
Letter of support for SF 4523 the Critical Materials Recovery Task Force bill,

My name is Maria Jensen with Recycling Electronics for Climate Action,

A shortage of critical metals puts our energy transition at risk, metals which could be
recovered from our electronic waste. Minnesota’s annual e-waste stream contains $3.2 billion
dollars worth of all the metals we need.

Unfortunately, almost all of the critical metals from the e-waste that is collected for processing in
Minnesota today leave the country for final processing. This means that the vast majority of the
critical metals we are recovering would need to be purchased back on the international market if
U.S. manufacturers wanted to use them for manufacturing renewable energy products. A local
circular economy for our electronic waste is within reach, and a taskforce like this will help us be
intentional about bringing material recovery jobs to Minnesota.

Collecting and processing 100% of our e-waste locally would mean creating 1700 jobs via
refurbishment, collection, sorting, and shredding activities. If we were to complete the cycle of
material recovery this could add an additional 100~200 jobs to that figure. The Critical Material
Recovery Taskforce is a perfect complement to the 100% Electronic Waste Collection bill
(HF3566/ SF3940). Not only do we need improved collection for the State of Minnesota, but we
want to reap the full economic benefits of this material by extracting the metal for re-use locally.



Recycling Electronics for Climate Action (RECA) is an electronic waste recycling industry
association- aimed at fostering environmentally responsible growth in this industry, and creating
a local circular economy for the metals in our electronic waste. SF 4523 is in line with our
mission, in that it will evaluate emerging technologies for safe extraction of metals from
electronic waste, and opportunities to do this locally.

Maria Jensen
Co-Director
Recycling Electronics for Climate Action
mjensen@reca-us.org 507-291-4329
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E-waste by the 
numbers...

46
pounds per person
The U.S. currently generates about 46 
pounds of e-waste per capita annually.1

million pounds annually
Over 266 million pounds of e-waste is 
available for recycling in Minnesota every 
year.

of e-waste captured
Minnesota only captures 23.7% of e-waste 
for recycling; much of the remainder gets 
into traditional waste streams. 12,17

+266

23.7%



At a 100% recycling rate, Minnesota’s e-waste stream 
could supply enough copper for 155,000 EVs per year.73

Electronic waste is the fastest growing waste stream in the world, and it is full of valuable 
metals.1 Although some traditional e-waste streams such as cathode-ray tube (CRT) TVs and 
VCR and DVD devices are declining, new electronic devices are coming onto the market more 
rapidly and will maintain an increasing e-waste stream.2-13 E-waste, also referred to as WEEE 
(waste electrical and electronic equipment), is growing at an annual rate of 3-5% globally. 4,13-

16 E-waste includes information technology equipment, communications equipment, as well 
as household appliances. The US currently generates about 46 pounds of e-waste per capita 
annually (P.72).1,3 Minnesota only captures 23.7% of e-waste for recycling; much of the remainder 
gets into traditional waste streams.12,17

Landfilling or incinerating e-waste causes significant pollution and health problems. For 
example, 70% of the heavy metals (i.e., lead, mercury) present in landfills come from e-waste.18 
Heavy metals cause a myriad of health effects, such as neurodegenerative effects, which are 
especially severe in children.19-23 Throwing away electronics also wastes valuable material. By 
weight, metals account for 60% of the material composition of e-waste. The metals found 
in e-waste include copper, nickel, palladium, iron, lead, tin, aluminum, and zinc, among 
others.14,24-25 Metals are infinitely recyclable.26 The avoided toxicity and high quality of recycled 
products makes recycling e-waste a win-win proposition for environmental and human 
health.

E-waste is also a promising source for metals that are facing increasing demand due to 
the transition to renewable energy. The International Energy Agency estimates that in 
order to reach net zero emissions by 2050, metal demand will increase 6-fold compared to 
2022 levels.27 Legislation such as the Inflation Reduction Act provides billions of dollars for 
electrification, energy storage, and wind and solar power, and finding responsible sources of 
metals to service these technologies is a national priority.28 This study provides insight into 
the potential for e-waste to meet this demand by estimating the total weight of sixty-eight 
elements available for recycling within Minnesota’s e-waste stream.
 
The authors of this study came together from industry, environmental activism, and 
academia. Repowered is a non-profit e-waste recycling and refurbishing company and one 
of the largest collectors in the state of Minnesota. Iron Range Partnership for Sustainability 
is an organization based in Virginia, Minnesota, whose mission is to facilitate collaboration 
toward a sustainable and thriving Iron Range. Dr. Roopali Phadke, a professor from Macalester 
College, has conducted research on recovery and sustainable use of precious metals. The 
group approached the subject matter with the lens of sustainable job creation for Northern 
Minnesota, and to that end, envisions this work as a pilot study that will lead the way to 
further research and investment in Minnesota’s e-waste recycling capacity.

Background



Methodology
Study

Data on white goods (I.e., refrigerators, washing machines etc.), 
which typically make up about 50% of e-waste, was added to the 
facility data based on the findings of Ongondo (2011).29

Using peer reviewed research, reports, and local data on e-waste, 
this study documents the elemental content in fourteen categories 
of e-waste. The research used in this study ranges predominantly 
from 2017 to 2022, with two studies each in the years 2011 to 
2015 and one study from 2002.

Categorizing e-waste: An e-waste recycling facility 
based in St. Paul, MN provided data on e-waste 
category types and the proportion of each category by 
weight in a typical e-waste stream (see Figure 1). 
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Figure 1: Categorization of materials mix from a sample 
e-waste collection facility
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Study
Methodology continued...

Literature review: A comprehensive literature review was conducted to yield 
the proportion and weight of sixty-eight elements present in each e-waste 
category. For example, Buechler (2020) provided data on the breakout of fifty-
six different elements in ten categories of e-waste. Data from ten similar studies 
were aggregated to understand the elemental composition of each e-waste 
category. There are many variations of batteries in the e-waste stream. For 
batteries, specific studies that established element content were used along with 
one manufacturer’s data sheet.24, 30-46

03

04
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Minnesota: The population data used is the projected population for the state 
of Minnesota in 2023 (reference results section).47  The per capita e-waste 
generation in the US provides the basis for calculating the total weight of 
e-waste available for recycling in the state of Minnesota.1

Calculation of value: Where current market value data was available, the value 
of each element as of January 2023, was multiplied by the respective portion of 
the total weight and was used to calculate the total annual value of e-waste in 
Minnesota.48-71 

Jobs: According to the Coalition for American Electronics Recycling Jobs report, 
e-waste collection, demanufacturing, shredding and information technology 
asset collection/refurbishing activities generate one full time job for each 
172,000 pounds of e-waste processed.20, 72, 75 This does not include any jobs 
involved in a final materials recovery process. 



Element Weight (lbs) Percent
Iron                        31,948,426 40.6%
Copper                        25,350,177 32.2%
Tin                           7,575,259 9.6%
Aluminium                           6,669,743 8.5%
Lead                           2,596,846 3.3%
Zinc                           1,966,195 2.5%
Barium                              564,601 0.7%
Nickel                              309,746 0.4%
Sulfur                              283,289 0.4%
Manganese                              216,608 0.3%
58 Other Elements                           1,141,272 1.5%

Total Weight                        78,622,162 100.0%

Figure 2: MN 2023 Total e-Waste Top 10 by WEIGHT

Element Value US $ Percent
Palladium                                1,519,264,623 47.8%
Platinum                                1,036,326,242 32.6%
Gold                                    343,116,072 10.8%
Copper                                    107,432,898 3.4%
Tin                                    100,940,322 3.2%
Lithium                                      14,287,284 0.4%
Iron                                      11,725,072 0.4%
Aluminium                                        7,997,629 0.3%
Silver                                        5,940,166 0.2%
Ruthenium                                        5,806,676 0.2%
58 Other Elements                                      28,335,108 0.9%

Total Value                                3,181,172,092 100.0%

Figure 3: MN 2023 Total e-Waste Top 10 by VALUE

Findings

At a 100% e-waste recycling rate in Minnesota, the following amount of “Top 10 
Elements” made available (by weight in pounds) would be:

The value (in USD) of the “Top 10 Elements” at a 100% e-waste recycling rate in 
Minnesota would be:



RESULTS
Over 266 million pounds of e-waste is available for recycling in Minnesota 
every year, including 78 million pounds of the sixty-eight valuable elements 
identified in this study. Based on the aforementioned market prices, the total 
estimated value of the sixty-eight elements in a single year’s worth of e-waste 
generated in Minnesota is $3.2 billion. The projected job creation, if 100% of 
e-waste in Minnesota were to be captured for recycling or refurbishment (not 
including the final step of material recovery), is 1,738 direct jobs, and a total of 
3,345 new jobs.  Figure 2 gives a breakout of the top ten elements by weight, 
and Figure 3 gives the top ten elements by value.

441,000 solar panels 155,000 EVs
At a 100% recycling rate, Minnesota would 
have enough silver to produce 441,000 solar 
panels per year from its e-waste.46

At a 100% recycling rate, Minnesota’s e-waste 
stream could supply enough copper for 155,000 
EVs per year.73
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