,	
95-54-5	1,2-Phenylenediamine	1.0		methylcarbamate]	
108-45-2	1,3-Phenylenediamine	1.0	115-07-1	Propylene (Propene)	1.0
106-50-3	p-Phenylenediamine	1.0	75-55-8	Propyleneimine	0.1
615-28-1	1,2-Phenylenediamine dihydro-	1.0	75-56-9	Propylene oxide	0.1
	chloride		110-86-1	Pyridine	1.0
624-18-0	1,4-Phenylenediamine dihydro-	1.0	91-22-5	Quinoline	1.0
	chloride		106-51-4	Quinone	1.0
90-43-7	2-Phenylphenol	1.0	82-68-8	Quintozene	1.0
57-41-0	Phenytoin	0.1		(Pentachloronitrobenzene)	
75-44-5	Phosgene	1.0	76578-14-8	Quizalofop-ethyl	1.0
7803-51-2	Phosphine	1.0		[2-[4-[(6-Chloro-2-	
7723-14-0	Phosphorus (yellow or white)	1.0		quinoxalinyl)oxy]phenoxy] pr	opanoic acid
85-44-9	Phthalic anhydride	1.0		ethyl ester]	
1918-02-1	Picloram	1.0			
88-89-1	Picric acid	1.0			

CAS Number	Chemical Name	<i>De Minimis</i> Limit	CAS Number	D Chemical Name	<i>Minimis</i> Limit
10453-86-8	Resmethrin	1.0	961-11-5	Tetrachlorvinphos	1.0
	[[5-(Phenylmethyl)-3-furanyl]me			[Phosphoric acid, 2-chloro-1-(2,4,5-	
	dimethyl-3-(2-methyl-1-propenyl)		trichlorophenyl) ethenyl dimethyl e	_
	cyclopropanecarboxylate]		64-75-5	Tetracycline hydrochloride	1.0
81-07-2	Saccharin (manufacturing, no	1.0	7696-12-0	Tetramethrin	1.0
	supplier notification)			[2,2-Dimethyl-3-(2-methyl-1-prope	
94-59-7	Safrole	0.1		cyclopropanecarboxylic acid (1,3,4,	
7782-49-2	Selenium	1.0		hexahydro-1,3-dioxo-2H-isoindol-2	;-
74051-80-2	Sethoxydim	1.0	7440 20 0	yl)methyl ester]	1.0
	[2-[1-(Ethoxyimino)butyl]-5-[2-		7440-28-0	Thallium Thishandarala	1.0
	(ethylthio)propyl]-3-hydroxyl-2-c	ycionexen-	148-79-8	Thiabendazole	1.0
7440-22-4	1-one] Silver	1.0	62-55-5	[2-(4-Thiazolyl)-1H-benzimidazole Thioacetamide	0.1
122-34-9	Silver Simazine	1.0 1.0	28249-77-6	Thiobencarb	1.0
26628-22-8	Sodium azide	1.0	20249-11-0	[Carbamic acid, diethylthio-, S-(p-	1.0
1982-69-0	Sodium dicamba	1.0		chlorobenzyl)ester]	
1902-09-0	[3,6-Dichloro-2-methoxybenzoic		139-65-1	4,4'-Thiodianiline	0.1
	sodium salt]	aciu,	59669-26-0	Thiodicarb	1.0
128-04-1	Sodium dimethyldithiocarbamate	1.0	23564-06-9	Thiothearb Thiophanate ethyl	1.0
62-74-8	Sodium fluoroacetate	1.0	23304-00-9	[[1,2-Phenylenebis(iminocarbonoth	
7632-00-0	Sodium nitrite	1.0		biscarbamic acid diethylester]	1031)]
131-52-2	Sodium pentachlorophenate	1.0	23564-05-8	Thiophanate methyl	1.0
132-27-4	Sodium o-phenylphenoxide	0.1	79-19-6	Thiosemicarbazide	1.0
100-42-5	Styrene	0.1	62-56-6	Thiourea	0.1
96-09-3	Styrene oxide	0.1	137-26-8	Thiram	1.0
[7664-93-9	Sulfuric acid	1.0	1314-20-1	Thorium dioxide	1.0
[7001757	(acid aerosols including mists, va		7550-45-0	Titanium tetrachloride	1.0
	fog, and other airborne forms of a		108-88-3	Toluene	1.0
	size)	, P	584-84-9	Toluene-2,4-diisocyanate	0.1
2699-79-8	Sulfuryl fluoride (Vikane)	1.0	91-08-7	Toluene-2,6-diisocyanate	0.1
35400-43-2	Sulprofos	1.0	26471-62-5	Toluene diisocyanate (mixed	0.1
	[O-Ethyl O-[4-(methylthio)pheny	1]		isomers)	
	phosphorodithioic acid S-propyle		95-53-4	o-Toluidine	0.1
34014-18-1	Tebuthiuron	1.0	636-21-5	o-Toluidine hydrochloride	0.1
	[N-[5-(1,1-Dimethylethyl)-1,3,4-t	thiadiazol-	8001-35-2	Toxaphene	*
	2-yl]-N,N'-dimethylurea]		43121-43-3	Triadimefon	1.0
3383-96-8	Temephos	1.0		[1-(4-Chlorophenoxy)-3,3-di-methy	l-1-(1H-
5902-51-2	Terbacil	1.0		1,2,4- triazol-1-yl)-2-butanone]	
	[5-Chloro-3-(1,1-dimethylethyl)-	6-methyl-	2303-17-5	Triallate	1.0
	2,4(1H,3H)-pyrimidinedione]		68-76-8	Triaziquone	1.0
79-94-7	Tetrabromobisphenol A	*		[2,5-Cyclohexadiene-1,4-dione, 2,3	,5-tris(1-
630-20-6	1,1,1,2-Tetrachloroethane	1.0		aziridinyl)-]	
79-34-5	1,1,2,2-Tetrachloroethane	1.0	101200-48-0	Tribenuron methyl	1.0
127-18-4	Tetrachloroethylene (Perchloroethylene)	0.1		[2-[[[(4-Methoxy-6-methyl-1,3,5-tyl)-methylamino]-carbonyl]amino]s	
354-11-0	1,1,1,2-Tetrachloro-2-fluoroethan	ne 1.0		benzoic acid methyl ester)	
	(HCFC-121a)		1983-10-4	Tributyltin fluoride	1.0
354-14-3	1,1,2,2-Tetrachloro-1-fluoroethan	ie 1.0	2155-70-6	Tributyltin methacrylate	1.0
	(HCFC-121)		78-48-8	S,S,S-Tributyltrithio-	1.0
	•		1	phosphate (DEF)	

CACN	· · · · · · · · · · · · · · · · · · ·	e Minimis
CAS Number	Chemical Name	Limit
52-68-6	Trichlorfon	1.0
	[Phosphoric acid,(2,2,2-trichloro-l-	-hydroxy-
	ethyl)-, dimethyl ester]	•
76-02-8	Trichloroacetyl chloride	1.0
120-82-1	1,2,4-Trichlorobenzene	1.0
71-55-6	1,1,1-Trichloroethane (Methyl	1.0
	chloroform)	
79-00-5	1,1,2-Trichloroethane	1.0
79-01-6	Trichloroethylene	0.1
75-69-4	Trichlorofluoromethane (CFC-11)	1.0
95-95-4	2,4,5-Trichlorophenol	1.0
88-06-2	2,4,6-Trichlorophenol	0.1
96-18-4	1,2,3-Trichloropropane	0.1
57213-69-1	Triclopyr triethylammonium salt	1.0
121-44-8	Triethylamine	1.0
1582-09-8	Trifluralin	*
	[Benezeneamine, 2,6-dinitro-N,N-	dipropyl-
	4-(trifluoromethyl)-]	
26644-46-2	Triforine	1.0
	[N,N'-[1,4-Piperazinediylbis-(2,2,2	
	trichloroethylidene)]bisformamide]
95-63-6	1,2,4-Trimethylbenzene	1.0
2655-15-4	2,3,5-Trimethylphenyl	1.0
	methylcarbamate	
639-58-7	Triphenyltin chloride	1.0
76-87-9	Triphenyltin hydroxide	1.0
126-72-7	Tris(2,3-dibromopropyl)	0.1
	phosphate	
72-57-1	Trypan blue	0.1
51-79-6	Urethane (Ethyl carbamate)	0.1
7440-62-2	Vanadium (except when contained	1.0
	in an alloy)	
50471-44-8	Vinclozolin	1.0
	[3-(3,5-Dichlorophenyl)-5-ethenyl	-5-methyl-
	2,4-oxazolidinedione]	
108-05-4	Vinyl acetate	0.1
593-60-2	Vinyl bromide	0.1
75-01-4	Vinyl chloride	0.1
75-35-4	Vinylidene chloride	1.0
108-38-3	m-Xylene	1.0
95-47-6	o-Xylene	1.0
106-42-3	p-Xylene	1.0
1330-20-7	Xylene (mixed isomers)	1.0
87-62-7	2,6-Xylidine	0.1
7440-66-6	Zinc (fume or dust)	1.0
1222-67-7	Zineb	1.0
	[Carbamodithioic acid, 1,2-ethane	diyibis-,
	zinc complex]	

Chemical Categories

EPCRA section 313 requires reporting on the toxic chemical categories listed below, in addition to the specific toxic chemicals listed in the sections above. The metal compound categories listed below, unless otherwise specified, are defined as including any unique chemical substance that contains the named metal (e.g., antimony, nickel, etc.) as part of that chemical's structure.

Toxic chemical categories are subject to the 1.0 percent *de minimis* concentration unless the substance involved meets the definition of an OSHA carcinogen in which case the 0.1 percent *de minimis* concentration applies. The *de minimis* concentration for each category is provided in parentheses. PBT chemicals do not have *de minimis* concentrations and are marked with an NA (not applicable) in parentheses.

Chemical Categories

Antimony Compounds (1.0)

Includes any unique chemical substance that contains antimony as part of that chemical's infrastructure.

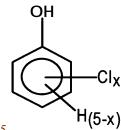
Arsenic Compounds (inorganic compounds: 0.1; organic compounds: 1.0)

Includes any unique chemical substance that contains arsenic as part of that chemical's infrastructure.

Barium Compounds (1.0)

Includes any unique chemical substance that contains barium as part of that chemical's infrastructure.

This category does not include: Barium sulfate CAS Number 7727-43-7


Beryllium Compounds (0.1)

Includes any unique chemical substance that contains beryllium as part of that chemical's infrastructure.

Cadmium Compounds (0.1)

Includes any unique chemical substance that contains cadmium as part of that chemical's infrastructure.

Chlorophenols (0.1)

Where x = 1 to 5

Chromium Compounds (chromium VI compounds: 0.1; chromium III compounds: 1.0) *Includes any unique chemical substance that contains chromium as part of that chemical's infrastructure.*

Cobalt Compounds (0.1)

Includes any unique chemical substance that contains cobalt as part of that chemical's infrastructure.

Copper Compounds (1.0)

Includes any unique chemical substance that contains copper as part of that chemical's

This category does not include copper phthalocyanine compounds that are substituted with only hydrogen, and/or chlorine, and/or bromine.

Cyanide Compounds (1.0)

 $X^{+}CN$ where $X = H^{+}$ or any other group where a formal dissociation may occur. For example KCN or Ca(CN)2

Diisocyanates (1.0)

```
This category includes only those chemicals listed below.
```

```
38661-72-2
               1,3-Bis(methylisocyanate)cyclohexane
10347-54-3
               1,4-Bis(methylisocyanate)cyclohexane
2556-36-7
               1,4-Cyclohexane diisocyanate
134190-37-7
               Diethyldiisocyanatobenzene
4128-73-8
               4,4'-Diisocyanatodiphenyl ether
75790-87-3
               2,4'-Diisocyanatodiphenyl sulfide
91-93-0
               3,3'-Dimethoxybenzidine-4,4'-diisocyanate
91-97-4
               3,3'-Dimethyl-4,4'-diphenylene diisocyanate
139-25-3
               3,3'-Dimethyldiphenylmethane-4,4'-diisocyanate
822-06-0
               Hexamethylene-1,6-diisocyanate
4098-71-9
               Isophorone diisocyanate
75790-84-0
               4-Methyldiphenylmethane-3,4-diisocyanate
5124-30-1
               1,1-Methylenebis(4-isocyanatocyclohexane)
101-68-8
               Methylenebis(phenylisocyanate) (MDI)
3173-72-6
               1,5-Naphthalene diisocyanate
123-61-5
               1,3-Phenylene diisocyanate
104-49-4
               1,4-Phenylene diisocyanate
9016-87-9
               Polymeric diphenylmethane diisocyanate
               2,2,4-Trimethylhexamethylene diisocyanate
16938-22-0
15646-96-5
               2,4,4-Trimethylhexamethylene diisocyanate
```

Dioxin and Dioxin-Like Compounds (Manufacturing; and the processing or otherwise use of dioxin and dioxin-like compounds if the dioxin and dioxin-like compounds are present as contaminants in a chemical and if they were created during the manufacture of that chemical.) (NA)

This category includes only those chemicals listed below.

~	
67562-39-4	1,2,3,4,6,7,8-Heptachlorodibenzofuran
55673-89-7	1,2,3,4,7,8,9-Heptachlorodibenzofuran
70648-26-9	1,2,3,4,7,8-Hexachlorodibenzofuran
57117-44-9	1,2,3,6,7,8-Hexachlorodibenzofuran
72918-21-9	1,2,3,7,8,9-Hexachlorodibenzofuran
60851-34-5	2,3,4,6,7,8-Hexachlorodibenzofuran
39227-28-6	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin
57653-85-7	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin
19408-74-3	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin
35822-46-9	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin
39001-02-0	1,2,3,4,6,7,8,9-Octachlorodibenzofuran
3268-87-9	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin
57117-41-6	1,2,3,7,8- Pentachlorodibenzofuran
57117-31-4	2,3,4,7,8-Pentachlorodibenzofuran
40321-76-4	1,2,3,7,8- Pentachlorodibenzo-p-dioxin
51207-31-9	2,3,7,8-Tetrachlorodibenzofuran
1746-01-6	2.3.7.8-Tetrachlorodibenzo-p-dioxin

Ethylenebisdithiocarbamic acid, salts and esters (EBDCs) (1.0)

Includes any unique chemical substance that is or that contains EBDC or an EBDC salt or ester as part of that chemical's infrastructure.

Certain Glycol Ethers (1.0)

 $R-(OCH_2CH_2)_n-OR'$

Where n = 1, 2, or 3

R = alkyl C7 or less; or

R = phenyl or alkyl substituted phenyl;

R' = H, or alkyl C7 or less; or

OR' consisting of carboxylic acid ester, sulfate, phosphate, nitrate, or sulfonate.

Lead Compounds (NA)

Includes any unique chemical substance that contains lead as part of that chemical's infrastructure.

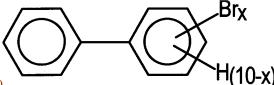
Manganese Compounds (1.0)

Includes any unique chemical substance that contains manganese as part of that chemical's infrastructure.

Mercury Compounds (NA)

Includes any unique chemical substance that contains mercury as part of that chemical's infrastructure.

Nickel Compounds (0.1)


Includes any unique chemical substance that contains nickel as part of that chemical's infrastructure.

Nicotine and salts (1.0)

Includes any unique chemical substance that contains nicotine or a nicotine salt as part of that chemical's infrastructure.

Nitrate compounds (water dissociable; reportable only when in aqueous solution) (1.0)

Polybrominated Biphenyls (PBBs) (0.1)

Where x = 1 to 10

Polychlorinated alkanes (C_{10} to C_{13}) (1.0, except for those members of the category that have an average chain length of 12 carbons and contain an average chlorine content of 60 percent by weight which are subject to the 0.1 percent *de minimis*)

 $C_xH_{2x+2-v}Cl_v$

where x=10 to 13; y=3 to 12; and the average chlorine content ranges from 40 - 70% with the limiting molecular formulas $C_{10}H_{19}C_{13}$ and $C_{13}H_{16}Cl_{12}$

Polycyclic aromatic compounds (PACs) (NA)

This category includes only those chemicals listed below.

56-55-3	Benz(a)anthracene
205-99-2	Benzo(b)fluoranthene
205-82-3	Benzo(j)fluoranthene
206-44-0	Benzo(j,k)fluorene
207-08-9	Benzo(k)fluoranthene
189-55-9	Benzo(rst)pentaphene
218-01-9	Benzo(a)phenanthrene
50-32-8	Benzo(a)pyrene
226-36-8	Dibenz(a,h)acridine
224-42-0	Dibenz(a,j)acridine
53-70-3	Dibenzo(a,h)anthracene
194-59-2	7H-Dibenzo(c,g)carbazole
5385-75-1	Dibenzo(a,e)fluoranthene
192-65-4	Dibenzo(a,e)pyrene
189-64-0	Dibenzo(a,h)pyrene
191-30-0	Dibenzo(a,l)pyrene
57-97-6	7,12-Dimethylbenz(a)anthracene
193-39-5	Indeno[1,2,3-cd]pyrene
56-49-5	3-Methylcholanthrene
3697-24-3	5-Methylchrysene
5522-43-0	1-Nitropyrene

Selenium Compounds (1.0)

Includes any unique chemical substance that contains selenium part of that chemical's infrastructure.

Silver Compounds (1.0)

Includes any unique chemical substance that contains silver part of that chemical's infrastructure.

Strychnine and salts (1.0)

Includes any unique chemical substance that contains strychnine or a strychnine salt as part of that chemical's infrastructure.

Thallium Compounds (1.0)

Includes any unique chemical substance that contains thallium as part of that chemical's infrastructure.

Vanadium Compounds (1.0)

Includes any unique chemical substance that contains vanadium as part of that chemical's infrastructure.

Warfarin and salts (1.0)

Includes any unique chemical substance that contains warfarin or a warfarin salt as part of that chemical's infrastructure.

Zinc Compounds (1.0)

Includes any unique chemical substance that contains zinc as part of that chemical's infrastructure.

Appendix B: Glossary

The following terms will be useful when reviewing information found in this report and when requesting other specific reports from the Emergency Response Commission:

Accidental Release: The quantity released to the environment as a result of remedial actions, catastrophic events, or one-time events not associated with production processes.

Chemical Abstracts Service Registry Number (CAS #): A numeric designation assigned by the American Chemical Society's Chemical Abstracts Service which uniquely identifies a chemical.

Chemical Name: Chemicals and chemical categories as they appear on the Section 313 Toxic Chemical List.

De Minimis Concentration: A level below which a listed chemical does not need to be considered when it is present in mixtures. In general, the de minimis concentration is 1.0%, or 0.1% if the chemical meets the OSHA carcinogen standard.

Energy Recovery Off-Site: The quantity of the toxic chemical that is sent off-site for energy recovery.

Energy Recovery On-Site: The quantity of the toxic chemical that is used for energy recovery on-site.

ERC ID: Emergency Response Commission Identification Number assigned to each facility in the state reporting under the "Emergency Planning and Community Right-to-Know Act" (SARA Title III). The first two digits represent the county in which the facility is located, the next three digits represent the city within that county, and the final four digits are assigned in sequential order. All toxic release reporting by a facility is tracked through its ERC ID Number.

Facility: All buildings, equipment, structures, and other stationary items which are located on a single site or on contiguous or adjacent sites and which are owned or operated by the same person.

Follow Year: The year following the reporting year.

Fugitive Air: Fugitive or non-point air emissions are the total releases to the air that are not released through stacks, vents, dusts, pipes, or any other confined air stream. Includes fugitive equipment leaks from: (1) valves, pump seals, flanges, compressors, sampling connections, open-ended lines, etc.; (2) evaporative losses from surface impoundments and spills: (3) releases from building ventilation systems; and (4) any other fugitive or non-point air emissions.

Manufacture: To produce, prepare, import or compound one of the chemicals on the list. For example, if a facility makes a dye for clothing by taking raw materials and reacting them, the facility is manufacturing the dye. A facility would also be covered if it was a textile manufacturer who imported a dye on the list for purposes of applying it to a fabric produced at the plant.

Methods To Identify Activity: Internal and external methods or information sources used to identify the possibility for a source reduction activity implemented at the facility.

Methods Used: Identifies the type of waste treatment, disposal, recycling, or energy recovery method used by the off-site location for the chemical being reported.

Off-Site Locations: Locations outside the boundaries of a facility to which wastes are transported for treatment, recycling, energy recovery, or disposal.

Off-Site Transfers: Transfers of the chemical in waste to off-site locations. Includes the total quantity of the chemical sent to any of the off-site waste treatment, disposal, recycling, or energy recovery facilities.

On-Site Land: Releases to the land on-site within the boundaries of the facility. Includes landfill, land treatment, surface impoundment, etc.

Otherwise Use: Any use of a toxic chemical at a facility that is not covered by the terms "manufacture" or "process" and includes use of a toxic chemical contained in a mixture or trade name product.

Process: Process, in general, includes making mixtures, repackaging, or using a chemical as a feedstock, raw material, or starting materials for making another chemical. Processing also includes incorporating a chemical into an article (e.g., using dyes to color fabric [the fabric is the article that the dye is being incorporated into]).

Production Ratio/Activity Index: The production ratio or activity index which is determined by dividing the current year's production (or activity) by the prior year's production (or activity). This ratio should reflect production or activities most closely associated with the manufacture, process, or use of the reported toxic chemical.

Public Sewage: Publicly Owned Treatment Works (POTW) responsible for wastewater treatment.

Recycled Off-Site: The quantity of the toxic chemical that is sent off-site for recycling.

Recycled On-Site: The quantity of the toxic chemical that is recycled (i.e., the quantity of the chemical exiting or resulting from the recycling operation) on-site.

Releases: Releases to the environment including air, surface water, on-site land, and off-site landfill.

2nd Year: The year two years following the reporting year.

SIC Code: Standard Industrial Classification Code used to segregate industry by economic activity.

Source Reduction Activities: Types of source reduction activities implemented in the reporting year.

Stack Air: Stack or point air emissions are the total of all releases to air that occur through stacks, vents, ducts, pipes, or other confined air streams. This includes storage tank emissions. Air releases from air pollution control equipment would generally fall in this category.

Surface Water: Discharges to receiving streams or water bodies includes the total annual amount of the chemical released from all discharge points at the facility to each receiving stream or water body. It also includes process outfalls such as pipes and open trenches, releases from on-site wastewater treatment systems, and the contribution from stormwater runoff, if applicable. This does not include discharges to a Publicly Owned Treatment Works (POTW) or other off-site wastewater treatment facilities. Discharges of listed acids may be reported as zero if the discharges have been neutralized to pH 6 or above.

Thresholds: Volumes of chemicals that trigger reporting requirements. If a facility manufactures or processes any of the listed toxic chemicals, the threshold quantity is:

- 75,000 pounds during calendar year 1987;
- 50,000 pounds in 1988; and
- 25,000 pounds in 1989 and subsequent years.

If a facility uses any listed chemical in any other way (without incorporating it into any product or producing it at the facility), the threshold quantity is:

• 10,000 pounds in calendar year 1987 and in subsequent years.

Persistent, bioaccumulative and toxic (PBT) chemicals have lower thresholds.

Total Releases and Transfers: Releases to the environment including air, surface water, and on-site land; in addition to transfers off-site to a Publicly Owned Treatment Works (POTW) and/or any off-site treatment, disposal, recycling, or energy recovery facility.

Treated Off-site: The quantity of the toxic chemical that was sent off-site for the purpose of waste treatment.

Treated On-site: The quantity of the toxic chemical entering treatment on-site.

TRI Chemical List: A list of chemicals or chemical categories on which facilities must file release reports under Section 313 of Title III. A chemical may be added to the list if it is known to cause or can reasonably be anticipated to cause significant adverse acute health effects outside a facility as a result of continuous or frequently recurring releases. In addition, chemicals may be added if they cause or may reasonably be anticipated to cause cancer or birth defects or serious or irreversible reproductive dysfunctions, neurological disorders, heritable genetic mutations or other chronic health effects. A chemical that causes or may cause a significant adverse effect on the environment may be included. The U.S. Environmental Protection Agency may delete chemicals from the list if there is not sufficient evidence to establish any of the criteria described above. The TRI Chemical List is included in Appendix A on page 71.

Year: The year in which the data was collected and reported by the facility. Section 313 data is required to be reported by July 1 of every year, covering releases and transfers for the previous reporting (calendar) year.