

#### Minnesota Senate Energy Committee

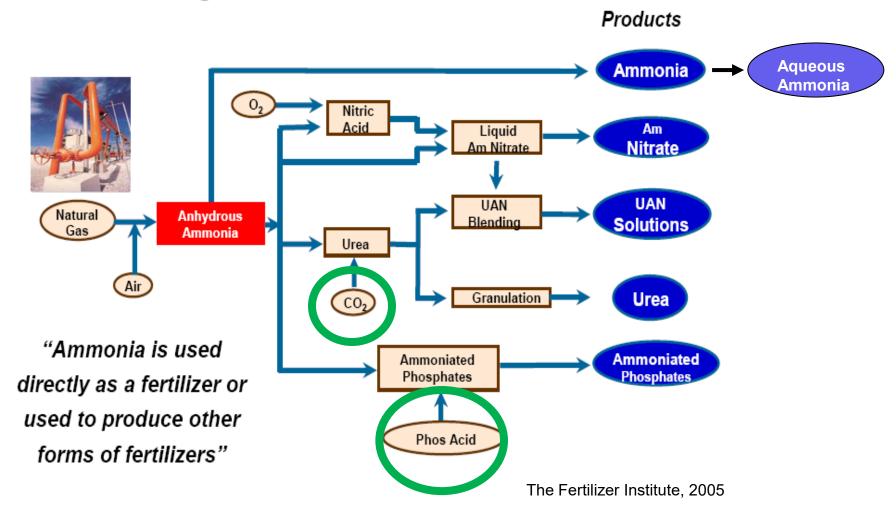
# Green Nitrogen Fertilizer: Implications for Minnesota Agriculture

March 20, 2023 Saint Paul, MN

#### Presented by:

Michael Reese Director of Operations, and Renewable Hydrogen and Ammonia Lead

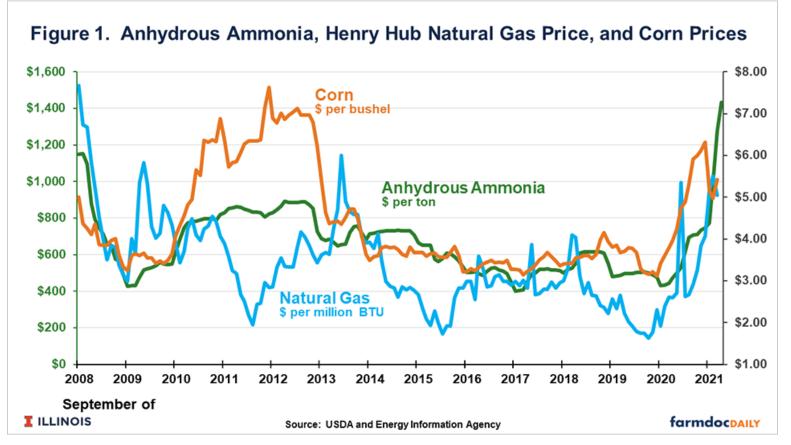



College of Food, Agricultural and Natural Resource Sciences

UNIVERSITY OF MINNESOTA



West Central Research & Outreach Center "Leading innovation in agriculture and beyond"


## Nitrogen Fertilizer Production



Proven commercial technology currently available to produce hydrogen, ammonia, urea, and other hydrogen-based fuels in Minnesota.

## Why renewable ammonia?

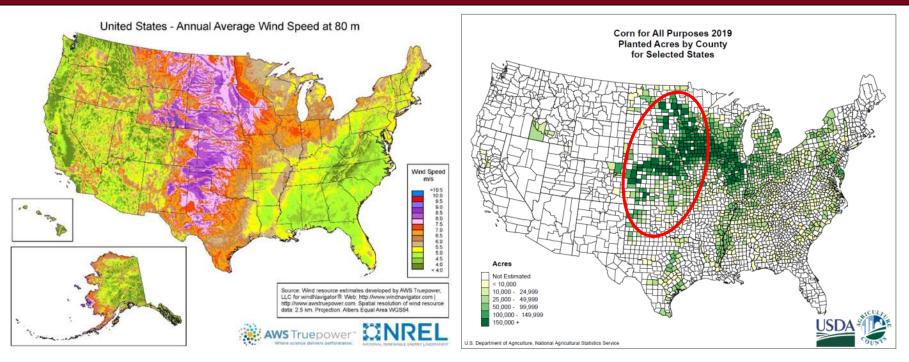
- Price certainty and stability: decoupling from global natural gas market
- Reduce carbon intensity: >2.6 mt<sub>CO2</sub>/mt to <0.2 mt<sub>CO2</sub>/mt
- United States policy: Federal clean H<sub>2</sub> production credits up to \$3/kg
  - \$529/mt ammonia production credit for first 10 years of production!



### **Green Ammonia: An Elegant Solution**

#### Wind or Solar Energy + Water + Air = Nitrogen Fertilizer

Step 1. Electrolysis of Water  $2H_20 \longrightarrow 2H_2 + O_2$ 


Step 2. Air separation  $O_2$  and Ar are absorbed in a molecular sieve leaving  $N_2$ 

Step 3. Haber Bosch Process  $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$ 

#### **Step 4. Urea Production** (Granular N fertilizer) $2NH_3 + CO_2 \rightarrow NH_2COONH_4$ (ammonium carbamate) $NH_2COONH_4 \rightarrow H_2O + NH_2CONH_2$ (dry, granular urea)

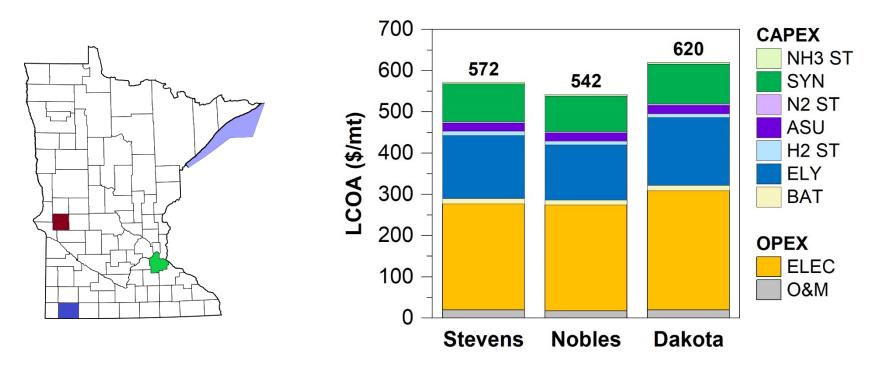
 Carbon capture - Use CO<sub>2</sub> from ethanol production
circular model

## Scale: Green Ammonia



- US wind resource is synergistic with Midwest corn production and nitrogen fertilizer demand – inherently distributed
- US nitrogen fertilizer demand could be met with approximately 50,000 MW of nameplate wind energy capacity – current US wind generation is 105,583 MW of nameplate capacity
- Opportunity to utilize "stranded" wind and solar resources (and excess nuclear)
- Nitrogen fertilizer is a gateway to other green hydrogen uses export potential

#### Research to improve efficiency: US DOE ARPA-E REFUEL Technology Integration Project



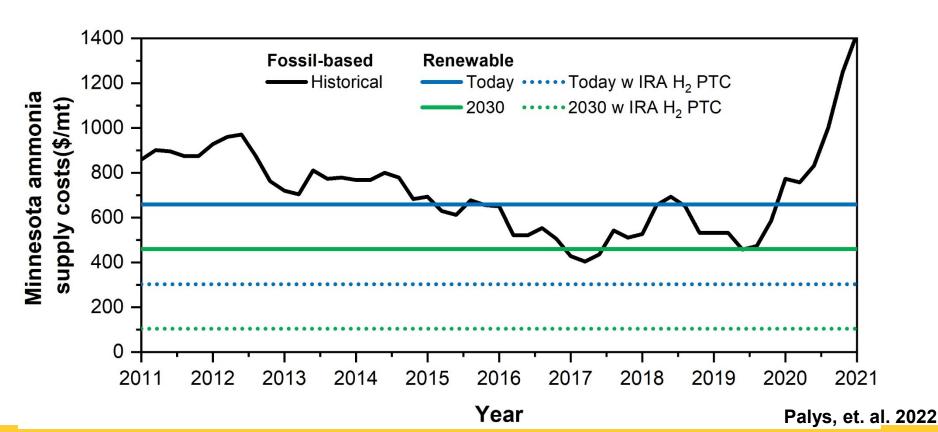

#### ~18x scale-up of existing wind-to-NH<sub>3</sub> pilot plant

## Production cost depends on location

- Stevens county: 44% wind, 15% PV
- Nobles county: 52% wind, 16% PV  $\rightarrow$  -\$30/mt than Stevens
- Dakota county: 36% wind, 15% PV  $\rightarrow$  +\$50/mt than Stevens

#### Does not include \$529 / metric ton NH<sub>3</sub> value from H<sub>2</sub> incentive!

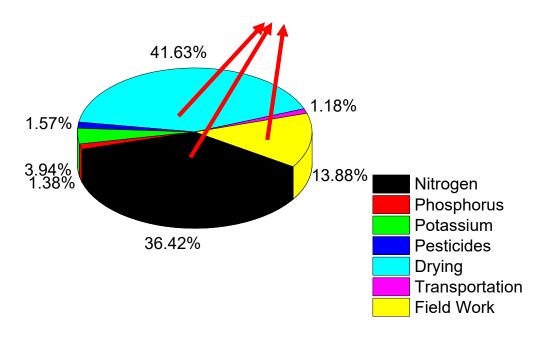



**Design for each location to minimize LCOA** 

Palys, et. al. 2022

## **IRA H<sub>2</sub> PTC is transformative**

IRA: \$3/kg H2 credit for CI<0.45 kg<sub>CO2</sub>/kg<sub>H2</sub>, labor/wage requirements met


- \$529/mt ammonia for first 10 years of production (ammonia CI<0.08 mt<sub>CO2</sub>/mt<sub>NH3</sub>)
- **\$356/mt ammonia levelized over 20 year project with 7.5% discount rate**



#### Transformational: Green ammonia is a drop-in replacement



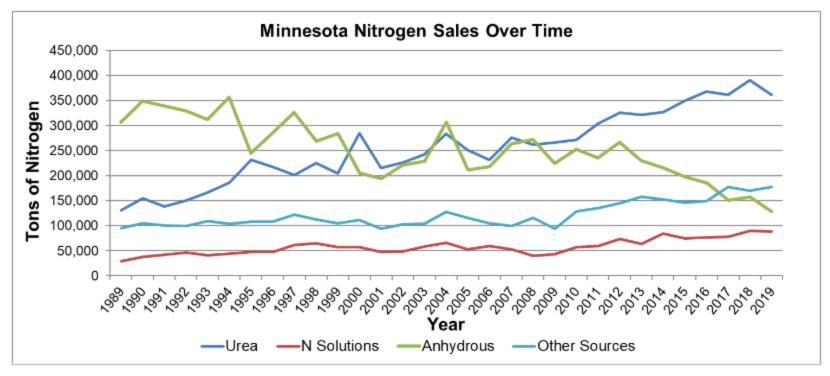
Potential to reduce fossil energy use in corn production over 90% using ammonia (NH<sub>3</sub>) produced using wind energy.



J. Tallaksen, 2016. UMN West Central Research and Outreach Center

> Nitrogen fertilizer production is responsible for 2% of global GHG emissions.

# Potential to use green ammonia as a fuel further decarbonizing agriculture and other sectors




Source: Univ. of Minnesota

Source: Amogy

#### Bottom-line:

• With new federal incentives, we can economically meet all nitrogen fertilizer needs in Minnesota with green nitrogen fertilizer.



Source: MN Dept. of Agriculture

#### Impact of 100% Green N Fertilizer Production in Minnesota

- Stimulates investment in Minnesota \$2 billion capital investment for five new ammonia production facilities distributed across the State (120,000 to 205,000 t/y range)<sup>1</sup>
- Decarbonizes agriculture production 95% reduction in carbon intensity of nitrogen fertilizer production (3.2 tCO<sub>2</sub>eq/t. vs 0.17 tCO<sub>2</sub>eq/t.)<sup>1</sup>. Reduces Scope 3 emissions for Minnesota processors, wholesalers, and retailers.
- Greatly increases utilization of renewable energy 1750 MW of wind and 500 MW solar nameplate capacity across the region.<sup>1</sup> Helps achieve 100% goal.
- Provides competitive and stable nitrogen fertilizer pricing for farmers
- Significant economic driver Estimated \$10B to \$25B in total economic benefits through 2035. Estimated \$720 MM to \$1.73 B in tax revenues.<sup>1</sup>
- Supports Minnesota manufacturing industries and provides potential early adopter benefits and "technology dividends"
- Gateway to other green hydrogen technologies
- If done correctly, allows broad participation and benefits

# Acknowledgements

Funding provided by:

- State of Minnesota
- Minnesota Agricultural Experiment Station Rapid Ag Response Fund
- Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative Citizen Commission on Minnesota Resources
- United States Department of Energy ARPA-E REFUEL Program
- University of Minnesota College of Food, Agricultural, and Natural Resource Sciences (CFANS)
- Clean Energy Resource Teams (CERTS)
- Electric Power Research Institute (EPRI)
- MnDRIVE
- Climate Imperative



#### MnDRIVE

Minnesota's Discovery, Research and InnoVation Economy







#### **Contact Information:**

Michael Reese Director of Operations, and Renewable Hydrogen and Ammonia Research Lead University of Minnesota West Central Research & Outreach Center Office: (320) 589-1711 ext 2151 Cell: (320) 760-6016 Email: reesem@umn.edu Website: https://wcroc.cfans.umn



College of Food, Agricultural and Natural Resource Sciences

UNIVERSITY OF MINNESOTA



**West Central Research & Outreach Center** "Leading innovation in agriculture and beyond"