EERC. UNIVERSITYOF NORTH DAKOTA.

EERC. NORTH DAKOTA.

Energy & Environmental Research Center (EERC)

Minnesota Senate Energy Committee

February 6, 2023

Charles Gorecki CEO

© 2021 University of North Dakota Energy & Environmental Research Center.

HIGH-BAY Technology Demonstration

TECHNOLOGY DEMONSTRATION OUR FACILITIES

254,000 SQ. FT. OF FACILITIES

FABRICATION SHOP

FUEL

PROCESSING

TECHNOLOGY

CHEMICAL STORAGE

LABORATORIES

OFFICES

FUELS OF THE FUTURE

CENTER

DISCOVERY HALL MEETING AREA

WATER USE

TECHNOLOGY

MOBILE LABORATORIES

OUR VISION

TO LEAD THE WORLD IN DEVELOPING SOLUTIONS TO ENERGY AND ENVIRONMENTAL CHALLENGES.

CO₂ CAN BE MANAGED

Carbon Capture and Storage (CCS)

CO₂ Capture, Transport and Injection

1. Capture the CO_2 instead of emitting to atmosphere.

CO₂ Source

FRESH WATER

2. Compress the CO_2 for optimal transport and storage.

- 3. Transport the CO_2 to injection site.
- Inject the CO₂ for permanent geologic storage.

CO₂ Plume

njection Wel

5900 feet

CCUS Complements Renewables/Efficiency/etc.

Without CCUS as part of the solution, meeting global climate goals will be practically impossible.

Dr. Fatih Birol

Executive Director, International Energy Agency

CCUS Complements Renewables/Efficiency/etc.

Carbon capture isn't a moon-shot solution, nor is it a silver bullet for decarbonization. It's a roll-up-your-sleeves solution to guiding our energy economy to a cleaner future.

Dr. Sally Benson

Former Deputy Director of Operations and Director of the Earth Sciences Division, Lawrence Berkeley National Laboratory; Coordinating lead author, IPCC special report on CCS

SOURCES. ROBERT H. SOCOLOW AND STEPHEN W. PACALA, FRINCETON UNIVERSITY IUPDATED REPORTL. OAK RIDGE NATIONAL LABORATORY IGLOBAL CARBON EMISSIONS DATAL ICONE BY JONATHAN AVERY, GRAPHIC BY JUAN VELASCO, NGM ART

ONE WEDGE AT A TIME

Each strategy listed below would, by 2057, reduce annual carbon emissions by a billion metric tons.

EFFICIENCY AND CONSERVATION

Improve fuel economy of the two billion cars expected on the road by 2057 to 60 mpg from 30 mpg.

 Reduce miles traveled annually per car from 10,000 to 5,000.

Increase efficiency in heating, cooling, lighting, and appliances by 25 percent.

Improve coal-fired power plant efficiency to 60 percent from 40 percent.

CARBON CAPTURE AND STORAGE

Introduce systems to capture CO₂ and store it underground at 800 large coal-fired plants or 1,600 natural-gas-fired plants.

Use capture systems at coalderived hydrogen plants producing fuel for a billion cars.

Use capture systems in coalderived synthetic fuel plants producing 30 million barrels a day.

LOW-CARBON FUELS

Replace 1,400 large coal-fired power plants with natural-gas-fired plants.

 Displace coal by increasing production of nuclear power to three times today's capacity.

RENEWABLES AND BIOSTORAGE

Increase wind-generated power to 25 times current capacity.

Increase solar power to 700 times current capacity.

Increase wind power to 50 times current capacity to make hydrogen for fuel-cell cars.

Increase ethanol biofuel production to 50 times current capacity. About one-sixth of the world's cropland would be needed.

Stop all deforestation.

Expand conservation tillage to all cropland (normal plowing releases carbon by speeding decomposition of organic matter).

CRITICAL SUBSURFACE CHARACTERISTICS

- Depth
- Porosity/permeability
- Good cap rock
- Appropriate salinity
- No natural leakage pathways

Depth

- Below approximately 2600 ft, CO₂ becomes a supercritical fluid.
- CO₂ will behave like a liquid.
- High density of the CO₂ allows for more storage in a given volume.

PCOR PARTNERSHIP

2003–2005 – PCOR Partnership: Characterization

2005–2008 – PCOR Partnership: Field Validation

2007–2019 – PCOR Partnership: Commercial Demonstration

2019–2024 – PCOR Partnership Initiative: Commercial Deployment

MAJOR STATIONARY SOURCES OF CO₂

CO₂ SINKS IN NORTH AMERICA

Active and Developing CCUS Projects in the PCOR Partnership Region

- Active Capture
- Active Injection
- O Developing Capture
- ✓ Developing Injection
- ---- Proposed CO₂ Pipeline

EOR Fields for ACTL Boundary Dam Aquistore Weyburn Great Plains Synfuels Plant Carbon Vault Red Trail Energy. Coal Creek Station Midwest Ag CCA Milton R. Young Station Bell-Creek Summit Lost Cabin Dry Fork Station Riley Ridge <u>Summit</u> Shute Creek-Tallgrass Navigator Project Phoenix-Gerald Gentleman

ACTL Nutrien

and Sturgeon

Quest

45Q Tax Credit

CO₂ Storage Long-Term Liability Laws

Pore Space Ownership Laws

20 Years of applied R&D in CCUS

North Dakota's Energy Future

NORTH DAKOTA CCUS ACTIVITY

EERC. UN NORTH DAKOTA.

Charles Gorecki, CEO cgorecki@undeerc.org 701.777.5355 (phone) Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5000 (phone) 701.777.5181 (fax)

EERC. UNIVERSITYOF NORTH DAKOTA.

WILLISTON BASIN SALINE STORAGE OPPORTUNITIES

WILLISTON BASIN GEOLOGY OFFERS MULTIPLE OPTIONS FOR CCS & CCUS

Broom Creek Fm – Saline Storage

Madison conventional reservoirs – EOR Bakken & Three Forks unconventional reservoirs– EOR Duperow conventional reservoirs – EOR

Red River conventional reservoirs – EOR

Deadwood Fm – Saline Storage

UNDERGROUND **INJECTION CONTROL** (UIC) Program

UIC Program Standards:

- 1) Protection of underground sources of drinking water (USDW)
- Injection zone 2)
- 3) Confining zones (upper and lower)
- Area of review and corrective action 4)
- 5) Wellbore integrity demonstration

Class VI Primacy in the United States

Class I	Class II	Class III	Class IV	Class V	Class VI
Hazardous and nonhazardous fluids (industrial and municipal wastes).	Brines and other fluids associated with oil and gas production, including CO ₂ EOR.	Fluids associated with solution mining of minerals.	Hazardous or radioactive wastes. This class is banned by EPA.	Nonhazardous fluids into or above a USDW and are typically shallow.	Injection of CO ₂ for long-term storage.
		ERGY INTERNATIONAL		Critical Challe	nges. Practical Solutions